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Abstract
Background: Many regulatory non-coding RNAs (ncRNAs) function through complementary binding with mRNAs or 
other ncRNAs, e.g., microRNAs, snoRNAs and bacterial sRNAs. Predicting these RNA interactions is essential for 
functional studies of putative ncRNAs or for the design of artificial RNAs. Many ncRNAs show clear signs of undergoing 
compensating base changes over evolutionary time. Here, we postulate that a non-negligible part of the existing RNA-
RNA interactions contain preserved but covarying patterns of interactions.

Methods: We present a novel method that takes compensating base changes across the binding sites into account. 
The algorithm works in two steps on two pre-generated multiple alignments. In the first step, individual base pairs with 
high reliability are found using the PETfold algorithm, which includes evolutionary and thermodynamic properties. 
In step two (where high reliability base pairs from step one are constrained as unpaired), the principle of cofolding is 
combined with hierarchical folding. The final prediction of intra- and inter-molecular base pairs consists of the 
reliabilities computed from the constrained expected accuracy scoring, which is an extended version of that used for 
individual multiple alignments.

Results: We derived a rather extensive algorithm. One of the advantages of our approach (in contrast to other RNA-
RNA interaction prediction methods) is the application of covariance detection and prediction of pseudoknots 
between intra- and inter-molecular base pairs. As a proof of concept, we show an example and discuss the strengths 
and weaknesses of the approach.

Background
Predicting RNA-RNA interactions is a rapidly growing
area within RNA bioinformatics and is essential for the
process of assigning function to known as well as de novo
predicted non-coding RNAs (ncRNAs) such as those
identified in in silico screens for RNA structures [1-7].
This candidate information along with the data generated
from deep sequencing analyses emphasise the need to
predict RNA-RNA interactions. In part, this is because
there currently is no high-throughput method available
for the reliable analysis of RNA-RNA interactions; how-
ever, computational prediction of RNA-RNA interactions
is also essential for the identification of putative targets of

known and de novo predicted ncRNAs. With the main
exception of microRNA target prediction, the current
approaches essentially evaluate the stabilities of the com-
mon complexes between ncRNAs and target RNAs by
computing the overall free energy using two major strate-
gies (see, e.g., [8] for a recent review).

The first strategy, represented through the implemen-
tations of RNAup[9] and IntaRNA[10], uses pre-calcu-
lated values for all possible regions of interaction to
determine the energy required to make that site accessi-
ble (called the ED-value for the energy difference). The
ED-value is then used to calculate a combined energy of
the energy given by the duplex formed by the two interac-
tion regions and the ED-values of both interaction
regions. RNAup has a complexity of O(n3 + nw5), whereas
IntaRNA has a complexity of O(n2), which makes it fast
enough to be used in genome-wide screens. Both meth-
ods are able to predict complex interactions, like kissing
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hairpins, as long as the interaction is restricted to one
region. However, there are well-known examples where
several interaction sites were found, especially for longer
ncRNAs. A prominent example is the interaction
between OxyS and fhlA shown in [11].

The second strategy for RNA-RNA interaction predic-
tions is usually handled with a class of approaches that
simultaneously predict a common structure for both
RNAs including their interaction. Some of the first
approaches, e.g., pairfold[12], RNAcofold[13] and
the method presented by Dirks et al. as part of the
NUpack package [14], concatenate the two sequences
using a special linker character. Then, a modified version
of the usual RNA folding methods (like Mfold[15] and
RNAfold[16]) is applied to cope with the linker symbol
to predict the correct energies. Otherwise, a loop con-
taining the linker symbol would be treated like a hairpin
or internal loop, leading to incorrect energy values.

The main disadvantage of the concatenation approach
is that the set of candidate joint structures becomes
restricted. For this reason, double kissing hairpin interac-
tions (like in OxyS-fhlA) cannot be considered. However,
alternative (but also most resource demanding) methods
have been introduced and extend the class of allowed
joint structures. The IRIS tool [17] allowed several kiss-
ing hairpins using a maximum number of base pair
energy model. Then, Alkan et al. [18] presented a more
realistic energy model and showed the NP-completeness
of an unrestricted model. Both approaches predict struc-
tures with minimum free energy.

