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Abstract

Background: Cancer sequencing projects are now measuring somatic mutations in large numbers of cancer
genomes. A key challenge in interpreting these data is to distinguish driver mutations, mutations important for cancer
development, from passenger mutations that have accumulated in somatic cells but without functional
consequences. A common approach to identify genes harboring driver mutations is a single gene test that identifies
individual genes that are recurrently mutated in a significant number of cancer genomes. However, the power of this
test is reduced by: (1) the necessity of estimating the backgroundmutation rate (BMR) for each gene; (2) the
mutational heterogeneity in most cancers meaning that groups of genes (e.g. pathways), rather than single genes, are
the primary target of mutations.

Results: We investigate the problem of discovering driver pathways, groups of genes containing driver mutations,
directly from cancer mutation data and without prior knowledge of pathways or other interactions between genes.
We introduce two generative models of somatic mutations in cancer and study the algorithmic complexity of
discovering driver pathways in both models. We show that a single gene test for driver genes is highly sensitive to the
estimate of the BMR. In contrast, we show that an algorithmic approach that maximizes a straightforward measure of
the mutational properties of a driver pathway successfully discovers these groups of genes without an estimate of the
BMR. Moreover, this approach is also successful in the case when the observed frequencies of passenger and driver
mutations are indistinguishable, a situation where single gene tests fail.

Conclusions: Accurate estimation of the BMR is a challenging task. Thus, methods that do not require an estimate of
the BMR, such as the ones we provide here, can give increased power for the discovery of driver genes.
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Background
Cancer is a disease driven in part by somatic mutations
that accumulate during the lifetime of an individual. These
mutations include single nucleotide substitutions, small
indels, and larger copy number aberrations and structural
aberrations. A key challenge in cancer genomics is to dis-
tinguish driver mutations, mutations important for cancer
development, from random passenger mutations that have
accumulated in somatic cells but do not have functional
consequences. Recent advances in DNA sequencing tech-
nologies allow the measurement of somatic mutations
in large numbers of cancer genomes. Thus, a common
approach to identify driver mutations, and the driver
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genes in which they reside, is to identify genes with recur-
rent mutations in a large cohort of cancer patients. The
standard technique to identify such recurrently mutated
genes is to perform a single gene test, in which individual
genes are tested to determine if their observed frequency
of mutation is significantly higher than expected [1-3].
This approach has identified a number of important can-
cer genes, but has not revealed all of the driver mutations
and driver genes in individual cancers.
There are two difficulties with the identification of

driver genes by a single gene test of recurrent mutation.
First, the test requires a reasonable estimate of the back-
ground mutation rate (BMR) for each gene, or the rate
at which passenger mutations occur in the gene. Obtain-
ing such an estimate is not a straightforward task, as
the BMR is not just the rate of somatic mutation per
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nucleotide per cell generation, but also must account for
selection and clonal amplification in the somatic evo-
lution of a tumor [1,4]. Second, it is widely observed
that there is extensive mutational heterogeneity in cancer,
with mutations occurring in different genes in different
patients. This mutational heterogeneity is a consequence
of both the presence of passenger mutations in each can-
cer genome, and the fact that driver mutations typically
target genes in cellular signaling and regulatory path-
ways [5,6]. Since each of these pathways contains mul-
tiple genes, there are numerous combinations of driver
mutations that can perturb a pathway important for can-
cer. This mutational heterogeneity inflates the number
of patients required to distinguish passenger from driver
mutations, as rare driver mutations may not be observed
at frequencies above the background. An alternative to
single gene tests is to test the recurrence of mutations in
groups of genes derived from known pathways [7,8] or
genome-scale gene interaction networks [9,10]. However,
these approaches require prior knowledge of the inter-
actions between genes/proteins, and this knowledge is
presently far from complete. Moreover, pathway/network
based approaches typically also require an estimate of the
BMR.
The availability of somatic mutation data from increas-

ing numbers of cancer patients motivates the question
of whether it is possible to identify driver pathways,
groups of genes with recurrent driver mutations, de
novo; i.e. without prior knowledge of interactions between
genes/proteins. At first glance, this seems implausible
because there are an enormous number of possible sets of
genes to consider. For example, there are more than 1025
sets of 7 human genes. However, we previously showed
that mild additional constraints on the expected patterns
of somatic mutations considerably reduce the number of
gene sets to examine, andmake de novo discovery of driver
pathways possible [11]. These constraints are consistent
with the current understanding of the somatic mutational
process of cancer [6,12]. In particular, we assume that
an important cancer pathway should be perturbed in a
large number of patients. Thus, given genome-wide mea-
surements of somatic mutations, we expect that a driver
pathway will have high coverage: i.e. most patients will
have a mutation in some gene in the pathway. Second, a
driver mutation in a single gene of the pathway is often
assumed to be sufficient to perturb the pathway. Com-
bined with the fact that driver mutations are relatively
rare, most patients exhibit only a single driver mutation
in a pathway. Thus, we expect that the genes in a pathway
exhibit a pattern of mutually exclusive driver mutations,
where driver mutations are observed in exactly one gene
in the pathway in each patient [13].
We emphasize that our assumption of mutual exclusiv-

ity holds only for driver mutations in the same pathway.

