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Abstract

In this paper, we study the problem of constructing perfect phylogenies for three-state characters. Our work builds on
two recent results. The first result states that for three-state characters, the local condition of examining all subsets of
three characters is sufficient to determine the global property of admitting a perfect phylogeny. The second result
applies tools from minimal triangulation theory to the partition intersection graph to determine if a perfect phylogeny
exists. Despite the wealth of combinatorial tools and algorithms stemming from the chordal graph and minimal
triangulation literature, it is unclear how to use such approaches to efficiently construct a perfect phylogeny for
three-state characters when the data admits one. We utilize structural properties of both the partition intersection
graph and the original data in order to achieve a competitive time bound.
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Background
In this paper, we study the problem of constructing phy-
logenies, or evolutionary trees, to describe ancestral rela-
tionships between a set of observed taxa. Each taxon is
represented by a sequence and the evolutionary tree pro-
vides an explanation of branching patterns of mutation
events transforming one sequence into another.
We will focus on the widely studied infinite sites model

from population genetics, in which the mutation of any
character can occur at most once in the phylogeny. With-
out recombination, the phylogeny is a tree called a perfect
phylogeny. The problem of determining if a set of binary
sequences fits the infinite sites model without recom-
bination corresponds to determining if the data can be
derived on a perfect phylogeny. A generalization of the
infinite sites model is the infinite alleles model, in which
any character can mutate multiple times but each muta-
tion of the character must lead to a distinct allele (state).
Again, without recombination, the phylogeny is tree,
called a multi-state perfect phylogeny. Correspondingly,
the problem of determining if multi-state data fits the
infinite-alleles model without recombination corresponds
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to determining if the data can be derived on a multi-state
perfect phylogeny.
Dress and Steel [1] and Kannan and Warnow [2] both

give algorithms that construct perfect phylogenies for
three-state characters when one exists. The goal of this
work is to extend the results in [3] using the minimal
separators of the partition intersection graph to create a
three state construction algorithm that is competitive with
Dress and Steel’s algorithm.

Notation and prior results
The input to our problem is a set of n taxa defined over
a set of m characters C = {χ1,χ2, . . . ,χm}. We denote
the states of character χ i by χ i

j for 0 ≤ j ≤ r − 1.
A species is any sequence s = s1, s2, . . . , sm with si ∈
{χ i

0,χ
i
1, . . . ,χ

i
r−1} ∪ {∗} for i = 1, 2, . . . ,m. The ∗ denotes

a missing value. χ i can also be considered as a function
mapping species to character states, writing χ i(s) = si. In
this paper, every taxon is a species without missing values
(C is also called a set of full characters in the literature).
We will consider the set of taxa as an n × m matrix M,
where each row corresponds to a taxon and each column
corresponds to a character (or site).
The perfect phylogeny problem is to determine whether

the taxa defined by a matrix M can be displayed on a tree
T such that
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1. each taxon of M labels exactly one node in T,
2. each leaf in T is labeled by a taxon of M,
3. each node of T is labeled by a species,
4. for every character χ i and for every state χ i

j of
character χ i, the set of all nodes in T labeled by
species whose state of character χ i is χ i

j forms a
connected subtree of T.

Any tree satisfying conditions 1 - 4 is called a perfect
phylogeny for M. Any character satisfying condition 4 is
said to be compatible with T. The general perfect phy-
logeny problem (with no constraints on r, n, and m) is
NP-complete [4,5]. However, the perfect phylogeny prob-
lem becomes polynomially solvable (in n andm) when r is
fixed. For r = 2, this follows from the Splits Equivalence
Theorem [6,7]. For r = 3, Dress and Steel gave an O(nm2)
algorithm [1] and for r = 3 or 4, Kannan and Warnow
gave an O(n2m) algorithm [2]. For any fixed r, Agarwala
and Fernández-Baca gave anO(23r(nm3 +m4)) algorithm
[8], which was improved to O(22rnm2) by Kannan and
Warnow [9].

Definition 2.1. [7,10] For a set of input taxa M, the par-
tition intersection graph G(M) is obtained by associating
a vertex for each character state and an edge between two
vertices χ i

j and χk
l if there exists a taxon s with χ i(s) = χ i

j
and χk(s) = χk

l .