A more stable approach is to consider the partition
function because it allows the calculation of interaction
probabilities and melting temperatures. This problem
was solved independently by Chitsaz et al. [19] and
Huang et al. [20]. In [21], hybrid probabilities were calcu-
lated. These approaches have high time complexities of
O(n6), which makes them infeasible for genome-wide
applications. Methods to reduce the complexity range
from approximation approaches [22,23] to sparsification
of the dynamical programming matrix [24].

Here, we present an algorithm for the prediction of
RNA-RNA interactions in existing multiple alignments of
RNA sequences. Its rationale is based on the assumption
that a non-negligible amount of the RNA-RNA interac-
tions contain compensatory base changes across the
binding sites. The algorithm presented herein is an exten-
sion of the PETfold algorithm [25] and makes further
use of the principles from RNAcofold [13] and compu-
tational strategies for hierarchical folding, e.g. [26,27].
The latter approach was chosen due to the high computa-
tional costs of pseudoknot searches.

Algorithm
The main idea of the introduced method is to use a hier-
archical approach to predict an interaction by predicting
reliable base pairs within a ncRNA and a mRNA (or
another ncRNA), which is followed by prediction of reli-
able base pairs in the combined sequence. Via this
approach, we are able to predict combined pseudoknot-
ted structures, like kissing hairpins, that would be missed
otherwise. In both steps, we apply a combined scoring
method that predicts consensus base pairs from an align-
ment using evolutionary conservation and thermody-
namic stability information.

The scoring for the first step is according to the stan-
dard PETfold approach, where we use thresholds for
reliable base pairs that have been identified according to
training on more than 30 verified interactions in bacteria,
which is described later. For the second step, we define a
constrained version of the PETfold scoring scheme.

Throughout this paper, we consider the concatenation
of the two alignments and subsequently (in the base pair
prediction process) the concatenation of the correspond-
ing structures. σ will denote a set of base pairs, where the
substructures in each part (e.g., ncRNA, mRNA and the
base pairs that participate in the interaction) in respective
alignments are concatenated or nested (in the dot bracket
notation, these substructures have alignment lengths of
the ncRNA and mRNA respectively). We use (i, j) to
denote a Watson-Crick or G-U wobble base pair between
columns i and j. This base pair could be an intra-molecu-
lar pair in each of the RNA molecules (ncRNA or mRNA)
or an inter-molecular pair that is involved in an interac-
tion between molecules.

Depending on the context, σ will either be interpreted
as a specific structure that implicitly defines the single-
stranded positions or as a partial structure that describes
an ensemble of structures. In the first case, we define the
set of single-stranded positions of a sequence s as

In the second case, we use E(σ) = {σ'|σ' ? σ} to denote the
ensemble of all specific structures σ' extending σ. (s)
denotes the set of nested secondary structures that are
defined for the sequence s. We use the same notation for
the consensus structures of a given multiple alignment

 with n sequences s1 ... sn. In this case, a position 1 ≤ i ≤
| | refers to a column in the alignment. Furthermore,
we use s   to indicate a sequence s1 ... sn from the align-
ment.

ss( )
| |

,...,| |: (( , ) ( , ) )
.s

s s
=

≤ ≤ ∧
∀ = ∉ ∧ ∉

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
i

i s

j s i j j i

1

1

S

A

A

A



Seemann et al. Algorithms for Molecular Biology 2010, 5:22
http://www.almob.org/content/5/1/22

Page 3 of 13
The algorithm, like PETfold is a maximum expected
scoring approach that combines the evolutionary proba-
bilities Prev[σ| ] of a consensus structure, σ, given an
alignment, with the thermodynamic probabilities of the
associated structures in each sequence. Prev[σ| ] is gen-
erated using the stochastic context-free grammar (SCFG)
from the Pfold model [28]. The Pfold model allows the
computation of the probability Pr[σ| , T, M] of a con-
sensus structure σ given an alignment , a phylogenetic
tree T for that alignment, and a general background
model M for secondary structures. Because the tree T is
calculated from the alignment , and M is constant, we
use Prev[σ| ] as short for Pr[σ| , T, M].

