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Abstract

Background: For many predictive applications a large number of models is generated and later clustered in
subsets based on structure similarity. In most clustering algorithms an all-vs-all root mean square deviation (RMSD)
comparison is performed. Most of the time is typically spent on comparison of non-similar structures. For sets with
more than, say, 10,000 models this procedure is very time-consuming and alternative faster algorithms, restricting
comparisons only to most similar structures would be useful.

Results: We exploit the inverse triangle inequality on the RMSD between two structures given the RMSDs with a
third structure. The lower bound on RMSD may be used, when restricting the search of similarity to a reasonably
low RMSD threshold value, to speed up similarity searches significantly. Tests are performed on large sets of decoys
which are widely used as test cases for predictive methods, with a speed-up of up to 100 times with respect to all-
vs-all comparison depending on the set and parameters used. Sample applications are shown.

Conclusions: The algorithm presented here allows fast comparison of large data sets of structures with limited
memory requirements. As an example of application we present clustering of more than 100000 fragments of
length 5 from the top500H dataset into few hundred representative fragments. A more realistic scenario is
provided by the search of similarity within the very large decoy sets used for the tests. Other applications regard
filtering nearly-indentical conformation in selected CASP9 datasets and clustering molecular dynamics snapshots.

Availability: A linux executable and a Perl script with examples are given in the supplementary material
(Additional file 1). The source code is available upon request from the authors.

Background
Computational predictions and simulations of biological
systems entail a wide variety of processes and length and
time scales. Going down from ecological systems, to
organisms, organs and cells and subcellular components,
the lowest level description of biological systems is in
terms of single molecules and atoms [1]. At this level, the
structure and dynamics of biomolecules and biocomplexes
are of utmost importance in determining their function,
whose knowledge and elucidation is the ultimate goal of
structural biology. Experimental methods for structural
characterization of biomolecules are often too slow or
have limitations in targets and resolution that cannot be
overcome. For these reasons one often resorts to computa-
tional predictions or simulations.

A common feature of computational methods is that
they generate a large number, typically in the range of
thousands, of molecular models which are meant as
samples of the large conformational space of a molecule
or of a complex.
As a consequence, clustering of different conforma-

tions of the same molecular structure is a frequently per-
formed task which allows on the one hand to reduce the
number of conformations to be subjected to further ana-
lysis, and on the other hand to choose the most represen-
tative conformations among many [2]. Clustering is
mostly performed based on pairwise distance, see e.g. the
GROMACS package manual for some widely used meth-
ods (URL: http://www.gromacs.org). In many cases a dis-
similarity criterion is used instead of a similarity criterion
(see e.g. for a general discussion [3,4]). These issues are
well illustrated in the fields of protein structure predic-
tions and molecular dynamics simulations.
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For instance, prediction of protein structure is typically
accomplished in two steps: first a large number of plausi-
ble models (possibly including near-native models) is gen-
erated and afterwards models are scored and ranked [5].
The latter step often considers each model as representa-
tive of an ensemble of similar conformations and some
kind of weighted average is performed to pick up the best
model (see e. g. [6-9]). For what concerns proteins the
field of structural predictions has been largely explored in
the last decades and the world-wide experiment CASP
(Critical Assessment of Structural Predictions) has set
standards for evaluation and has provided extensive eva-
luation of methods and approaches [10]. Since 2006,
among other prediction categories, the model Quality
Assessment (QA) category has been introduced where
predictors are asked to evaluate the quality of the many
models (in the range of hundreds) proposed by servers for
each target sequence. In recent rounds of CASP consensus
methods have consistently scored better than single struc-
ture methods. Consensus may be taken on the score given
by different model quality assessment programs or on the
similarity of the models within the ensemble itself. Actu-
ally in the last CASP8 and CASP9 experiments the top
performing model quality estimators were those using
clustering/consensus methods on the ensemble of depos-
ited models. Using the similarity among different predic-
tive models was recognized earlier as a significant
improvement factor for assessing the quality of a model
[11]. Since then methods have known continuous evolu-
tion up to the recent remarkable achievements in blind
assessment experiment by the programs QmeanClust
[12,13], 3D-Jury [14], Pcons [15], ModFoldClust [16] and
others [9]. In these methods the similarity among predic-
tive models, as well as scores obtained sometimes by dif-
ferent, possibly independent, sources, is used in different
ways tailored on the specific model quality assessment
method used. In some, but not all the methods, only simi-
larities above a given threshold are used [14]. The reader
is referred to the original literature for details.
Somewhat surprisingly, however, a naive consensus