Note that by definition, there are no edges in the parti-
tion intersection graph between states of the same charac-
ter. It will be useful to consider the partition intersection
graph G(χ i,χ j,χk) of the submatrix of M defined by the
three characters χ i, χ j, χk .

Definition 2.2. A graph H is chordal, or triangulated,
if there are no induced chordless cycles of length four or
greater in H.

See [11] and [12] for further details on chordal graphs.
Consider coloring the vertices of the partition intersec-

tion graph G(M) by colors 1, 2, . . . ,m as follows. For each
character χ i, assign color i to the vertices χ i

0,χ
i
1, . . . ,χ

i
r−1.

A pair of distinct vertices u,v of G(M) with the same
color is called a monochromatic pair. A proper triangula-
tion of the partition intersection graph G(M) is a chordal
supergraph of G(M) such that every edge has endpoints
with different colors. In [10], Buneman established the fol-
lowing fundamental connection between the perfect phy-
logeny problem and triangulations of the corresponding
partition intersection graph.

Theorem 2.3. [7,10] A set of taxa M admits a per-
fect phylogeny if and only if the corresponding partition
intersection graph G(M) has a proper triangulation.

A triangulation of a graph G is minimal if it does
not have a proper subgraph that is also a triangula-
tion of G. Theorem 2.3 can be restated in terms of
proper minimal triangulations of G(M) because remov-
ing edges from a proper triangulation will preserve the
coloring of the graph. If G(M) has a proper triangulation
H, then a perfect phylogeny for M can be constructed
from a clique tree of H. T is a clique tree for a graph
G if

1. the nodes of T are in bijection with the maximal
cliques of G,

2. for each vertex v of G, the maximal cliques
containing v form a connected subtree of T .

That is, given a clique tree T for a proper triangula-
tion H of G(M), we label each node by its corresponding
maximal clique. Because H is properly colored, this max-
imal clique includes at most one state per character and
therefore defines a species. Each taxon t defines a clique
Kt of size m in G(M), and because H is a triangulation
of G(M), Kt is a clique in H as well. Furthermore, H is a
proper triangulation, so Kt is a maximal clique of H. For
a clique tree T , we label the node corresponding to Kt by
t to obtain a perfect phylogeny for M. Conversely, if M
has a perfect phylogeny T, then the species in T define
a set of additional edges to obtain a proper triangulation
for G(M). This is due to the following characterization
of chordal graphs by the intersections of subtrees of a
tree.

Theorem 2.4. [10,13] G is a chordal graph if and only
if there is a tree T such that each vertex u of G induces a
subtree Tu of T and uv is an edge of G if and only if subtrees
Tu and Tv share at least one node.

In particular, if a pair of character states appear in the
same species of a perfect phylogeny for M but not in any
input taxon of M, this pair defines a fill edge to add to
obtain a proper triangulation of the partition intersec-
tion graph. This fill edge preserves the proper coloring
because intersecting subtrees from the same character
would contradict conditions 3 and 4 of the perfect phy-
logeny definition.
To illustrate some of these notions, consider the exam-

ple in Figure 1. The species with sequence 2100 defines a
fill edge χ1

2χ4
0 which is not an edge ofG(M) (this is the only

such fill edge). Nevertheless G(M) itself is chordal, and
adding this fill edge would result in a proper triangulation
that is not minimal.
In recent work, it is shown that there is a complete

description of minimal obstruction sets for three-state
characters analogous to a well-known result on obstruc-
tion sets for binary characters (the four gamete condition)
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Figure 1 Partition intersection graphs and perfect phylogenies. A 3-state matrixM, partition intersection graph G(M), and perfect phylogeny T.
There are no species with missing values in T .

