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Abstract

Background: Genetic disease studies investigate relationships between changes in chromosomes and genetic
diseases. Single haplotypes provide useful information for these studies but extracting single haplotypes directly by
biochemical methods is expensive. A computational method to infer haplotypes from genotype data is therefore
important. We investigate the problem of computing the minimum number of recombination events for general
pedigrees with a small number of sites for all members.

Results: We show that this NP-hard problem can be parametrically reduced to the Bipartization by Edge Removal
problem with additional parity constraints. We solve this problem with an exact algorithm that runs in
O(2k2m

2
n2m3) time, where n is the number of members, m is the number of sites, and k is the number of

recombination events.

Conclusions: This algorithm infers haplotypes for a small number of sites, which can be useful for genetic disease
studies to track down how changes in haplotypes such as recombinations relate to genetic disease.

Background
Human genomes contain two copies of each chromo-
some. Research shows that single chromosomes, called
haplotypes, are useful to study complex genetic diseases.
While genomic data, called genotypes, are abundant and
easy to collect, haplotypes are rare and much more diffi-
cult to obtain by a biochemical method. Therefore, com-
putationally inferring haplotypes from genotype data,
called haplotyping, is necessary. Genotypes can be
obtained from a population group where relationships
between members are unknown or from a family pedi-
gree with known relationships between members. We
only consider pedigree data.
In the absence of recombination events, haplotypes of

members in a pedigree follow the Mendelian law of
inheritance, where the two haplotypes of a child are
transferred from its parents, one haplotype from its
father and the other from its mother. Various haplotyp-
ing algorithms exist for non-recombinant pedigree data
[1,2], especially a linear algorithm for tree pedigrees [1]
and a near-linear algorithm for general pedigrees [2].
Haplotype inference is complicated by recombination

events and the complex structures of the data. In
recombination events, complementary parts of both of a
parent’s haplotypes can be inherited as a single com-
bined haplotype of a child. Structures of the pedigree
can be complex, where there are multiple inheritance
paths between some family members.
When recombination events are allowed, the problem

of inferring haplotypes for pedigrees with the minimum
number of recombination events is NP-hard, even for
general pedigrees with only two sites or tree pedigrees
with multiple sites [3]. For reconstructing haplotype
configurations for pedigree data, Qian and Beckmann
[4] proposed a rule-based algorithm with a time com-
plexity O(2dn2m3), for n members, m sites, and family
size ≤ d. The main principle of their algorithm is that
the best haplotype configuration for pedigree data is the
one that minimizes the number of recombination events
(the MRHC problem). Li and Jiang [5] proposed an inte-
ger linear programming (ILP) formulation for the
MRHC problem. When the number of recombination
events is strictly smaller than a positive number k, an O
(mn · logk+1 n) time probabilistic algorithm is given on
tree pedigrees [6]. Doan and Evans [7] presented an O
(2k · n2) time fixed-parameter algorithm for general* Correspondence: pevans@unb.ca
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pedigrees where each member has two sites, a special
case of the problem that is still NP-complete.
We study the haplotype inference for general pedi-

grees with recombination events when the number of
recombination events k and the number of sites m in an
input pedigree are small. We also assume that there are
no data missing and no data errors. We prove that our
problem can be reduced to the problem of finding the
line index of a signed graph [8] with additional parity
constraints. We further show that finding the line index
of a signed graph can also be reduced to the Graph
Bipartization by Edge Removal (GBER) problem with
parity constraints. The GBER problem is fixed-para-
meter tractable, but the existing solution [9] cannot
satisfy the additional parity constraints. We present an
algorithm that solves the problem while still satisfying
the additional constraints, and thus show that the
Recombinant Haplotype Configuration problem can be
solved by a fixed-parameter algorithm with a running
time of O(2k2m

2
n2m3), for n members, m sites, and k

recombination events. This result extends our prior
work for pedigrees with two sites to an arbitrary small
number of sites.

