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Abstract

Background: Searching optima is one of the most challenging tasks in clustering genes from available
experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used
by biotechnologists. All these algorithms are based on the imitation of natural phenomena.

Results: This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA)
which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM) of planetary formation. GFA
simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem.
And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene
Expression Omnibus.

Conclusions: The mathematical proof demonstrates that GFA could be convergent in the global optimum by
probability 1 in three conditions for one independent variable mass functions. In addition to these results, the
fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and
the inherent defects in SA and GA. Some results and source code (in Matlab) are publicly available at http://ccst.jlu.
edu.cn/CSBG/GFA.

Background
Two of the most challenging tasks of optimization algo-
rithms are to search the global optimum and to find all
local optima of the space of solutions in clustering
genes from available experimental data [1], e.g. the gene
expression profiles, or given functions. In view of recent
technological developments for large-scale measure-
ments of DNA expression level, these two problems can
often be formulated and many methods have been pro-
posed. In particular, the heuristic searches are more pro-
mising than other kinds of searching approaches. These
approaches include GA (genetic algorithm) [2], SA
(simulated annealing) [3], PSO (Particle Swarm Optimi-
zation) [4] etc. But some inherent drawbacks, especially
the inability to the multi-modal functions optimization,
can be found from the traditional heuristic search algo-
rithms above. Each of these concepts allows for several
modifications, which multiplies the number of possible
models for data analysis we can change the algorithm

themselves, to find all the valleys of given functions. But
we still have a lot of parameters to consider, as known
as the number of valleys and the valley distance etc, and
the performances of the modifications are not good
enough.
GA is a traditional searching-optimization algorithm,

this algorithm can search global optimal solution with
probability criterion [5], but it can’t converge to the glo-
bal optimal solution in the theory [6]. So GA always
traps in local optima or genetic drift. Anyway, the run-
time of this algorithm is acceptable for most cases of
searching-optimization problems.
SA is a generic probabilistic meta-algorithm for global

optimization problems, namely locating a good approxi-
mation to the global optimum of a given function in a
large search space. If we search enough time with SA, it
will converge in the global optimal solution with prob-
ability 1 [7]. But the biggest drawback of SA is that the
running-time of SA is so long that the efficiency is not
tolerant to us.
Recently, some other searching algorithms have been

proposed and discussed, such as PSO etc. These algo-
rithms can search solution like GA. But actually, most
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of them will not converge to the global optimal solution
either.
In this paper, we propose a new heuristic search

approach Gravitation Field Algorithm (GFA). It not only
can handle unimodal functions optimization, which tra-
ditional heuristic searches can do the same, but also can
deal with multimodal functions optimization, which tra-
ditional heuristic search algorithms can’t do. The experi-
ments of the benchmark functions demonstrate that.
The idea of GFA is derived from the modern widely
accepted theory of planetary formation– the Solar Neb-
ular Disk Model (SNDM) [8] in the astronomy.
The complex astronomy theory can be introduced

simply as follows:
Several billions years ago, there wasn’t any planet in

the Solar System; just dusts rounded the whole world.
Then the dusts assembled by their own gravitations. For
a long time, the rocks had come out. It was the thresh-
old time of the whole Solar System. From then, the
rocks moved fast to assemble together, and the bigger
rocks arrested the smaller rocks. And they became lar-
ger rocks. Finally, the planets came out, and the rocks
around them were absorbed out.
GFA is derived from the point of view of the hypoth-

esis theory described above. To start with, all the solu-
tions, which are the dusts in the algorithm model, are
initialized randomly, or based on the prior knowledge;
what’s more, we assign every dust (solution) a weight,
we call it mass, whose values are based on the mass
function generated from the space of the problem solu-
tion; finally, the GFA begins. The power of attraction,
which belongs to a certain dust and exists between
every two dusts, pulls other dusts, which have the same
influence to other dusts. Hence, the dusts assemble
together, and the planets come out in the end–they are
the optima. If you want to find global optimal solution,
the planets assemble again, and the biggest planets will
come out. To give a penalty of that the highest mass
dust rules the whole space of solution, we propose a dis-
tance which can reduce the effect of gravitation field.

