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Abstract

Background: The inference of the number of clusters in a dataset, a fundamental problem in Statistics, Data
Analysis and Classification, is usually addressed via internal validation measures. The stated problem is quite
difficult, in particular for microarrays, since the inferred prediction must be sensible enough to capture the inherent
biological structure in a dataset, e.g., functionally related genes. Despite the rich literature present in that area, the
identification of an internal validation measure that is both fast and precise has proved to be elusive. In order to
partially fill this gap, we propose a speed-up of Consensus (Consensus Clustering), a methodology whose
purpose is the provision of a prediction of the number of clusters in a dataset, together with a dissimilarity matrix
(the consensus matrix) that can be used by clustering algorithms. As detailed in the remainder of the paper,
Consensus is a natural candidate for a speed-up.

Results: Since the time-precision performance of Consensus depends on two parameters, our first task is to
show that a simple adjustment of the parameters is not enough to obtain a good precision-time trade-off. Our
second task is to provide a fast approximation algorithm for Consensus. That is, the closely related algorithm FC
(Fast Consensus) that would have the same precision as Consensus with a substantially better time performance.
The performance of FC has been assessed via extensive experiments on twelve benchmark datasets that
summarize key features of microarray applications, such as cancer studies, gene expression with up and down
patterns, and a full spectrum of dimensionality up to over a thousand. Based on their outcome, compared with
previous benchmarking results available in the literature, FC turns out to be among the fastest internal validation
methods, while retaining the same outstanding precision of Consensus. Moreover, it also provides a consensus
matrix that can be used as a dissimilarity matrix, guaranteeing the same performance as the corresponding matrix
produced by Consensus. We have also experimented with the use of Consensus and FC in conjunction with
NMF (Nonnegative Matrix Factorization), in order to identify the correct number of clusters in a dataset. Although
NMF is an increasingly popular technique for biological data mining, our results are somewhat disappointing and
complement quite well the state of the art about NMF, shedding further light on its merits and limitations.

Conclusions: In summary, FC with a parameter setting that makes it robust with respect to small and medium-
sized datasets, i.e, number of items to cluster in the hundreds and number of conditions up to a thousand, seems
to be the internal validation measure of choice. Moreover, the technique we have developed here can be used in
other contexts, in particular for the speed-up of stability-based validation measures.

Background
Microarray technology for profiling gene expression levels
is a popular tool in modern biological research. It is
usually complemented by statistical procedures that sup-
port the various stages of the data analysis process [1].

Since one of the fundamental aspects of the technology is
its ability to infer relations among the hundreds (or even
thousands) of elements that are subject to simultaneous
measurements via a single experiment, cluster analysis is
central to the data analysis process: in particular, the
design of (i) new clustering algorithms and (ii) new inter-
nal validation measures that should assess the biological
relevance of the clustering solutions found. Although both
of those topics are widely studied in the general data
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mining literature, e.g., [2-9], microarrays provide new chal-
lenges due to the high dimensionality and noise levels of
the data generated from any single experiment. However,
as pointed out by Handl et al. [10], the bioinformatics lit-
erature has given prominence to clustering algorithms, e.
g., [11], rather than to validation procedures. Indeed, the
excellent survey by Handl et al. is a big step forward in
making the study of those validation techniques a central
part of both research and practice in bioinformatics, since
it provides both a technical presentation as well as valu-
able general guidelines about their use for post-genomic
data analysis. Although much remains to be done, it is,
nevertheless, an initial step.
Based on the above considerations, this paper focuses

on data-driven internal validation measures, particularly
on those designed for and tested on microarray data.
That class of measures assumes nothing about the
structure of the dataset, which is inferred directly from
the data.
In the general data mining literature, there is a great

proliferation of research on clustering algorithms, in
particular for gene expression data [12]. Some of those
studies concentrate both on the ability of an algorithm
to obtain a high quality partition of the data and on its
performance in terms of computational resources,
mainly CPU time. For instance, hierarchical clustering
and K-means algorithms [13] have been the object of
several speed-ups (see [14-16] and references therein).
Moreover, the need for computational performance is so
acute in the area of clustering for microarray data
that implementations of well known algorithms, such
as K-means, specific for multi-core architectures are
being proposed [17]. As far as validation measures are
concerned, there are also several general studies, e.g.,
[18], aimed at establishing the intrinsic, as well as the
relative, merit of a measure. However, for the special
case of microarray data, the experimental assessment of
the “fitness” of a measure has been rather ad hoc and
studies in that area provide only partial comparison
among measures, e.g., [19]. Moreover, contrary to
research in the clustering literature, the performance of
validation methods in terms of computational resources,
again mainly CPU time, is hardly assessed both in abso-
lute and relative terms.
In order to partially fill the gap existing between the

general data analysis literature and the special case of
microarray data, Giancarlo et al. [20] have recently pro-
posed an extensive comparative analysis of validation
measures taken from the most relevant paradigms in the
area: (a) hypothesis testing in statistics, e.g., [21]; (b) sta-
bility-based techniques, e.g., [19,22,23] and (c) jackknife
techniques, e.g., [24]. These benchmarks consider both
the ability of a measure to predict the correct number
of clusters in a dataset and, departing from the current

state of the art in that area, the computer time it takes
for a measure to complete its task. Since the findings of
that study are essential to place this research in a proper
context, we highlight them next:

(A) There is a very natural hierarchy of internal vali-
dation measures, with the fastest and less precise at
the top. In terms of time, there is a gap of at least
two orders of magnitude between the fastest, WCSS
[6], and the slowest ones.
(B) All measures considered in that study have
severe limitations on large datasets with a large
number of clusters, either in their ability to predict
the correct number of clusters or to finish
their execution in a reasonable amount of time, e.g,
a few days.
(C) Although among the slowest, Consensus [19]
displays some quite remarkable properties that,
accounting for (A) and (B), make it the measure of
choice for small and medium sized datasets. Indeed,
it is very reliable in terms of its ability to predict the
correct number of clusters in a dataset, in particular
when used in conjunction with hierarchical cluster-
ing algorithms. Moreover, such a performance is
stable across the choice of basic clustering algo-
rithms, i.e., various versions of hierarchical clustering
and K-means, used to produce clustering solutions.

It is also useful to recall that, prior to the study of
Giancarlo et al., Consensus was already a reference
point in the area of internal validation measures, as we
outline next.