Preliminaries
A member is an individual. A set of members is called a
family if it includes only two parents and their children;
it is a parent-offspring trio (hereafter a trio) if only two
parents and one child are considered. A set of families
connected through known family relationships is a
pedigree.
In diploid organisms, a cell contains two copies of

each chromosome. The description data of the two
copies are called a genotype while those of a single copy
are called a haplotype. A specific location in a chromo-
some is called a site and its state is called an allele.
There are two main types of sites, microsatellites and
single nucleotide polymorphisms. A microsatellite site
has several different states while a single nucleotide
polymorphism (SNP) site has exactly two possible states,
denoted by 0 and 1. Only SNPs with two possible states
are considered in this paper, as in other works on haplo-
type inference.
If the states at a specific site in two haplotypes are the

same, then this site is a homozygous site (0-0 or 1-1); if
they differ, it is heterozygous (0-1 or 1-0). Two haplo-
types combine together to form one genotype. Each
member u has two haplotypes, denoted by h1u and h2u,
which are vectors of 0 and 1’s of length m, where m is
the number of sites. The genotype of u, gu, is a vector of
0’s, 1’s and 2’s of length m, where gu[i] = 0 means h1u[i]
= 0 = h2u[i], gu[i] = 1 means h1u[i] = 1 = h2u[i], and
where gu[i] = 2 means {h1u[i]; h2u[i]} = {0, 1}. We say

h1u and h2u are consistent with gu. The complement
haplotype of a haplotype h at a heterozygous site is
denoted by h̄, where h̄ = 1 − h so, 0̄ = 1 and 1̄ = 0.
When there is no recombination event in a pedigree, a

child member receives one entire haplotype from its father
and another entire haplotype from its mother. Figure 1a
shows member c receiving the entire left haplotype of par-
ental member u and the entire left haplotype of parental
member v. However, during the meiosis process, haplo-
types of a parent sometimes shuffle due to the crossover
of chromosomes and one of the shuffled copies is trans-
ferred to the child. This phenomenon is called a recombi-
nation and the result is called a recombinant. Figure 1b
shows a recombination event between site 1 and site 2 of
member u. As the result, member c receives a combined
haplotype from site 1 of the left haplotype, and from sites
2 and 3 of the right haplotype of member u.
The problem in this paper is to find the haplotypes

h1u and h2u for all members u that minimize the num-
ber of recombination events, given their genotypes gu. A
set of haplotypes found for all members is called a hap-
lotype configuration. When gu[i] = 0 or 1, then h1u[i]
and h2u[i] are known, but if gu[i] = 2, we may not yet
know the value of h1u[i] and h2u[i], in which case we
give them the value “?”, and say that the site is unre-
solved. Our problem is defined as follows.
RHCopt: Given the genotypes of a general pedigree P

containing n members, where each member has m sites
(m is small), find a haplotype configuration that mini-
mizes the number of recombination events.
This optimization problem, called Recombination

Haplotype Configuration (RHCopt) which is identical to
MRHC, was proven NP-hard [3]. We investigate the
corresponding decision version of RHCopt.
RHCk: Given positive integers k and the genotypes of a

general pedigree P containing n members, where each
member has m sites (m is small), is there a haplotype
configuration with at most k recombination events
explaining P ?
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Figure 1 Non-recombination vs. recombination, showing
haplotypes of members.
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In this paper, we use u, v and c to represent members,
from 1 to n; and i and j to represent sites, from 1 to m.

Setting Up Graphs
Given a general pedigree with n members, where each
member has m sites, we set up a pedigree graph G =
(V, E) and parity-constraint sets Spc to compute the
minimum number of recombination events in the pedi-
gree. A recombination event can only be detected if
there is at least one heterozygous site on each side of
a recombination breakpoint, e.g. we cannot detect if a
recombination event happens between homozygous
sites 1 and 3 of member u in Figure 2a because the
states at the two haplotypes for each homozygous site
are the same. The graph captures constraints between
pairs of closest heterozygous sites and pairs of closest
homozygous sites, which will enable the detection of
possible recombination events in pedigrees. A vertex in
the pedigree graph represents a pair of homozygous
sites or a pair of heterozygous sites, and is colored to
represent the relationship between the haplotypes of
the sites.