Methods
Description of GFA
Before all the works start, we design a mass function on
the basis of special problem. The mass function is simi-
lar to the fitness function in GA. Both of them are score
functions which are the criterions for a special solution.
We can make the mass function be proportional to, or
inversely proportional to, the extreme values of the pro-
blem. It all depends.
Initialization
The algorithm begins with the initial step. We generate
and select n dusts di (i = 1, ..., n) in the mass function
domain [xbegin, xend] to build the initial solution set. The

positions of the dusts can be random or based on the
prior knowledge (i.e. there will be greater probability to
exist peak values in some positions). Then we assign a
mass value to every dust. The mass values, which are
described above, are associated with their positions, and
are calculated by the mass function. So when the dusts
move as we described below, they have a certain prob-
ability to find a new position, in which there is a new
mass value that is bigger than the mass value of the cen-
tre dust. This initialization approach was used because
the extension of the space solution could be considered.
And the density of the dusts is proportional to the prob-
ability of existence of extreme value.
Strategy of division
To decompose the solution space, we divide the space
into pieces called groups. In one group, the special dust
called centre dust corresponds to the max mass value in
the group. The other dusts called surrounding dusts
whose mass values are smaller than the mass value of
the centre dust are in the power distance of the centre
dust. The power distance is the space of the group in
which the centre dust pulls other surrounding dusts
toward it. De-signing an effective strategy of division is
a challenging work in the GFA. When the number of
in-dependent variables is greater than one, an appropri-
ate strategy of division always needs a smart method.
There are many criterions of division. For example, we
can make a power weight strategy: the size of each
group is decided by the mass value of the centre dust in
the group, proportional or inversely proportional to the
peak values. Fig. 1 was shown to explain this strategy.
Here, another simple average strategy of division in

the form of two independent variables is given. The task
of this strategy is to find the method of division in

Figure 1 Graph of power weight strategy in solution space. The
round black nodes are the centre dusts. The rectangle black nodes
are surrounding dusts. The big white round charts with other nodes
in them are the power distance domains of their internal centre
dusts.
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which the areas of all groups are all the same. First, we
decide the number of groups m based on the mass func-
tion and the prior knowledge. Then we factorize m with
two maximum factors, like Eq. (1):

m a b= × (1)

The sizes of all groups are the same in this strategy.
The power distance of each centre dust in the solution
space is defined by Eq. (2):

S
x
a

y
b

= × (2)

Where x is the domain of x axis of the mass function;
y is the domain of y axis of the mass function.
The rules of the motion of the dusts and strategy of
absorption
The rules of the motion of dusts are the kernel part of
GFA. This part of GFA decides which one is the peak
value among all the dusts in one group. And this step of
the algorithm also can generate new mass values which
can have bigger mass values than the mass values of
centre dust with certain probability.
Each group contains only one dust, called centre

dust, that doesn ’t move within an epoch (but may
move in other epochs). The rest dusts in this group
move toward the centre dust within the epoch. For-
mally, centre (di), where i = 1,..., n, is used to represent
whether the dust di is the centre dust or not: centre
(di) is set to true if di is the centre dust; centre (di) is
set to false otherwise.
There are many kinds of strategies of motion. In this

paper, the pace of the motion is set as Eq. (3):

Pace M disi i= × (3)

Eq. (3) is easy but efficient. disi is the distance
between the moving surrounding dust and the centre
dust. M is a weight value for distance. 0.618/10 is cho-
sen as M for this paper. Actually, many other weight
values were tested in our experiment. But the speed and
efficiency of GFA with the Golden Ration (0.618) are
best. Maybe the value of it is not coincidence. But the
reason, which is beyond our comprehension, will not
mention in the paper. When the space of a group is
small enough, the surrounding dusts will move with
small pace calculated using Eq. (3); when the space of
the group is big, surrounding dusts will move with big
pace. Big pace will appear in two ways: One appears in
the late algorithm. In this period, every dust in each
group is quasi-optimal, big pace will not affect the effi-
ciency of the GFA. So we make a big pace for fast con-
vergence. The other one appears that we set a small
number of dusts in the initial step. In this condition,

maybe we want to make a fast convergence. And big
pace could accelerate the convergence.
When the surrounding dusts move toward the centre

dust, the positions of the moving dusts will be changed.
So the mass values of the surrounding dusts will also be
changed. The diagrams of the motion of surrounding
dusts in the form of one in-dependent variable are shown
in Fig. 2. When the mass value of a moving surrounding
dust becomes bigger than the centre dust and any other
surrounding dusts, this surrounding dust will become a
new centre dust as shown in Fig. 2 (b) and 2(c).
When all the distances between the surrounding dusts

and the centre dust are small enough in one small
group, such as smaller than a threshold, the surrounding
dusts will be absorbed by the centre dust. Based on
these rules of motion, we design the strategy of absorp-
tion as follows:
All the surrounding dusts are deleted, but the centre

dust will not be. We set centre (di) = false, it represents
the small group for the next step. When the number of
surrounding dusts is bigger than a threshold, we will
absorb all the other surrounding dusts for saving run-
ning time.
After the absorption of the small groups is complete,

the next epoch begins if the algorithm has not con-
verged to the optimal solution. We will divide the space
of the solution again, and compute for searching peak
values using the survive dusts.
The complete pseudo-code of a simple GFA is shown

as Fig. 3.