[3]. These results allow us to expand upon recent work
of Gusfield [14] which uses properties of triangulations
and minimal separators of partition intersection graphs
to solve several problems related to multi-state perfect
phylogenies.
An (a,b)-separator of a graph G is a set of vertices

whose removal fromG separates a and b. Aminimal (a,b)-
separator is an (a,b)-separator such that no proper subset
is an (a,b)-separator, and a minimal separator is a sepa-
rator that is a minimal (a,b)-separator for some pair of
vertices a and b. For a set of vertices X, let G-X be the
induced subgraph of G after removing vertices X. If S and
S′ are two minimal separators of G, we say S is parallel to
S′ if there is a single connected component C of G − S′
such that S ⊆ C ∪ S′ (otherwise S and S′ cross). A pair
of vertices a and b cross S if S is an (a,b)-separator. The
neighborhood of a set of vertices X is N(X) = {v ∈ G−X :
(u, v) ∈ E(G) for some u ∈ X}. A component C of G-S is
full if the neighborhood N(C) is equal to S. The following
characterization of minimal separators is critical to our
arguments.

Lemma 2.5. [15] Let S be a subset of vertices of graph G.
Then S is a minimal separator of G if and only if G-S has
two or more full components.

In a colored graph, a legal separator is a separator such
that no two vertices have the same color. Let �G denote
the minimal separators of graph G. For S ∈ �G, we sat-
urate S by adding edges between every pair of vertices
in S to create a clique. For Q ⊆ �G, GQ denotes the
graph obtained by saturating every S ∈ Q. The following
theorem shows the connection between minimal triangu-

lations and collections of parallel minimal separators of a
graph.

Theorem2.6. (MinimalTriangulationTheorem[16-18]).
Suppose Q ⊆ �G is a maximal set of pairwise parallel
minimal separators of G. Then GQ is a minimal triangu-
lation of G and �GQ = Q. Conversely, if H is a minimal
triangulation of G, then �H is a maximal pairwise
parallel set of minimal separators of G.

The following are necessary and sufficient conditions for
the existence of a perfect phylogeny for data over arbi-
trary number of states. We refer the reader to [14] for the
proofs.

Theorem 2.7. (Theorem 2 (MSP) [14]). For input M
over r states (r ≥ 2), there is a perfect phylogeny for M
if and only if there is a set Q of pairwise parallel legal
minimal separators in G(M) such that every illegal mini-
mal separator in G(M) is crossed by at least one separator
in Q.

Theorem 2.8. (Theorem 3 (MSPN) [14]). For input M
over r states (r ≥ 2), there is a perfect phylogeny for M
if and only if there is a set Q of pairwise parallel legal
minimal separators in partition intersection graph G(M)
such that every monochromatic pair of nodes in G(M) is
separated by some separator in Q.

For the special case of input M with characters over
three states (r = 3), the partition intersection graph satis-
fies additional structure and the following theorems give
necessary and sufficient conditions for the existence of a
perfect phylogeny forM [3].
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Theorem 2.9. [3] Given an input set M with at most
three states per character (r ≤ 3), M admits a perfect phy-
logeny if and only if every subset of three characters of M
admits a perfect phylogeny.

Furthermore, there is an explicit description of all
minimal obstruction sets to the existence of a perfect
phylogeny.

Theorem 2.10. [3] For input M over 3-state characters,
there exists a perfect phylogeny for M if and only if both of
the following conditions hold:

1. for every pair of columns of M, the partition
intersection graph induced by the columns is acyclic
and

2. for every triple of columns of M, the partition
intersection graphs induced by the columns does not
contain any of the graphs shown in Figure 2 up to
relabeling of the character states.

This complete characterization of minimal obstruction
sets allows us to simplify Theorem 2.8 in the case r = 3.

Theorem 2.11. [3] For input M on at most three states
per character (r ≤ 3), there is a three-state perfect phy-
logeny for M if and only if the partition intersection graph
for every pair of characters is acyclic and every monochro-
matic pair of vertices in G(M) is separated by a legal
minimal separator.

Theorem 2.11 shows that the requirement of Theorem
MSPN that the legal minimal separators in Q be pairwise
parallel can be removed for the case of input data over

three-state characters. The condition in Theorem 2.11
that the input is over three state characters is necessary,
as there are examples showing that the theorem does not
extend to data with four-state characters.
All of the legal minimal separators for three-state input