Pedigree Graph
Create grey vertices
Let i be a heterozygous site in a member u (i = 1, ..., m
- 1). Let j >i be the closest heterozygous site to i in u.
We create a vertex uij from site i and site j and label
this vertex grey. A grey vertex is an unresolved vertex
and will later be resolved green if h1u[i] = h1u[j] = 0 or
h1u[i] = h1u[j] = 1. It is resolved red otherwise. The
resolution of a grey vertex depends on its adjacent ver-
tices. Figure 2b shows a grey vertex u45 created from
sites 4 and 5 of u in Figure 2a.
Create red and green vertices
Let i be a homozygous site in a member u (i = 1,..., m -
1). Let j >i be the closest homozygous site to i in u. We
create a vertex uij from site i and site j, and label this
vertex red if gu[i] ≠ = gu[j] and green if gu[i] = gu[j]. A
red or green vertex is a resolved vertex. Figure 2 shows a

red vertex u12 created from sites 1 and 2, and a green
vertex u23 from sites 2 and 3.
Insert positive edges
We insert positive edges between a parent member u
and its direct child member v. For each vertex uij in u,
if there is a vertex vij in v we insert a positive edge
between uij and vij. If there is no vertex vij in v and i
and j are both homozygous sites or both heterozygous
sites in v, we create a vertex vij in v and label this vertex
properly, inserting a positive edge between uij and vij.
We call vij a supplementary vertex as it is created by the
need of member u.
Similarly, for each vertex vij in v, if there is no vertex

uij in u, and i and j are both homozygous sites or both
heterozygous sites in u, we create a supplementary ver-
tex uij in u and label this vertex properly, inserting a
positive edge between uij and vij. Figure 2b shows four
positive edges linking u12 and c12 that is created from
heterozygous sites 1 and 2 of member c, u23 and c23, v12
and c12, v23 and c23.
A positive edge between vertices uij and vij means ver-

tex uij and vij should be resolved with the same color
(both red or both green) unless a recombination event
occurs in u. The reason for this is that if there is no
recombination event in u, then v receives one full haplo-
type from u and another full haplotype from another
parent. Therefore, the label of uij and the label of vij
should be the same if there is no recombination event;
otherwise, there is a recombination event in u. If uij is a
resolved vertex forming from two homozygous sites i
and j and there is a positive edge between uij and a grey
vertex vij, we color vij the same as the color of uij, since
a recombination event at uij is not detectable and does
not affect the color of vij.
Insert negative edges
We insert negative edges between two parents u and v of
a common child c. If uij is a vertex in u but there is not
a vertex cij in c (sites i and j are one homozygous and
one heterozygous in c), two situations happen. If there
is a vertex vij in v, we insert a negative edge between uij
and vij. Otherwise, if there is no vertex vij in v and i and
j are both homozygous sites or both heterozygous sites,
we create a supplementary vertex vij in v and label it
properly. We insert a negative edge between uij and vij.
Similarly, if vij is a vertex in v but there is not a vertex
cij in c, there are two situations. If there is no vertex uij
in u, and i and j are both homozygous or both heterozy-
gous, we create a supplementary vertex uij in u, and
insert a negative edge between uij and vij. Figure 2b
shows a negative edge linking u45 and v45.
A negative edge between uij and vij means vertices uij