It is well known that cancer genomes harbor driver muta-
tions in multiple pathways, and the exclusivity assumption
does not preclude the presence of such co-occurring, and
possibly cooperative, driver mutations, examples of which
are known [14,15]. Indeed, current estimates of the num-
ber of driver mutations and number of mutated pathways
in a cancer genome are remarkably similar (≈ 10–15
[16,17]) suggesting that the assumption of approximately
one driver mutation per pathway is not too strong of an
assumption. It is also possible that multiple driver muta-
tions are necessary to perturb a pathway and thus these
mutations co-occur in patients. In this situation, there
remains a large subset of genes in the pathway whose
mutations are exclusive, e.g. a subset obtained by remov-
ing one gene from each co-occurring pair. The identifica-
tion of these subsets of genes can be used as a starting
point to later identify the other genes with co-occurring
mutations.

Our contribution
This work proposes a mathematical framework to study
the problem of de novo discovery of driver genes and path-
ways. We define two generative models of driver muta-
tions in cancer, the D>P model and the D=P model, and
study the algorithmic complexity of the discovery problem
in each of themodels, both analytically and in simulations.
The two generative models differ in how conditioning on
a genome being from a cancer patient affects the ratio
between the driver and passenger mutation probabilities
in that genome. While the difference is relatively small,
it has a major implication on the practicality of the stan-
dard single gene test for identifying the driver genes. In the
first model we prove a bound on the number of patients
required to detect all driver genes with high probability
using a single gene test, while in the second model it is not
possible to identify the driver genes using such a test for
any number of patients.
Next, we study a weight function on sets of genes

that quantifies the coverage and exclusivity properties of
a driver pathway. We introduced this function in [11],
and showed that finding sets with high weight provides
an alternative approach for identifying driver mutations.
Here, we prove that for both generative models, when
mutation data from enough patients is available, the
weight function is monotone in the number of discov-
ered driver genes and is maximized by the driver pathway.
Based on this observation we prove that a simple greedy
algorithm identifies the driver pathways with high proba-
bility. This improves the result in [11], where we showed
that the discovery problem is NP-hard for arbitrary muta-
tion data and that a greedy algorithm performs well under
different conditions that did not arise from a generative
model of the data. We also show that our earlier Markov
ChainMonte Carlo (MCMC) approach for identifying the
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driver pathways rapidly converges to the driver pathway
in both generative models, thus improving the conver-
gence result of [11] that considered arbitrary mutation
data. These results show that we can identify driver path-
wayswithout an estimate of the backgroundmutation rate
(BMR), giving a more reliable and robust solution for the
problem.
We complement our analytical results with experiments

on simulated and real cancer sequencing data. For the first
D>P model, we compare the number of patients required
to identify driver genes using the single gene test with the
number required using the greedy algorithm that maxi-
mizes the weight function. We show that the number of
patients is similar when a perfect estimate of the BMR is
available, but that the greedy algorithm requires a smaller
number of patients when the estimate of the BMR devi-
ates from its real value. For the second D=P model, we
empirically verify that the single gene test cannot iden-
tify the driver genes even when a huge number of patients
are analyzed, while the greedy algorithm correctly identi-
fies all the driver genes. Finally, we test the performance of
the greedy algorithm onmutation data from recent cancer
sequencing studies, and show that the greedy algorithm
can be used to identify the set of maximum weight on
these datasets, even if the data is not guaranteed to sat-
isfy the assumptions of our models. Our analytical and
experimental results help characterize the limitations of
detecting driver genes and pathways under reasonable
models of somatic mutation.
In the remainder of this paper we consider the case in

which the mutation matrix contains only one driver path-
way. However, our results can be generalized to the case of
multiple disjoint driver pathways. In particular the follow-
ing iterative procedure identifies all driver pathways using
our algorithms: after identifying a driver pathway, remove
its genes from the mutation matrix, and look for driver
pathways in the reduced mutation matrix.

Methods
Stochastic models for somatic mutations in cancer
In this section we introduce two stochastic models for
somatic mutations in cancer. In both models driver muta-
tions occur in sets of genes, which we refer to as driver
pathways. Passenger mutations occur randomly across all
genes. We assume that mutations have been measured in
n genes in a collection ofm cancer patients, and represent
the somatic mutations as am × n binary mutation matrix
A. The entry Aig in row i and column g is equal to 1 if gene
g is mutated in patient i, and it is 0 otherwise. Let G be the
set of all columns (genes). In both models, we assume that
the mutation matrix contains a driver pathway: a subset
D ⊆ G of genes, with |D| = k, such that in each patient
exactly one of the genes of D contains a driver mutation.
Thus, a driver pathway D exhibits the properties of high

coverage – every patient has a mutation in a gene in D –
andmutual exclusivity – no patient has a driver mutation
in more than one gene inD. In both models, random pas-
senger mutations occur at random in all genes, including
genes in D. The difference between the two models is in
the relative mutation rates in driver and passenger genes.
Following the hypothesis that cancer is triggered by a

mutation in a driver gene, the sample of cancer patients
can be viewed as a subset of a larger initial population. The
genome of each member of the initial population was sub-
ject to random mutations, where each gene was mutated
independently, and our sample is the subset of the initial
population with a driver mutation in a gene ofD.
The first stochastic model captures the above intuition