can be found inO(nm2) time and the algorithm to check if
each monochromatic pair is separated by a legal minimal
separator can be performed during the algorithm for gen-
erating the legal minimal separators (see Section “Proper
triangulation algorithm”). Therefore, the 3-state perfect
phylogeny decision problem can be solved inO(nm2) time
using minimal separators. However, it is not clear how
minimal separators can be used to solve the construction
problem in a similar time bound. In [14], Gusfield used the
minimal separator approach and integer linear program-
mingmethods to solve both the decision and construction
problem for k-state perfect phylogeny. Since integer linear
programming methods in general do not have polynomial
time bounds, this naturally leads to the following ques-
tion: is there an O(nm2) algorithm for the construction
problem for 3-state perfect phylogeny using the separator
approach? In this paper, we answer in the affirmative, and
show that any algorithm which explicitly computes the
partition intersection graph has a time bound of at least
O(nm + m2).
We first study the structure of separators in the par-

tition intersection graph for 3-state input with the goal
of answering this question. We first state two lemmas
from [3].

Lemma 2.12. (Lemma 3.4 [3]). Let M be a set of input
taxa with at most three states per character, and con-
sider any three characters χ i, χ j, χk in M. If the partition
intersection graph G(χ i, χ j, χk) is properly triangulatable,

Figure 2Minimal obstruction sets.Minimal obstruction sets for three-state characters up to relabeling. The boxes highlight the input entries that
are identical for three of the obstruction sets.
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then the only possible chordless cycles in G(χ i, χ j, χk) are
chordless 4-cycles, with two colors appearing once and the
remaining color appearing twice.

Lemma 2.12 implies that if a subset of three characters
χ i, χ j, χk in M is properly triangulatable, then there is a
unique set of edges F(χ i, χ j, χk) that must be added to tri-
angulate the chordless cycles in G(χ i, χ j, χk). Construct
a new graph G′(M) on the same vertices as G(M) with
edge set E(G(M)) ∪ (

⋃
1≤i<j<k≤m F(χ i,χ j,χk)). G′(M) is

the partition intersection graph G(M) together with addi-
tional edges to properly triangulate all chordless cycles in
each G(χ i, χ j, χk) for 1 ≤ i < j < k ≤ m (note these
are the chordless 4-cycles of G(M) on three colors). In
G′(M), edges from the partition intersection graph G(M)
are called E-edges and edges that have been added as tri-
angulation edges for some triple of columns are called
F-edges.

Lemma 2.13. (Lemmas 4.2, 4.3, 4.7 [3]) Let M be a set
of input taxa with at most three states per character, and
suppose G(M) is properly triangulatable. Then G′(M) can-
not contain a chordless cycle with one or more F-edges. If C
is a chordless cycle in G′(M) with only E-edges, then C has
length exactly four with four distinct colors.

Structure of separators
In this section, our goal is to study the relationship
between minimal separators in G(M) and G′(M) when M
is a set of taxa over 3-state characters. Our ultimate goal is
to show that it suffices to consider only the legal minimal
separators of G(M) while disregarding the illegal minimal
separators. We first prove the following theorem on the
separator structure of G′(M).

Theorem 3.1. LetM be a set of taxa over 3-state charac-
ters. M allows a perfect phylogeny if and only if G′(M) (the
partition intersection graph G(M) together with F-edges)
does not contain any illegal minimal separators.

Proof. Suppose M allows a perfect phylogeny and sup-
pose there is an illegal minimal separator S in G′(M) with
a monochromatic pair of vertices u and v. By Lemma 2.5,
there exist two full components C, D of G - S, and by def-
inition of a full component, there are paths connecting u
and v in both C ∪ {u, v} and D∪ {u, v}. Consider the short-
est such paths PC and PD respectively (note that there are
no chords within PC and no chords within PD). Since C
and D are components separated by S, there are no edges
between C and D. Also, u and v are not adjacent in G′(M)

since u and v have the same color and G′(M) contains no
illegal edges. This implies the union of PC and PD creates
a chordless cycle. By Lemma 2.13, G′(M) cannot contain
any chordless cycles of length five or greater or chordless

cycles with F-edges, so the union of the paths PC and PD
must be a four cycle C and in particular, must be a cycle
u → x → v → x′ → u, where u and v have the same color.
C is a chordless four cycle inG(M) on at most three colors,
which cannot occur since we have triangulated all such
cycles by F-edges. This contradiction implies S cannot be
an illegal minimal separator.
Now, suppose G′(M) does not contain any illegal mini-

mal separators. By Theorem 2.7, graphG′(M) has a proper
triangulation and since G(M) is a subgraph of G′(M),
G(M) also has a proper triangulation. It follows thatM has
a perfect phylogeny.