method ranking the models based on the average similar-
ity with other models in the ensemble was found to per-
form like the best consensus model quality estimators [9]
as earlier suggested by Elofsson and coworkers [11]. Struc-
tural comparisons appear therefore very important for
proper choice or scoring of predictive models.
Similarly to predictive tasks, in molecular dynamics

simulations typically many conformations are generated,
in the range of thousands, by taking snapshots of the tra-
jectory at given time intervals. Here clustering of different
conformations of the same molecular structure is per-
formed to reduce the number of conformations to be sub-
jected to further analysis (e.g. docking simulations), or to

choose the most representative conformations among
many [2].
The measures of similarity that are typically used for

proteins have been set in the context of the CASP
experiment. The most straightforward measure of (dis)
similarity is the root mean square deviation (RMSD) of
corresponding atoms after optimal superposition of two
molecular structures. This measure requires only the
definition of the set of atoms to be superimposed and
the set of atoms on which to compute the RMSD. The
RMSD is considered sometimes less sensitive than other
measures because well modeled parts of the protein will
be not represented by the RMSD dominated by large
deviations and, viceversa, large deviations in small
regions will not contribute significantly to the RMSD
computed from averaging over a typically much larger
set of atoms.
Several other measures of similarity have been pro-

posed to give a representation of similarity which
reflects the fraction of well modeled residues. In this
respect MaxSub [17], GDT_TS [18] and TM-score [19]
are considered more appropriate than the RMSD. The
details and motivations of these similarity scores are
reported in the original papers and they will not be
repeated here. Suffice it to say that these methods assign
a score based on the maximum number of residues that
can be superimposed at one or more given distance
threshold. It is worth to remind that these scores are
assigned through iterative algorithms that require by far
more computations than a single RMSD computation.
For this reason we will consider here the widely used
definition of distance as the RMSD between correspond-
ing Ca (CA) atomic positions after optimal superposi-
tion. However, as long as a dissimilarity measure is a
metric the methodology reported hereafter applies.
Once a distance definition has been chosen, in the con-

sensus procedures or representative model selections dis-
cussed above, the all-vs-all pairwise similarity
computations are straightforward to implement, but the
time required to analyse a set of, say, 10000 structures
may become exceedingly large, requiring approximately
50 × 106 comparisons.
There are two issues to consider with all-vs-all com-

parisons. The first is the quadratic number of compari-
sons and the second is that RMSD computation is time
consuming itself.
The latter aspect has been investigated and, compared

to earlier methods of RMSD calculation [20,21], signifi-
cantly faster solutions which avoid finding the optimal
rotation matrix, have been proposed based on quater-
nion formalism [22].
An approximated solution to the all-vs-all comparison

problem has been proposed by Li and Zhou [23], who
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avoid finding the N(N−1)

2 minimum RMSDs altogether,
but rather choose randomly a reference structure, super-
pose only once all structures on the reference one (using
N - 1 rototranslations) and compute the RMSD without
any further rototranslation. The authors showed that the
choice of reference structure is almost ininfluential, at
least on their datasets, and that the RMSD computed in
this way furnishes a good approximation to the mini-
mum RMSD.
Here we improve the efficiency of all-vs-all compari-

sons by considering that often only good similarities are
searched for. If a threshold RMSD value is set reason-
ably low, compared to the average random RMSD in the
set, many comparisons can be avoided by using the
inverse triangular inequality satisfied by the RMSD. We
exploit this fact and we show that a significant speed-up
is obtained on large decoy sets. An application to clus-
tering of a very large number of fragments to a repre-
sentative set is presented as an example. A more
realistic scenario where different models for the same
protein (resulting from structural predictions or molecu-
lar dynamics simulations) is provided by the search of
similarity within very large decoy sets. Other applica-
tions like filtering nearly identical structures in a set or
clustering molecular dynamics snapshots are shown as
examples.

