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Abstract

Background: The accessibility of RNA binding motifs controls the efficacy of many biological processes. Examples
are the binding of miRNA, siRNA or bacterial SRNA to their respective targets. Similarly, the accessibility of the
Shine-Dalgarno sequence is essential for translation to start in prokaryotes. Furthermore, many classes of RNA
binding proteins require the binding site to be single-stranded.

Results: We introduce a way to compute the accessibility of all intervals within an RNA sequence in @ (n°) time.
This improves on previous implementations where only intervals of one defined length were computed in the
same time. While the algorithm is in the same efficiency class as sampling approaches, the results, especially if the

probabilities get small, are much more exact.

Conclusions: Our algorithm significantly speeds up methods for the prediction of RNA-RNA interactions and other
applications that require the accessibility of RNA molecules. The algorithm is already available in the program

RNAplfold of the ViennaRNA package.

Background

The importance of RNA within living cells has been rea-
lized in the last two decades. RNA provides a layer of
regulation in eukaryotes, e.g. via miRNA, but also in
prokaryotes via small RNAs (sRNAs) and riboswitches.
Many of these regulatory functions are mediated by
RNA interactions. These interactions are mainly realized
through Watson-Crick or wobble base pairing between
two RNA molecules. For the initialization of these inter-
actions, a part of the interacting molecules has to be
single-stranded. The tendency to be single-stranded is
thus also important for the quality of putative target
sites of miRNAs [1], siRNAs [2] and most probably
sRNAs. Furthermore, the accessibilities of the Shine-
Dalgarno sequence and the start codons are indicators
of translational efficacy [3]. In addition, RNA accessibil-
ity will also influence the efficacy of single-strand bind-
ing proteins like HuR [4]. As it is not known how big
exactly a putative target site is, and where it is located,
it is best to know the accessibilities of all possible inter-
vals within a RNA molecule. In particular, programs like
RNAup [5,6] or IntaRNA [7] predict RNA-RNA interac-
tions by computing a total binding energy G, = 0Gint
+ 0Gopen, composed of a stabilizing energy for the
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intermolecular duplex dG;,; and the cost of opening the
binding sites 6G,pen. The opening energy can be com-
puted from the accessibility, defined as the probability
p" that the binding site is unpaired in equilibrium, via
0Gopen = -RT In(p").

The most naive approach to compute the accessibility
of a certain stretch of bases is to use a constrained fold-
ing where no base pairs are allowed within a certain
stretch of bases and dividing the respective restricted
partition function by the unrestricted one. This is done
for example in the miRNA target predictor PITA [8].
However, doing this for all #* possible intervals requires
O (n°) time. Ding and Lawrence [9] proposed to com-
pute accessibilities by stochastically sampling structures
from the Boltzmann ensemble. Sampling structures can
be done in @ (#%), but necessarily introduces sampling
errors which become large if the accessibilities get small,
as is necessarily the case for longer regions. In [10], we
introduced an algorithm that computes the accessibil-
ities of all intervals of a given length / in cubic time.
This leads to a © (1*) algorithm when applied to inter-
vals of all possible lengths. In addition, the algorithm
could be used as a scanning algorithm that considers
only local structures of a maximum length L and runs
in O (nL?).

Here we introduce an algorithm to compute the
accessibilities or single-strandedness of all intervals of
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an RNA molecule in @ (#°) time and © (#*) memory.
This is the same complexity as the algorithm to com-
pute the partition function, which is underlying the
sampling approaches, like sfold [11], commonly used for
this task. However, the probabilities to be accessible for
different intervals are not independent. Therefore, if one
is interested in more complex questions, e.g. the joint
probability that two intervals are accessible, this is no
way around sampling the structures of the molecules.

The first predecessor of our algorithm, not yet fully
O (n*), has been used in RNAup [5]. The RNAplfold pro-
gram of the ViennaRNA package [12] originally used the
algorithm introduced in [10], but has been rewritten to
use the efficient version of the algorithm presented below.