(D) Monti et. al. [19] had already established the
excellence of the Consensus methodology via a
comparison with the Gap Statistics [21]. In view of
that paper, the contribution by Giancarlo et al. is to
give indication of such an excellence with respect to
a wider set of measures, showing also its computa-
tional limitations. Moreover, Monti et al. also
showed that the methodology can be used to obtain
dissimilarity matrices that seem to improve the per-
formance of clustering algorithms, in particular hier-
archical ones. Additional remarkable properties of
that methodology, mainly its ability to discover “nat-
ural hierarchical structure” in microarray data, have
been highlighted by Brunet et al. [25] in conjunction
with NMF, a very versatile pattern discovery techni-
que that has received quite a bit of attention in the
computational biology literature, as discussed in the
review by Devarajan [26].
(E) Some of the ideas and techniques involved in the
Consensus methodology are of a fundamental nat-
ure and quite ubiquitous in the cluster validation
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area. We limit ourselves mentioning that they appear
in work prior to that of Monti et al. for the assess-
ment of cluster quality for microarray data analysis
[27] and that there are stability-based internal valida-
tion methods, i.e., [22,23,28-31], that use essentially
the same algorithmic strategy of Consensus to col-
lect information about the structure present in the
input dataset, as briefly detailed in the Methods
section.

One open question that was made explicit by the
study of Giancarlo et al. is the design of a data-driven
internal validation measure that is both precise and fast,
and capable of granting scalability with dataset size.
Such a lack of scalability for the most precise internal
validation measures is one of the main computational
bottlenecks in the process of cluster evaluation for
microarray data analysis. Its elimination is far from tri-
vial [32] and even partial progress on this problem is
perceived as important.
Based on its excellent performance and paradigmatic

nature, Consensus is a natural candidate for the inves-
tigation of an algorithmic speed-up aimed at reducing
the mentioned bottleneck. To this end, here we propose
FC, which is a fast approximation of Consensus.
Indeed, we show, experimentally, that FC is at least an
order of magnitude faster than Consensus when used
in conjunction with hierarchical clustering algorithms or
partitional algorithms with a hierarchical initialization.
As discussed in the Conclusions section, the net effect is
a substantial reduction in the time gap existing between
the fastest measures, i.e., WCSS, and the most precise
ones, i.e., Consensus and FC. Moreover, based on our
study, several conclusions of methodological value are
also offered. In the remainder of this paper, we concen-
trate on Consensus and FC as internal validation mea-
sures. The part regarding their ability to produce good
dissimilarity matrices that can be used by clustering
algorithms is presented in the Supplementary File at the
supplementary material web site [33].

Results and Discussion
Experimental setup
Datasets
We use twelve datasets, each being a matrix in which a
row corresponds to an element to be clustered and a
column to an experimental condition. Since the aim of
this study is to assess the performance of FC both with
respect to Consensus and to other internal validation
measures, a natural selection consists of the following
two groups of datasets.
The first one, referred to as Benchmark 1, is com-

posed of six datasets, each referred to as Leukemia, Lym-
phoma, CNS Rat, NCI60, PBM and Yeast. They have

been widely used for the design and precision analysis of
internal validation measures, e.g., [10,11,22,24,34], that
are now mainstays of this discipline. Indeed, they seem
to be a de facto standard, offering the advantage of
making this work comparable with methods directly
related to FC. In particular, by using them we are able
to use the entire experimentation by Giancarlo et al. in
order to assess the performance of FC relative to other
validation measures. The second group, referred to as
Benchmark 2, is composed of six datasets, taken
from Monti et al., that nicely complement the datasets
in Benchmark 1. Their selection allows for a direct
comparison of the performance of FC with Consen-
sus on datasets that were originally used for its vali-
dation. Each of those datasets is referred to as Normal,
Novartis, St. Jude, Gaussian3, Gaussian5 and Simu-
lated6, the last three being artificial data.
Since all of the mentioned datasets have been widely

used in previous studies, we provide only a synoptic
description of each of them in the Supplementary File,
where the interested reader can find relevant references
for a more in-depth description of them. However, it
seems appropriate to recall some of their key features
here. The datasets in Benchmark 1 have relatively few
items to classify and relatively few dimensions (at most
200 hundred-see the Supplementary File). However, it is
worth mentioning that Lymphoma, NCI60 and Leuke-
mia have been obtained by Dudoit and Fridlyand and
Handl et al., respectively, via an accurate statistical
screening of the three relevant microarray experiments
that involved thousands of conditions (columns). That
screening process eliminated most of the conditions
since there was no statistically significant variation
across items (rows). It is also worth pointing out that
the three mentioned datasets are quite representative of
microarray cancer studies. The CNS Rat and Yeast data-
sets come from gene functionality studies. The fifth one,
PBM, is a dataset that corresponds to a cDNA with a
large number of items to classify and it is used to show
the current limitations of existing validation methods
that have been outlined in (B) in the Background sec-
tion. Indeed, those limits have been established with
PBM as input. In particular, when given to Consensus
as input, the computational demand is such that all
experiments were stopped after four days, or they would
have taken weeks to complete.
Except for one, the datasets in Benchmark 2 are all

of very high dimension (at most 1277-see the Supple-
mentary File). The artificial ones were designed by
Monti et al. to assess the ability of Consensus to deal
with clustering scenarios typical of microarray data, as
detailed in the Supplementary File. Therefore, in experi-
menting with them, we test whether key features of
Consensus are preserved by FC. Moreover, the three
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microarrays are all cancer studies that preserve their
high dimensionality even after statistical screening, as
opposed to the analogous datasets in Benchmark 1.
We also mention that all datasets have a “gold solu-