The (secondary structure) model itself is based on a
SCFG that provides a distribution of secondary struc-
tures for a given alignment. The combined probability of
an alignment  and a consensus structure σ is

where Pr[σ|T, M] is the prior distribution of secondary
structures and Pr[ |T, σ ] is the probability of the align-
ment, given a known consensus structure. This is then
transformed into Pr[ , σ|T, M] by applying the Bayesian
rule, and further into the posterior distribution Pr[σ| ,
T, M] of consensus structures σ by dividing by Pr[ |T,
M], which is the sum of all parse trees for an alignment

 given T and M. Note that the comma sign here is just
a shortcut for ∧, i.e. Pr[A, B] = Pr[A ∧ B]. We will still use
∧ where it is appropriate.

The probability distributions themselves are formed as
follows. For Pr[ |T, σ ], there is an independent evalua-
tion of all base pairs and single-stranded positions:

where  is the ith column of , and 

for the constrained folding, where (  resp.) is the
constrained structure on the first (second resp.) of the
two concatenated alignments. For the prior model, the
probability Pr[σ|T, M] provides an overall distribution of
the secondary structures, which is estimated from rRNA
and tRNA sequences. M is given by the following simple
SCFG:

The evolutionary model and the prior model for RNA
structures used in the Pfold model are combined into a
single SCFG that provides a distribution over Pr[A, σ|T,
M] (see additional file 1 for details).

To model the thermodynamic probabilities, we define σ
(sk, ) as the structure for the k-th sequence sk of an
alignment  associated with the consensus structure σ
of . Prth[σ (sk, )|sk] is the corresponding thermody-
namic probability as defined by McCaskill's partition
function approach [29].

Using the maximum expected scoring approach, these
probabilities are transformed into reliabilities in a two-

step approach. Throughout the paper, (i) is used to
denote the reliability of a single-stranded region at align-

ment position i and (i, j) the reliability of a consensus
base pair (i, j), where < = 1, 2 refers to Step 1 or Step 2 of
the combined approach.

Refresher: PETfold scoring
Here, we briefly recall the scoring of PETfold, which is a
maximum expected accuracy scoring method. For sim-
plicity, we will exclude a description of the scoring of sin-
gle-stranded positions. However, they are scored the
same way as in the original PETfold approach; for more
details, see [25].

The PETfold score is the sum of the evolutionary
accuracy values plus the average sum of the thermody-
namic accuracy values. For the evolutionary part, we
compute the expected accuracy (or overlap) EAev(σ) of a
specific consensus structure σ with all possible consensus
structures, which are weighted according to their proba-
bilities:

Recall that Prev[σ'| ] denotes the evolutionary proba-
bility of a structure σ' according to the Pfold SCFG as
described above. |σ ∩ σ'| is the number of base pairs that
are common between σ and σ'  and thus denotes the over-
lap between these two structures.

For the thermodynamic part, the expected accuracy
EAth(σ) of σ with all structures for all sequences according
to the thermodynamic ensembles is defined by
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The combined expected accuracy consists of both
parts, generally weighted with 1 for the conservation por-
tion and β for the thermodynamic accuracy:

where n is the previously described number of
sequences in the alignment. As shown previously [25],
this final score can be calculated using the base pair reli-
abilities, where the combined reliability Pbp(i, j) for a base
pair (i, j) is given by

where (i, j, s) is the base pair probability of the pair
(k, l) associated with columns (i, j) in sequence s. These
reliabilities are calculated with an inside/outside algo-
rithm and are central to the hierarchical approach pre-
sented in the following sections. The expected accuracy
can then be calculated from the base pair reliabilities by

The consensus structure with the maximal reliability is
then calculated using a Nussinov-style algorithm [30],
where the base pairs are evaluated with reliabilities.