1 Methods
Given a set of N decoys a straighforward similarity
search would require N× (N−1)

2 structural comparisons.
After the first structure is compared with all the others,
however, the corresponding set of pairwise RMSDs is
available. We use the set of pairwise comparisons with
the common reference structure to exclude from com-
parison those pairs of structures whose RMSD is surely
above the threshold.

Let us define RMSDopt
ij and RMSDij as the RMSD

between structures i and j, after optimal superposition
and with no optimal superposition, respectively. It has
been shown by Edwards et al. [24] and by Steipe and
Kaindl [25,26] that RMSDopt is a metric on the space of
the classes of equivalent structures (i. e. structures that
can be superimposed exactly by a rototranslation). As a
consequence both the triangle inequality

(RMSDopt
ij <= RMSDopt

ik + RMSDopt
kj ) and the inverse tri-

angle inequality (RMSDopt
ij >= |RMSDopt

ik − RMSDopt
kj | )

hold. Note that the metric properties of RMSDopt are
not trivial as for RMSD because a different rototransla-
tion is in principle implied by each RMSDopt. As a con-
sequence of RMSDopt being a metric, the following
inverse triangle inequality holds:

RMSDopt
ij ≥ |RMSDipt

1i − RMSDopt
1j | (1)

(In the appendix we provide a brief demonstration of the
inverse triangle inequality for RMSDopt). Based on the
inverse triangle inequality, if we have computed RMSDopt

1i
with i = 2, .., N it is possible to exclude from further com-

parison all pairs i and j for which |RMSDopt
1i − RMSDopt

1j | is
larger than the chosen threshold t. By using this principle
similarity searches may be sped up significantly.
Let us have an ensemble of N structures to be

searched for structural similarity and let us assume that
the distribution of pairwise RMSDs within the ensemble
is f(x) (f(x) has been found by us in many decoys sets to
be close to a normal distribution).
The algorithm we will describe iterates over steps

requiring first a one-vs-all comparison (N - 1 compari-
sons when we have N structures) and then using the list
of RMSDs to avoid unnecessary comparisons. In the lat-
ter task the number of comparisons depends, obviously,
on the RMSDs distribution, but also on the use we
make of the already computed RMSDs.
If the list of RMSDs is sorted, the structures corre-

sponding to lowest RMSD will be the more distant from
other structures and the inverse triangular inequality
will make most comparisons unnecessary. On the other
hand as we consider structures whose RMSD is in the
most populated region of the distribution there will be
many other structures with similar RMSD and the
inverse triangular inequality will make many fewer com-
parison unnecessary.
It will be therefore more efficient to use the inverse

triangular inequality only on the structures displaying an
RMSD below a certain value s.
The number of comparisons Ncmp involved at the step

when N structures have not been compared yet, will be
the sum of the (N - 1) comparisons needed to generate
the list of (N - 1) RMSDs and the number of compari-
sons that make use, through the inverse triangular
inequality, of the RMSD list computed:

Ncmp = (N − 1) + (N − 1) (N − 2)

∫ s

0
f (x)

(∫ x+t

x
f
(
x′) dx′

)
dx (2)

where s is the RMSD where we stop using the inverse
triangular inequality on the already computed RMSDs
and we move to the next step calculating RMSDs for a
single structure and using the newly computed RMSDs.
After the comparisons have been made the number of

structures whose RMSD below threshold t with all other
structures have been found (Ndone) will be:

Ndone = 1 + (N − 1)