tion”, i.e., a partition of the data into a number of
classes known a priori or that has been validated by
experts. A technical definition of gold solution is
reported in the Supplementary File. Here we limit our-
selves to mention that we adhere to the methodology
reported in Dudoit and Fridlyand.
Clustering algorithms and dissimilarity matrices
We use hierarchical, partitional clustering algorithms
[13] and NMF when viewed as a clustering algorithm. In
particular, the hierarchical methods used are Hier-A
(Average Link), Hier-C (Complete Link) and Hier-S
(Single Link). We use each of K-means and NMF, both
of them in the version that starts the clustering from a
random partition of the data, with acronyms K-means-R
and NMF-R, and in the version where each takes, as part
of its input, an initial partition produced by one of the
chosen hierarchical methods. For K-means, the acronym
for those latter versions are K-means-A, K-means-C and
K-means-S, respectively. An analogous notation is fol-
lowed for NMF. Following Giancarlo et al., all of our
algorithms use Euclidean distance in order to assess the
similarity of single elements to be clustered. The inter-
ested reader will find a detailed discussion about this
choice in Giancarlo et al.. Since NMF is relatively novel
in the biological data mining literature, it is described
with considerable detail in the Supplementary File, for
the convenience of the reader.
Hardware
All experiments for the assessment of the precision of
each measure were performed in part on several state-
of-the-art PCs and in part on a 64-bit AMD Athlon
2.2 GHz bi-processor with 1 GB of main memory run-
ning Windows Server 2003. All the timing experiments
reported were performed on the bi-processor, using one
processor per run. The use of several machines for the
experimentation was deemed necessary in order to com-
plete the full set of experiments in a reasonable amount
of time. Indeed, as detailed later, some experiments
would require weeks to complete execution on PBM,
the largest dataset we have used. Indeed, we anticipate
that some experiments were stopped after four days,
because it was evident that they would have taken
weeks to complete. We also point out that all the Oper-
ating Systems supervising the computations have a
32 bits precision.

Consensus and its parameters
It is helpful for the discussion to highlight, here, some
key facts about Consensus, deferring the detailed
description of the procedure to the Methods section.

For a given number of clusters, Consensus computes
a certain number of clustering solutions (resampling
step), each from a sample of the original data (subsam-
pling). The performance of Consensus depends on
two parameters: the number of resampling steps H and
the percentage of subsampling p, where p states how
large the sample must be. From each clustering solution,
a corresponding connectivity matrix is computed: each
entry in that matrix indicates whether a pair of elements
is in the same cluster or not. For the given number of
clusters, the consensus matrix is a normalized sum of
the corresponding H connectivity matrices. Intuitively,
the consensus matrix indicates the level of agreement of
clustering solutions that have been obtained via inde-
pendent sampling of the dataset.
Monti et al., in their seminal paper, set H = 500 and

p = 80%, without any experimental or theoretical justifi-
cation. For this reason and based also on an open
problem mentioned in [20], we perform several experi-
ments with different parameter settings of H and p, in
order to find the “best” precision-time trade-off,
when Consensus is regarded as an internal validation
measure.
In order to assess a good parameter setting for Con-

sensus, using the hierarchical algorithms and
K-means, we have performed experiments with H = 500,
250, 100 and p = 80%, 66%, respectively, on the Bench-
mark 1 datasets, reporting the precision values and
times. The choice of the value of p is justified by the
results reported in [22,23]. Intuitively, a value of p smal-
ler then 66% would fail to capture the entire cluster
structure present in the data.
For each dataset and each clustering algorithm-except

NMF (see below), we compute Consensus for a num-
ber of cluster values in the range [2,30] , while, for Leu-
kemia, the range [2,25] is used when p = 66%, due to its
small size. Therefore, for this particular dataset, the tim-
ing results are not reported since incomparable with the
ones obtained with the other datasets. The prediction
value, k*, is based on the plot of the Δ(k) curve, with the
possible consideration also of the CDF curves, (both
types of curves are defined in the Methods section) as
indicated in [19,20]. The corresponding plots are avail-
able at the supplementary material web site, in the
Figures section, where they are organized by benchmark
dataset-internal validation measure-subsampling size-
number of resampling steps. The corresponding tables
summarizing the prediction and timing results are again
reported at the supplementary material web site, in the
Tables section, and they follow the same organization
outlined for the Figures. For reasons that will be evident
shortly and due to its high computational demand, we
have performed experiments only with H = 250 and p =
80% in conjunction with NMF.
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For p = 80%, the precision results reported in the cor-
responding tables at the supplementary material web
site show that there is very little difference between the
results obtained for H = 500 and H = 250. That is in
contrast with the results for H = 100, where many pre-
diction values are very far from the gold solution for the
corresponding dataset, e.g., the Lymphoma dataset. Such
a finding seems to indicate that, in order to find a con-
sensus matrix which captures well the inherent structure
of the dataset, one needs a sensible number of connec-
tivity matrices. The results for a subsampling value of
p = 66% confirms that the number of connectivity
matrices one needs to compute is more relevant than
the percentage of the data matrix actually used to com-
pute them. Indeed, although it is obvious that a reduc-
tion in the number of resampling steps results in a
saving in terms of execution time, it is less obvious that
for subsampling values p = 66% and p = 80%, there is
no substantial difference in the results, both in terms of
precision and of time. Therefore, a proper parameter
setting for Consensus seems to be H = 250 and p =
80%. In regard to NMF, we have used only that para-
meter setting for our experiments. For later use, we
report in Table 1 part of the results of the experiments
with the parameter setting H = 250 and p = 80%.
Indeed, as for timing results, we report only the ones
for CNS Rat, NCI60, PBM and Yeast datasets since the
ones for Leukemia and Lymphoma are comparable to
those obtained for CNS Rat and NCI60 and therefore

are redundant. As for the Benchmark 2 datasets, we
have experimented only with the parameter setting H =
250 and p = 80%. For each dataset and each algorithm,
the predictions have been derived in analogy with the
ones for datasets in Benchmark 1. The relevant figures
and tables are at the supplementary material web site,
again organized in analogy with the criteria described
for Benchmark 1. For later use, we report the table
here as Table 2. For the artificial datasets, we do not
report the timing results since the experiments have
been performed on a computer other than the AMD
Athlon.
From our experiments, in particular the ones on the

Benchmark 1 datasets, several conclusons can be draw.
A simple reduction in terms of H and p is not enough
to grant a good precision-time trade-off. Even worse,
although the parameter setting H = 250 and p = 80%
grants a faster execution of Consensus with respect to
the original setting by Monti et al., the experiments on
the PBM dataset were stopped after four days on all
algorithms. That is, the largest of the datasets used here
is still “out of reach” of Consensus even with a tuning
of the parameters aimed at reducing its computational
demand. Such a finding, together with the state of the
art outlined in the Background section, motivates our
interest in the design of alternative methods, such as
fast heuristics.
Regarding NMF, its inefficiencies compound with those

of Consensus; that is, the relatively large number of

Table 1 Results for Consensus with H = 250 and p = 80% on the Benchmark 1 datasets