Mathematical framework
Mathematical proof
The most important advantage of GFA is the ability to
deal with the multimodal objective functions (i.e. the
mass functions). GFA can converge for one independent
variable mass functions with probability 1. We give a
theorem and its strict mathematical proof as follows.
We define the mass function as f(x), and the dusts in

one group of variable space are x1, x2, ..., xmax, ..., xn.
The mass functions are subject to Eq. (4) as follows:

f x f xm( ) ( )max ≥ (4)

Where m = 1, 2, ..., n. After moving toward xmax in
the group, the dusts become x1’, x2’, ..., xmax’, ..., xn’.
First of all, we will give a description of groups and

define two conceptions in the graph theory as follows:
Definition 1. In Two Side (ITS): In the line segment of

the xm and xmax in the variable space, iff ∃ xm’, such
that: f (xm’)≥ f (xmax’), then we call xm and xmax are ITS.
Definition 2. In One Side (IOS): In the line segment of

the xm and xmax in the variable space, iff ∃ xm’, so that:
f (xm’)≥ f (xmax’), then we call xm and xmax are IOS.
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Now we give a theorem and prove it:
Theorem 1. GFA for one independent variable mass

functions could converge in the global maximum with
probability 1, when the three conditions as below are
satisfied:

1) The scale of group is small enough; such that the
number of peaks is at most one.
2) The motion of the surrounding dusts is smoothing.
3) The number of dusts in one group is big enough.
Proof. The formula form of condition 1) is Eq. (5):

D g( ) ≤ 1 (5)

The number of dusts of group g is D(g). The max
value of mass function in group g is f(xmax), the real
peak of the mass function in group g is f(xpeak) (maybe
the xpeak isn’t the dust in group g). Because the xmax

moves toward itself, it doesn’t move. So Eq. (6) can be
established.

f x f x( ) ( )max max
’≡ (6)

The convergence of one group can be proved as follows:

1) When xmax = xpeak, the group is convergent
obviously, f(xmax) = f(xpeak).

Figure 2 The figures of the rules of the motion of the dusts. The bell curve is the mass function. The round node is the mass value of the
centre dust f (xmax). The up triangle node is the mass value of surrounding dust x1 f(x1). The down triangle node is the mass value of
surrounding dust x2 f(x2). Sub-figure (a) is a small group which has 3 dusts. Sub-figure (b) is the figure of motion of the surrounding dusts
toward the centre dust. In the sub-figure (c), the mass value of the surrounding dust x2 is bigger than the mass value of the centre dust. And
the centre dust becomes a surrounding dust which is coded x2; the surrounding dust x2 becomes the centre dust. In the sub-figure (d), the
mass value of the surrounding dust x2 is bigger than the mass value of the centre dust. The surrounding dust x2 becomes the centre dust again.
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2) When the xmax ≠ xpeak, then:
a) If exists xm, max and xm are ITS, the group will
be convergent obviously according to condition
2), as Fig. 4 (a). The peak value calculated in the
group by the GFA is the real peak value. We call
this kind of condition is Real-Peak Condition
(RPC).
b) If doesn’t exist xm, such that the xmax and xm
are ITS, the group will not be convergent, the
xmax will be the pseudo peak value of the group,
as Fig. 4 (b) and Fig. 4 (c). Pseudo peak value
exists with probability p. we call this kind of con-
dition is Pseudo-Peak Condition. (PPC)

The probability p can be calculated as follow:
We define the power distance of the center dust (see

Description of GFA section) in the space of the solu-
tion in the group for one independent variable is ltotal.
ltotal is shown as the domain of x axis in Fig. 4 (a), (b)
or 4(c). And the distance between the xmax and the
nearest valley in the group for one independent vari-
able is lmax. lmax is shown as the distance between xmax

and the xv in Fig. 4 (a), (b) or 4(c). f(xv) is the valley
which is nearest xmax in all valleys in the group.
When the PPC is on, there are n surrounding dusts

in this group. So the n-1 dusts are in the space
between xmax and the nearest valley (i.e. the space of
lmax), and the locations of n-1 dusts are mutually
independent. So when the strategy of initialization is
used, i.e. all the dusts have equal possibility to exist
anywhere, the probability of one dust is IOS with
xmax is lmax/ltotal So the formula of p is described as
Eq. (7):

p
l
ltotal

n= −( max ) 1 (7)

Where P is the probability of all n-1 surrounding
dusts are IOS with xmax. From the Fig. 4, we know that
lmax< ltotal, i.e. Eq. (8) can be established as follows:

l
ltotal
max < 1 (8)

Figure 3 The pseudo-code of a simple GFA. In Fig 3, the number of dusts in one group is n, the number of groups is m, and the number of
times of moving a dust is s.
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So when condition 3) is satisfied, i.e. n ® ∞, Eq. (7)
can be:

lim
n

p
→∞

= 0 (9)

So when PPC is on, one group will converge in the
real peak, like RPC is on. So every group will converge
with probability 1.
When every group converges, the surrounding dusts

are absorbed out. The real peak and pseudo peak will be
the new dusts in the following step.