Since our algorithm is based on McCaskill’s dynamic
programming (DP) algorithm for the partition function
[13], we briefly recapitulate the algorithm as implemen-
ted in the ViennaRNA package. As usual, we consider
only (pseudo)knot-free secondary structures and use the
Turner nearest-neighbor energy model [14]. In the
inside (forward) recursion, the partition function Q(i, j)
of a sequence interval i, j is split into a part where i is
unpaired and a part where i is paired:

i is unpaird iis paired
—_——
Qi) =Qi+1j)+ Y QGkQk+1j) @D
i<k<j

Here, Q” (i, j) is the partition function for a stretch
between i, j given that (i, j) form a base pair and Q(a, b) =
1 if a > b. A base pair can either close a hairpin loop, an
interior loop (including bulge loops and stacks) or a multi
(branch) loop.

Hairpin Interior Loop

Qi) = H(ij)+ Y Z(if k)QP (k)

i<k<l<j

(2)

Multi Loop

+ Y QM+ L, w)QM (u+ 1,5 — 1)ai, j)

i<k<j

Here (i, j) is short for the Boltzmann factor of a
hairpin loop closed by the base pair (i, j): (exp#Eaiwin,

with B = RlT)’ Z(ij, kl) stands for the Boltzmann factor

of the interior loop enclosed by the base pairs (i, j) and
(k, I). For the multi loop contributions, Q (i, j) holds
the partition function for a part of a multi loop, and
QM (i, j) are multi loop contributions that contain
exactly one stem, where i belongs to the outermost base
pair of this stem.
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QM(i, j) = QMG j— e+ X (QM(i+1u) +c)QB(u+1,j—1)b

QYI(i, )= QM1 — 1)e+ QP(i )b

Q"(i, j) is needed to keep the multi loop decomposi-
tion unambiguous. The factors a, b and ¢ are Boltzmann
weighted contributions for closing a multi loop, adding a
base pair or an unpaired base to the multi loop, respec-
tively. Note that here, the size of the interior loops is lim-
ited to keep the algorithm cubic in time. See Figure 1 for
a graphical representation of the recursion.

In the outside (backward) recursion (see Figure 2), the
pair probabilities of a RNA molecule of length #, that is
the quotient between the partition function of all states
containing the base pair, Q”(i, j) and the total partition
function is computed.

QY (i, j) _ QB (i, ))QB (i, §) (3)
Q(1,n) Q(1,n)

Here, Q% (i, j) is decomposed into an outer (P (i, 1))

p(ij) =

and an inner (Q® (i, 7)) partition function. The computa-
tion of the outer partition function of a base pair is split
into two cases: The trivial case where no base pair is
enclosing the base pair (i, j), and the case where there
exists at least one base pair (k, /) with k <i <j </.

no enclosing base pair Interior Loop

QG )= QMLi— QG+ Lm)+ Y (AP
Re<i<j<l
Do QDM+ 1,i = 1)QM(G+ 1,1 — 1)ab (4)
+ it @ DM + 1,1 = Dabeli~)
+ Y cicjet QP QM (ke + 1,1 — 1)abel=1-D

Multi Loop

The interior loop contribution is again kept cubic by
the size restriction of the interior loops. However, to
keep the multi loop part of the algorithm @ (#°), we
need to split the double sums over k and / into two
sequential (@ (1)) sums with the help of two auxiliary
arrays:

Qi)=Y QB(k1)aQM(k+1,i—1)
1

<k<i

QM=% QB (k, 1)acti—+=1
1<k<i
With these arrays, the multi loop part of Eqn 5
becomes:

QB (i, j)[Multi Loop] = ¥ Q¥ (i, )QM(j+ 1,1 — 1)b

j<l<n

+ 2 QUENQY(G+ 1,1 —1)b

j<l=n )
+ 3 QM TNy
j<l=n
Each entry of the arrays Qg’i(i, ) and Q’C\;’I @,1)
computed in fact,
Q’g = Q’g i—1,Dc+ QB (i—1,1) can be computed

can be linear time. In



Bernhart et al. Algorithms for Molecular Biology 2011, 6:3 Page 3 of 7
http://www.almob.org/content/6/1/3