Precision Timing

CNS Rat Leukemia NCI60 Lymph. Yeast PBM CNS Rat NCI60 Yeast PBM

Hier-A ⑦ ➌ ➑ ➌ ➎ - 8.9 × 105 1.4 × 106 5.0 × 107 -

Hier-C ➏ ④ ➑ 5 ⑥ - 8.1 × 105 1.3 × 106 4.8 × 107 -

Hier-S 2 ➌ 10 ② 10 - 4.3 × 105 1.0 × 105 4.8 × 107 -

K-means-R ➏ ④ ⑦ ④ ⑥ - 5.6 × 105 1.2 × 106 2.7 × 107 -

K-means-A ⑦ ➌ ➑ ➌ ⑥ - 1.0 × 106 1.8 × 106 5.6 × 107 -

K-means-C ➏ ➌ ➑ ④ ⑥ - 9.8 × 105 1.7 × 106 5.3 × 107 -

K-means-S ⑦ 5 ⑨ ② ⑥ - 1.2 × 106 1.2 × 106 5.7 × 107 -

NMF-R ➏ ④ ⑦ ④ - - 1.1 × 108 6.4 × 107 - -

NMF-A ⑦ ➌ 2 ➌ - - 3.0 × 107 1.3 × 107 - -

NMF-C 5 ④ ⑦ ④ - - 3.0 × 107 1.3 × 107 - -

NMF-S 2 8 ⑨ ② - - 3.6 × 107 1.3 × 107 - -

Gold solution 6 3 8 3 5 18 - - - -

A summary of the results for Consensus with H = 250 and p = 80%, on all algorithms, on the Benchmark 1 datasets. Each cell in the table displays either a
precision or a timing result. That is, either the prediction of the number of clusters in a dataset given by a measure or the execution time it took to get such a
prediction. For cells displaying precision, a number in a circle with a black background indicates a prediction in agreement with the number of classes in the
dataset; while a number in a circle with a white background indicates a prediction that differs, in absolute value, by 1 from the number of classes in the dataset;
a number in a square indicates a prediction that differs, in absolute value, by 2 from the number of classes in the dataset; a number not in a circle/square
indicates the remaining predictions. When one obtains two very close predictions for k*, they are both reported and separated by a dash. An entry containing a
dash only indicates that either the experiment was stopped because of its high computational demand or that no useful indication was given by the method.
For cells displaying timing, we use the following notation. Numeric values report timing in milliseconds, while a dash indicates that the timing is not available for
at least one of the following reasons: the experiment (a) was performed on a computer other than the AMD Athlon; (b) it was stopped because of its high
computational demand; (c) a smaller range of clustering solutions have been produced for that dataset, due to its size, i.e., Leukemia with p = 66%. For this
particular set of experiments, we do not report the timing results for Leukemia and Lymphoma because they are redundant.
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connectivity matrices needed by Consensus and the
well-known slow convergence of NMF for the computa-
tion of a clustering solution, since connectivity matrices
are obtained from clustering solutions. The end-result is
a slow-down of one order of magnitude with respect to
Consensus used in conjunction with other clustering
algorithms. As a consequence, NMF and Consensus
can be used together on a conventional PC only for
relatively small datasets. In fact, the experiments for
Yeast and PBM, the two largest datasets in Benchmark
1 with which we have experimented, were stopped after
four days. An analogous outcome was observed for the
experiments on all of the microarray datasets in
Benchmark 2.

FC and its parameters
In analogy with Consensus, the precision and time
performances of FC depend on H and p. In order to
validate this measure, we repeat verbatim the experi-
ments that have been performed here for Consensus.
The relevant information is in the Figures and Tables
section of the supplementary material web site and it
follows the same organization as the one described for
Consensus. Again, we find that the “best” parameter
setting is H = 250 and p = 80% also for FC. The tables
of interest are reported here as Table 3 and 4 and they
are used for the comparison with Consensus.
Consider Table 1 and 3. Note that, in terms of preci-

sion, FC and Consensus provide identical predictions
on the Lymphoma and Yeast datasets, while their pre-
dictions are quite close on the CNS Rat dataset. More-
over, in terms of time, note that FC is faster then
Consensus by at least one order of magnitude on all
hierarchical algorithms and K-means-A, K-means-C and
K-means-S. In particular, FC is able to complete execu-
tion on the PBM dataset, as opposed to Consensus,
with all of the mentioned algorithms. It is also worthy
of notice that Hier-C and K-means-R also provide, for
the PBM dataset, a reasonable estimate of the number

of clusters present in it. Finally, the one order of magni-
tude speed-up is preserved with increasing values of
H. That is, as H increases the precision of both Con-
sensus and FC increases, but the speed-up of FC with
respect to Consensus is preserved (see the timing
results reported at the supplementary material web site
for H = 500, 250, 100 and p = 80% on the Benchmark
1 datasets). It is somewhat unfortunate, however, that
those quite substantial speed-ups have only minor
effects when one uses NMF as a clustering algorithm,
which is a clear indication that the time taken by NMF
to converge to a clustering solution accounts for most
of the time performance of FC in that setting, in analogy
with Consensus.
Consider now Table 2 and 4. Based on them, it is of

great interest to notice that, on the datasets of Bench-
mark 2, there is no difference whatsoever in the predic-
tions between Consensus and FC. Even more
remarkably, by analyzing the Δ and the CDF curves
from which the predictions are made (see Methods sec-
tion), one discovers that the ones produced by Con-
sensus and FC are nearly identical (see Figs. M1-M24
at the supplementary material web site). However, on
the microarray datasets in Benchmark 2, FC is at least
one order of magnitude faster than Consensus, with
exactly the same algorithms indicated for Benchmark
1. NMF results to be problematic also on the Bench-
mark 2 datasets.