Step 1: Intra-molecular partial structures

We use two alignments  and  of sequences

 and , where  is a ncRNA and  is its
target sequence. For convenience, we adopt the conven-

tion of RNAcofold and assume that the positions in 

are numbered 1 ≤ i ≤ | | and the positions in  are

numbered | | + 1 ≤ i ≤ | | + | |.
Selection of the initial structure
In the first step of the pipeline, we obtain the base pair

reliabilities from Equation (4), which we denote (i, j).
Using these reliabilities, the partial (constrained) struc-

tures  and  are determined independently for 

and . In the following steps, let  be either  or

 and σp be the partial structure calculated for . This
is done by selecting only base pairs (i, j) with

where δ is a cut-off that must be ≥ 0.5 to avoid crossing
structures. This is similar to the method by which con-
sensus structures are predicted for single sequences [31]
and has been shown to be more reliable for the prediction
of consensus structures from alignments.

Here, however, we also have to estimate the contribu-
tion of each of the partial structures to the complete solu-
tion. Because the set of base pairs from a predicted
consensus structure do not necessarily form a reasonable
structure, we account for this by introducing a second
threshold γ. High values for this threshold guarantee that
each sequence used to create the consensus structure has
a high likelihood and that the approximation, which we
apply in the second step (as will be described by Equation
(14)), is accurate.

To find the optimal value of the reliability threshold δ,
its value is increased until the resulting ensemble of
structures ε(σp) that are compatible with the partial struc-
ture σp is probable enough in the evolutionary model, in
the thermodynamic model, or in both models, which is
when

Here, Prev[ε(σp)| ] (= Prev[ε(σp)| , T, M]) is the
probability of the partial structure σp given the alignment

 in the evolutionary model M and tree T. This can be
calculated from Pfold with the SCFG that combines the
prior structural model with evolutionary information
from the alignment (see additional file 1) as follows:

The term Pr[ |T, M] has already been calculated (per-
sonal communication with Bjarne Knudsen) in Pfold as
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the sum of all possible parse trees for an alignment ,
given T, M:

Here, we add the calculation of

to Pfold by summing over all possible parse trees that
are compatible with σ.

Prth[ε(σp(s, ))|s] is the probability of the partial struc-
ture σp given a sequence s in the thermodynamic model.
This probability can be calculated using constrained par-
tition folding as follows:

where  is the free energy of the whole ensemble (as
determined by RNAfold with parameters -p -d2) and

 is the free energy of the ensemble of struc-

tures ?(σp(s, )) with the base pairs in σp(s, ) as con-
straints, which can be calculated by RNAfold with
parameters -C -p -d2.
Extension of constrained stems
Reliable intra-molecular base pairs are constrained as
single-stranded in Step 2 of the algorithm because we are
interested in pseudoknots of the concatenated sequence
and the interactions in these induced loop regions. The
drawback of this ansatz is that intra-molecular stems get
instable because of intermediate unbased constraints.
Thus, we may get incomplete stems. To deal with this
problem, we extend the constrained stems. Inner and
outer base pairs are added as long as the average reliabil-
ity of the inner or outer extended stem, respectively, is
larger than the threshold δ, and the probability of the par-
tial structure is greater than or equal to γ either in the
evolutionary or the thermodynamic model. That is, the
average reliability of the total, extended stem has to be
larger than a threshold.

Step 1 is summarised as pseudocode in Figure 1.

Step 2: Constrained expected accuracy scoring
In the following, s1&s2 denote the concatenated
sequences of the two sequences s1, s2 using the additional
linker symbol & as done in RNAcofold. For Step 2 of the
scoring, we calculate the expected accuracy of the ensem-
ble of structures σ of s1&s2, which constitutes an interac-
tion under the constraint that σ contains the partial

reliable structures  and  of s1 and s2, respectively.
Because we use the numbering convention of RNAco-

fold, the union  of the two partial structures

 and  is the partial structure of s1&s2.
Now we have two problems to solve. On the one hand,

we want to calculate the constrained accuracy given the

partial structures  and , which is defined as
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Figure 1 Pseudocode for Step 1.

for Alignment A1, A2 do
calculate tree T ,
phylogenetic reliabilities R1,ev,
thermodynamic probabilities Pr1,th