This suggests that analyzing the minimal separators of
G′(M) suffices for 3-state construction. However, the algo-
rithm for enumerating the minimal separators of G(M)
necessary for proper triangulations in O(nm2) time uses
M (rather than G(M)), and it is not clear if it is possible
to extend this approach to enumerate the necessary min-
imal separators of G′(M). In order to use techniques in
[14], the the goal of our next two results will be to describe
the relationship between the minimal separators ofG′(M)

and the legal minimal separators of G(M) when M has a
perfect phylogeny.

Lemma 3.2. Let M be a set of taxa over 3-state charac-
ters allowing a perfect phylogeny. Then H is a proper min-
imal triangulation of G(M) if and only if H is a minimal
triangulation of G′(M).

Proof. Suppose H is a proper minimal triangulation of
G(M). Each F-edge ofG′(M) comes from a chordless cycle
of length four on three colors (see Lemma 2.12), so this
edge must appear in any proper triangulation of G(M).
Hence the F-edges must be edges of H, so G′(M) ⊆ H
and H is a proper triangulation of G′(M). If H is not
minimal with respect to G′(M), there exists H ′ such that
G′(M) ⊆ H ′ ⊂ H and thus G(M) ⊆ H ′ ⊂ H , contradict-
ing the minimality of H with respect to G(M). Thus H is a
minimal triangulation of G′(M).
Conversely, suppose M allows a perfect phylogeny and

H is a minimal triangulation of G′(M). By Theorem 2.6,
H = G′(M)Q for a set Q of maximal pairwise parallel
minimal separators of G′(M), and these minimal separa-
tors must be legal by Theorem 3.1. Every edge in H not in
G(M) is either an F-edge of G′(M) or a fill edge defined
by Q, and in both cases it must be a legal fill edge. There-
fore H is a proper triangulation of G(M). If there is some
proper triangulation H ′ of G(M) where G(M) ⊆ H ′ ⊆ H
then the F-edges of G′(M) must be edges of H ′, other-
wise H ′ has a chordless four cycle. Thus H ′ is a proper
triangulation ofG′(M), and becauseH is a properminimal
triangulation of G′(M) it must be that H ′ = H . Therefore
H is also a proper minimal triangulation of G(M).
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Let �L
G(M) denote the set of legal minimal separators of

G(M).

Theorem3.3. SupposeM is a set of taxa on 3-state char-
acters that allows a perfect phylogeny. Then the legal mini-
mal separators of G(M) are exactly the minimal separators
of G′(M) (i.e., �G′(M) = �L

G(M)).

Proof. Assume M has a perfect phylogeny. Consider a
minimal separator S of G′(M), and suppose Q is a set of
maximal pairwise parallel minimal separators of G′(M)

with S ∈ Q. Let H = G′(M)Q. H is a minimal triangula-
tion of G′(M) by Theorem 2.6, and H is a proper minimal
triangulation of G(M) by Lemma 3.2. By Theorem 2.6,
Q is precisely the set of minimal separators of H. Fur-
thermore, because H is also a minimal triangulation of
G(M), the same theorem states that Q is a subset of the
minimal separators of G(M). Therefore S ∈ �G(M), so
�G′(M) ⊆ �G(M). Each minimal separator of G′(M) is
legal by Theorem 3.1. Hence �G′(M) ⊆ �L

G(M).
Conversely, let S ∈ �L

G(M). First we show that if
no F-edge f of G′(M) crosses S (i.e. f = xy where
S separates x and y), then S is a minimal separa-
tor of G′(M). Let C be a connected component of
G(M) − S. C is still connected in G′(M), and because
no F-edge of G′(M) crosses S, NG′(M)(C) ⊆ S. Hence
C is a connected component of G′(M) − S. Fur-
ther, we have only added edges to obtain G′(M), so
NG(M)(C) ⊆ NG′(M)(C). Therefore if C is a full compo-
nent of G(M) − S we have NG(M)(C) = NG′(M)(C) = S,
and it is also a full component ofG′(M)−S. By Lemma 2.5,
S is a minimal separator of G′(M).
Now consider a minimal separator S′ of G(M). If an F-

edge f = xy crosses S′, there is a four cycle x → u →
y → v → x in G(M) with monochromatic pair u,v, and
further, u, v ∈ S′. Hence S′ is illegal, and any legal mini-
mal separator of G(M) is not crossed by any F-edge. From
our previous argument, this implies �L

G(M) ⊆ �G′(M).
Therefore �G′(M) = �L

G(M).