Comparison of FC with other internal validation measures
It is also of interest to compare FC with other validation
measures that are available in the literature. We take,
as reference, the benchmarking results reported in
Giancarlo et al., since for the Benchmark 1 datasets
the experimental setup is identical to the one used here.
As mentioned in the Background section, that bench-
marking accounts for the three most widely known
families of validation measures: namely, those based on
(a) hypothesis testing in statistics; (b) stability-based

Table 2 Results for Consensus with H = 250 and p = 80% on the Benchmark 2 datasets

Precision Timing

Novartis St.Jude Normal Gaussian3 Gaussian5 Simulated6 Novartis St.Jude Normal

Hier-A ⑤ - 6 ➏ 10 ➌ ➎ ⑤ 1.0 × 107 3.7 × 107 9.5 × 106

Hier-C ➍- ⑤ ⑤ - ➏ 10 ➌ ➎ ⑤ 1.0 × 107 3.7 × 107 9.2 × 106

Hier-S ⑤ 2 10 ② 2 ⑦ 9.8 × 106 3.7 × 107 9.4 × 106

K-means-R ⑤ ➏ 10 ➌ ➎ ➏ 1.8 × 107 1.5 × 107 6.3 × 106

K-means-A ⑤ - 6 ➏ 8 ➌ ➎ ⑤ 1.4 × 107 6.8 × 107 1.1 × 107

K-means-C ➍- ⑤ ⑤ - ➏ 10 ➌ ➎ ⑤ 1.5 × 107 6.8 × 107 1.0 × 107

K-means-S ⑤ ➏ 10 ② ➎ ➏ 1.6 × 107 6.8 × 107 1.1 × 107

Gold solution 4 6 13 3 5 6 - - -

A summary of the results for Consensus with H = 250 and p = 80%, on all algorithms, except NMF, and for the datasets in Benchmark 2. The table legend is
as in Table 1. NMF has been excluded since each experiment was terminated due to its high computational demand. The timing results for the artificial datasets
are not reported since the experiments have been performed on a computer other than the AMD Athlon.
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techniques and (c) jackknife techniques, in particular,
the Gap Statistics for category (a); CLEST [22], Model
Explorer [23] and Consensus for category (b) and
FOM for category (c). Moreover, there are also included
G-Gap, an approximation of the Gap Statistics, and one
extension of FOM, referred to as Diff-FOM. In addition,
that study takes into account two classical measures as
WCSS and the KL (Krzanowski and Lai index) [35]. In
the Supplementary File, a short description is given of
the measures relevant to this discussion.
Using the Benchmark 1 datasets, Giancarlo et al.

show there is a natural hierarchy, in terms of time, for
those measures. Moreover, the faster the measure, the
less accurate it is. From that study and for completeness,
we report in Table TI13, at the supplementary material
web site, the best performing measures, with the addi-
tion of FC. From that table, we extract and report, in
Table 5 the fastest and best performing measures -
again, with the addition of FC. Consistent with that
study, we report the timing results only for CNS Rat,

Leukemia, NCI60 and Lymphoma. As is self-evident
from that latter table, FC with Hier-A is within a one
order of magnitude difference in speed with respect to
the fastest measures, i.e., WCSS and G-Gap. Quite
remarkably, it grants a better precision in terms of its
ability to identify the underlying structure in each of the
benchmark datasets. It is also of relevance to point out
that FC with Hier-A has a time performance comparable
to that of FOM, but again it has a better precision per-
formance. Notice that, none of the three just-mentioned
measures depends on any parameter setting, implying
that no speed-up will result from a tuning of the
algorithms.
For completeness and in order to even better assess

the precision merits of FC with respect to the measures
considered in Table TI13, we have performed experi-
ments also on the Benchmark 2 datasets. The timing
results are not reported since the experiments have
been performed on computers other than the AMD
Athlon. Since most of the methods in that table predict

Table 3 Results for FC with H = 250 and p = 80% on the Benchmark 1 datasets

Precision Timing

CNS Rat Leukemia NCI60 Lymph. Yeast PBM CNS Rat NCI60 Yeast PBM

Hier-A ⑦ ➌ ➑ ➌ ➎ 2 4.7 × 104 5.2 × 104 1.4 × 106 3.7 × 107

Hier-C ➏ ④ ➑ 5 ⑥ 14 - ⑰ 4.4 × 104 6.4 × 104 1.4 × 106 3.7 × 107

Hier-S 2 8 ➑ ② 10 2 5.3 × 104 5.2 × 104 1.4 × 106 3.0 × 107

K-means-R ➏ ④ ⑦ ④ ⑥ 16 3.7 × 105 1.2 × 106 1.6 × 107 1.6 × 108

K-means-A ⑦ ➌ ➑ ➌ ⑥ 12 3.1 × 105 9.3 × 105 1.8 × 107 2.1 × 108

K-means-C ➏ ④ ➑ ④ ⑥ 12 2.5 × 105 6.5 × 105 1.4 × 107 2.0 × 108

K-means-S ➏ 7 ⑨ ② ⑥ 2 3.7 × 105 6.9 × 105 1.9 × 107 2.4 × 108

NMF-R ➏ ④ ⑦ ④ - - 1.1 × 108 6.3 × 107 - -

NMF-A ⑦ ➌ ⑦ ➌ - - 3.0 × 107 1.2 × 107 - -

NMF-C ➏ ➌ ➑ ④ - - 2.9 × 107 1.2 × 107 - -

NMF-S 2 8 ⑨ ② - - 3.5 × 107 1.2 × 107 - -

Gold solution 6 3 8 3 5 18 - - - -

A summary of the results for FC with H = 250 and p = 80%, on all algorithms and on the Benchmark 1.

datasets. The table legend is as in Table 1.