by modeling the distribution of mutations in patients as
independent with fixed probability q, conditioning on hav-
ing a driver mutation. The mutation matrix A is generated
by the following process: in each row (patient) we choose
one gene d ∈ D uniformly at random to contain the driver
mutation, and set the corresponding entry Aid to 1. All
other entries at that row are set to 1 with probability q < 1
and to 0 otherwise, and all events are independent.We call
the parameter q the passenger mutation probability, as it
is the probability that a gene contains a passenger muta-
tion. We emphasize that q is greater than the BMR, since
it is the probability that a gene has a passenger mutation.
For example, estimates of the BMR are typically ≈ 10−5 –
10−6, and since the length of most genes is around 104, we
have that q ≈ 10−1 – 10−2. We denote this model as the
D>Pmodel.
A possible limitation of the D>P model is that it implies

a conditional distribution in which driver genes have
higher expected frequency of mutation than the passenger
genes (thus the name D>P model) in a cohort of patients.
In practice the driver pathway D could contain dozens
of genes, and some of them may have rare driver muta-
tions. Thus the expected frequency of mutation of some
genes in D may be indistinguishable from the expected
frequency of mutation of some passenger genes. To exam-
ine this situation we introduce a second model, which we
call the D=P model, in which all genes in G are mutated
with the same probability in the patients, regardless of
whether they are driver or passenger genes. Of course, this
is a “worst case” model, as any cancer cohort with a rea-
sonable number of patients will have some driver genes
mutated at appreciable frequency. Nevertheless, we study
the D=P model to consider the limits of driver pathway
identification. The mutation matrix A in the D=P model
is generated by the following process: in row (patient) i an
entry Aid is chosen uniformly at random for d ∈ D and is
set to 1. All other entries Aid′ for d′ ∈ D are set to 1 with
probability r = qk−1

k−1 , and all entries Aig , for g ∈ G \ D are
set to 1 with probability q. All events are independent. We
require q ≥ 1

k so that r is a proper probability. Note that
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for any g ∈ G the probability that g is mutated is the same
since for d ∈ D, 1k + (1 − 1

k )r = q.
Note that both models differ from a simple binomial

model, where each entry of A is mutated independently
with a fixed probability. Since we condition on each
patient having at least one mutation in D, the entries of
A corresponding to genes in D are not independent. In
what follows, we let �(g) = {

i : Aig = 1
}
denote the set of

patients in which a gene g is mutated. Similarly, for a set
M of genes, let �(M) denote the set of patients in which at
least one of the genes inM is mutated: �(M) = ∪g∈M�(g).

Results
Finding recurrently mutated genes
The standard approach to identify the driver genes is to
identify recurrently mutated genes, i.e. those genes whose
observed frequency of mutations is significantly higher
than the expected passenger mutation probability[1-3].
This approach assumes a prior knowledge or a good esti-
mate of the passenger mutation probability, the parameter
q in our models. In particular if gene g ∈ G is not in the
driver pathway D, then the number of patients in which
g is mutated among a collection of m cancer patients is
described by a binomial random variable B(m, q)with suc-
cess probability q. If we know the value of q for each gene
g ∈ G we can compute the probability pg = Pr[B(m, q) ≥
|�(g)|] of observing gene g mutated in at least |�(g)|
patients assuming g �∈ D (i.e., pg is the p-value for g).
This approach is combined with a multi-hypothesis test
to identify a list O of genes, each mutated in significantly
more patients than expected. The pseudocode for such a
test is given in Algorithm 1 RMG. In Algorithm 1 RMG we
use Bonferroni correction for multiple hypothesis testing,
that is we include in O the genes for which pg ≤ α

n ,
for a fixed value α; the Bonferroni correction guarantees
that the probability of reporting in O any gene not in
D is bounded by α. Other corrections, like Benjamini-
Hochberg [18] to control the False Discovery Rate, are
possible. The results of this section also apply to these
other corrections.

Algorithm 1 RMG
Pseudocode of the algorithm for finding recurrently
mutated genes, based on a single-gene test.
Input: Anm× nmutation matrix A, a probability q that a
gene contains a passenger mutation in a patient, a signifi-
cance level α.
Output: SetO of recurrently mutated genes.

1 O ← ∅;
2 for g ∈ G do
3 �(g) ← {i : Aig = 1};
4 pg ← Pr[B(m, q) ≥ |�(g)|];

5 if pg ≤ α
n thenO ← O ∪ {g};

6 returnO;

We first analyze the D>P model of Section “Stochas-
tic models for somatic mutations in cancer”. We start by
showing that if q is known and the number of patients is
sufficiently large, then Algorithm 1 RMG outputs all the
driver genes with high probability.

Theorem 1. Suppose an m × n mutation matrix A is gen-
erated by the D>P model with D = k, the family wise
error rate of the test is α = 1

2nε and Algorithm 1 RMG out-
puts O. If m ≥ 2k2(1+ε)

(1−q)2 ln 2n for a constant ε > 0, then
Pr[O �= D]≤ 1

nε .

Proof. The p-value calculations and the Bonferroni cor-
rection in Algorithm 1 RMG guarantee that the probability
that any gene g �∈ D is included in the output set O
is bounded by α = 1

2nε . It remains to prove that if
m ≥ 2k2(1+ε)

(1−q)2 ln 2n the probability that any d ∈ D is not
included inO is bounded by 1

2nε .
Consider a gene d ∈ D. Let Xi = 1 if gene d is mutated

in patient i, and Xi = 0 otherwise. Note that for i �= j, Xi
and Xj are independent. Let X be the number of patients
in which d is mutated. We have X = ∑m

i=1 Xi. To com-
pute E[Xi] we observe that a driver gene is mutated with
probability 1 when it contains the driver mutation, and
with probability q otherwise. Since the gene d contain-
ing the driver mutation is chosen uniformly at random
among all the k genes inD, we have E[Xi]= 1

k +(
1 − 1

k
)
q.