When Xmax becomes a dust in a new group of a new
epoch, the global peak value could be Xmax in one
group, obviously.
Hence in a certain domain of variable x, GFA will

converge in the global maximum.
Peaks versus valleys
GFA maximizes the objective or mass function f(x).
That is, they solve problems of the form:

peaks f x
x

( ) (10)

Figure 4 The diagrams of the moving step. f(Xpeak) is the peak value of the function in the group, the corresponding value in x axis is
xpeak. f(Xmax) is the max value in the group, the corresponding value in x axis is xmax. f(Xm) is a mass value of a surrounding dust in the
group, the corresponding value in x axis is xm. f(Xv) is the valley which is nearer than other valleys in the group, the corresponding value in x
axis is xv. The sub-figure (a) is shown as the kind of the peak value must be found in the group. The sub-figure (b) and (c) are shown as the
kind of the xmax will be the pseudo peak value with probability p.
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If you want to minimize f(x), like the experiments
below, you can do so by maximizing -f(x), because the
point at which the maximum of -f(x) occurs is the same
as the point at which the minimum of f(x) occurs [9].

Computation complexity of GFA
Computing the mass function value once needs pro-
cessing time Tf. Computing motion of every surround-
ing dust is Tm. Computing the size relationship of
every dust once needs processing time Tg. We set the
number of dusts in one group is n, the number of
groups is m, and the number of times of moving a
dust is s.
The computation complexity of processing mass func-

tion of every dust can be expressed by Eq. (11):

Tf T m n sf= × × × (11)

The computation complexity of Eq. (11) is o(mns).
The computation complexity of processing motion of

every surrounding dust can be expressed by Eq. (12):

Tm T s m nm= × × × −( )1 (12)

The computation complexity of Eq. (13) is o(mns).

Tg T m n sg= × × − ×( )1 (13)

The computation complexity of Eq. (14) is o(mns).
The computation complexity of GFA can be described

as follows:

T Tf Tm Tgone = + + (14)

Then we will find the smallest dust with all groups.
The computation complexity of this process can be o
(m). It’s smaller than others. It can be ignored. So the
computation complexity of GFA is:

T T m n sf= × × × (15)

If the complexity of mass function and the dimension-
ality of f(x) are big enough, we can say T = Tf. The
number of dusts is m × n, so the computation complex-
ity of GFA is the product of the number of dusts and
the number of times of moving of surrounding dusts.
That is, the computation complexity is o(mns).

Results and Discussion
Test Method
To test the efficiency of GFA, we assessed the perfor-
mance of the GFA by employing a suite of different
benchmark mathematical functions (Eqs. (16-20)) and
by comparing the performance with GA and SA. For
each of the five test functions and the each method, 500

minimization runs were performed and mean squared
error, standard deviation and mean gauss error values
were calculated.
Benchmark functions
In the following benchmark functions (Eqs. (16-20)), D
donates the number of independent variables, and we
defined D = 50. The benchmark functions were selected
as following:
Sphere:

f xi
i

D

1
2

1

=
=
∑ (16)

Rosenbrock:

f x x xi i i

i

D

2
2

1
2

1

1

100 1= − + −+
=

−

∑( ( ) ( )) (17)

Rastrigin:

f D x xi i

i

D

3
2

1

10 10 2= + −
=
∑( cos( )) (18)

Griewangk:

f
xi xi

i
i

D

i

D

4

11

2

4000
1= − +

==
∏∑ cos( ) (19)

Ackley:

f e e e
D

xi
i

D
e
D

xi
i

D

5
0 220 20

1 2

1

1
2

1

= + − − =
∑ − =

∑

.
(

cos( )
)



(20)

Error functions
Mean squared error (MSE) [10] for benchmark func-
tions was calculated as Eq. (21):

MSE
n

f x f xi opt i

i

n

= −
=
∑1 2

1

( ( ) ( )) (21)

Where n is the number of runs, f(xi) is the perfor-
mance for run i and the fopt(xi) is the function value at
the global minimum.
The standard deviation (STD) [11] was calculated as