∫ s

0
f (x) dx (3)
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At each step s should maximize the ratio
Ndone

Ncmp
based on

the observed distribution of RMSDs. In practice the value s,
i.e. the maximum RMSD whose corresponding structure is
compared to all others using the inverse triangular inequal-

ity, is chosen when the ratio
Ndone

Ncmp
, which is computed

while the comparisons are done, reaches a maximum.
Hereafter the implementation described above is

reported in C-like pseudocode:
/* Initialization */
for(i = 0; i < n_structures; i++)
done[i] = 0;

/* Iterations */
for(i1 = 0; i1 < n_structures; i1++)
{
n_cmp = 0;
k = 0;
for(i2 = i1 + 1; i2 < n_structures; i2++)
{
if(!done[i2])
{
index[k] = i2
rmsd[k] = RMSD(struct i1, struct i2)
n_cmp = n_cmp + 1
if(rmsd <= threshold )
output(i1, i2, rmsd)

k = k + 1
}

}
done[i1] = 1
n_left = k
index_rmsd <- (index, rmsd)
sort index_rmsd by rmsd
ratio = 0
for(j = 0; ((j+1)/n_cmp) > ratio &&

j<n_left; j++)
{
ratio = ((j+1)/n_cmp)
for(k=j+1; k<n_left; k++)

if ((index_rmsd.rmsd[k] -
index_rmsd.rmsd[j]) <= threshold)

{
rmsd = RMSD(index_rmsd.index[k],

index_rmsd.index[j])
n_cmp = n_cmp + 1
if(rmsd <= threshold)

output(index _rmsd.index[k],
index_rmsd.index[j], rmsd)

}
done[index_rmsd[j].index] = 1

}
}

Better schemes keeping track of all the already com-
puted RMSDs would require larger memory. The algo-
rithm has been tested on decoy sets for small proteins
downloaded from the Decoys’r’us database [27], represent-
ing a realistic step in a clustering scenario.

2 Results and discussion
2.1 Tests on decoy sets
The effect of the choice of the threshold has been tested
on the relatively small 4state_reduced decoy datasets [28]
which include on average 665 decoys for each target
protein.
RMSD computation has been performed on all Ca car-

bons. Four reasonable threshold values have been tested
(2.4, 2.8, 3.2, 3.6 Å) with the results reported in Table 1.
The effect of the RMSD threshold on the number of
computations required is apparent at the lower end of
the range explored where 45% of the computations are
avoided. As expected the smaller the threshold the lower
number of computations are required. This suggests that
RMSD computations could be applied iteratively by clus-
tering structures at increasing RMSD threshold value.
This idea is applied hereafter.
The method has been tested on the semfold decoy

datasets which include on average 12900 decoys and in
one case more than 20000 decoys [29].
The reduction in the number of computations required

compared to the all-vs-all scheme, i. e.
N × (N − 1)

2
, is

significant and makes on average 87% of the comparisons
unnecessary, proving its usefulness (Table 2). Besides the
speed-up in computation time, the scheme presented
above has the further advantage of requiring only mem-
ory proportional to N for storing the list of structure files
and RMSDs of one structure with all the remaining ones,
as evident in the pseudo-code detailed above.
Comparing the results reported in Tables 1 and 2

there appears to be an effect of the ensemble size N on
the ratio of the actual computations over N(N - 1)/2.

Table 1 Number of RMSD computations for the
4state_reduced decoy dataset with varying RMSD
threshold.