The second half of the proof of Theorem 3.3 proves the
following.

Corollary 3.4. Suppose M is a set of taxa on 3-state
characters that allows a perfect phylogeny. If S ∈ �L

G′(M)

then C is a connected component of G(M) − S if and only
if C is a connected component of G′(M) − S.

We now prove the main result of this section.

Theorem3.5. SupposeM is a set of taxa on 3-state char-
acters. Then M has a perfect phylogeny if and only if any
maximal pairwise parallel set of legal minimal separators

Q of G(M) induces a proper minimal triangulation G(M)Q
of G(M).

Proof. First, suppose thatM has a perfect phylogeny, and
let Q be a maximal pairwise parallel set of legal minimal
separators of G(M). We show that G(M)Q is a proper tri-
angulation ofG(M). By Theorem 3.3,Q is a maximal set of
minimal separators of G′(M), and they are pairwise par-
allel because the connected components of each minimal
separator in Q are the same in G(M) and G′(M) (Corol-
lary 3.4). Hence H = G′(M)Q is a minimal triangulation
of G′(M) with minimal separator set Q (Theorem 2.6),
and by Lemma 3.2, H is a proper minimal triangulation of
G(M). Because �H = Q, Theorem 2.6 implies Q is a max-
imal pairwise parallel set of minimal separators of G(M)
and therefore H = G(M)Q. Thus H = G(M)Q is a proper
minimal triangulation of G(M).
For the converse, pick any maximal pairwise parallel

set of legal minimal separators Q of G(M) that induces a
proper minimal triangulation G(M)Q of G(M). Then M
has a perfect phylogeny by Theorem 2.3.

Proper triangulation algorithm
In this section, we build on techniques developed in [14]
to generate theminimal separators ofG′(M) and their par-
allel relations in O(nm2) time. This will allow us to use a
greedy approach to pick a maximal pairwise parallel set of
legal minimal separators. These minimal separators will
then define a set of fill edges for a proper minimal triangu-
lation, and a perfect phylogeny will be constructed in the
form of a clique tree using Maximum Cardinality Search
(MCS).

Lemma 4.1. [14] Let Q be a set of maximal pairwise
parallel legal minimal separators of a partition intersec-
tion graph G(M). Then for each S ∈ Q, |S| < m.

Define �∗
G(M) = {S ∈ �L

G(M) : |S| < m}. We first state
our algorithm and then analyze the running time of each
step.

Algorithm: proper triangulation for 3-state characters
1. Stop if there is a pair of characters whose partition

intersection graph contains a cycle.
2. Compute �∗

G(M) using proper clusters.
3. Stop if there is a monochromatic pair not separated

by any legal minimal separator.
4. Compute the crossing relations for �∗

G(M).
5. Greedily construct a maximal pairwise parallel subset

Q of �∗
G(M); stop if Q has more than 2n − 3minimal

separators.
6. Add edges to G(M) to make each S ∈ Q a clique.

Call this graph GQ.
7. Use MCS to construct a clique tree for GQ.
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We proceed with a series of lemmas that will be used
in Theorem 4.11 to show that each step is O(nm2). The
following simple observation is important for many of our
time bounds.

Observation 4.2. Let M be a set of taxa whose charac-
ters have at most three states. Then G(M) has O(m) vertices
(one vertex per state of each character) and O(m2) edges.