Eq. (22):

STD
n

x Xi

i

n

=
−

−
=
∑1

1
2

1

( ) (22)

The gauss error (GE) function [12,13], which can be in
the form of Eq. (23), is different from MSE:
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GE( )x e dtt
x

= −∫2 2

0


(23)

GE is a partial differential equation which is twice the
integral of the Gaussian distribution with 0 mean and
variance of 1/2. And this function only can be used for
a scalar. So we used it with average form called mean
gauss error (MGE):

MGE =
=
∑1

1
n

GE xi
i

n

( ) (24)

Simulation Result
Searching global minimum
The implementation of GA and SA we used to compare
with GFA is the Genetic Algorithm and Direct Search
Toolbox™, which can be found from [14]. This toolbox
was written with Matlab. Both the maximum number of
epochs of GA and the initial temperature of SA were
fixed to 1,000. For some functions, like Eq. (16), if the
start point is fixed, the SA results of all the runs are all
the same. So the initial start point of SA was randomly
around the global minimum. A table that summarizes
the parameter setting for each algorithm in each dataset
was given as Table 1.
To compare GFA with GA and SA, 500 minimization

runs were performed on our suite of benchmark func-
tions. And the domain of each dimension was defined as
[-2, 2]. The comparison results were shown in Table 2.
From Table 2, we found that sphere’s, Rastrigin’s and

Griewank’s functions could be optimized better by GFA
than GA and SA, especially for the sphere’s and Rastri-
gin’s function.
Mean numbers of epochs were not same. It was an

important criterion of the algorithm efficiency. The
mean error served as success criterions along with a
maximal number of epochs. If the threshold was not
reached by an optimization method within 1,000 epochs,
the run was judged as failure. No matter whether it was
reached or not, the number of epochs that were needed

to reach the threshold was rounded off and recorded in
Table 3.
GFA was able to outperform GA and SA in four of

five benchmark functions in terms of epochs needed
and least failures. Only in one of the five functions,
GFA did not outperform in both speed and robustness.
The minimization of the Ackley’s function took slightly
more epochs with the GFA (97) than with the GA (92).
From the Table 3, we know that GA could do better for
optimizing the complex function, such as Ackley’s func-
tion. But for some simple function, such as sphere’s
function, GFA could do better.
For more accurate computation, we defined the initial

number of dusts 10,000, the max power distance of cen-
ter dust 5, and the epochs 1,000, which was the same as

Table 1 Configuration of parameter setting for GFA, GA
and SA

Algorithm parameters GFA GA SA

Max. numbers of iterations 1000 1000 1000

Population size 50 50 -

Number of polulations 200 200 -

Initial temperature - - 0~5.0

Mutation rate 0.02 0.02 -

Table 2 MSE, STD, and MGE of GA, GFA, and SA, Best
performance (i.e., lowest error) for each function is
highlighted in bold underline letters

Sphere Rosenbrock Rastrigin Griewank Ackley

GA

MSE 7.2747 0.0054 7054.2 6.7709e-007 14.6001

STD 0.7409 0.0556 16.2621 6.8194e-004 0.1891

MGE 0.9927 0.0546 1 5.2149e-004 1

GFA

MSE 0.3347 0.0156 152.0279 5.3590e-007 16.9460

STD 0.2940 0.0156 6.5840 5.0375e-004 16.9460

MGE 0.4839 0.1181 0.9756 6.0026e-004 1

SA

MSE 1619.2 0.0069 745.7810 0.0030 26.9123

STD 7.1102 0.0827 12.5530 0.0385 26.9123

MGE 0.9967 0.0061 0.9952 0.0439 1

Table 3 Mean numbers of epochs until the minimization
threshold was reached and mean number of failures

Sphere Rosenbrock Rastrigin Griewank Ackley

GA

mean number
of epochs

51 57 51 51 92

number of
failures

0 0 0 0 0

GFA

mean number
of epochs

31 46 30 49 97

number of
failures

0 0 0 0 0

SA

mean number
of epochs

816 46024 6349 21634 1001

number of
failures

108 500 314 126 234

Best performance (i.e., lowest number) for each function is highlighted in bold
underline letters.
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used in GA and SA (for more information of detail
parameters, please see description of GFA).
Overall, The GFA achieved a large decrease on the

