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Abstract

We introduce a method to help identify how the genetic diversity of a species within a geographic region might
have arisen. This problem appears, for example, in the context of identifying refugia in phylogeography, and in the
conservation of biodiversity where it is a factor in nature reserve selection. Complementing current methods for
measuring genetic diversity, we analyze pairwise distances between the haplotypes of a species found in a geo-
graphic region and derive a quantity, called haplotype connectivity, that aims to capture how divergent the haplo-
types are relative to one another. We propose using haplotype connectivity to indicate whether, for geographic
regions that harbor a highly diverse collection of haplotypes, diversity evolved inside a region over a long period
of time (a “hot-spot”) or is the result of a more recent mixture (a “melting-pot”). We describe how the haplotype
connectivity for a collection of haplotypes can be computed efficiently and briefly discuss some related optimiza-
tion problems that arise in this context. We illustrate the applicability of our method using two previously pub-
lished data sets of a species of beetle from the genus Brachyderes and a species of tree from the genus Pinus.

Background

It is now increasingly recognized that past climatic
events have played a significant role in shaping the dis-
tribution of genetic diversity within species across the
landscape. The distribution of this genetic diversity can
leave signatures indicating the locations of refugia or
“hot-spots”, i.e. regions in which species have persisted
for long periods of time. These regions are important as
they have contributed to much of the observed structur-
ing of genetic variation across the landscape [1].

It has been observed (e.g. [2,3]) that hot-spots may be
distinguished by high levels of genetic diversity relative
to the geographic domain that has been colonized from
these regions. In particular, this provides a simple and
intuitive diagnostic for identifying probable species refu-
gia. However, the merging together of gene pools pre-
viously isolated in different refugia can also result in
regions of high genetic diversity, so-called “melting-
pots” [4]. Distinguishing between hot-spots and melting-
pots is therefore an important problem in the area of
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phylogeography, where one of the main objectives is to
identify the processes that are responsible for the con-
temporary geographic distributions of species. It is also
a key issue in selecting nature reserves, where the aim is
to choose regions in order to best conserve biodiversity
(see e.g. [5]). Here we describe a new approach to help
distinguish between hot-spots and melting-pots for a
species that is based on the mutational properties of
DNA sequences. Such sequences provide a robust fra-
mework for the assessment of historical relationships
among genetic variants within a population. As a simple
illustration of our approach, suppose that we sample a
set X of DNA haplotypes from a species inhabiting a
certain region. Consider the two hypothetical phyloge-
nies for X in Figure 1, in which the vertices correspond-
ing to the sampled haplotypes are given by black dots.
Although the genetic diversity of X is the same accord-
ing to the total length of both phylogenies, we see that
in phylogeny (a) the haplotypes are dispersed across the
phylogeny (a hot-spot scenario), whereas in phylogeny
(b) the haplotypes form two groups (a melting-pot sce-
nario) (cf. also category I vs category II patterns in [6]).
To differentiate between such behaviors, we intro-
duce the concept of haplotype connectivity of a set X
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(b) A melting-pot scenario with X = {b;, .., b;3}. All edges have length 1.
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Figure 1 Haplotype phylogenies. Haplotype phylogenies for a collection X of haplotypes. (a) A hot-spot scenario, with X = {ay, .., a;3}.
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of haplotypes relative to a distance matrix D on X.
This measure tries to quantify how well separated the
haplotypes are relative to D. For distances D arising
from path lengths in phylogenies where all edges have
length 1 (i.e. the distance D(x, y) between two haplo-
types %, y € X is simply the number of edges on the
path from x to y) such as those presented in Figure 1,
one can interpret the measure as follows. The haplo-
type connectivity of X relative to D is the smallest
non-negative integer ¢ so that, for any x, y € X that
label vertices u, v in the tree, there is a sequence u =
W1, Wa, ..., w; = v of vertices in the tree such that (i)
any two consecutive vertices in the sequence are adja-
cent and (ii) at least one of the vertices in every ¢ con-
secutive vertices in the sequence is labeled by some
element in X. For example, it can be checked that the
phylogeny in (a) has haplotype connectivity 2, whereas
the haplotype connectivity of the phylogeny in (b) is 5.
In particular, the lower haplotype connectivity score
corresponds to the hot-spot scenario.