Thus E[X]= ∑m
i=1 E[Xi]= m( 1k + (

1 − 1
k
)
q) > mq. Let

t = 1
k

(
1−q
2

)
. By the Chernoff-Hoeffding bound:

Pr[X ≤ E[X]−tm]=Pr[X ≤ mE[Xi]−tm]

≤e−
2m2t2

m ≤ 1
2n1+ε

.

Since |D| < n, by union bound we have:

Pr[ ∃d ∈ D mutated in ≤ (E[X]−tm) patients]

≤ n
1

2n1+ε
= 1

2nε
.

Thus with probability at least 1 − 1
2nε all genes in D are

mutated in at least E[X]−tm patients. Let B(m, q) be
a binomial random variable with parameters m,q. Using
the Chernoff-Hoeffding bound we can upper bound the
p-value pd that Algorithm 1 RMG derives for d ∈ D:

pd ≤ Pr[ |B(m, q) − mq| ≥ tm]≤ e−2 t2m2
m ≤ 1

2n1+ε
.
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Thus, with probability at least 1 − 1
2nε for any d ∈ D the

number of patients with a mutation in d is such that its
p-value satisfies pd < α/n and thus it is included in the
output setO.

Theorem 1 shows that in the D>P model an estimate
of the passenger mutation probability q and a sufficient
number of patients are enough to identify the driver genes.
This is not the case in the D=P model. It is easy to see that
in D=P model the expected number of rows in which a
column g is mutated is the same for all g ∈ G, that is for all
g ∈ G we have E[ |�(g)|]= qm. In fact, the number |�(d)|
of patients in which a gene d ∈ D is mutated and the num-
ber |�(g)| of patients in which gene g �∈ D is mutated are
both binomial random variables B(m, q). We thus have the
following.
Fact 1. Under the D=P model, the probability distribution
of |�(d)| for d ∈ D and |�(g)| for g �∈ D are the same.
Thus Algorithm 1 RMG cannot identify the genes in D for
any number of patients m.

Finding recurrently mutated driver pathways
In this section we analyze a method that identifies the
set D of driver genes with no prior information on the
passenger mutation probability q, and works for both the
D>P and D=P models. The method relies on a weight
functionW (M), defined on sets of genes, first introduced
in [11]. The measure W quantifies the extent to which a
set simultaneously exhibits both: (i) high coverage: most
patients have at least one mutation in the set; (ii) high
exclusivity: nearly all patients have no more than one
mutation in the set.
For a set of genes, M, we define the coverage overlap

ω(M) = ∑
g∈M |�(g)| − |�(M)|. Note that ω(M) ≥ 0,

with equality if and only if themutations inM aremutually
exclusive. To account for both the coverage, �(M), and the
coverage overlap, ω(M), we define the weight function of
M:

W (M) = |�(M)| − ω(M) = 2|�(M)| −
∑
g∈M

|�(g)|.

Finding a set M of genes with maximum weight is in
general a computationally challenging problem (it is NP-
hard in the worst case [11]). Nonetheless, we showed in
[11] that under some assumptions on the distribution of
mutations in patients, a greedy algorithm will identify
the maximum weight set. We also proposed a Markov
Chain Monte Carlo (MCMC) approach that samples sets
of genes with probability proportional to their weight.
Based on the coverage and exclusivity properties of a

driver pathway we expect it has the highest weight among
all sets of size k. In this section we formalize this intuition

for our generative models and show that under the two
models the maximum weight set is easy to compute. We
use M∗

k to denote the set of size k with maximum weight
(M∗

k may not be unique).
We start with the D>P model. Note that the parameter

q controls the expected number of passenger mutations in
a set of k passenger genes. Since passenger mutations are
relatively rare and k (the number of genes in a driver path-
way) is relatively small, we expect that a set of k passenger
genes will not have a mutation in the majority of the
patients. Thus we assume that the probability 1− (1− q)k
that a set of k passenger genes contains at least one muta-
tion in a patient is less than a constant a < 1

2 . Since
1− (1− q)k ≈ qk we have q ≤ a

k . For ease of exposition in
what follows we set a = 1

4 , so that q ≤ 1
4k .

Let Mk,� ⊂ G be a set of k genes with exactly � genes
of D, that is Mk,� = {d1, d2, . . . , d�} ∪ {g1, . . . , gk−�} with
dj ∈ D for 1 ≤ j ≤ �, and gj ∈ G \ D for 1 ≤ j ≤ k − �. We
first prove that E[W (Mk,�)] is monotone in �.

Lemma 1. Let q ≤ 1
4k . For 0 ≤ � ≤ k−1: E[W (Mk,�+1)]≥

E[W (Mk,�)]+ m
2k .