MSE compared to the GA for some functions (De Jong’s
Sphere: 21.735-fold; Rastrigin: 46.4007-fold). Relatively
simple functions could be optimized better than GA
and SA through the phenomenon of the experiment.
The efficiency of SA was poorly in the experiment. And
the run-time of GFA and GA were in the same magni-
tude, but the run-time of SA is much longer than the
two others. We can see the total running-time from
Table 4.
Searching multi-minima
Although minimum of certain given function could be
optimized to resolve the problem for most situations,
minimum is not always what we want only. Sometimes
a part of minima is also needed. Bayesian network infer-
ring, for example, is a stochastic approach. So the mini-
mum of Bayesian criterion function is not always fit the
realistic network best. It is important to find other
minima for the problems as cases described above. A
number of lowest minima can be retained in the search.
To run multimodal optimization algorithm, we must

track more information than the global optimization.
Searching exactly a certain number of minima or even
all of the minima in the domain is a challenging work,
which is also meaningful for some problems, e.g. gene
cluster. In the experiment, top 5 minima were searched
with GFA. It’s beyond GA’s and SA’s ability.
Because sphere’s function is a unimodal function, we

could not use it for search multi-minima. We use the
rest of the four benchmark function. To complete the
experiment, 500 optimization runs were performed on
each benchmark functions. The settings were shown as
Table 5.
The direct result values of the multi-valleys searching

with GFA are shown in Table 6. From Table 6, it can be
seen that for all multimodal functions the searching
results can reach high precision. It means that the stabi-
lity of GFA for multi-minima optimization is very good.

Application to gene cluster
GFA could be applied in many science research areas,
especially bioinformatics. We used it for gene cluster.
The clustering algorithm we used was K-means. The
dataset used in this paper was from the experiment of
Spellman [15]. And the data which was MIAME compli-
ant [16] could be downloaded from GEO with accession
number GDS38. The number of cases was 7,680, of
which the 17 missing values were excluded. We com-
puted SMBS correlation coefficient [17] and excluded
missing values with Matlab. We excluded cases when
the respondent was dropped only on analyses involving
variables that had missing values. The data with 7663
cases and 16 samples was divided into 20 parts, as
known as clusters. So we distributed the cases into 20
groups. And our mission was that make sure the mean
distance was smallest or the number of runs exceeded
1,000. To compare with GFA, 3 methods, GA, SA and
Cluster 3.0 [18], were used to test the efficiency of the
novel algorithm. K-means was used in Cluster 3.0 with
correlation (centered) coefficient. For there four cluster-
ing methods, 500 runs were performed. And we got the
mean value.
To visualize the result of the gene cluster, we used the

free software TreeView [19] from Eisen’s Lab. A part
results computed by the novel algorithm and other clus-
ter methods of gene cluster were showed in a picture
which is Additional file 1. This picture shows the C8.txt
and result.txt with Group = 7, which should be opened
with excel software.
But there is no single best criterion for obtaining a

partition because no precise and workable definition of
cluster exists. Clusters can be of any arbitrary shapes
and sizes in a multidimensional pattern space [20]. It is
impossible to objectively evaluate how good a specific

Table 4 total running-time of GFA, GA and SA with 500
runs.

Sphere Rosenbrock Rastrigin Griewank Ackley

GA 187.13 63.29 157.33 63.98 101.30

GFA 201.37 67.90 113.46 69.42 84.59

SA 14211.08 11463.29 52914.75 15536.02 6406..68

Smallest running-time for each function is highlighted in bold underline
letters. 2.66 GHz 2 cores Intel CPU and 2 G memories are in the computer
used to calculate Eqs. (16-20) with GA, GFA and SA. The unit of the running-
time is second.

Table 5 GFA settings configurations of multi-minima
optimization

Rosenbrock Rastrigin Griewank Ackley

Domain of each variable [-2,2] [-1.5,1.5] [-1,1] [-2,2]

Max numbers of iterations 1000 1000 1500 2000

number of dusts 10000 10000 15000 20000

Number of groups 200 200 300 400

Table 6 Top 5 mean minima value of 500 runs for each
benchmark function

Minima Index Rosenbrock Rastrigin Griewank Ackley

1 1.0029 1.0470 0.0112 3.9736

2 0.1018 1.2767 0.0083 3.524

3 0.0030 0.0706 0.0006 0.0032

4 0.1038 1.0313 0.0079 3.623

5 1.0033 1.0200 0.0102 3.6535
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clustering method is without referring to what the clus-
tering will be used for [21]. So we evaluate the result
with F test with only mathematical aspect. And P values
of all the 16 samples are less than 0.01. The total results
of the gene cluster with GFA could be downloaded
from our website.
In the Bioinformatics, we could check the biologically

meaning. Correlations between cis elements and expres-
sion profiles could be established within the novel algo-
rithm cluster result. The cis elements we used were
from [22]. It’s generated by Li-Hsieh Lin etc [23]. We
compare GFA with GA, SA and Cluster 3.0 in C8 and
summarized it in Table 7.
From Table 7, the efficiency of GFA could be seen.