and vij should be resolved with different colors unless a
recombination event occurs in one parent of c. This
phenomenon can be explained as follows. If there is no
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Figure 2 Pedigree graph created from pedigree structure and
genotype data.
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recombination event and uij and vij have the same label
(both red or both green), then sites i and j of c must be
both homozygous or both heterozygous based on the
Mendelian law of inheritance. Because sites i and j of c
are one homozygous and one heterozygous, one recom-
bination occurs if uij and vij have the same label when
resolved, but no recombination event occurs if they are
resolved differently.
Create additional vertices
Consider a grey vertex uij in u (i <j). It is possible that
uij has no incident edge but there is one recombination
event occurring between site i and j. In this case none
of the other two members in the trio has a vertex cre-
ated for site i and j. We delete vertex uij and create an
additional vertex to capture the recombination event.
Let j’ be the closest heterozygous site from j in u (j <j’),
where i and j’ are both heterozygous sites or both
homozygous sites in at least one member among the
other two members, say v. If there is no vertex uij’ in u,
we create an additional grey vertex uij’ in u and create a
supplementary vertex cij’ from sites i and j’ in c if it
does not exist. We color cij’ properly and insert a corre-
sponding edge (positive or negative) between uij’ and vij’
depending on the relationship between u and v. Figure
2c shows an additional vertex u14 created represented
by a dashed edge between sites 1 and 4. A negative edge
is inserted between u14 and v14.
Pedigree graph
Pedigree graph G = (V, E) created as described above is
an undirected graph. Each vertex y Î V has three possi-
ble labels, red, green, and grey. Each edge e(y, z) Î E is
either a positive edge, e Î Epos, or a negative edge, e Î
Eneg, with E = Epos ∪ Eneg. Graph G, set up this way, is a
signed graph [8]. Let N(y) be the set of adjacent vertices
of y. Let w(e) be the weight of edge e. If e is a positive
edge, w(e) = +1. If e is a negative edge, w(e) = -1.
Observation 1. There are at most O(n · m2) vertices

and O(n · m2) edges in the pedigree graph. Each member
has m sites. The total number of vertices created from
pairs of sites for each member is O(m2). The whole ped-
igree graph with n members has O(n · m2) vertices. A
vertex has at most two positive edges linking it to two
vertices in its parents. Therefore, the number of positive
edges is linear in the number of vertices. The number of
negative edges is also linear to the number of vertices.
Thus the number of edges in the pedigree graph is O(n
· m2).

Parity-Constraint Sets
When a supplementary grey vertex uij is created in u by
the need of an adjacent member, there must be more
than one grey vertex already created from site i to site j
in u. It is important to ensure that these grey vertices
and uij when resolved will not result in an odd number

of red vertices. Recall that a grey vertex is resolved red
if h1u[i] ≠ h1u[j]. In other words, the value of h1u flips
from 0 to 1 and vice versa for a red vertex uij. Therefore
there is a parity conflict if the number of red vertices
from site i to site j including uij is odd.
In Figure 3a, there are five grey vertices created for

member u where vertices u12, u23, u34 and u45 are cre-
ated from closest heterozygous sites, and a supplemen-
tary vertex u15 is created for a member adjacent to u.
Figure 3b shows an invalid solution with three resolved
red vertices u23, u34 and u15 in member u. A valid solu-
tion with an even number of red vertices is shown in
Figure 3c.
We create parity-constraint sets Spc to capture parity

constraints between each supplementary vertex and
other vertices within each member. Let uij be a supple-
mentary vertex and uip, ..., uqj be grey vertices from site
i to site j. These vertices form a parity-constraint set,
and its total number of red vertices must be even. There
are O(m2) parity-constraint sets in each member and O
(nm2) parity-constraint sets for the whole pedigree
graph. A valid solution for RHCk must ensure that the
number of red vertices in each parity-constraint set is
even.

Signed Graph
A graph G = (V, E) is a signed graph if it has both posi-
tive and negative edges (E = Epos ∪ Eneg) [8], where w
(epos) = 1 and w(eneg) = - 1. Let (V1, V2) be a partition of
V , and E* be the set of edges between V1 and V2. The
line index of the cut (V1, V2) is defined as:

l(V1, V2) =
∑

e∈E∗∩Epos
w(e) +

∑

e∈Eneg\E∗

|w(e)| (1)

The line index of graph G is defined as:

l(G) = min
V1⊆V

l(V1, V2) (2)