0

hairpin

i k I j ii+l u u+]] 1J

/\ '

u u+l j i u u+l

QM] M’
m .-‘a@’\%& wtd 2

i J i j=1 i J

Figure 1 Partition function folding. DP decomposition of RNA partition function folding. See text for detailed explanation.
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Figure 2 Pair probability computation. Computation of pair probabilities. A single base pair (i, j) either lies within another base pair or not
(First term on top). Base pair (i, j) and the enclosing base pair (k, /) either form an interior loop (rightmost term on top), or a multi loop. Based
on the location of the other components within the multi loop, three possibilities for the closing of a multi loop exist. Here, the contributions
collected in auxiliary array ngl are colored green, in Qé” red.
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recursively in constant time. The full probability compu-
tation is then:

L Interior Loop
Hairpin

i1 —— ~
i j) = 8?1(”3 Q(Li—1)Q(+1,n) + h§<11(}e1,ij)QB(k, N+
(5)
e Y QDT Y (@D + QUGIRYG 11— 1)
j<l=n j<l=n
Multi Loop
Algorithm

We now extend the McCaskill Algorithm to compute
the probabilities p“(x, x + L) that a sequence interval
x ... x + L contains no paired bases. As can be seen in
Figure 3, an unpaired stretch x ... x + L is either not
enclosed by a base pair, which again is the trivial case,
or there is a base pair (i, j) enclosing the unpaired
region such that i <x <x + L <j (we call the sum of
these contributions Q“’(x, x + L)).

no enclosing base pair
Q(1,x — 1)Q(x+L+1,n) +Q*(x, x, +L)
Q(1,n)

xpt(x,x+L) =
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The enclosing base pair (i, j) can again either close a
hairpin, an interior loop or a multi loop.

oz QB(i jYM(i.j)
i<x<x+L<j
+ Zkl QP(i, ) Q% (k, Z(ij, k1)
i<x<x+L<k<l<j
QP (i, 1) Q" (ke DZ (i, k)

+ Y
+ Y QFULHQMGI+ L, x—1)QMx+L+1,j—1)

Q(x,x+L) =

i<k<l<x<x+L<j

i<x<x+L<j
+ Y QB HMG+ 1, w)QM (u+1,x— 1)
i<u<x<x+L<j
+ Y QBUHME+L+1,w)QM (u+1,j-1)

i<x<x<L+u<j
QY2 (x+L+1,j—1)

To keep the computational complexity low, we use
decompositions akin to the ones used for the pair prob-
ability and partition function computation. Hairpin
terms are computed in two steps: First, we consider the
case where the 5’ base of the enclosing pair is directly
adjacent to our region of interest:

QUxx+L)= Y Hx—1,j)Qx—1,j)

x+L<j

Suppose the enclosing pair starts at some position i -
1 < x - 1, then the 3" end of the pair, j, has to be down-
stream of the unpaired region, i.e. at least at position

Interior Loop or a Multi Loop (rows two to four).

i X

Figure 3 Unpaired interval computation. Diagrams of the probability to be unpaired for an interval of length L starting at base x. The
unpaired interval is either enclosed by a base pair or not (top). If enclosed by a base pair, the enclosing base pair can enclose a Hairpin, an
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x + L + 1. This gives rise to a contribution Q"(, x + L).
Summing over i yields the complete partition function
for the hairpin case:

Q" (x,x + L)[Hairpin] = Y~ Q"(i,x+ L)) ©)

i<x

For the interior loop contributions, we do a similar,
but a little more complicated decomposition. We note
that our region of interest can be located either in the
5 or 3’ side of the interior loop and start by comput-
ing the partition function Q”(i, k) (Q"(1, j)) over all
structures in which i ... k ([ ... j) forms the 5’ (3’) side
of an interior loop (see Figure 3 row 3):