Decoy set t = 2.4 Å t = 2.8 Å t = 3.2 Å t = 3.6 Å N(N−1)

2
1ctf 87,219 103,780 122,095 140,094 198,765

1r69 130,510 150,415 171,407 189,659 228,150

1sn3 106,523 124,587 147,101 174,527 217,470

2cro 183,135 206,133 189,277 221,219 227,475

3icb 130,653 119,774 139,425 176,184 213,531

4pti 106,581 131,345 175,432 191,091 236,328

4rxn 95,306 117,515 143,481 190,997 228,826

Total 839,927 953,549 1,088,220 1,283,751 1,550,545

Fogolari et al. Algorithms for Molecular Biology 2012, 7:16
http://www.almob.org/content/7/1/16

Page 4 of 10



This effect is not apparent from equations 2 and 3
because the integration upper limit s depends implicitly
on N. Assuming heuristically that the RMSDs are dis-
tributed according to a simple sine law, equations 2 and
3 can be integrated and the ratio is found to decrease
with the size of the ensemble. In order to test this sug-
gestion, for the largest set (semfold 1khm set, 22000
structures) we considered sets with 1/2, 1/4, 1/8, 1/16,
1/32, 1/64 of the structures and plotted the ratio of
computations over N(N - 1)/2 against log(N). The
dependence is almost linear in the range considered
(Figure 1).

2.2 Clustering fragments from the top500H dataset
As expected the above tests show that for lower RMSDs
application of the inverse triangular inequality is very
efficient in reducing the number of comparisons to be
performed. The idea is exploited here to cluster short
protein fragments.

Fifirst RMSDs below a very low threshold are com-
puted. The computations will be many less than
N × (N − 1)

2
, because the inverse triangular inequality

is used in the best way at low thresholds.
Based on the computed RMSDs fragments are clus-

tered and each fragment is weighted based on the proxi-
mity of similar fragments. Among the many schemes
available we have assigned a weight according to the fol-
lowing equation:

wi =
∑

w0
j cos

(
π
RMSD
2t

)

where w0
j is the weight before clustering (i.e. 1 in the

first clustering and greater or equal to 1 in subsequent
clusterings) and t is the threshold RMSD chosen. This
scheme is similar to others suggested for weighting simi-
lar structures [30] or for choosing the most representa-
tive fragment among similar ones [7,8]. The list of
fragments is then sorted by the weight and for each
fragment, starting with the one with larger weight, all
other fragments with RMSD less than threshold from
the reference one are clustered together and represented
by the reference one.
The RMSD threshold is increased and the procedure

repeated until a single cluster is found.
As an example we have taken the dataset obtained by

considering all continuous five residues fragments from
the proteins in the top500H dataset [31] which includes
500 curated non redundant protein structures obtained by
X-ray crystallography with resolution better than 1.8 Å
and with few deviations from ideal geometry.
We have chosen a length of five following Micheletti et

al. [30] who showed that a small dataset of five-residues
fragments is able to represent accurately all five-residues
fragments. Many of these fragments are nearly identical
because of secondary structure elements and therefore the
task of clustering residues should involve either a filtering
or a large number of comparisons. The number of frag-
ments is 107184 which implies, for an all-vs-all compari-
son ca. 5.7 billion RMSDs computations.
Our algorithm was able to cluster at various thresh-

olds the fragments in a couple of hours on a laptop,
with minimal memory requirements.
The results are listed in Table 3 where the number of

starting fragments and the number of representative frag-
ments is reported together with the number of RMSD
computations performed and the number of all-vs-all
computations.
In table 4 similar figures are reported with the differ-

ence that superposition is performed on atoms N,CA,C,
O. The structures grouped in the 16 clusters that
include more than 1% of the whole fragment dataset

Table 2 Number of RMSD computations for the semfold
decoy dataset.

Decoy set This work N(N−1)

2
ratio

1ctf 11,753,426 64,997,101 0.18

1e68 9,039,397 64,541,841 0.14

1eh2 7,332,361 65,453,961 0.11

1khm 22,047,014 222,193,740 0.10

1nkl 7,966,008 67,995,291 0.12

1pgb 13,465,834 63,636,121 0.21

Total 71,604,689 548,818,055 0.13

For this table the RMSD threshold was 3.0 Å.

Figure 1 Ratio of the number of RMSD computations
performed over N(N - 1)/2 versus the logarithm of the number
of structures in subsets from the semfold 1khm decoy set.