To efficiently compute the haplotype connectivity of a
collection of haplotypes X relative to a distance matrix
D, we show how to make use of an algorithm for a
related problem presented in [7]. In addition, for fixed
k, we develop some algorithms for finding the mini-
mum/maximum haplotype connectivity of any subset of
X of size k. As we shall see, this allows us to more easily
compare the haplotype connectivity of different size sets
as it takes the sample-size bias into account.

Our new method complements the approach pre-
sented in [8] for detecting zones of secondary contact
(i.e. melting-pots) based on nested clade analysis [9,10]
(it should, however, be noted that there is some debate
in the literature concerning the validity of nested clade
analysis [11]). It is also related to the method for infer-
ring population genetic processes based on the fre-
quency distribution of pairwise distances between
haplotypes presented in [12] (see also [13,14]). To the
best of our knowledge, these are currently the main

computational approaches used to distinguish hot-spots
and melting-pots based on molecular sequence data.

The rest of the paper is organized as follows. In the
next section we formally define haplotype connectivity,
show how this quantity can be computed efficiently and
discuss some optimization problems that naturally arise
in the context of this paper. We then illustrate the
applicability of our method using two published data
sets encompassing different spatial scales, before con-
cluding with a short discussion of possible future
directions.

Methods

We now describe our new methods. We assume that we
are given a set X of haplotypes, together with a dissimi-
larity measure D on X that quantifies the genetic dis-
tance D(x, y) between every pair x, y in X. There are
several dissimilarity measures for DNA haplotypes, such
as the Hamming distance or the phyletic distance, that
is, the distance relative to a phylogeny on X (see e.g.
[12,15-17]).

Haplotype connectivity

Given a subset Y of X (corresponding, for example, to
the haplotypes that are found in some given region), we
aim to quantify how difficult it is relative to D to link
any pair x, y € Y by a sequence of intermediate haplo-
types also belonging to Y.

To do this, we shall use the concept of a threshold
graph (see e.g. [18,19]). For a non-negative number or
threshold t, we define the graph G,(Y) with vertex set Y
and edge set consisting of those pairs of distinct haplo-
types x, y € Y with D(x, y) < t. In addition we assign to
every edge e = {x, y} the weight ® (e) := D(«, y). The
haplotype connectivity of Y (relative to D) is then
defined to be the smallest number ¢ such that the graph
G((Y) is connected (as usual, the graph G,Y) is con-
nected if there is some path in G,(Y) between any pair
of elements in Y). We denote this number by HC(Y, D)
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or just HC(Y) in case it is clear what D is from the
context.

To illustrate these definitions, consider the subset Y =
{by, by, ..., b1s} of X = {by, by, ..., b13} and the phyletic
distance D on X induced by the phylogeny in Figure 1
(b), i.e. the distance obtained by taking the path length
between pairs of haplotypes. In Figure 2(a) we depict
the graph G,(Y). This is not connected, and so
HC(Y) > 2. However, it is straight-forward to check that
HC(Y) = 5 (the graph Gs(Y) is depicted in Figure 2(b)).

Now, if ¢ = max{D(x, y): x, y € Y } then the graph G,
(Y) is the complete graph on Y, i.e. the graph in which
every pair of vertices is linked by an edge, which we
denote by G:(Y). For every spanning tree T of G-(Y),
that is, a subgraph of G.(Y) that is a tree and that con-
tains all vertices of G:(Y), let ®,,,,,(T) be the maximum
of the edge weights over all edges of 7. We claim that

HC(Y) = min{w,,,,(T) : T is a spanning tree of G.(Y)}.