Q)= % TG Q) (k)
1<R< <]

Q) = % T QL))
1I<R< <]

In analogy to Q' in the hairpin case, Q" (x, x + L)
sums over all cases where the position x - 1 preceding
our region is paired. The final summation takes care of
the cases where the interior loop starts before x - 1:

Q" (x, x + L)[Interior] = Z Q'(i,x+L)

i<x

Qex+L)= Y Q°(x—1,8) +Q(x—1,g)

g>x+L

The multi loop contributions can be split into three
parts, depending on where within the multi loop the
unpaired interval is situated. If the unpaired interval is
between the closing base pair and the first stem of the
multi loop (i.e. at the 5" side of the multi loop), we com-
pute:

Q" (x,x + L)[Multi 5] = Y " Q*M(i,x + L)
QMuax+L)= Y QUx—1,)Q"(x+L+1,j—1)
x+L<j

Q2 (xj) = 3 QMxw Q" (u+1,))

x<u<j

The terms for unpaired intervals that are located
between the components of the multi loop and between
the closing base pair and the last stem of the multi loop
(3’ side) are similar to each other:

Q" (x,x+L)[Multi 3] = > Q™ (i, x + L)

QMx,x+L) = Z M (x - 1,j)ct=*D
x+L<j
Q" (x, x + L)[Multi between] = ZQMB(L)H L)

isx

Q" x+L) = Yy (M —1,j) + M — 1,i)QM(x+ L+ 1,j — 1)c*!

x+L<j
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the contributions XM (x—1,j) and

M (x — l,j) stand for the partition function over all

Here,

partial structures where x - 1 is paired with some g <x -
1, closing a multi loop component (i.e. (g, x - 1) is one
of the interior pairs of the multi loop). The multi loop
is closed by a pair (i, j), where i <g. The region between
x ... j - 1is a part of the multi loop not yet determined.

In the case of XM (x— 1,j), # ... j - 1 has to contain at
least one other multi loop component. In Y (x — 1,j),

at least one other multi loop component exists between
g and i, so that no additional multi loop component is
needed.

M) = ) Qg j)QR(g x)b

1<g<x
Mxj) = Y Q&) (g x)b
l<g<x

Using the matrices from above, it is easy to see that
the total computation for a single interval is linear in
time:

* = ! - +L+ + i,x+L)+ i,x+L)+
p(x,x+L)-Q(Ln) (Q(I,x 1)Q(x+L+1,n) I%:(Q”(t,x L) ngl(z,x L)
+ZQM§(i,x+L)+Z.Qm(i,x+L)+ZQMB(i,x+L))
Implementation

The matrices needed for the computation of the accessi-
bilities mostly contain terms that are computed anyway
during the inside or outside recursions. These matrices
can thus be committed to memory with little additional
cost. The two contributions Q” and Q" are saved
during the computation of the base pair probabilities

in Eqn 4. The multi loop terms XM (x— l,j) and

M (x—1,j) are also computed during the computation
of the pair probabilities in Eqn 5, while Q™ is saved
during the forward recursion Eqn 2. The computation
of the accessibilities is thus conveniently performed after
the outside recursion. Some of the matrices needed for
the computation of Q“” can be computed recursively:

Qi x+L) = QM x+L+1)+H(x—1,x+L+1)
Qex+L)=Qxx+L+1)+Q(x—1,x+L+1)+Q3(x—1,x+L+1)
QM x+L) = QM x+L+1)+YM(x—1,x+L+1)

and thus require negligible additional computational
costs. Due to the layout of this algorithm, it is easily
possible to split the terms and e.g. find the probability
of an interval to be within a hairpin loop or an interior
loop. This can be useful if special types of RNA
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interactions, for example kissing hairpin interactions, are
to be considered.