=⇒ R1
bp(i, j),R1

ss(i) ← PETfold model
repeat

for all (i, j) do
if R1

bp(i, j) ≥ δ then
add base pair (i, j) to σp

end if
end for
calculate partial structure probabilities

Prev[E(σp)|A] and Prth[E(σp)|s]
increase δ

until
Prev[E(σp)|A] ≥ γ || 1

n

∑

s

Prth[E(σp)|s] ≥ γ

for all stem S ⊂ σp do
for adjacent = (inner, outer) do

repeat
b = adjacent base pair of S
Sold = S; S = S ∪ {b}
σp

old = σp; σp = σp ∪ S
calculate Prev[E(σp)|A], Prth[E(σp)|s]

until average R1
bp of S < δ ||

(Prev[E(σp)|A] < γ && 1
n

∑
s Prth[E(σp)|s] < γ)

S = Sold; σp = σp
old

end for
end for

end for
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On the other hand, we have to find a combined score

for the partial structures  and , and the interaction
σint to evaluate the quality of an predicted interaction.
The score must be maximal according to Equation (8).

We will demonstrate the problem and our solution for
the thermodynamic folding. However, the same analysis
applies to the evolutionary part, which is described later.
The thermodynamic part
The simplest formal solution to this problem would be to
investigate directly the expected accuracy of joint struc-
tures σ:

where  is the expected accuracy of a struc-

ture in one sequence pair s1&s2  .
However, this would require that we compute the dis-

tribution Prth[σ|s1&s2], which can be done by a partition
function approach for interacting structures. This is NP-
complete in the full model [18] and even O(n6) in a
restricted model [19,20], which is why the two-step
approach is necessary. In the following, we ignore the
index "th" for simplicity.

The relationship between  and EA(σ) is

now quantified. In the following, for a structure σ, we use
σ1 ∪ σ2 ∪ σint to denote the partition of the base pairs of
the first sequence, σ1, the base pairs of the second
sequence, σ2, and the interacting base pairs, σint. Further-
more, for the partial structure σ, we use e1(σ) to denote
the set of structures that extends σ using base pairs within
the first sequence, i.e.,

The ensembles e1,int(σ), e2,int(σ) and e1,2(σ) are defined
analogously.

Our approach uses one simplification, namely the
assumption that the reliabilities for intra-molecular base
pairs are dominated by the intra-molecular folding. This

is equivalent to the assumption that the two structures
fold independently. We formulate this as follows:

Because σ1 and σ2 are partial joint structures, this can
be written using the ensemble function

The implication of this assumption is that the probabil-
ities of the two structures σ1 and σ2 are merged indepen-
dently into the joint probability Pr[εint(σ1∪σ2)|s1&s2], see
Equation (11) below. First, note that for two partial struc-
tures

by definition. Hence,

Intuitively, Pr[e1,int(σ2)|s1&s2] should be the same as
Pr[σ2|s2]. This can be derived using the total probability
formula:

Combining these equations we obtain the indepen-
dence property:
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Now we will use this property to relate  to

EA(σ). The independence property, as described in Equa-
tion (9), and the additivity of the expectation is the impli-
cation of the expected accuracy of a joint structure, which
is the sum of the expected accuracy of the intra-molecu-
lar structures and the expected accuracy of the inter-
molecular portion. To illustrate this, note that for any σ, σ'

by definition. Hence, by the additivity of the expecta-
tion we get

Now we can rewrite the first term
 using the independence

property as follows:

which is the expected accuracy of σ1 in the sequence s1.
Analogously, we can do this for the second term

. Thus,  is

the sum of the expected accuracies in the first and the
second sequences and the expected accuracy of the inter-
action:

For the expected accuracy of the interaction

we still need to define Pr[σ|s1&s2]. For every σ = σ1  σ2 
σint,

Thus, in principle, to calculate the expected accuracy
EAth, int (σ) for the interaction, we must sum over all struc-
tures in σ1 and σ2:

Because this is not feasible, we restrict ourselves to an
ensemble of structures. Thus, instead of summing over all

possible σ1 and σ2, we use the partial structures  and

 that were determined in the first step and approxi-
mate EAth,int(σ) by
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The second sum can now be simplified as follows:

where Equation (11') indicates the variation of the inde-
pendence assumption of Equation (11) for the structure
ensembles (see additional file 1). Thus, we finally have

Now  is the con-

strained folding, where the positions covered by  and

 are fixed. However, we have the problem that these
structures might contain pseudoknots. Recall that the

positions in  and  are fixed for folding and that we

are considering all structures σ that contain 

and are nested on . Technically, we
solve the problem using the fact that the set of structures

that is nested on σint and compatible with  is
selected by considering all structures where the positions

of  are constrained as single-stranded. This
implies that we use constrained cofolding via RNAco-
fold (parameters -C -p -d2), and the constraint ...
x1x1 ... & ... x2x2 ..., where x1 (resp. x2) denotes a position

from  (resp. ) that is constrained as single-
stranded. The main difference is that the energy contri-
butions could be slightly different, and therefore, we
obtain only an approximation of the real distribution. For

example, an extension of a helix in  would be evalu-
ated as an internal loop or hairpin. Note that this is not a
major problem because we are mainly interested in the

inter-molecular base pairs between s1 and s2 in this step.
However, the recursion scheme of RNAcofold could
easily be adapted to use new symbols for base pair con-
straints and a scoring scheme that is common to hierar-
chical approaches of pseudoknot structure prediction,
which would avoid these problems.

Finally, we can rewrite the thermodynamic accuracy as
the sum of probabilities as indicated in Equation (5). As

shown in Equation (12), for a base pair (i, j) ∈  (< = 1,
2), we want to use the probability of the associated
sequence. To avoid competition with the probabilities for
the intra-molecular base pairs calculated from RNAco-
fold, we set all of these base pairs to the same probabil-

ity  as described in Equation
(7). For the inter-molecular base pairs, we use the base
pair probabilities as provided by RNAcofold with con-

straints, which model  from
the constrained cofolding. However, these raw base pair

probabilities (in the following denoted by )

are calculated under the constraint of  and have
therefore (to obtain the final base pair probabilities) to be

multiplied by  as indi-
cated by Equation (14). Thus, we can score each base pair
as follows:

where the 1 reflects the fixed reliability. However, we
deviate from this scoring to weaken the independence
assumption for the intra-molecular base pairs, which
allows us to determine new intra-molecular base pairs
from the constrained application of RNA-cofold. Thus,
we score only the base pairs from the partial structures

 and  with the probability in the associated
sequence. In addition, to avoid competition with the
probabilities for these base pairs calculated from RNAco-
fold, we simply set all of these base pairs to the same

probability  as described in
Equation (7). To summarise, given the partial consensus

structures  and  for an alignment  as cal-
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culated in Step 1, the probability for a base pair (i, j) in
sequence s1 &s2 ∈  in the second step is:

Single-stranded probabilities
Single-stranded probabilities are integrated in a similar
way as the base pair probabilities, but with different
weighting. The single-stranded probabilities are as fol-
lows:

Given the structure σ on an alignment  with m col-
umns, the set of all single-stranded positions in the con-
sensus structure is denoted as ss(σ) = {i ∉ σ|1 ≤ i ≤ m}.
Taking this into consideration, the complete version of
Equation (2) is

and the evolutionary accuracy is determined similarly.
The combined score is the sum of the base pair reliabili-
ties and single-stranded reliabilities (weighted with the
parameter α). For details, see [25].
The evolutionary part
The calculation for the presented thermodynamic accu-
racy is purely based on constrained folding. To obtain the
complete constrained folding, we use the same approach
for the evolutionary accuracy by applying a version of
Pfold[28] that incorporates the constraints. For that

purpose, the raw structural reliabilities (i, j) and

(i) are calculated by the constrained folding with
Pfold using the phylogenetic tree deduced from the
concatenated alignment. As a linker, three prior-free col-
umns are inserted between both alignments. The evolu-

tionary reliabilities (i, j) for a base pair (i, j) and

(i) for a single-stranded position i are calculated in

the same manner as  in Equation (16):

as well as  in Equation (17):
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Figure 2 Pseudocode for Step 2.