Indeed, since every spanning tree T of G«(Y) is a con-
nected subgraph of G:(Y), we must have HC(Y) < ®,,,x
(7). Conversely, putting ¢ := HC(Y), by definition of HC
(Y) the graph G,(Y) is connected and every spanning
tree T of G(Y) is also a spanning tree of G:(Y) with
®ax(T) < t = HC(Y). In particular, this implies that
there always exist x, y € Y with HC(Y) = D(x, y). A
spanning tree T of G:(Y) with score ®,,,.(7) equal to
HC(Y) is also known as a bottleneck minimum spanning
tree or bottleneck MST, for short. In [7] an algorithm
for computing such a tree is presented. This algorithm
performs a binary search [[20], p. 37] on the edge
weights in the graph. However, rather than explicitly
sorting these weights first, an algorithm for finding the
median [21] is used. In this way, since in each step of
the binary search at least half of the remaining edges in
the graph can be discarded, the overall run time is O(m)
for a connected edge-weighted graph with m edges.
Thus, as G-(Y) has O(|Y]?) edges, HC(Y) can be com-
puted in O(|Y]?) time, which is clearly optimal. Alterna-
tively, since every minimum spanning tree (MST), that
is, a spanning tree of G:(Y) with minimum total edge
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weight, can easily be seen to be a bottleneck minimum
spanning tree of G-(Y), one can also employ any algo-
rithm for finding an MST of G:(Y) (see e.g. [[20],
ch. 23]) to compute HC(Y).

Maximizing and minimizing haplotype connectivity

In our analyses it can be helpful to understand how
large HC(Y) is relative to other subsets of the same size
as Y. Therefore, for a subset Y € X of k haplotypes, we
now consider the problem of computing the minimum
and maximum possible haplotype connectivity, denoted
by HCin(k) and HC,.,(k), respectively, over all subsets
of X containing precisely k haplotypes. Based on this, we
define, for any subset Y € X, the normalized haplotype
connectivity of Y by

(HC(Y)-HCmin([Y]))

HC*(Y) = .
¥ (HCmax([Y)-HCmin([Y]))

Note that this normalized score always lies between 0
and 1. We will use this score to rank regions according
to their haplotype connectivity.

Computing HC,;,(k) amounts to finding a k-element
subset Z of X such that the score ®,,,,(T) of a bottle-
neck MST T of G+«(Z) is minimized. This problem is
known as the bottleneck k-MST problem and can be
solved in optimal O(|X|?) time by extending the algo-
rithm for computing a bottleneck MST mentioned in
the previous section [22]. The key idea is to introduce,
in addition to the given weights on the edges, a suitable
weighting of the vertices of the graph.

To compute HC . (k), we first note that this quantity
equals the smallest threshold ¢ such that for every subset
Z of X with k elements the graph G,(Z) is connected. In
other words, every vertex separator of G,(X) (i.e. every
subset S of X with G/(X - S) disconnected) must have
more than |X| - k elements.

Several algorithms for computing a vertex separator of
minimum size are known, e.g. based on a reformulation
as a network flow problem [23]. The currently fastest
algorithm for this problem employs so-called expander
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Figure 2 Threshold graphs. The graphs (a) G,(X) and (b) Gs(X) induced by the haplotype phylogeny in Figure 1(b) on the subset
Y = {b,, ba, .., by}. For example, there is no edge joining the haplotypes b, and b;q in G,(X) because the number of edges on the path from
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graphs and runs in O(sn? + %)) time for a

5
min(s2, sn
graph with #n vertices and m edges, where s is the mini-
mum size of a vertex separator [24]. Hence, by perform-
ing a binary search over the increasingly sorted list of
values D(x, y), x, y € X, HCax(k) can be computed in

O(n% log n) time.

Measuring and optimizing genetic diversity

As mentioned in the introduction, we are particularly
interested in regions with a high level of genetic diver-
sity. Therefore, as part of our analyses, it is necessary to
measure the genetic diversity of any subset ¥ € X of
DNA haplotypes. There are several measures commonly
used for this - for example, the number and frequency
of haplotypes (see e.g. [15]) or the number of segregat-
ing sites found in the haplotypes (see e.g. [25]). How-
ever, in our studies we found that it made little
difference to our results which method was used (data
not shown).