Minimum free energy version

The minimum free energy (MFE) version of this algo-
rithm can be used to compute one optimal structure that
has an unpaired stretch x ... x + L for every single interval
x ... x + L. In principle, the computation of the optimal
energy and the backtracking procedure of its structure
are similar to the partition function version described
above. Because ambiguity is of no concern, only one
matrix for multi loop contributions has to be filled. Thus,
after computing the “usual” matrices for RNA minimum
free energy prediction (the minimum free energy F (i, j),
the minimum energy given that i and j form a base pair
C(i, j), and the minimum free energy for multi loop seg-
ments M (i, j)), we need to fill the following matrices:

Ma(i,j) = min M(i, k) + M(k + 1,j)
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Here, I is the energy of an interior loop. The mini-
mum energy f, (x, x + L) with an accessible interval
between x and x + L is then:

pilx x+L) = Q(ll,rl) (Q(l, x—1)Q(x+L+1, n)+ZQH(i, x+L)

isx
+ ZQI(L x+L)+ ZQ‘\'ﬁ(i, x+L)

i<y i<y

QM x L)+ Yy QY xk L)

In our current implementation, computation of the
structure on the outside of a base pair is done by dou-
bling the sequence, doing a simple cofolding and back-
tracking j, i + n for the base pair (i, j). This leaves room
for improvement, as the memory consumption is twice
as high as is strictly necessary. Backtracking the f, (i, j)s
gives the secondary structures to the energies.

As one possible application, the f, (i, n) subset of the
secondary structures can be viewed as the minimum

i<k<j
. C oA . . free energy structures during transcription of a RNA
I5(i.j) o CG+1om) +1(i = L ksm,j+1) molecule. The unpaired interval in this case is regarded
Is(i,j) = min C(m,i—1)+1(i—1, mj+1,k) as the part of the molecule that is not yet transcribed.
j<m,j<k<m As an example, we show the ydhL Adenine riboswitch
Mu(i,j) = minC(k,j+ 1) + M(k+1,i— 1) in Figure 4.
k<i<j
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Figure 4 Structures of a growing RNA molecule. Minimum free energy structures of the growing chain of the ydhL Adenine riboswitch. The
list of all optimal f,(i, n) structures is shown. The 3’ dots correspond to the unpaired intervals i .. n. The bottom two (square bracketed)
structures show the ON and the OFF state of the riboswitch taken from [16]. As can be seen, the ON state corresponds to an intermediate mfe
structure (-13.40 kcal/mol, green 5" box), while the terminator loop is part of the overall minimum free energy structure (red 3’ box).
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Application

The method presented here is currently available in the
RNAplfold program of the Vienna RNA package, ver-
sions 1.8.x and newer. In addition to global folding the
program allows to compute accessibilities for local
structures using a sliding window approach. In this case
accessibilities for a region are averaged over all sequence
windows containing this region. Technically, all that has
to be done for the local folding version, is to replace the

outside partition function ()F by averaged versions (QF.

The computation of the ()fs has to reflect the fact that

sub-sequences of different length will appear in a differ-
ent number of windows. For example, using a window

size W, the contribution of Q#(k,1) to the computation
of (i,j)» k <i <j <I, would be:

W (e=D+1,, )

W_fi_j =R

Wk =D+ L s nQMUles 1,1 = 1)QY(+ 1,1 — 1)ab

EE
- OF M (i _ (i—k—1)

w 8_], T QDY+ 11~ 1)abe
f—1)+1

5 M i (1-j-1)
W (i1 QODQ e 1= 1abelt

QP (i, j)[enclosed by pair (k, 1)] =

+
+
+

The O (i,§) are subsequently also used in the compu-

tation of the accessibilities. This makes the program
applicable to even the largest sequences, such as com-
plete chromosomes or all mRNAs of an organism. Sev-
eral programs, like RNAxs [2], IntaRNA [7], and
RNAplex [15] are already using the accessibility compu-
tations implemented in RNAplfold with great success to
rapidly predict accessibilities of putative target sites on
mRNAs.
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