Table 4 Results for FC with H = 250 and p = 80% on the Benchmark 2 datasets

Precision Timing

Novartis St.Jude Normal Gaussian3 Gaussian5 Simulated6 Novartis St.Jude Normal

Hier-A ⑤ - 6 ➏ 10 ➌ ➎ ⑤ 4.0 × 105 1.6 × 106 3.4 × 105

Hier-C ➍ - ⑤ ⑤ - ➏ 10 ➌ ➎ ⑤ 3.9 × 105 1.4 × 106 3.3 × 105

Hier-S ⑤ 2 10 ② 2 ⑦ 4.4 × 105 1.5 × 106 3.4 × 105

K-means-R ⑤ ➏ 10 ➌ ➎ ➏ 1.4 × 107 5.9 × 106 2.0 × 106

K-means-A ⑤ - 6 ➏ 8 ➌ ➎ ⑤ 5.5 × 106 3.2 × 107 5.4 × 106

K-means-C ➍ - ⑤ ⑤ - ➏ 10 ➌ ➎ ⑤ 6.5 × 106 3.2 × 107 2.1 × 106

K-means-S ⑤ ➏ 10 ② ➎ ➏ 7.8 × 106 4.9 × 107 2.1 × 106

Gold solution 4 6 13 3 5 6 - - -

A summary of the results for FC with H = 250 and p = 80%, on all algorithms, except NMF, and for the datasets in Benchmark 2. The table legend is as in Table
1. NMF has been excluded since each experiment was terminated due to its high computational demand. The timing results for the artificial datasets are not
reported since the experiments have been performed on a computer other than the AMD Athlon.
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k* based on the identification of a “knee” in a curve (in
analogy with the Δ curve of Consensus), the relevant
figures are reported at the supplementary material web
site. Table TI16, at the supplementary material web site,
summarizes the results. We extract from Table TI16 the
same measures present in Table 5 and report them in
Table 6. Again, FC is among the most precise.
The results outlined above are particularly significant

since (i) FOM is one of the most established and highly-
referenced measures specifically designed for microarray
data; (ii) in purely algorithmic terms, WCSS and G-Gap,
are so simple as to represent a “lower bound” in terms
of the time performance that is achievable by any data-
driven internal validation measure. In conclusion, our
experiments show that FC is quite close in time perfor-
mance to three of the fastest data-driven validation

measures available in the literature, while also granting
better precision results. In view of the fact that the for-
mer measures are considered reference points in this
area, the speed-up of Consensus proposed here seems
to be a non-trivial step forward in the area of data-dri-
ven internal validation measures.

Conclusions
FC is an algorithm that guarantees a speed-up of at least
one order of magnitude with respect to Consensus,
when used in conjunction with hierarchical clustering
algorithms or with partitional algorithms with a hier-
archical initialization. Remarkably, it preserves what
seem to be the most outstanding properties of that mea-
sure: the accuracy in identifying structure in the input
dataset and the ability to produce a dissimilarity matrix

Table 5 Summary of results for the fastest measures on the Benchmark 1 datasets

Precision Timing

CNS Rat Leukemia NCI60 Lymphoma Yeast CNS Rat Leukemia NCI60 Lymphoma

WCSS-K-means-C ⑤ ➌ ➑ 8 ④ 1.7 × 103 1.3 × 103 5.0 × 103 4.0 × 103

WCSS-R-R0 ⑤ ④ ➑ ➌ ④ 1.2 × 103 8.0 × 102 4.1 × 103 3.0 × 103

G-Gap-K-means-R ⑦ ➌ 4 ④ ⑥ 2.4 × 103 2.0 × 103 8.3 × 104 8.4 × 103

G-Gap-R-R5 ⑤ ④ 2 ② ④ 1.2 × 103 8.0 × 102 4.5 × 104 3.2 × 103

FOM-K-means-C ⑦ 8 ➑ ④ ④ 1.9 × 104 9.4 × 104 5.5 × 105 2.6 × 105

FOM-K-means-S ➏ ➌ ➑ 8 ④ 2.9 × 104 1.0 × 105 7.1 × 105 3.6 × 105

FOM-R-R5 ➏ ➌ ⑦ 5 ➎ 3.9 × 103 3.7 × 104 2.1 × 105 7.6 × 104

FOM-Hier-A ⑦ ➌ ⑦ 6 ⑥ 1.6 × 103 7.5 × 103 5.1 × 104 1.8 × 104

DIFF-FOM-K-means-C ⑦ ➌ ⑦ ④ 3 1.9 × 104 9.4 × 104 5.5 × 105 2.6 × 105

FC-Hier-A ⑦ ➌ ➑ ➌ ➎ 5.9 × 104 2.7 × 104 7.0 × 104 6.8 × 104

FC-Hier-C ➏ ④ ➑ 5 ⑥ 5.9 × 104 2.7 × 104 6.5 × 104 6.7 × 104

Gold solution 6 3 8 3 5 - - - -

A summary of the best performing measures taken from the benchmarking of Giancarlo et al., with the addition of FC, with H = 250 and p = 80%. The table
legend is as in Table 1. Consistent with that study, we report only the timing results for CNS Rat, Leukemia, NCI60 and Lymphoma, since for the Yeast and PBM
datasets the experiments have been performed on a computer other than the AMD Athlon.

Table 6 Summary of results for the fastest measures on the Benchmark 2 datasets

Precision

Novartis St. Jude Normal Gaussian3 Gaussian5 Simulated6

WCSS-K-means-C ⑤ ➏ 9 ➌ 4 ⑦

WCSS-R-R0 ⑤ ➏ 9 - ➌ ⑦

G-Gap-K-means-R ⑦ 4 7 ➌ 8 3

G-Gap-R-R5 ⑤ ⑦ 7 ➌ 7 3

FOM-K-means-C ➍ ⑤ 6 ➌ - ⑤

FOM-K-means-S ➍ ⑦ 4 - - 4
FOM-R-R5 7 - 10 ➌ - ⑦

FOM-Hier-A ➍ 8 6 ➌ - ⑤

DIFF-FOM-K-means-C ⑦ 3 7 ➌ 29 3

FC-Hier-A 5 - 6 ➏ 10 ➌ ➎ ⑤

FC-Hier-C ➍ - ⑤ ⑤ - ➏ 10 ➌ ➎ ⑤

Gold solution 4 6 13 3 5 6

A summary of the best performing measures taken from the benchmarking of Giancarlo et al., with the addition of FC, with H = 250 and p = 80%. The table
legend is as in Table 1. The timing results are not reported since the experiments have been performed on a computer other than the AMD Athlon.
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that can be used to improve the performance of cluster-
ing algorithms. For this latter point-see the Supplemen-
tary File. Moreover, the speed-up does not seem to
depend on the number H of resampling steps.
In terms of the existing literature on data-driven inter-

nal validation measures, we have that, by extending the
benchmarking results of Giancarlo et al., FC is only one
order of magnitude away from the fastest measures, i.e.,
WCSS, yet granting a superior performance in terms of
precision. Although FC does not close the gap between
the time performance of the fastest internal validation
measures and the most precise, it is a substantial step
forward towards that goal. For one thing, its time per-
formance is comparable with that of FOM and with a
better precision, a result of great significance in itself,
given the fact that FOM is one of the oldest and most
prestigious methods in the microarray data analysis area.
Furthermore, some conclusions that are of interest

from the methodological point of view can also be
drawn. The idea of “approximating” an internal valida-
tion measure to achieve a speed-up, introduced by Gian-
carlo et al. and applied here to Consensus, seems to
lead to significant improvements in time performance
with minor losses in predictive power. As detailed in the
Methods section, the technique we have developed here,
although admittedly simple, can be used in other con-
texts, where a given number of clustering solutions
must be computed from different samples of the same
dataset. That is a typical scenario common to many sta-
bility-based validation measures, i.e., [22,23,28,29,31,36].
Unfortunately, FC, when used in conjunction with