The decision version of the line index of graph G is
defined as follows.
LineIndexk: Given a signed graph G and a positive

integer k, is there a line index of G at most k? Given a
pedigree graph G = (V, E), the RHCk problem can be
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Figure 3 Parity conflict between vertices within each member.
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solved by determining if we can label every grey vertex
in G either red or green such that if we partition the set
of vertices V into (Vred, Vgreen) and let E* be the set of
edges between Vred and Vgreen then

∑

e∈E∗∩Epos
w(e) +

∑

e∈Eneg\E∗

|w(e)| ≤ k (3)

and this partition (Vred, Vgreen) must satisfy parity-con-
straint sets Spc.
Given a pedigree graph, any two adjacent members

linked by a positive edge should be in the same set of
the partition, and any two adjacent members linked by a
negative edge should be in different sets. Any edge
whose constraint is not satisfied represents a recombina-
tion event between the two adjacent members, or, in the
case of a negative edge having endpoints in the same
partition, between one parent and the child. Equation 3
thus counts the number of recombination events in the
whole pedigree and ensures that it is at most k.
Clearly, the RHCk problem can be reduced to the

LineIndexk problem with additional parity-constraint
sets Spc on its vertices. We will show that the LineIndexk
problem can be reduced to the GBER problem, a classic
NP-complete problem that is fixed-parameter tractable.
The RHCk can therefore be solved through the GBER
problem with additional parity-constraint sets Spc.
Theorem 1 A pedigree has at most k recombination

events if and only if its corresponding signed graph has
the line index of size at most k.
Proof 1 We will show that one recombination event in

the pedigree corresponds to exactly one negative edge
within each set of the partition of vertices or one positive
edge between the sets of the partition of vertices in the
signed graph.
⇒ Consider a recombination event in member u. To

detect this recombination event there must be at least
one heterozygous site on each side of the recombination
breakpoint. Let i and j be the two closest heterozygous
sites on the two sides of the recombination breakpoint.
There are three possible types of vertices associated with
this recombination event: a grey vertex uij, an additional
vertex uij’, and supplementary vertices upq (p ≤ i, j ≤ q).
If vertex uij has an incident positive edge to a vertex cij,

the color uij should be different from the color of cij
because of the recombination event and the positive edge
between them would cross between sets of the partition.
On the other hand, if uij has an incident negative edge
to a vertex vij, the color uij and vij should be the same
because of the recombination event and the negative
edge between them would be within the same set of ver-
tices. In both cases the line index increases by one. An
additional vertex uij’ replaces uij when uij has no incident
edge. The resolution of an additional vertex uij’ is similar

to that of uij. Consider a supplementary vertex upq con-
strained by a parity-constraint set Spc where upq has an
incident positive edge to a vertex cpq. The color upq is
determined by the swap of values in h1u by red vertices
and recombination events from p to q, including the
recombination from i to j. If no more recombinations
happen, upq and cpq must have the same color and the
line index of the signed graph is the same. If upq and cpq
have different colors, there must be another recombina-
tion from sites p to q and the line index increases by
one. A similar explanation follows for upq with an inci-
dent negative edge.
⇐ A negative edge links two vertices of two parents in a

trio, and the two vertices are supposed to have different
colors based on the Mendelian law of inheritance. Simi-
larly, a positive edge links two vertices of a parent and a
child and the two vertices are supposed to have the same
color. Therefore, if a negative edge linking two vertices
with the same color or a positive edge linking two ver-
tices with different colors, one recombination event must
happen.

Fixed-Parameter Algorithm
A NP-hard problem cannot be solved by a polynomial
time algorithm unless P = NP. However, if we can
restrict some parameters of the problem to small values,
the running time of an algorithm for the problem can
potentially be greatly reduced [10]. In this case, the pro-
blem is a parameterized problem and an algorithm that
can solve the parameterized problem efficiently is a
fixed-parameter algorithm, defined as follows [10].
Definition 1 A parameterized problem is a language L

⊆ Σ* × Σ*, where Σ is a finite alphabet and Σ* is the set
of all strings over that alphabet. The second component
is called the parameter of the problem.
Practically, the parameter is a nonnegative integer or a

set of nonnegative integers and therefore L ⊆ Σ* × N.
For (x, k) Î L, the size of the input is n = |(x, k)|, and
the parameter is k.
Definition 2 A parameterized problem L is fixed-

parameter tractable (in class FPT) if it can be deter-
mined in f(k)· nO(1) time whether or not (x, k) Î L, where
n is the size of the input and f is a computable function
only depending on k.