As with the haplotype connectivity measure, for the
purposes of comparing the diversity of samples having
different sizes, it can be useful to compute how large
the genetic diversity of a subset Y is relative to other
subsets of the same size. Whether or not this can be
done efficiently obviously depends on how the measure
of genetic diversity is defined. For the purposes of illus-
tration we now describe how this may be done for two
common measures of genetic diversity, which we shall
also use in our examples below.

In case a phylogeny is available, we can make all of
our computations (including those for haplotype con-
nectivity) relative to the genetic distance D given by tak-
ing the phyletic distance. In this situation, the genetic
diversity of Y relative to D is commonly defined as the
total length of the restriction of the phylogeny to Y (i.e.
the length of the shortest subtree spanned by the ele-
ments in Y) which we denote by PD(Y). This measure
has been used in the analysis of intraspecific patterns
(see e.g. [26,27]) and also in interspecific studies (see e.
g. [28]), in which it is commonly known as the phyloge-
netic diversity (PD) measure.

We denote the minimum and maximum of PD(Y)
over all subsets Y € X of size k = |Y| by PD,;,(k) and
PD,,..(k), respectively. Interestingly, both of these quan-
tities can be computed efficiently: For PD (k) there is
a simple greedy algorithm [29,30] that can be imple-
mented to run in O(|X]) time [31]. For PD,;,(k) a poly-
nomial time algorithm based on dynamic programming
is described in [32] in the context of the so-called i-tree
problem. Implementations of efficient algorithms for
computing these quantities are available online [33].
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Therefore, one can also compute in polynomial time the
normalized score PD*(Y), which is defined, for any sub-
set Y € X, analogously to HC*(Y) above, by

(PD(Y)=PDmin([Y]))

PD *(Y) = .
)= P max(V))—PDmin(I¥])

In case solely a distance matrix D is available, a com-
mon measure of the genetic diversity of a set Y relative
to D is (up to a constant scaling-factor) the average
squared pairwise distance between elements in Y [34],

ie. AD(Y):=1 /[| i lJz{x,y}e(Y](D(x' Y))Z , where

Y
( ) ) denotes the set of all 2-element subsets of Y. The

normalized score AD*(Y) is defined in a completely
analogous way to the scores HC*(Y) and PD*(Y) above.
However, in contrast to PD(Y), given D and k, it is NP-
hard to compute either the minimum or maximum
diversity score, denoted by AD (k) and AD, . (k),
respectively, over all subsets of X with k elements.
Indeed, the maximization problem, which is also known
as the MAXISUM facility dispersion problem, is shown
to be NP-hard in [35], and the minimization problem
can be shown to be NP-hard using similar arguments.
However, we note that there are algorithms that
can solve instances of the maximization problem for
|X| < 60 usually within seconds on a modern desktop
PC (see e.g. [36]).

Results and discussion

To illustrate the applicability of our approach we apply
it to two previously published data sets that were ana-
lyzed in [37] and [17], respectively.

Beetle Data
The first data set was used as part of a phylogeographic
study of the beetle species Brachyderes rugatus rugatus
on La Palma (Canary Islands) [37]. In this study 138
individual beetles were sampled. The 18 sampling loca-
tions are shown in Figure 3. Using sequence data from
the mitochondrial COII gene (for details see [37]), the
138 samples were subsequently grouped into 69 haplo-
types, and a haplotype phylogeny based on the parsi-
mony criterion was constructed using the TCS program
[38]. This phylogeny is presented in Figure 4.
According to this phylogeny, the haplotypes were
divided into 3 phylogroups, as indicated on the phylo-
geny and in Figure 3. Based on these groupings it was
concluded for Brachyderes rugatus rugatus that (i) there
is a region of secondary contact, or melting-pot, in the
South of the island at the overlap of regions 1 and 2,
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Figure 3 Sampling locations and regions for beetle data. A map of La Palma with sampling locations indicated by black dots [37]. Sampling
locations where haplotypes from a particular phylogroup (cf. Figure 4) were found are depicted by the dashed curves. Note that the sampling
location Altos de Jedey is the only one where haplotypes from two distinct phylogroups (namely 1 and 2) were found. The six groups of
sampling locations corresponding to the six regions Ry, R, .., R discussed in the text are also indicated.

and (ii) that there is an ancestral region or hot-spot in
the region containing the three sampling locations in
the top right of region 2. Note that in [37] support for
conclusion (i) was provided by performing the test given
in [8] for detecting zones of secondary contact, which
essentially involves calculation of the average distance
between the geographic centers of clades at increasing
nesting levels in a phylogeny on the haplotypes of
interest.