p

Input:
A1&A2 = concatenate(A1, A2)
Css = . . . x1x1 . . . & . . . x2x2 . . ., where x’s are
single-stranded constraints and x1 ∈ σp

1 , x2 ∈ σp
2

Search σint constrained by Css:
calculate tree TA1&A2 ,
phylogenetic reliabilities R2,ev

raw ,
thermodynamic probabilities Pr2,th

raw

for all (i, j) do
if (i, j) ∈ σp

� for �=(1,2) then
R2,ev

bp,raw(i, j) ← Prev[E�(σ
p
� )|A�]

R2,ev
ss,raw(i) ← 0

Pr2,th
bp,raw(i, j) ← Prth[E�(σ

p
� )|s�]

Pr2,th
ss,raw(i) ← 0

else
R2,ev ← R2,ev

raw × ∏
�=1,2 Prev[σp

� |A�]
R2,th ← Pr2,th

raw × ∏
�=1,2 Prth[σp

� (s�,A)|s�]
end if
=⇒ R2

bp(i, j),R2
ss(i) ← PETfold model

end for
σint ← MEA-structure constrained by Css

Output:
σp

1 ∪ σp
2 ∪ σint
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as described in Equation (6). Step 2 is summarised as
pseudocode in 1.
The final scoring
To summarise the reliabilities, a combined structure will
be determined using the Nussinov algorithm on the fol-
lowing reliabilities:

where  and  are

defined as above,  as in Equation (16)

and  as in Equation (17).

Note that the base pairs in  have a weight of 0
during folding of the constrained structure to allow for
pseudoknot formation. Finally, we add the base pairs in

 to the constrained structure of Step 2. The flow
of the structure reliabilities in the pipeline is summarised
in Figure 3.

Results and discussion
The algorithm presented herein was implemented in
PETcofold (Seemann et al., submitted). As a proof of
concept, we present an example of a bacterial sRNA-
mRNA interaction. The in-depth analysis is described
elsewhere (Seemann et al., submitted).

Joint structure prediction of bacterial sRNA OxyS and its 
target mRNA fhlA
The small RNA OxyS represses the translation of the
mRNA fhlA, which is mediated through base pairing at
the ribosome binding site [11]. However, the OxyS-fhlA
interaction involves a second binding site within the cod-
ing region of fhlA. Both interaction sites reside in stem
loops such that OxyS and fhlA form a double kissing hair-
pin interaction.

Figure 4 shows the alignment and joint secondary
structure prediction of the OxyS-fhlA complex, i.e., the
secondary structures of OxyS and fhlA and the interac-
tion between them, as predicted by our algorithm. The
result of the prediction without extending the con-
strained stems is shown in Figure 4a, and the result with
the extension of the constrained stems is shown in Figure
4b.

For OxyS-fhlA, our algorithm was able to consistently
predict one of the two interaction sites. The second inter-
action site, which is situated in the fhlA coding region,
was only predicted when the constrained stems were not
extended in Step 1 of our algorithm. Otherwise the stem
of fhlA that resides the second interaction site was
extended both by inner and outer base pairs. Conse-
quently, the unpaired region of the hairpin containing the
second interaction site became shorter such that no
interaction was predicted at this site.

Algorithmic restrictions and potentials
The algorithm supports pseudoknots between the intra-
molecular and inter-molecular base pairs, while the time
complexity of O(N × I × L3) is much lower than that of
other approaches with the same ability. The time com-
plexity is in the magnitude of PET-fold for the added
sequence length L of both alignments, and it is linear with
respect to the number of sequences N in the alignments
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p p∪ Figure 3 Scoring pipeline. The pipeline illustrates the flow of base 