The genes with the same cis-regulatory elements could
be clustered better by GFA than Cluster 3.0 and SA.
Only in the case of the Ace2 cis element, the GFA with
optimized parameters could not outperform the Cluster
3.0. Some efficiency is very obvious, especially Ndd1 and
Swi5. But it seams that the efficiency of GA and GFA
are the same. The results of this cluster experiment
indicate that GFA method does work in gene cluster
with finding cis-regulatory element in the same cluster.
Other clustering results have the same properties.

Software
The developed algorithm software of single-machine for
GFA was implemented with matlab R2008a in the soft-
ware package GFA, which is a short code file, freely
available from our website: http://ccst.jlu.edu.cn/CSBG/
GFA. You can implement the multi-machines parallel
algorithm for GFA based on the detail in the conclusion
section below.

Conclusions
In this paper we propose a generalization searching-
optimization algorithm called GFA. This algorithm
derives from the SNDM theory, and the efficiency of the
algorithm is shown as above. We can summarize them
into three parts:
In the form of one independent variable, the GFA will

converge with probability 1. It gives us a balance level
between time and efficiency. If you want to find exactly
extreme value of the mass function, you can disperse

more dusts to avoid the condition of the p (see mathe-
matical proof). If you want to find the extreme value
fast, you can define a small number of initial dusts.
GFA can find all needed the peaks of the solution. No

matter the number of initial dusts is big or small.
The running-time of GFA is very short. The reasons

are the strategy of the division and the rules of motion
described as above. The space of solution is cut into
small groups. It’s the decomposition of any complex
problem. Even more, it will support us a feasibility of
parallel computing. In this view, this algorithm is similar
to the parallel genetic algorithm [24]. But this mechan-
ism of GFA can be faster than GA’s. We could use a
large number of idle computers to calculate a complex
problem, and the running-time is inversely proportional
to the number of the computers.

Additional material

Additional file 1: A picture in which is a graph of a part of clusters
with the real gene expression dataset GDS38. In the picture, there are
four graphs which were computed by GFA(a), Cluster 3.0(b), GA(c) and
SA(d) with the K-means clustering algorithm all. They were corresponded
the same cluster in the 20 ones. Red represents positive, green
represents negative, black represents zero and grey represents missing
values.

Acknowledgements
This work is supported by the NSFC (60873146, 60973092, 60903097); the
National HighTech R&D Program of China (863) (2009AA02Z307); the Ph.D.
Programs Foundation of Ministry of Education of China (20090061120094);
the project of 200810026 support by Jilin University, “211” and “985” project
of Jilin University.

Authors’ contributions
MZ designed the algorithms, carried out the experiments and drafted the
manuscript. CGZ and GXL conceived and coordinated the research,
participated in the design of the experiments and carried out parts of the
experiments. YCL and helped to draft the manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 19 July 2009 Accepted: 20 September 2010
Published: 20 September 2010

References
1. Fang-xiang Wu: Genetic weighted k-means algorithm for clustering

large-scale gene expression data. BMC Bioinformatics 2008, 9(Suppl 6):S12.
2. James T, Shuba G: Correction: genetic algorithm learning as a robust

approach to RNA editing site site prediction. BMC Bioinformatics 2006,
7:406.

3. Rui J, Hua Y, Fengzhu S: Searching for interpretable rules for disease
mutations: a simulated annealing bump hunting strategy. BMC
Bioinformatics 2006, 7:417.

4. Michael M, Michael S, Gisbert S: Optimized Particle Swarm Optimization
(OPSO) and its application to artificial neural network training. BMC
Bioinformatics 2006, 7:125.

5. Pier-Luigi L, Santo M, Francesco P: Discovery of cancer vaccination
protocols with a genetic algorithm driving an agent based simulator.
BMC Bioinformatics 2006, 7:352.

Table 7 cis-regulatory elements correspond each method

Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 Swi6

GFA 1 3 4 2 0 5 2 3 2

Cluster
3.0

1 1 0 0 1 0 0 3 2

GA 3 4 3 2 1 4 4 2 1

SA 0 3 2 1 1 2 3 4 1

Zheng et al. Algorithms for Molecular Biology 2010, 5:32
http://www.almob.org/content/5/1/32

Page 10 of 11

http://ccst.jlu.edu.cn/CSBG/GFA
http://ccst.jlu.edu.cn/CSBG/GFA
http://www.biomedcentral.com/content/supplementary/1748-7188-5-32-S1.JPEG
http://www.ncbi.nlm.nih.gov/pubmed/16956416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16956416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16984653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16984653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16529661?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16529661?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16857043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16857043?dopt=Abstract


6. Rudolph G: Convergence properties of canonical genetic algorithms. IEEE
Trans Neural Networks 1994, 5(1):96-101.

7. Geman S, Gemana D: Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine
Intelligence, PAMI 1984, 721-741.

8. Safronov VS: Evolution of the Protoplanetary Cloud and Formation of the
Earth and the Planets Jerusalem: Israel Program for Scientific Translations
1972.