Proof. Let M be any subset of G, and let E[W (M)]=∑m
i=1 E[Ti], where Ti is the “contribution” of patient i to

W (M), i.e. Ti = 2 − � if � > 0 genes of M are mutated
in i, and 0 otherwise. Note that Ti is the difference of two
(dependent) random variables: Ti = Yi−Zi, where: Yi = 0
if no gene of M is mutated in i, and 2 otherwise; Zi = � if
� ≥ 0 genes ofM are mutated in i.
Now consider Mk,� that contains a subset L of � ele-

ments of D. Consider the event Ei=“one of the genes of
L is driver in patient i”, and Ēi its complement. We have
E[Ti]= E[Ti|Ei] Pr[Ei]+E[Ti|Ēi] Pr[ Ēi]. For Mk,�, when
Ei holds, we have that Yi = 2 (because one gene of L is
mutated) and Zi = 1+B(k−1, q), where B(k, q) is a bino-
mial random variable with parameters k,q. When Ei does
not hold, we have that Yi = 2 with probability 1− (1− q)k
and Zi = B(k, q) (since each gene of Mk,� is mutated
independently with probability q). Thus forMk,� we have

E[Ti]=E[Ti|Ei] Pr[Ei]+E[Ti|Ēi] Pr[ Ēi]
=(2 − (1 + q(k − 1)))

�

k
+ (2(1 − (1 − q)k)

− qk)
(
1 − �

k

)
.

Thus E[Mk,�]= m((2 − (1 + q(k − 1))) �
k + (2(1 − (1 −

q)k) − qk))
(
1 − �

k
)
.

Analogously forMk,�+1 we have E[Ti]= (2− (1+q(k−
1))) �+1

k +(1− �+1
k )(2(1−(1−q)k)−qk) and E[Mk,�+1]=

m((2−(1+q(k−1))) �+1
k +(2(1−(1−q)k)−qk))(1− �+1

k ).
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Thus we have:

E[W (Mk,�+1)]−E[W (Mk,�)]

= m
(
2 − (1 + q(k − 1))

k
− 2(1 − (1 − q)k) − qk

k

)

= m
(
−1
k

+ q
k

+ 2
k
(1−q)k

)

≥ m
(

−1
k

+ q
k

+ 2
k

− 2q
)

= m
(
1
k

+ q
k

− 2q
)

≥ m
1
2k

.

where the first inequality follows from (1− q)k ≥ 1− qk,
and the last inequality follows from q ≤ 1

4k and q > 0.

Next we show that for sufficiently large number of
patients m, the random value W (Mk,�) is concentrated
near its expectation.
Theorem 2. Suppose an m × n mutation matrix A is gen-
erated by the D>P model with |D| = k and q ≤ 1

4k .
For m ≥ 8k3(k + ε) ln n, and for 0 ≤ � ≤ k − 1,
Pr[ ∃Mk,� s.t. |W (Mk,�) − E[W (Mk,�)| ≥ m

4k ]≤ 1
nε .

Proof. Let M = {g1, g2, . . . , gk} be a set of k genes.
Consider the sequence X of random variables
X1,1,X1,2, . . . ,X1,k ,X2,1,X2,2, . . . ,X2,k , . . . ,Xm,k , with
Xi,j = 1 if gene gj is mutated in patient i, and Xi,j = 0
otherwise. (Note that Xi,j are not mutually indepen-
dent since at least one gene in the driver pathway D is
mutated in each patient.) The random variable W (M)

is determined by the sequence X . Now consider the
Doob martingale (see [19]) Zi,j = E[W (M)|X1,1, . . . ,Xi,j],
0 ≤ i ≤ m, 1 ≤ j ≤ k. Note that Zm,k = W (M),
and E[Zm,k]= E[W (M)]. Since changing the value of
any of the random variables in X changes W (M) by
at most 1 and there are km such random variables, by
Azuma-Hoeffding inequality we have that, for all t > 0:

Pr[ |W (M) − E[W (M)] | ≥ t]≤ 2e−
2t2
km .

Setting t = m/(4k), and summing over all
(n
k
)
possible

choices of the setM gives the result.

Combining the results of Lemma 1 and Theorem 2 we
have
Corollary 1. If m ≥ 8k3(k + ε) ln n, then Pr[M∗

k �= D]≤
1
nε .

Corollary 1 shows that with sufficient number of
patients the set D can be identified by finding the set of
maximum weight, without an estimate of the passenger

mutation probability q We previously showed in [11] that
with an arbitrary mutation distribution identifying the set
of maximum weight is NP-Hard. However, a corollary of
Theorem 2 shows that in the D>P model computing a set
of maximum weight is easy.

Corollary 2. If m ≥ 8k3(k + ε) ln n and q ≤ 1
4k ,

Algorithm 2 GreedyWeight that computes the weight
function of up to O(nk) sets finds M∗

k with failure
probability ≤ 1

nε .

Proof. The pseudocode for Algorithm 2 GreedyWeight
is given below. Theorem 2 guarantees that if g∗ is inserted
in M, it is in D, and that when a gene g ∈ M \ D is
considered, it will be switched with a gene g′ ∈ D \M.

Algorithm 2 GreedyWeight
Pseudocode of the greedy algorithm for finding the set M
of maximum weightW (M).
Input: Anm × nmutation matrix A, integer k > 0.
Output: SetM∗ of maximum weightW (M∗).

1 M ← k random columns from A;
2 M∗ ← M;
3 for g ∈ M do
4 g∗ ← arg maxg′∈G\M∗{W (M∗ \ {g} ∪ {g′})};
5 ifW (M∗ \ {g} ∪ {g∗}) > W (M∗) then

M∗ ← M∗ \ {g} ∪ {g′};
6 returnM∗;

We now consider the D=P model. Analogously to what
we proved under the D>P model, we prove that maximiz-
ing the weight functionW identifies the driver pathwayD
when mutation data from enough patients is available.