Fogolari et al. Algorithms for Molecular Biology 2012, 7:16
http://www.almob.org/content/7/1/16

Page 5 of 10



have been superimposed to the representative structure
and they are displayed in Figure 2. Typical conforma-
tions of a-helices and b-strands are found in the first
and second group, respectively, as expected. Other
groups are associated with tight turns, with a-helix and
b-strand terminal motifs and with different additional b-
strand conformations.
From Tables 3 and 4 it is immediately seen how effec-

tive is the fast structural similarity search proposed in
this work compared to all-vs-all comparisons. The num-
ber of actual computations is just 2% and 6% of that
implied by all-vs-all comparisons for data in Tables 3
and 4, respectively.
Overall these results confirm the reliability of the

methodology whose implementation is made possible by
the fast computation of structural similarities.

2.3 Filtering predictive models for model quality
assessment
The tests performed on decoy sets are representative of
a possible clustering scenario in the context of most
representative model selection. In the context of the
CASP esperiment the models available are in the range

of few hudreds and therefore the advantage of our
method is limited. We address here another application
consisting in filtering most similar models before apply-
ing consensus methods. Consensus methods rely on the
independence of the predictive models. Although in
principle it would be desirable to define a distance
based on most used similarity measures like MaxSub
[17], GDT_TS [18] or TM-score [19] it is difficult to
enforce in the latter measures the metric properties (in
particular the triangular property) that are needed for
the present method to work. For this reason we used
the RMSD as pairwise distance. Since the models may
be of different, even non overlapping, lengths we nor-
malized the RMSD on the number of the aligned resi-
dues according to simple scaling proposed by Carugo
and Pongor [32]:

RMSD100 =
RMSD

1 + 1
2 log(

N
100)

where RMSD100 is the estimated RMSD when 100
residues are aligned and N is the number of aligned
residues. When N is less than 14 the RMSD is set to a
maximum value.
We chose all server predictions for FM (free model-

ing) targets in the recent CASP9 experiment (i.e. T0529,
T0531, T0534, T0537, T0544, T0547, T0550, T0553,
T0555, T0561, T0571, T0578, T0581, T0604, T0608,
T0616, T0618, T0621, T0624, T0629, T0637 and
T0639). We assume that FM models that display a nor-
malized pairwise RMSD below 1.0 Å are not indepen-
dent and therefore only one representative model
should be considered. In this way all nearly identical
models are identified. In the sets considered there are
many models (deposited by the same predictors) that
are identical.
The effectiveness of the procedure may be judged by

considering the number of comparisons performed
(115399) versus those to be performed in an all-vs-all
comparison (1040520) which amounts to a ratio of 0.11.
The procedure allows to remove on average 40 predic-
tive models that have a nearly identical model in each
set.

2.4 Clustering molecular dynamics snapshots
The analysis of molecular dynamics trajectories often
involves the comparison and clustering of thousands of
snapshots. Clustering is mostly based on the analysis of
pairwise RMSDs. When only closest similar conforma-
tions are to be grouped together the method proposed
here strongly reduces the number of comparisons to be
performed.
In the following two illustrative applications of the

method are given.

Table 3 Fragment clustering.

RMSD
threshold (Å)

N.
struct.

This work N(N−1)

2
ratio Rep.

Struct.

0.05 107,184 57,978,627 5,744,151,336 0.0100 79,994

0.1 79,994 28,610,140 3,199,480,021 0.0089 47,502

0.2 47,502 19,089,084 1,128,196,251 0.0169 13,066

0.4 13,066 4,479,481 85,353,645 0.0525 1,853

0.8 1,853 393,824 1,715,878 0.2295 131

Total 107,184 110,551,156 5,744,151,336 0.0193

Columns report the threshold RMSD chosen for clustering, the number of
starting fragments, the number of RMSD computations done, the number of
computations in an all-vs-all comparison, the number of representative
fragments, used as starting fragments at the next iteration. CA atoms have
been used for superposition.

Table 4 Fragment clustering on backbone.