Transforming to Bipartization by Edge Removal Problem
We review an important property of a signed graph
given by [8].
Theorem 2 Let G be a signed graph. If we replace

each edge with weight w(e) >0 by two consecutive edges
with weight -w(e) to get a graph G’ then l(G) = l(G’).
Proof 2 Suppose (V1, V2) is a cut of G such that l(V1,

V2) = l(G). We replace each positive edge e(u, v) by two
consecutive negative edges e(u, y) and e(y, v), where w(e
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(u, y)) = w(e(y, v)) = - w(e(u, v)) and y is a new vertex
adjacent only to u and v. If u and v belong to the same
set of vertices in the partition we put y into the other set.
If u and v belong to different sets, we can arbitrarily put
y into the same set as either u or v. In all of the cases
above we find the corresponding cut of G’, (V ′

1, V
′
2)such

that l(V ′
1, V

′
2) = l(V1, V2). Therefore l(G’) ≥ l(G).

Conversely, if l(V ′
1, V

′
2) = l(G′)and y is a new vertex,

then at least one edge incident to y is in the cut. We can
find a corresponding cut of G, (V1, V2) such that
l(V1, V2) = l(V ′

1, V
′
2). Therefore l(G’) ≥ l(G). Taken

together, we get l(G’) = l(G).
The pedigree graph is transformed into a new graph

by replacing every positive edge by two consecutive
negative edges and adding new intermediate vertices
(dum vertices). We obtain a new weighted graph G’
with all negative edges. This transformation does not
affect the parity-constraint sets Spc. The graph G’ still
has only O(n · m2) vertices and O(n · m2) edges. Equa-
tion 3 becomes

∑

e∈Eneg\E∗
|w(e)| ≤ k (4)

This equation is to ensure that the total number of
edges within V1 and edges within V2 is at most k.
Removing these edges will make the graph bipartite.
To make the GBER algorithm [9] works on our par-

tially colored graph, we merge all red vertices into one
red vertex and all green vertices into one green vertex.
We relabel the merged red vertex and the merged green
vertex into two grey vertices, and insert k + 1 negative
edges between them. This transformation does not affect
the parity-constraint set Spc. We further transform our
negative graph into a new graph with all positive edges
by multiplying the weight of every edge by -1. Our pro-
blem becomes the GBER problem [9] with additional
parity-constraint set Spc. The k-Bipartization by Edge
Removal problem is defined as follows.
Definition 3 Given a graph G = (V, E) and a positive

integer k, is there a set C ⊆ E with |C| ≤ k whose
removal produces a bipartite graph?
GBER is a classical NP-hard problem [11] and is in

FPT [9].

FPT Algorithm for Bipartization by Edge Removal
There are many techniques to solve an FPT problem
such as kernelization, depth-bounded search trees,
dynamic programming, crown reduction, greedy locali-
zation, and iterative compression. The iterative com-
pression technique is used by Guo et al. [9] to solve the
GBER problem with a running time of O(2k · |E|2),
where |E| is the number of edge in the graph and k is
the number of edges to be deleted to make the graph

bipartite. However, this algorithm does not enforce our
parity constraints that require the number of red ver-
tices in each set to be even. We thus need to modify
this algorithm [9] to solve the RHCk problem while
respecting the additional parity-constraint sets Spc.
Given a graph G = (V, E) where E = {e1, ..., em}, let Gi

be a graph induced by edges {e1, ..., ei} of G (1 ≤ i ≤ m).
If i = 1, the optimal edge bipartization set of G1 is
empty. If i > 1, let X be an optimal edge bipartization
set of Gi = G[e1, ..., ei] and |X| = k’. Consider graph Gi+1