To investigate whether our new method was suppor-
tive of conclusions (i) and (ii) or not, we first grouped
the sampling locations into 6 regions Ry, ..., R as
shown in Figure 3. We used these regions rather than
the individual sampling locations, since the number of
samples taken at each location was very small (between
2 and 8). When forming the groups, geographically
close locations were grouped together. We also consid-
ered other groupings based on geographic proximity
(data not shown) and the outcome was similar, though
less pronounced when the number of groupings was
reduced (smallest number of groupings used was 3).
We then measured the diversity (using the measure

PD) and haplotype connectivity for the haplotypes
found in each region R; relative to the phyletic dis-
tances given by the phylogeny in Figure 4, as described
in the Methods section.

The results for the 6 regions are summarized in Table
1. In this table, we present the size of the subset Y of
haplotypes found in the region (column 2), the values
PD(Y), PDpin(|Y]), PDmax(|Y]) (columns 3-5), and the
normalized diversity score PD*(Y) (column 6) as defined
in the Methods section. Similarly, we present the values
HC(Y), HCpin(|Y]), HCmax(]Y]) and HC*(Y) (columns
7-10).

As can be seen in Table 1, the two regions with the
highest PD*score are Rs and R3, which also have a much
higher HC* score than any of the other four regions.
This is supportive of conclusion (i), i.e. that Ry is prob-
ably a melting-pot. Indeed, in Figure 4 the haplotypes
found in region R are highlighted in green, and it can
be seen that they clump together into two groups. This
also indicates why we obtained a high HC* score for
this region. Similarly, the high PD* and HC* scores for
region Rz suggests that this region is a melting-pot as
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Figure 4 Haplotype phylogeny for beetle data. The haplotyp
network presented in [37] for the haplotypes collected in La Palma

Note that all edges have length 1. The colored dots (black, red and

green) represent the sampled haplotypes and the white dots
hypothetical intermediates. Dashed boxes correspond to the three
phylogroups, 1-3, identified in [37]. The haplotypes found in region
R, are highlighted in red, those found in R in green and those
found in Rs are indicated by blue circles.
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Table 1 Scores for beetle data
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well, a conclusion that is consistent with the findings in
[37] where it is suggested that in R3 range expansions
toward the South and the Northwest partially
overlapped.

Concerning conclusion (ii), we see that amongst the
remaining regions R, clearly has the highest PD* score
and a much lower HC* score than R4 and Rs3. This pat-
tern of scores, i.e. relatively high diversity and low hap-
lotype connectivity, is more supportive of a hot-spot
scenario rather than a melting-pot scenario, in agree-
ment with conclusion (ii). Examining Figure 4, we see
that the haplotypes in R, (highlighted in red) are rela-
tively spread out over the haplotype phylogeny, hence
the low haplotype connectivity score.

Pine Data

The second data set that we consider formed part of a
study of the phylogeographic history of the species Pinus
pinaster around the Mediterranean [17]. Samples were
taken from 10 locations as indicated in Figure 5.
Sequence data consisting of nine chloroplast simple
sequence repeat markers gave rise to 34 different haplo-
types (for details see [17]). For these 34 haplotypes a dis-
tance matrix was computed using the pairwise haplotypic
difference (that is, for any two haplotypes, the sum of the
difference between the allele size over the nine loci).