RMSD
threshold (Å)

N.
struct.

This work N(N−1)

2
ratio Rep.

Struct.

0.05 107,184 53,793,796 5,744,151,336 0.0094 105,299

0.1 105,299 124,506,221 5,543,887,051 0.0225 87,195

0.2 87,195 57,001,567 3,801,440,415 0.0150 63,829

0.4 63,829 65,723,340 2,037,038,706 0.0322 21,637

0.8 21,637 33,375,313 234,069,066 0.1426 2,445

1.6 2,445 2,586,436 2,987,790 0.8657 33

3.2 33 528 528 1.0000 2

Total 107,184 336,987,202 5,744,151,336 0.0587

Columns report the threshold RMSD chosen for clustering, the number of
starting fragments, the number of RMSD computations done, the number of
computations in an all-vs-all comparison, the number of representative
fragments, used as starting fragments at the next iteration. Atoms N, CA, C, O
have been used for superposition.

Fogolari et al. Algorithms for Molecular Biology 2012, 7:16
http://www.almob.org/content/7/1/16

Page 6 of 10



We consider the decoy set vhp_mcmd [33], a decoy set
containing alternative conformations for the villin head-
piece obtained from snapshots of long molecular
dynamics runs in explicit solvent starting from five differ-
ent conformations, including the native one. The decoy
set includes 6255 conformations. In order to choose the
most representative ones we consider similarities at 1.0 Å
threshold. The search at this similarity level is performed
with 1717823 comparison, i.e. 0.088 times the compari-
sons required by a straightforward all-vs-all comparison
(6255 × 3127). Clustering of structures based on the

obtained similarities allows to identify for each of the five
simulations a representative structure. Among these the
largest cluster (245 out of 651 structures) is found for the
simulation starting from the native structure, which high-
lights the lesser conformational dispersion for simula-
tions starting from the native structure with respect to
those starting from non-native structures.
We consider as another application the analysis of the

simulation of cis-trans isomerization of Pro 32 in b2-
microglobulin that drives a switch in the hydrogen
bonding network of residues Arg 3, Thr 4, His 31, Pro

Figure 2 Fragments superposed on the representative fragment for the 16 cluster populated with more than 1% of the whole
dataset.
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32, His 84 and Thr 86 [34]. We consider the pairwise
RMSD after superposition of all the N, CA, C and O
atoms of the above six residues. We set the threshold at
0.4 Å to spot significantly different conformations. The
number of comparison performed is 0.25 of those
required by an all-vs-all comparison. The first two most
representative clustered conformations are relative to
the native cis Pro 32 conformation and non-native trans
Pro 32 conformation, thus allowing selection of most
representative conformations at the selected region.

3 Conclusions
The proposed method for fast structural similarity
search below a given distance threshold makes use of
the inverse triangular disequality in order to avoid unne-
cessary comparisons.
The applications reported here shows that the method

is able to save many comparisons whenever the distance
threshold is set much smaller than the average distance
between structures in the set.
The advantage of the method compared to all-vs-all

comparisons is more and more evident with larger
datasets.
The method seems therefore mostly suited to calculate

fastly similarities among large ensembles of conformers,
e.g. those obtained by predictive softwares like Rosetta
[35] where thousands of models are typically generated,
or for large structural database analysis. In this respect
the first three applications described in the Results sec-
tion appear particularly suited for the method. Analysis
of molecular dynamics snapshot is also an important
field of application. The only drawback of the method is
that the threshold distance between conformations must
be much lower than the average distance for the method
to be efficient. In this respect the comparison of confor-
mations of subsystems (that display conformational
mobility) or comparison at a very low threshold distance
(aiming at identifying nearly identical conformers)
appear to be the situation of choice for the application
of the method, as shown in the examples of the Results
section.
The main limitation of the method is that it relies on

the use of the metric properties of the dissimilarity mea-
sure. For this reason it is not evident how to extend the
application in order to make use of useful similarities
measures like MaxSub [17], GDT_TS [18] and TM-
score [19]. Turning the latter measures into proper
metrics is a prerequisite for using the method in predic-
tive contexts like that set up in the CASP experiment.
On the other hand it is apparent that the method may
be used also in other contexts whenever a metric can be
defined and similarities at low distances (compared to
the average pairwise distance) are sought.