Step 2 of the algorithm uses concepts from [2,8,9,14],
which we detail here for completeness. A proper cluster
is a bipartition of the taxa (i.e. the taxa are split into two
disjoint nonempty sets) such that each character shares at
most one state across the bipartition, and at least one char-
acter is not shared across this bipartition [8,9]. There are
O(m) proper clusters when r is fixed. In particular, sup-
pose χ is not shared across the bipartition of a proper
cluster. Then the proper cluster also creates a bipartition
of χ ’s character states (see Figure 3). Hence, we can com-
pute the set of proper clusters by exhaustively checking,
for each character, if some bipartition of its states split the
taxa into a proper cluster (there are O(2r) ways to split
each character).
Proper clusters generate the minimal separators in

�∗
G(M) as follows [14]. For a connected component C of

G(M) − S, let t(C) be the set of taxa with character-
state χ i

j for at least one χ i
j ∈ C. We will refer to the

set of t(C) determined by the connected components of
G(M) − S as the S-partition of the taxa. Recall S has at

most m − 1 vertices by Lemma 4.1, so every taxon must
have a character-state that is not a vertex of S. Hence
no taxon can have all of its character-states as vertices
of S. Additionally, each taxon defines a clique, so it can-
not have vertices in more than one connected component
of G(M) − S (this would define an edge between con-
nected components). By Lemma 2.5, G(M) − S has two or
more full components C1 and C2. Place t(C1) and t(C2)
in separate parts of the bipartition, then for the remaining
connected components C of G(M) − S add t(C) to either
part. This defines a bipartition where the shared charac-
ter states (known as the splitting vector [9]) are exactly
the vertices of S. To see this, suppose a character-state χ i

j
is a vertex of S. Because C1 is a full component, there is
a vertex χ

i0
j0 ∈ C1 adjacent to χ i

j . Because these vertices
are adjacent, χ

i0
j0 and χ i

j appear in the same row of M,
which in turn is a taxon t1 of t(C1). Similarly, there exists
t2 ∈ t(C2) such that χi(t2) = j, so χ i

j is shared in the
bipartition. See Figure 3 for an illustration of these con-
cepts. This implies that |�∗

G(M)| = O(m). The following
two lemmas are special cases of those found in [14].

Lemma 4.3. [14] For any set of taxa M on 3-state char-
acters, �∗

G(M) can be computed in O(nm2) time. Further,
|�∗

G(M)| = O(m).

Proof. Our previous discussion proves that�∗
G(M) has at

most O(m) minimal separators, so we focus on the run-
ning time. Let g be a proper cluster with splitting vector x

Figure 3Minimal separators and proper clusters. In this figure, the bipartition ab|cdef gives rise to the proper clusters ab and cdef. The shared
character states χ2

1 ,χ
3
0 ,χ

4
0 form a legal minimal separator S in G(M). G(M) − S has three connected components, of which two are full (components

C1 and C2). The S-partition gives rise to the bipartition because t(C1) = {a, b} and t(C2) ∪ t(C3) = {c, d, e, f }. T is a clique tree for G(M) (in this case,
G(M) happens to be chordal). T is obtained from T by resolving the nodes labeled b,c,f. Note that S is represented in T on edge bc because
{χ1

0 ,χ
2
1 ,χ

3
0 ,χ

4
0 } ∩ {χ1

0 ,χ
2
1 ,χ

3
0 ,χ

4
0 } = {χ2

1 ,χ
3
0 ,χ

4
0 }. For a clique tree T of a chordal graph, every minimal separator of the chordal graph behaves this

way [11,21]. In this sense, legal minimal separators are analagous to splitting vectors.
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and let Sx be the vertices of G(M) appearing as character-
states in x. Define the equivalence relation g/x by the
transitive closure of the relation tRt′ if and only if there
is a character χ i where χ i(t) = χ i(t′) = j and χ i

j is not
a shared character state in x; calculating g/x takes O(nm)
time [9]. Given an equivalence class [t] of g/x, the vertices
{χ i

j /∈ Sx | χ i(t′) = j for some t′ ∈ [ t] } are a connected
component ofG(M)−Sx, and every connected component
can be described in this way. For a connected compo-
nent C of G(M) − Sx, the size of its neighborhood can
be calculated using the t(C) rows of M (i.e. for t ∈ t(C),
count the character states of [t] also in x, being careful
not to overcount). Sx ∈ �∗

G(M) if and only if there are
distinct equivalence classes [t] and [ t′] that share all char-
acter states in x. For each equivalence class, we examine
each taxon once, so this requires a single pass through
every row ofM and can be done inO(nm) time per proper
cluster, so step 2 takes O(nm2) time.