To understand the phylogeographic structure of this
data, in [17] the frequency distribution of the pairwise
distances between haplotypes, sometimes also called the
genetic diversity spectrum (GDS) [12], was computed.
We have recomputed this and depict the result in
Figure 6. In particular, based on considerations - such
as the shape of the GDS for the Landes and Pantelleria
locations - it was hypothesized that Landes and Pantel-
leria are hot-spots, although it was also stated that the
hypothesis that they are melting-pots could not be
excluded [[17], p.462]. Indeed, in a more recent
extended phylogeographic study of Pinus pinaster [39] it

Region Number of Haplotypes in region Diversity Haplotype connectivity

PD PDsin PD\nax PD* HC HCpin HCphax HC*
Re 21 47 25 87 0.35 14 3 25 0.50
Rs 11 28 10 67 032 16 1 27 0.58
Ry 18 33 20 81 0.21 7 3 25 0.18
R4 7 14 6 55 0.16 5 1 27 0.15
Rs 18 29 20 81 0.15 5 3 25 0.09
Ry 5 10 4 48 0.14 7 1 28 0.22

Diversity and haplotype connectivity scores for the geographic regions on La Palma indicated in Figure 3, ranked according to normalized phylogenetic diversity
scores, PD¥, as defined in the main text. The columns labeled with PDpin, PDmaxs HCmin @nd HCphax contain the minimum/maximum score over all subsets

containing the same number of haplotypes as found in the region.
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Figure 5 Sampling locations for pine data. Sampling locations for the data set in [17].
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was concluded that Landes was more likely to be a
melting-pot.

Using the same distance matrix, we computed diver-
sity and haplotype connectivity scores for each of the 10
sampling locations as explained in the Methods section
(using the measure AD for diversity). These are pre-
sented in Table 2. Note that, in contrast to [17], our
scores do not take into account how often a haplotype
was found in a particular location but rather which hap-
lotypes were found.

As can be seen in Table 2, the two locations with
highest AD* diversity scores are Landes and Pantelleria.
In view of the HC* scores for these locations, this sup-
ports the melting-pot scenario, especially for the Landes
location. Note that the bimodality of the GDS for the
Landes location is also indicative of two clusters of hap-
lotypes having low internal distances and high between
cluster distances, which could also be regarded as a sig-
nature supporting a melting-pot scenario. However, the
shape of the GDS for the Pantelleria location is some-
what less distinctive and so, in this case at least, the
haplotype connectivity approach provides some useful
additional information.

Conclusions

We have presented a quantitative method to help shed
light on the phylogeographic history of a species, in par-
ticular, for distinguishing between hot-spots and melt-
ing-pots of haplotypic diversity. The application of our
method to the two data sets illustrates that our method
should provide a useful addition to previously presented
tools based on nested clade analysis and the GDS.

The algorithm for computing the haplotype connectiv-
ity of a collection of haplotypes can handle collections
of several hundred haplotypes without difficulty. The
computation of minimum and maximum haplotype con-
nectivity scores over all subsets of a certain size, though
still possible in polynomial time, is more demanding,
especially computing the maximum as this involves the
computation of minimum vertex separators in a graph.
Although the (at least implicit) computation of such
separators can probably not be avoided, for data sets
where the haplotype connectivity must be computed for
many subsets of different size, it could be interesting to
develop a more efficient algorithm that preprocesses the
distance matrix for the haplotypes so that HC,,,x(k) can
be quickly reported for any given k.

Our method depends on the haplotype distance and on
the measure of diversity used for regions. However, based
on experiments that we performed on the two data sets
above (data not shown), we suspect that the impact of
these two choices on the results will usually be quite
small, at least for standard measures of distance and diver-
sity. Also, since very low diversity scores will tend to yield
low haplotype connectivity scores, we mainly recommend
the use of our method only for regions yielding higher
levels of haplotypic diversity (which is the case for both
hot-spots and melting-pots). For example, for the Pine
data above, consider the three Portuguese sampling loca-
tions Alcacier, Moncao and Leiria. In [39] it was suggested
that there exists a glacial refugia of Pinus pinaster in Por-
tugal. At least for Leiria our method supports this to some
extent: In Table 2 we see that the normalized haplotype
connectivity score is as small as possible while the
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Table 2 Scores for pine data
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Sampling location Number of Haplotypes in region Diversity Haplotype connectivity