Theorem 3. Suppose an m × n mutation matrix A is
generated by the D=P model with |D| = k. If m ≥
k3(k+ε)

2(1−q)2k+2

(
k−1
k

)2k
ln n, then Pr[M∗

k �= D]≤ 1
nε .

Proof. Consider � ≥ 1. As in the proof of Lemma 1,
we have that for any pair of sets Mk,�,Mk,�+1 of size
k containing � and � + 1 elements of D respec-
tively, we have: E[W (Mk,�+1]≥ E[W (Mk,�)]+m 2

k

(1−q)k+1
(

k
k−1

)k
. Using the Azuma-Hoeffding inequal-

ity with t = m 1
k (1 − q)k+1

(
k

k−1

)k
we have that

Pr[ ∃Mk,� s.t. |W (Mk,�)−E[W (Mk,�)|≥ t]≤ 1
nε for allMk,�.

The theorem follows combining these two properties.

We prove that a simple greedy algorithm, similar to
Algorithm 2 GreedyWeight that we proposed for the
D>P model, identifies the set M∗

k of maximum weight
under the D=P model.
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Corollary 3. If m ≥ k3(k+ε)

2(1−q)2k+2

(
k−1
k

)2k
ln n, a greedy algo-

rithm that computes the weight function of up to O(n2) sets
finds M∗

k with failure probability ≤ 1
nε .

Proof. Start with an arbitrary set M of k genes. By the
proof of Theorem 3, if M already contains at least one
gene of D, Algorithm 2 GreedyWeight produces the
set D in output with failure probability ≤ 1

nε . Thus we
only need to make sure that the initial set M includes
at least one gene of D. To do this, take an arbitrary pair
g1, g2 of genes inM, and find the pair (g3, g4) ∈ G \ M that
maximizesW (M \ {g1, g2}∪ {g3, g4}). Then exchange g1, g2
for g3, g4 if W (M \ {g1, g2} ∪ {g3, g4}) > W (M). Running
Algorithm 2 GreedyWeight from the resulting set M
gives the result.

Thus under the D=P model we identify the driver
pathway D by maximizing W (M). Recall that Algo-
rithm 1 RMG cannot find driver genes under this model
(Section “Finding recurrently mutated genes”, Fact 1). Also
note that when q ≤ 1/2 and the probability (1− q)k that a
set of k genes in G \D is not mutated in a patient is greater

than 1
2

(
k−1
k

)k
(this occurs when passenger mutations are

relatively rare, for example when q ≈ 1/k) the bound on
m in Corollary 3 is the same as the bound in Corollary 2.
That is, the weight W identifies the set D under both the
D>P and D=P models with the same number of patients.
For completeness, we also analyze the Monte-Carlo

Markov Chain approach proposed in [11] to sample sets
of genes with distribution exponentially proportional to
their weight. The pseudocode for the sampling proce-
dure used by the Monte-Carlo Markov Chain approach
is given in Algorithm 3 MCMC-Sampling. It is easy to
verify that the chain is ergodic with a unique stationary
distribution π(M) = ecW (M)∑

R∈Mk
ecW (R) , where Mk = {M ⊂

G||M| = k}. The efficiency of this algorithm depends
on the speed of convergence of the Markov chain to its
stationary distribution.
Algorithm 3 MCMC-Sampling
Pseudocode of the sampling procedure for the MCMC
algorithm.
Input: Current stateM(t)

Output: Next stateM(t+1)

1 w ← gene chosen uniformly at random from G;
2 v ← gene chosen uniformly at random fromM(t);
3 P(M(t),w, v) ← min[ 1, ecW (M(t)\{v}∪{w})−cW (M(t) )];
4 With probability P(M(t),w, v) set

M(t+1) ← M(t) \ {v}∪ {w}, otherwiseM(t+1) ← M(t);

In [11], we show that there is a non-trivial interval of
values for c for which the chain is rapidly mixing without

assuming any generative model for the mutation matrix.
Applying the analysis in [11] to the D>P and D=P mod-
els requires 0 < c < 1

k . However, applying Lemma 1
and 2 under the D>P model, and Theorem 3 under the
D=P model we show that for any c > 0 the process rapidly
converges to the setD.

Theorem 4. Suppose an m × n mutation matrix A with
|D| = k is generated by the D>P model with q ≤ 1

4k , or

the D=P model with q ≤ 1
2 and (1 − q)k ≥ 1

2

(
k−1
k

)k
. For

m ≥ 8k3(k+ε) ln n and any c > 0, theMCMC converges to
the setD in O(nklogk) iterations with probability≥ 1− 1

nε .

Proof. As stated above, the analysis of [11] applied to the
D>P and D=P models gives the result for 0 < c < 1

k . We
now prove that the result holds for c ≥ 1

k . The theorem
follows by combining the two cases.
Consider the MCMC and assume there is no time step t

such that the chain transitions from a setMk,�+1 contain-
ing � + 1 genes in D to a set Mk,� containing � genes in
D. Note that if the MCMC is in a state containing � < k
genes of D, it will transition to a state with � + 1 genes of
D (that is, w ∈ D and v /∈ D are chosen) with probability
≥ 1/(kn). From a coupon collector analysis we have that,
if the MCMC never transitions from a set M�+1 contain-
ing � + 1 genes in D to a set M� containing � genes in D,
the MCMC converges to the set D after 2kn ln(2kn) steps
with probability at least 1 − (2n)−1.
We now bound the probability that the MCMC moves

from a setM�+1 to a setM� in the 2kn ln(2kn) steps before
reaching state D. Given the choice of m, from Theorem 2
and Theorem 3 we have that the probability that in a par-
ticular step the MCMC moves from a set M�+1 to a set
M� is bounded by e−c mk . The theorem follows by union
bound on the 2kn ln(2kn) steps and from the bounds ofm
and c.