= G[e1, ..., ei+1]. If X is not an optimal edge bipartization
set for Gi+1 then X’ = X ∪ {ei+1} is clearly an edge bipar-
tization set for Gi+1. From the edge bipartization set X’
of size k’ + 1, we find an edge bipartization set of size at
most k’ or show that no such edge bipartization set of
size at most k’ exists. The algorithm assumes that an
edge bipartization Y which is smaller than X’ must be
disjoint from X’, Y ∩ X’ = ∅. This assumption can be
made without loss of generality by a simple graph trans-
formation, replacing each edge in X’ by three consecu-
tive edges and choosing the middle edge to be in the
new X’. This graph transformation preserves the parities
of lengths of all cycles and does not affect the parity
constraint sets Spc. Therefore the transformed graph has
an edge bipartization set of size k’ if and only if the ori-
ginal graph has an edge bipartization set of size k’. Let
mapping F: V (X’) ® {A, B} be a valid partition of V
(X’) if for each {y, z} Î X, we have F(y) ≠ F(z). Let AF

be F-1(A) and BF be F-1(B). We enumerate all 2k’ valid
partitions F of V (X’). For each valid partition F we
find a minimum edge cut Y in G\X’ between AF and
BF. In other words, we use X’ to partially color G and
from the partially colored graph we compute a smaller
bipartization set Y. This compression step is the core of
the algorithm.
Theorem 3 [9]Consider a graph G = (V, E) and a

minimal edge bipartization set X’ for G. For a set of
edges Y ⊆ E with X’ ∩ Y = ∅, the following are
equivalent:
(1) Y is an edge bipartization set for G.
(2) There is a valid partition F for V (X’) such that Y

is an edge cut in Gn\X’ between AF = F-1(A) and BF =
F-1(B).
Consider a graph G in Figure 4a where ⊕ denotes a

red vertex, ∅ a green vertex, and O a grey vertex. A
minimal edge bipartization set X’ of size 4 illustrated by
dashed lines is given in Figure 4b. We compute a min-
cut Y for G\X’ as in Figure 4c. Set Y is the edge biparti-
zation set of size 3 for G in Figure 4d.
It remains to find a minimum edge cut Y between AF

and BF that satisfies
(1) |Y| ≥ k’ and
(2) graph Gi with set Y satisfies parity-constraint sets Spc.

Doan and Evans Algorithms for Molecular Biology 2011, 6:8
http://www.almob.org/content/6/1/8

Page 6 of 8



(s-t) Mincuts with parity constraints
A minimum edge cut Y between AF and BF can be
computed in O(k’ · |E|) time by the Edmonds-Karp algo-
rithm [12] by finding at most k’ augmenting paths; each
path takes O(|E|) time to find. If no min edge cut Y of
size k’ is found, we skip the current partition F and
check a new valid partition. If a min edge cut Y of size
k’ is found, we need to check if Gi bipartized by Y satis-
fies the parity-constraint sets Spc. Note that there can be
many mincuts Y of size k’ between AF and BF, and it is
possible that the current mincut Y found does not make
Gi satisfy Spc while another mincut Y of size k’ makes Gi

satisfy Spc. However, enumerating all mincuts in a graph
is expensive. Consider a simple directed graph with n
disjoint paths of length 2 from a source s to a sink t,
where the weight of each edge is 1. Each (s-t) mincut
has weight n and we have up to 2n (s-t) mincuts. If a
graph is an undirected graph, we replace each undir-
ected edge by two directed edges with opposite direc-
tions and the number of (s-t) mincuts is still 2n.
Therefore enumerating all (s-t) mincuts in a graph in
polynomial time, or in FPT, is impossible.
We do not enumerate all mincuts. Instead, we exam-