AD ADpin ADpmax AD* HC HCpin HCrnax HC*
Landes 6 245 033 714 031 6 1 10 0.56
Pantelleria 9 167 037 5.66 0.25 3 1 10 0.22
Leiria 8 0.73 0.36 6.06 0.06 1 1 10 0.00
Sardinia 9 0.70 0.37 566 0.06 2 1 10 0.1
Morocco 8 0.69 0.36 6.06 0.06 1 1 10 0.00
Corsica 8 0.68 0.36 6.06 0.06 1 1 10 0.00
Liguria 5 0.64 031 8.06 0.04 2 1 1 0.10
Moncao [§ 033 033 7.14 0.00 1 1 10 0.00
Tuscany 5 0.31 0.31 8.06 0.00 1 1 1 0.00
Alcacier 5 0.31 0.31 8.06 0.00 1 1 11 0.00

Diversity and haplotype connectivity scores for the sampling locations pictured in Figure 5, ranked according to normalized average square-distance diversity
score (AD*). The columns labeled with ADin, ADmaxy HCinin @and HCpax contain the minimum/maximum score over all subsets containing the same number of

haplotypes as found in the region.

normalized diversity score ranks third from top. But since,
at the same time, the normalized diversity score is close to
0, it is somewhat less clear cut that this is indeed a hot-
spot. Another potential difficulty arises from sampling
issues. First note that the selection of a particular set of
markers in a study can introduce a bias, and, second, the
number of sampled haplotypes is often not the same for
all regions. While the focus of this paper is on efficient
algorithms for computing haplotype connectivity, to help
interpret the significance of the scores obtained in a study,
it would be interesting to investigate statistical properties
of this quantity in future work. The computation of HC;,
(k) and HC,(k) can be viewed as first step towards a bet-
ter understanding of the distribution of HC(Y) over all
subsets Y € X of size k for a given distance matrix D.
Moreover, to place more emphasis on the geographical
aspects of the problem, one could also consider the distri-
bution of HC(Y) over only those subsets Y which satisfy
some additional constraint such as, for example, insisting
that any two haplotypes in Y are found within a certain
maximum geographic distance related to the region sizes
used in the study. In this paper, to address the sample-size
bias, we have normalized our various scores with respect
to the minimum and maximum scores that can be theore-
tically attained for a fixed number of haplotypes. If the
measure of diversity used is such that computing the mini-
mum and maximum is computationally too expensive,
then averaging with respect to the number of haplotypes
found in a region could be another possibility. However,
some care would have to be taken since, as pointed out in
[40], this might result in a normalized diversity score that
could increase with the removal of a haplotype from a
subset.

Another direction of potential interest is to extend our
method to simultaneously take into account inter- and
intra-species diversity. Many conservation approaches
work by selecting species for conservation (see e.g. [41]).

These species may be selected explicitly by allocating
limited resources to them or implicitly by protecting the
habitat containing them. In either approach species or
regions are usually selected so as to protect maximal
biodiversity. One example of such an approach that has
recently attracted a lot of attention is the use of phylo-
genetic diversity [28,42].

The difficulty with such approaches is that they do not
commonly take into account genetic diversity. For
example, consider a situation where we might choose to
conserve a species that makes a high contribution to
phylogenetic diversity (since, for example, it is very dif-
ferent from any species that is likely to survive), but that
has low genetic diversity. This low genetic diversity will
limit the evolutionary potential of this species and its
survival probability. It may therefore be better to con-
serve a different species that makes a lower contribution
to phylogenetic diversity (since, for example, it is more
closely related to another species with high survival
probability) but has higher genetic diversity. It could be
interesting to develop a framework that allows a combi-
nation of phylogenetic diversity and genetic diversity in
reserve selection. One approach that might be worth
exploring is using genetic diversity to allocate survival
probabilities to species that could then be incorporated
into Noah’s Arc Problem frameworks for phylogenetic
diversity [43]. This would allow the utilization of some
of the algorithmic results that have been recently devel-
oped for solving this problem (cf. the survey in [42]).

With the large data sets that new high-throughput
sequencing technologies are starting to deliver, our
method will hopefully provide a fast and flexible way to
analyze landscape scale genetic variation within species.
In particular, it provides an efficient way to identify
regions of probable long-term species persistence, a use-
ful tool to identify regions of biodiversity conservation
importance.
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