Experimental results: simulated data
In this section we compare the single gene test (Algo-
rithm 1 RMG) with the driver pathway approach (using
the weight function W (M)) to detect the set of
driver genes using mutation data simulated using the
D>P and the D=P model. In particular, we use
Algorithm 2 GreedyWeight of Section “Finding recur-
rently mutated driver pathways” to identify the set M∗

k of
maximum weight, where k = |D|.
We first consider the D>P model, generating muta-

tion data with k = |D| = 20, n = 10000, and for
different values of q. In particular we considered q ∈
{0.0125; 0.0075; 0.001}. We set α = 0.005 for Algorithm
1 RMG which corresponds to ε = 0.5. To compare the
performance of the two algorithms, wemeasured themin-
imum number of patients required to detect the driver
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pathway D over a range of estimates of the passenger
mutation probability q. Specifically, let Es(q) = “estimate
s(q) of q is used by Algorithm 1 RMG”. Let mR,x(s(q)) =
minm{Pr[O = D|Es(q)]> x} be the minimum num-
ber of patients required for Algorithm 1 RMG to output
O = D with probability > x over all m × n muta-
tion matrices generated by the model when the estimate
s(q) is used. Similarly, let P be the output of Algo-
rithm 2 GreedyWeight. Let mG,x = minm{Pr[P =
D]> x} be the minimum number of patients required for
Algorithm 2 GreedyWeight to output D with proba-
bility > x over all m × n mutation matrices generated by
the model. Recall that mG,x does not depend on s(q) by
Corollary 2.
Figure 1 shows the values ofmR,0.99(s(q)) andmG,0.99 as

a function of s(q). We varied s(q) starting from s(q) = q
(i.e., q is perfectly estimated) and gradually increased s(q)
while maintaining s(q) < 1/k. The latter condition assures
that s(q) is strictly smaller than the expected probability
of mutation of any gene in D, a necessary condition for
Algorithm 1 RMG to be able to identify D. To compare
mR,0.99 and mG,0.99 we generated 100 mutation matrices
for each mi = i × 100 patients for 1 ≤ i ≤ 52 and
obtained an empirical estimate of mR,0.99 and mG,0.99.a
For a fixed q, Figure 1 shows that mR,0.99(s(q)) is mono-
tonically increasing with s(q), and that as expected both
mR,0.99(s(q)) and mG,0.99 decrease using lower values of
q. For q = 0.0125 and q = 0.0075, when the estimate
of q is perfect Algorithm 2 GreedyWeight requires
more patients than Algorithm 1 RMG to correctly iden-
tify the set D, but when the estimate s(q) is larger than
the true value of q, mR,0.99(s(q)) increases and becomes
much larger than mG,0.99. (Typically, an overestimate of q
is used so that the test for recurrent genes in conservative
[20]). Note that even when s(q) = q, mG,0.99 is close to
mR,0.99(q), and that for q = 0.001, mG,0.99 < mR,0.99(s(q))

even when s(q) = q, while the bounds in Theorem 1 and
in Corollary 2 give mG,0.99

mR,0.99(q) ≥ 1000 for all the parameters
we used. Similar results were obtained when compar-
ing mR,0.95(s(q)) and mG,0.95; i.e. the minimum number
of patients for which Algorithm 1 RMG and Algorithm
2 GreedyWeight report the driver setD at least 95% of
the time(data not shown).
We also considered the case s(q) < q where the esti-

mate of q is smaller than its true value. In this case, some
genes not in D (false positives) are eventually reported
by Algorithm 1 RMG. For example, with m = 1000
patients and q = 0.0125, when s(q) = q, the correct
set of genes (with no false positives) were reported. How-
ever, when s(q) = 0.8q Algorithm 1 RMG reports false
positives in approximately 16% of the datasets. In con-
trast, Algorithm 2 GreedyWeight does not suffer from
this problem, since it does not require an estimate s(q)
of q.
We now consider the D=P model, generating muta-

tion data with k = |D| = 20, q = 0.05 and n =
120. As stated in Fact 1, Algorithm 1 RMG cannot iden-
tify the genes in D for any number m of patients; we
checked this property for values ofm up to 107. For Algo-
rithm 2 GreedyWeight we again estimated mG,0.99 as
described above generating 100 mutation matrices for
eachmi = i× 1000 patients for 1 ≤ i ≤ 100, and obtained
that m = 95000 patients suffices for GreedyWeight to
correctly output exactly the genes in D, while the bound
of Corollary 3 gives that more than 4 × 105 patients are
required for the parameters we used.
In the above experiments we provided the correct

parameter k in input to the Algorithm 2 GreedyWeight.
In practice, the exact value of k is not known. However,
when the number m of patients satisfies the bound of
Corollary 2 (resp., Corollary 3) in the D>P (resp., D=P)
model, then the weight W (D) of the set D is greater than

q 1.5q 2q 2.5q 3q
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RMG, q=0.0125
GreedyWeight, q=0.0125
RMG, q=0.0075
GreedyWeight, q=0.0075
RMG, q=0.001
GreedyWeight, q=0.001