4 Availability
A reference program for Linux, using, with minor modi-
fications, the RMSD calculation routines of Theobald
[22], is available as supplementary material (Additional
file 1). The source code is available upon request from
the authors. A Perl script implementing the algorithm is
provided with a subroutine dist() that wraps any exter-
nal measure of distance.

5 Competing interests
The authors declare that they have no competing
interests.

6 Authors’ contribution
FF conceived the study and implemented the algorithm,
AC, PV and GE contributed design of the study and the
tests. All authors read and approved the manuscript.

Appendix
Let us consider two structures i and j which have been
optimally superposed on structure 1, so that RMSDopt

1i

and RMSDopt
1j are known. We look for a lower bound on

RMSDopt
1j based on RMSDopt

1i and RMSDopt
1j .

First, we traslate all structures in such a way that the
center of geometry of atoms to be superposed is the

same for all structures. Second we write the RMSDopt
ij :

(RMSDopt
ij )2 =

∑
k=1,N ||�rik − Ropt

j→i�rjk||2
N

(4)

=

∑
k=1,N ||Ropt

i→j�rik − �rjk||2
N

(5)

where rik and rjk are the vectors of atom k in structure

i and j, respectively, and Ropt
i→j is the rotation that super-

poses optimally, i.e. with the least RMSD, structure i
onto structure j.
If we arrange the 3 × N atomic coordinates rik in a

single vector vi and build a 3N × 3N block diagonal
matrix R by repeating the 3 × 3 rotation matrix R N
times along the diagonal, we can simplify the above
notation:

√
N × RMSDopt

ij = ||�vi − R
opt
j→i�vj|| (6)

= ||�vj − R
opt
i→j�vi|| (7)

Let us define v
′
1 as R

opt
i→jR

opt
1→j�v1. Note that

√
NRMSDopt

1j = ||Ropt
1→j�v1 − �vj|| = ||Ropt

i→j

(
R
opt
1→j�v1 − �vj

)
||

because the norm is invariant under rotations.
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Now we can rewrite equation (6) and derive a lower

bound for RMSDopt
ij based on RMSDopt

i1 and RMSDopt
j1 . In

the next equation we assume that RMSDopt
i1 ≥ RMSDopt

j1

without loss of generality.
√
N × RMSDopt

ij = ||(�vi − R
opt
j→i�vj)|| (8)

= ||(�vi − �v′
1) + (�v′

1 − R
opt
j→i�vj)|| (9)

The inverse triangle inequality applies to euclidean
distance:

||(�vi − �v′
1) + (�v′

1 − R
opt
j→i �vj)|| ≥ |||�vi − �v′

1|| − ||�v′
1 − R

opt
j→i�vj||| (10)

By rendering explicit the second term in the right-
hand member of the inequality we get:

|||�vi − �v′
1|| − ||�v′1 − R

opt
j→i�vj||| = |||�vi − �v′

1|| − ||Ropt
j→i(R

opt
1→i�v1 − �vj)||| (11)

= |
√
NRMSD1′i −

√
NRMSDopt

1j | (12)

Note that in the latter equation the first term is the
RMSD between rototraslated structure 1 and structure i
with no optimal superposition. Since it is assumed that

RMSDopt
i1 ≥ RMSDopt

j1 the following inequality holds:

|
√
NRMSD1′i −

√
NRMSDopt

1j | ≥
√
N|RMSDopt

1i − RMSDopt
1j |

As a consequence of the above equations the inverse
triangular inequality holds:

RMSDopt
ij ≥ |RMSDopt

1i − RMSDopt
1j | (13)

Additional material

Additional file 1: Zipped le with the Linux executable and example
files.
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