pair probabilities during the structure scoring. The PETcofold pipeline 
consists of two steps: (a) intra-molecular folding by PETfold of both 
alignments and selection of a set of highly reliable base pairs that form 
the partial structures σp; (b) inter-molecular folding by an adaptation of 
PETfold of the concatenated alignments using the constraints from 
Step 1. In the end, (c) the partial structures and constrained inter-mo-
lecular structures are combined to generate the joint secondary struc-
ture including pseudoknots.
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and the number of iterations I in the adaptation of δ to
find probable partial structures (I <M/2, where M is the
sequence length of the longer alignment).
Pfold combines a SCFG with evolutionary informa-

tion from an alignment of RNA sequences through an
explicit evolutionary model. It is not clear whether the
model learned from tRNA and rRNA secondary struc-
tures is appropriate for RNA cofolding. To avoid the bias
of a wrong prior probability distribution Pr[σ|T, M] dur-
ing the evolutionary scoring of the cofolding step, we
omitted all SCFG rule probabilities as well as base pair
substitution rates. In these cases, all base pair probabili-
ties were calculated independently, and the different sub-
stitution rates of base pairs were ignored; thus, we
observed that the entire performance decreased. A possi-
ble optimisation would be an adapted prior distribution

for the cofolding step, which could be generated when
sufficient verified RNA-RNA interaction data becomes
available. However, the prediction of RNA secondary
structure using evolutionary history is robust for differ-
ent evolutionary speeds and substitution rate variations
[32]. Hence, it is reasonable to assume that the deviation
is fairly low using the prior probability distribution of
intra-molecular structures.

The presented method assumes that both alignments
have the same evolutionary history during the cofolding
step. A more accurate method would consider indepen-
dent phylogenetic trees for both RNAs, such as in Step 1,
and a common tree for the interaction site. However, we
do not know the interacting region in advance; thus, we
would need an expectationm maximization algorithm,
which would increase the running time of the algorithm

Figure 4 Joint secondary structure prediction of the sRNA OxyS and its target mRNA fhlA. The sequence alignment shows the two input align-
ments concatenated by the linker symbol "&", the joint secondary structure predicted by our algorithm (with δ = 0.9 and γ = 0.1 and disallowing base 
pairs that only occur isolated in the thermodynamic part) and the interaction model of OxyS-fhlA [11]. The prediction was performed (a) without and 
(b) with extension of the constrained stems. Angle brackets indicate inter-molecular base pairs between the two RNAs. Round and square brackets 
indicate intra-molecular base pairs. Square brackets indicate base pairs of the partial structure σp. Shown are all columns with < 75% gaps. Jalview [33] 
was used for alignment visualisation.
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to an unreasonable level. Furthermore, the energy contri-
bution of the cofolding step might be slightly biased due
to the constraint of the partial structures as single-
stranded. We partly solve the resulting intra-molecular
false predictions by extending the reliable stems in the
partial structures, and, as already mentioned above, the
RNAcofold algorithm and scoring scheme could be
adapted to handle base pair constraints as single-
stranded.

Furthermore, there is a limitation of the presented
method with regard to interaction sites that are located
outside conserved RNA structures. These regions are
hard to align if they are, in addition, sequentially uncon-
served. Thus, our method will most likely miss binding
sites located in unstructured and otherwise unrelated
regions, e.g., miRNA target sites in UTR regions. How-
ever, once a correct alignment is found for these regions,
then the presented approach still works if the interaction
region is conserved or shows enough covariation.

Our algorithm is able to predict pseudoknots between
the intra-molecular and (inter-)molecular base pairs. In
addition, we are interested in more pseudoknots that can
be predicted in a similar way using a pipeline of con-
strained structures. During an iteration of Step 2, addi-
tional reliable partial inter-molecular structures are
constrained as long as new reliable base pairs appear. The
final consensus structure is the union of all cofolding base
pairs and the partial structures. The main unsolved prob-
lem is the weighted combination of the decreasing partial
structure probabilities in one scoring scheme when the
amount of constraints increases with each iteration.

Conclusions
In summary, we introduced an extension of the PET-
fold algorithm for the identification of interactions
between two sets of multiple aligned RNA sequences,
which exploits compensating base changes while taking
intra-molecular partial structures and interaction sites
into account. The implementation of the algorithm in
PETcofold and its application are described in See-
mann et al. (submitted).
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