Figure 1 Comparison of Algorithm 1 RMG and Algorithm 2 GreedyWeight . Comparison between the estimate of the number of patients
mR,0.99(s(q)) required to identify the driver pathwayD with Algorithm 1 RMG, for different estimates s(q) of the probability q and different values of
q, and the number of patientsmG,0.99 required to identifyD with Algorithm 2 GreedyWeight.
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the weight of any other set of genes. We therefore imple-
mented a modified version of the greedy algorithm that
takes as input an upper bound kmax on the size of D, runs
Algorithm 2 GreedyWeight for all values k with 2 ≤
k ≤ kmax and outputs the set (of any size) of maximum
weight found in the different runs. We repeated the exper-
iments above for the D>P model with n = 10000 and
q = 0.0125 and for the D=P model using kmax = 22 for
this algorithm, and obtained the same estimates ofmG,0.99
reported above. This show that even when the exact value
of k is not known, Algorithm 2 GreedyWeight can
correctly identifyD.

Experimental results: cancer sequencing data
Finally, we tested Algorithm 2 GreedyWeight on muta-
tion data coming from three different cancer sequencing
studies, as described in [11]. In particular we analyzed
cancer mutation data from: lung adenocarcinoma [21],
glioblastoma [3], and multiple cancer types [22]. The
mutation matrices were prepared using the same pro-
cedure described in [11]. Since not all genes have been
assayed for mutations in these studies, there is no guar-
antee that the assumptions of our models hold for these
datasets. In addition, the number of mutated patients
in the studies is small compared to the bounds our
analytical and empirical results suggest for Algorithm
2 GreedyWeight to find the set of maximum weight.
Nonetheless, for each of the three datasets we attempted
to use Algorithm 2 GreedyWeight to find the set of
maximumweight we reported in [11], using the parameter
k given by the size of the sets found in [11].
Since the output of Algorithm 2 GreedyWeight

depends on the choice of the initial random set (the
set M on Line 1 of Algorithm 2), we run Algorithm 2
GreedyWeight 100 times (i.e., starting from 100 differ-
ent random initial sets). For the mutation data from mul-
tiple cancer types, Algorithm 2 GreedyWeight always
reports the set of maximum weight; for the mutation data
from the gliblastoma study, the set of maximum weight
is reported by Algorithm 2 GreedyWeight in 58% of
the runs. For the lung adenocarcinoma mutation data,
Algorithm 2 GreedyWeight reports the set of max-
imum weight in 43% of the runs, and no other set is
reported more frequently. These results show that Algo-
rithm 2 GreedyWeight can be used to identify genes in
driver pathways on data from cancer sequencing studies
containing a modest number of patients.

Conclusions
We investigate the problem of detecting recurrently
mutated genes and pathways using two simple generative
models of driver mutations in cancer: the D>P model
and the D=P model. In the D>P model, the driver
mutation probability is larger than the passengermutation

probability. We prove a bound on the number of patients
required to detect all driver genes with high probability
using a single gene test of recurrence. In the D=P model,
the driver mutation probability and passenger mutation
probability cannot be distinguished, and thus it is impos-
sible to identify driver genes using the single gene test
for any number of patients. We prove that under either
model, the weight function on sets of genes that we
defined in [11] is maximized by a driver pathway. Thus,
with mutation data from enough patients, it is possible to
identify driver pathways without an estimate of the pas-
senger mutation probability q. In particular, we show that
a simple greedy algorithm finds driver pathways with high
probability. We also show that an MCMC approach con-
verges rapidly.We present results on simulated data show-
ing that the greedy algorithm successfully identifies the
driver pathway with fewer patients than the single gene
test when the estimate of q deviates from its real value.
Finally, we show that the greedy algorithm can find driver
genes and driver pathways in real cancer sequencing data
containing a modest number of patients.
In practice, any test that identifies driver genes by recur-

rent mutations requires a good estimate of the passenger
mutation probability q. An underestimate of q leads to
false positive predictions of driver genes, while an over
estimate (i.e. a conservative estimate to minimize false
positives) increases the number of patients required to
find driver genes. The passenger mutation probability is
derived from the background mutation rate (BMR), which
is difficult tomeasure as it depends on a number of param-
eters whose values are not easily determined. There has
been extensive discussion in the community about appro-
priate ways to estimate the BMR and find recurrently
mutated genes [1,4]. Methods that do not require an esti-
mate of the BMR, as the ones we provide here, can give
increased power for the discovery of driver genes. How-
ever, further study of more sophisticated mutation models
is necessary. For example, we assume a constant passenger
mutation probability q across all genes, but models that
allow q to vary by gene would be useful in applications and
warrant further investigation.

Consent
Written informed consent was obtained from the patient
for publication of this report and any accompanying
images.

Endnotes
aWe use the empirical estimates of mR,0.99(q) and mG,0.99
only to compare the performance of Algorithm 1 RMG and
Algorithm 2 GreedyWeight, and to show how mR,0.99
and mG,0.99 vary by changing the parameter q. There-
fore we do not need extremely accurate estimates of of
mR,0.99(q) and mG,0.99, that would require the generation
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of more mutation matrices and the inclusion of more
values ofmi.
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