NMF, is almost as slow as Consensus. Those experi-
ments provide additional methodological, as well as
pragmatic, insights affecting both clustering and pattern
discovery in biological data. Indeed, although the work
by Brunet et al. uses Consensus in conjunction with
NMF in order to identify the number of clusters in a
dataset, our experiments show that both Consensus
and FC have a better prediction power when used with
Hier-A and Hier-C than when used with NMF. In view
of the steep computational price one must pay, the use
of NMF with Consensus and FC does not seem to be
justified. Indeed, the major contribution given by Brunet
et al. in their seminal paper is to show that NMF can
give a succinct representation of the data, which can
then be used for pattern discovery. Our work shows
that, as far as clustering and validation measures go,
choices more convenient than NMF are possible: it is
somewhat reductive to consider NMF as a clustering
algorithm.
In summary, FC with a parameter setting, i.e, H = 250

and p = 80%, that makes it robust with respect to small
and medium-sized datasets, i.e, number of items to cluster
in the hundreds and number of conditions up to a

thousand, seems to be the internal validation measure of
choice. It remains open to establish a good parameter set-
ting for datasets with thousands of elements to cluster.
Given the current state of the art, addressing such a ques-
tion means to come-up with an internal validation mea-
sure able to correctly predict structure when there are
thousands of elements to classify. A task far from obvious,
given that all measures in the benchmarking by Giancarlo
et al. have serious limitation in their predictive power for
datasets with a number of elements in the thousands.

Methods
Consensus
Consensus is a stability-based technique, which is best
presented as a procedure taking as input Sub, H, D, A,
kmax. The resampling scheme Sub is a means of sam-
pling from one dataset in order to build a new one. In
our experiments, the resampling scheme extracts, uni-
formly and at random, a given percentage p of the rows
of the dataset D. Finally, H is the number of resampling
steps, A is the clustering algorithm and kmax is the max-
imum number that is considered as candidate for the
“correct” number k* of clusters in D.
Procedure Consensus(Sub, H, D, A, kmax)

(1) For 2 ≤ k ≤ kmax, initialize to empty the set M of
connectivity matrices and perform steps (1.a) and
(1.b).
(1.a) For 1 ≤ h ≤ H, compute a perturbed data
matrix D(h) using resampling scheme Sub; cluster
the elements in k clusters using algorithm A and D
(h). Compute a connectivity matrix M(h) and insert it
into M.
(1.b) Based on the connectivity matrices in M, com-

pute a consensus matrix ( )k .

(2) Based on the kmax - 1 consensus matrices, return
a prediction for k*.

As for the connectivity matrix M(h), one has M(h)(i, j) = 1
if items i and j are in the same cluster and zero otherwise.
Moreover, we also need to define an indicator matrix I(h)

such that I(h)(i, j) = 1 if items i and j are both in D(h) and

zero otherwise. Then, the consensus matrix ( )k is

defined as a properly normalized sum of all connectivity
matrices in all perturbed datasets:

( )

( )

( )
k

h

h
h

h

M

I
=
∑
∑

(1)

Based on experimental observations and sound argu-
ments, Monti et al. derive a “rule of thumb” in order to
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estimate the real number k* of clusters present in D.
Here we limit ourselves to present the key points, since
the interested reader can find a full discussion in Monti
et al.. Let n be the number of items to cluster, m = n(n -
1)/2, and {x1, x2, ..., xm} be the list obtained by sorting the
entries of the consensus matrix. Moreover, let the empiri-
cal cumulative distribution CDF, defined over the range
[0, 1], be:

CDF c

l i j c

m
i j( )

{ ( , ) }

= <
∑  ≤

where c is a chosen constant in [0, 1] and l equals one
if the condition is true and it is zero otherwise. For a
given value of k, i.e., number of clusters, consider the
CDF curve obtained by plotting the values of CDF(xi),
1 ≤ i ≤ m, with the use of the corresponding consensus
matrix. In an ideal situation in which there are k clusters
and the clustering algorithm is so good to provide a per-
fect classification, such a curve is bimodal, with peaks at
zero and one. Monti et al. observe and validate experi-
mentally that the area under the CDF curves is an
increasing function of k. That result has also been con-
firmed by the experiments in Giancarlo et al.. In particu-
lar, for values of k ≤ k*, that area has a significant
increase, while its growth flattens out for k >k*. For
instance, with reference to Figure 1 one sees an increase
in the area under the CDFs for k = 2, ..., 13. The growth
rate of the area is decreasing as a function of k and it flat-
tens out for k ≤ k* = 3. The point in which such a growth
flattens out can be taken as an indication of k*. However,
operationally, Monti et al. propose a closely associated
method, described next. For a given k, the area of the
corresponding CDF curve is estimated as follows:

A k x x CDF xi i

i

m

i( ) = −[ ] ( )−
=
∑ 1

2

Again, A(k) is observed to be an increasing function of
k, with the same growth rate as the CDF curves. Now, let

Δ( )

( ) ,

( ) ( )
( )

.
k

A k k

A k A k

A k
k

=
=

+ − >

⎧
⎨
⎪

⎩⎪

2

1
2

be the proportion increase of the CDF area as a func-
tion of k and as estimated by A(k). Again, Monti et al.
observe experimentally that:

(i) For each k ≤ k*, there is a pronounced decrease of
the Δ curve. That is, the incremental growth of A(k)
decreases sharply.

(ii) For k >k*, there is a stable plot of the Δ curve.
That is, for k >k*, the growth of A(k) flattens out.