9. Genetic Algorithm and Direct Search Toolbox User’s Guide, copyright by
the MathWorks, Inc. [http://www.mathworks.co.uk/access/helpdesk/help/
pdf_doc/gads/gads_tb.pdf].

10. Lohr SL, Rao JNK: Jackknife estimation of mean squared error of small
area predictors in nonlinear mixed models. Biometrika 2009, 2:457.

11. Petros EM, Philippe C: An EWMA chart for monitoring the process
standard deviation when parameters are estimated. Computational
statistics & data analysis 2009, 5:2653-2664.

12. Cody WJ: Rational Chebyshev Approximations for the Error Function.
Mathematics of Computation 1969, 23:631-637.

13. Wan X, Karniadakis GE: A sharp error estimate for the fast Gauss
transform. Journal of computational physics 2006, 11:7-12.

14. The website of Matlab tools for GA and SA. [http://www.mathworks.com/
products/gads/].

15. Paul TS, Gavin S, Michael QZ, etc: Comprehensive Identification of Cell
Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by
Microarray Hybridization. Molecular Biology of the Cell 1998, 9:3273-3297.

16. Tim FR, Philippe RS, Paul TS, etc: A simple spreadsheet-based, MIAME-
supportive format for microarray data: MAGE-TAB. BMC Bioinformatics
2006, 7:489.

17. Wang Han, Liu Gui-xia, Zhou Chun-guang, etc: Measuring the Similarity of
Co-regulated Genes by Integrating Quantity and Tendency of Gene
Expression Changing. The 2nd International Conference on Bioinformatics
and Biomedical Engineering. Shanghai, China: Bioinformatics and Biomedical
Engineering 2008, 1896-1900.

18. The website for Cluster 3.0. [http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/
software/cluster].

19. The website for TreeView. [http://rana.lbl.gov/downloads/TreeView/
TreeView_vers_1_60.exe].

20. Jain AK, Dubes RC: Algorithms for Clustering Data Prentice Hall, Englewood
Cliffs, NJ 1988.

21. D’haeseleer P, Liang S, Somogyi R: Genetic network inference: from co-
expression clustering to reverse engineering. Bioinformatics 2000,
8:707-726.

22. The website for Li-Hsieh Lin’s cis elements. [http://www.biomedcentral.
com/content/supplementary/1471-2105-6-258-S1.xls].

23. Lin Li-Hsieh, Lee Hsiao-Ching, Li Wen-Hsiung, etc: Dynamic modeling of
cis-regulatory circuits and gene expression prediction via cross-gene
identification. BMC Bioinformatics 2005, 6:258.

24. Petty CC, League MR: A theoretical investigation of a parallel genetic
algorithm. Proc. Of 3rd Int. Conf. On Genetic Algorithm, Morgan Kaufmanm
1989, 398-405.

doi:10.1186/1748-7188-5-32
Cite this article as: Zheng et al.: Gravitation field algorithm and its
application in gene cluster. Algorithms for Molecular Biology 2010 5:32.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Zheng et al. Algorithms for Molecular Biology 2010, 5:32
http://www.almob.org/content/5/1/32

Page 11 of 11

http://www.mathworks.co.uk/access/helpdesk/help/pdf_doc/gads/gads_tb.pdf
http://www.mathworks.co.uk/access/helpdesk/help/pdf_doc/gads/gads_tb.pdf
http://www.mathworks.com/products/gads/
http://www.mathworks.com/products/gads/
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17087822?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17087822?dopt=Abstract
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster
http://rana.lbl.gov/downloads/TreeView/TreeView_vers_1_60.exe
http://rana.lbl.gov/downloads/TreeView/TreeView_vers_1_60.exe
http://www.biomedcentral.com/content/supplementary/1471-2105-6-258-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-6-258-S1.xls
http://www.ncbi.nlm.nih.gov/pubmed/16232312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16232312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16232312?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Description of GFA
	Initialization
	Strategy of division
	The rules of the motion of the dusts and strategy of absorption

	Mathematical framework
	Mathematical proof
	Peaks versus valleys

	Computation complexity of GFA

	Results and Discussion
	Test Method
	Benchmark functions
	Error functions

	Simulation Result
	Searching global minimum
	Searching multi-minima

	Application to gene cluster
	Software

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