ine the structure of all mincuts in a graph by an algo-
rithm in [13]. Given a graph G = (V, E) including a
source s and a sink t, where each directed edge (i, j) Î
E has a capacity cij, an (s-t) cut (S, S’) is a cut where S’
= V - S, s Î S and t Î S’. If a graph is not directed, we
replace every undirected edge by two oppositely directed
edges. If a graph has multiple sources and sinks, we can
transform the graph into a new graph with only a single
source and a single sink by inserting edges of ∞ weights
from a super source s to all sources, and from all sinks
into a super sink t. Flows and mincuts in the new and
old graphs correspond [12].
An (s-t) mincut is an (s-t) cut where the total capacity

of all the edges between S and S’ is minimum. We will
call an (s-t) mincut a mincut hereafter. Ford and Fulker-
son [12] show that the value of a minimum cut between
s and t is equal the value of the maximum flow from s
to t. Consider a binary relation R on V , a subset of

vertices V’ ⊆ V is a closure for R if and only if for any
two vertices i and j in V with iRj and i Î 2 V’ we also
have j Î V’. Given a relation iRj, we say that i is the pre-
decessor of j and j is a successor and i. Picard and
Queyranne [13] present the relationship between min-
cuts and closures as follows.
Theorem 4 [13].
Let f be a maximum flow in G. Define a relation R on

the set of vertices V as follows:
iRj iff (i, j) Î E and fij < cij, or (j, i) Î E and fji >0.
Then a cut (S, S’) separating s from t is a minimum cut

if an only if S is a closure for R containing s and not t.
Suppose we find a maximum flow in a graph by the

Edmonds-Karp algorithm [12]. Clearly, the residual
graph Gr = (V, Er) of G is defined by relation R where
edge (i, j) Î Er iff iRj. We find strongly connected com-
ponents in Gr and shrink each of them into a single ver-
tex. Finding strongly connected components of a
directed graph Gr can be done in O(V + E) time using
two depth first searches, one search on Gr and the other
search on the transpose graph GT

r of Gr [12].
Let V’ be the reduced vertex set of V , we define a

relation R̄ on V’ by ī R̄ j̄ iff iRj for some i ∈ ī, j ∈ j̄, and

ī, j̄ ∈ V̄ . We eliminate component S containing source s
and its successor components, and eliminate component
T containing sink t and its predecessor components.
Combining S and all successor components with any
closure induced from the remaining components will
produce a mincut. When the number of sites m is
small, we can check if a member can satisfy its parity-
constraint sets by a backtracking search on at most O
(m2) components. Since the parity constraints involve
vertices for an individual member, these searches can be
done independently. Therefore we need to examine if a
valid partition F satisfies Spc on at most 2m

2 · n cuts for
the whole pedigree.
Theorem 5 The RHCk problem is solvable in

O(2k2m
2
n2m3)time.

Proof 3 Setting up the pedigree graph G = (V, E) takes
O(|V|) time, where |V| = |E| = O(nm2). Generating par-
ity-constraint sets Spc takes O(nm3). Transforming the

a. Graph G b. Bipartization set X’ c. Mincut Y d. G bipartized by Y

Figure 4 Compression step.
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pedigree graph into a graph with all negative edges takes
O(|E|) time. The GBER problem can be solved by trying
at most 2k valid partitions F . For each partition, we
can find the first mincut in O(k ·|E|) time by finding at
most k augmenting paths using Edmonds-Karp algo-
rithm. We can find strongly connected components in O
(|E|) time. We do backtracking in at most 2m

2 cuts for
each member to check if one can satisfy Spc; each check
takes O(|E|) time. Therefore, checking each partition
takes O(k · |E| + |E| + 2m

2 · |E| · n). The overall time com-

plexity of the algorithm is O(2k2m
2
n2m3).

Conclusion
We have shown that given a general pedigree with n
members, m sites, and k recombination events, where m
and k are small, the haplotype inference can be done in

O(2k2m
2
n2m3) time.

While not yet implemented, this algorithm should be
implemented fairly easily. We only need to create a ped-
igree graph from input data according to the given con-
struction and then transform the graph into the graph
bipartization by edge removal with additional pedigree
constraints, which can be tackled by making the appro-
priate modifications to an existing software package
[14]. Future work will investigate the performance of the
algorithm with simulated and real data.
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