From this behavior, the “rule of thumb” to identify k*
with the use of the Δ curve is: take as k* the abscissa
corresponding to the smallest non-negative value where
the curve starts to stabilize; that is, no big variation in
the curve takes place from that point on. An example is
given in Figure 1.
A few remarks are in order. From the observations

outlines above, one has that, the value of the area under
the CDF is not very important. Rather, its growth as a
function of k is key. Moreover, experimentally, the Δ
curve is non-negative. Such an observation has been
confirmed by Giancarlo et al. However, there is no theo-
retic justification for such a fact. Even more importantly,
the growth of the CDF curves also gives an indication of
the number of clusters present in D. Such a fact,
together with the use of the Δ curve, contributes to the
quality of the prediction since A(k) is only an approxi-
mation of the real area under the CDF curve and it may
give spurious indications that can be “disambiguated”
with the use of the CDF curves. It is quite remarkable
that there is usually excellent agreement in the predic-
tion between the Δ curve and the CDF curves. For con-
venience of the reader, we recall here that many internal
validation methods are based on the identification of a
“knee” in a suitably defined curve, e.g., WCSS and FOM,
in most cases via a visual inspection of the curve. For
specific measures, there exist automatic methods that
identify such a point, some of them being theoretically
sound [21], while others are based on heuristic geo-
metric observations [20,37]. For Consensus, the identi-
fication of a theoretically sound automatic method for
the prediction of k* is open and it is not clear that heur-
istic approaches will yield appreciable results.
As stated in other parts of this paper, Consensus is

quite representative of the area of internal validation
measures. Indeed, the main, and rather simple, idea sus-
taining that procedure is the following. For each value
of k in the range [2, kmax], the procedure extracts H
new data matrices from the original one and, for each of
them, a partition into k clusters is generated. The better
the agreement among those solutions, the higher the
“evidence” that the value of k under scrutiny is a good
estimate of k*. That level of agreement is measured via
the consensus matrices. As clearly indicated in Handl et
al., such a scheme is characteristic of stability-based
internal validation measures. To the best our knowledge,
the following methods are all the ones that fall in that
class [22,23,28,29,31,36]. The main difference among
them is how to predict k* once the kmax × H clustering
solutions have been generated, with a scheme that is the
exact replica of the one adopted in Consensus. It is
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also worth noticing that each of the kmax × H clustering
solutions needed is computed from a distinct dataset.
As is shown in the next section, this leads to inefficien-
cies, in particular in regard to agglomerative clustering
algorithms, such as the hierarchical ones. Indeed, their
ability to quickly compute a clustering solution with k
clusters from one with k + 1, typical of these methods,
cannot be used within Consensus because, for each k,
the dataset changes. The same holds true for divisive
methods.

FC
Intuitively, a large number of clustering solutions, each
obtained via a sample of the original dataset, seem to be
required in order to identify the correct number of clus-
ters. However, there is no theoretic reason indicating
that those clustering solutions must each be generated
from a different sample of the input dataset, as Con-
sensus does. Based on this observation, we propose to
perform, first, a sampling step to generate a data matrix
D(h), which is then used to generate all clustering

Figure 1 An example of number of cluster prediction with the use of Consensus and FC. The experiment is derived with the Leukemia
dataset as input, with the use of the K-means-A clustering algorithm. (i) The plot of the CDF curves as a function of k, obtained by Consensus
with H = 250 and p = 80%. For clarity, only the curves for k in [2, 13] are shown. It is evident that there are increasing values of the area under
the CDF for increasing values of k. The flattening effect in the growth rate of the area is evident for k ≥ k* = 3. (ii) The plot of the corresponding
Δ curve for k in [2, 30], where the flattening effect indicating k* is evident for k ≥ k* = 3. (iii) The plot of the CDF curves, obtained by FC with
H = 250 and p = 80%, in analogy with (i). (iv) The plot of the Δ curve, obtained by FC with H = 250 and p = 80%, in analogy with (ii).
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solutions for k in the range [2, kmax]. In terms of code,
that implies a simple switch of the two iteration cycles
in steps (1) and (1.a) of the Consensus procedure. In
turn, and with reference to the discussion at the end of
the subsection regarding Consensus, that switch
allows us to obtain a speed-up since costly computa-
tional duplications are avoided when the clustering algo-
rithm A is hierarchical. Indeed, once the switch is done,
it becomes possible to interleave the computation of the
measure with the level bottom-up construction of the
hierarchical tree underlying the clustering algorithms.
Specifically, only one dendogram construction is
required rather than the repeated and partial construc-
tion of dendograms as in the Consensus procedure.
Therefore, we use, in full, the main characteristic of
agglomerative algorithms briefly discussed in the subsec-
tion regarding Consensus. FC is formalized by the fol-
lowing procedure:
Procedure FC(Sub, H, D, A, kmax)

(1) For 1 ≤ h ≤ H, compute a perturbed data matrix
D(h) using resampling scheme Sub;.
(1.a) For 2 ≤ k ≤ kmax, initialize to empty the set M
(k) of connectivity matrices and cluster the elements
in k clusters using algorithm A and D(h). Compute a
connectivity matrix M(h, k).
(2) For 2 ≤ k ≤ kmax, based on the connectivity
matrices in M, compute a consensus matrix ( )k .
(3) Based on the kmax - 1 consensus matrices, return
a prediction for k*.

The “rule of thumb” one uses to predict k*, via FC, is
the same as for Consensus. An example is reported in
Figure 1(iii)-(iv). It is worth pointing out that both the
CDFs and Δ curve shapes for FC closely track those of
the respective curves for Consensus.
Finally, although the idea behind FC is simple, it has a

general applicability that goes beyond the speed-up of
Consensus. Indeed, as discussed earlier, all other stabi-
lity-based methods available in the literature follow the
same strategy for the construction of a large number of
clustering solutions. Therefore, the FC speed-up applies
also to them, although we have experimented only with
Consensus since it seems to be the best, in terms of
precision, in this category of measures.

Availability
All software and datasets involved in our experimentation
are available at the supplementary material web site. The
software is given in a jar executable file for a Java Run
Time environment. It works for Linux (various versions–
see supplementary material web site), Mac OS X and Win-
dows operating systems. Minimal system requirements are
specified at the supplementary material web site, together

with instructions and the binaries of K-means, hierarchical
methods and NMF are also provided.
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