In the proof of Lemma 4.3, we showed how to com-
pute the S-partition of the taxa for S ∈ �∗

G(M) in O(nm)
time. It is now easy to calculate the connected compo-
nents ofG(M)− S: if t(C) is part of the S-partition, then C
is obtained by listing the character-states that appear in at
least one t ∈ t(C) but not in S. This proves the following.

Lemma 4.4. [14] Let M be a set of 3-state taxa and S ∈
�∗

G(M). There is an O(nm) algorithm that calculates the
connected components of G(M) − S and determines which
of these connected components is full.

Before discussing the running time required to compute
crossing relations, we first state two structural lemmas
on minimal separators; the second follows from a lemma
in [19].

Lemma 4.5. [18] Let S and S′ be non-parallel minimal
separators. Then for each full component C of G−S′, S has
a vertex in C.

Lemma 4.6. (Lemma 3.10, [19]). Let S and S′ be two
minimal separators of a graph G. Then S and S′ are par-
allel if and only if there exists a full component CS of
G − S and a connected component CS′ of G − S′ such that
CS ⊆ CS′ .

Because of the slight change from Lemma 3.10 in [19]
and for completeness, we give a proof of Lemma 4.6.

Proof. Suppose S and S′ are parallel. Since S is a minimal
separator, there are at least two full components in G − S
and because S′ is parallel to S, there is a full component
C1 of G − S that does not intersect S′. C1 is connected in

G − S′, so there is a connected component C of G − S′
containing C1.
Now, suppose there are CS and CS′ satisfying the condi-

tions of the lemma. Then S ⊆ N(CS) ⊆ CS′ ∪ N(CS′) ⊆
CS′ ∪ S′, implying that S and S′ are parallel.

Lemma 4.7. There is an O(nm2) algorithm to calculate
the crossing relations of �∗

G(M).

Proof. Let S, S′ ∈ �∗
G(M). We begin by showing that S

and S′ are parallel if and only if there is a full component
C ofG(M)−S and connected component C′ ofG(M)−S′
such that t(C) ⊆ t(C′) (i.e. t(C) is contained in a single
part of the S′−partition). Suppose S and S′ are parallel.
From Lemma 4.6, there are connected components C of
G(M) − S and C′ of G(M) − S′ such that C ⊆ C′ and
consequently t(C) ⊆ t(C′).
Conversely, assume that S and S′ are not parallel. Let C1

be a full component of G(M) − S and C2 be a full com-
ponent of G(M) − S′. By Lemma 4.5, there is a vertex
v ∈ C1∩S′, and because C2 is full, there is a u ∈ C2∩N(v).
The taxa form an edge clique cover for G(M), so there
is a taxon t having both character states corresponding
to u and v. Note v ∈ C1 so t ∈ t(C1) and u ∈ C2 so
t ∈ t(C2). S′ has at least two full components, and repeat-
ing this argument yields another full component C′

2 �= C2
of G(M) − S′ such that t(C1) ∩ t(C′

2) �= ∅. Thus t(C1)
shares at least one taxon with at least two parts of the
S′−partition, so t(C1) is not contained within any single
part of the S′−partition. This proves our characterization
of parallel minimal separators of �∗

G(M).
It suffices to check for each full component C ofG(M)−

S and connected component C′ of G(M) − S′ if t(C) ⊆
t(C′). There are O(m2) pairs of legal minimal separators,
and this check takes O(n) time (O(nm2) time overall)
when the S-partition has been calculated for each S ∈
�∗

G(M).

It is critical for our time bound that any proper mini-
mal triangulation of G(M) have O(n) minimal separators
because this impacts the computation of edges contained
in the proper minimal triangulation. A result bounding
the number of minimal separators in an earlier version of
this paper (Lemma 7 in [20]) was incorrect, as demon-
strated in Figure 4. We present a corrected bound for the
number of minimal separators in the following Lemma.

Lemma 4.8. Suppose that H is a proper minimal trian-
gulation of G(M). Then H has at most 2n − 3 minimal
separators.

Proof. Let T be a clique tree of H. Recall that the nodes
of T are in bijection with the maximal cliques of H. To
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Figure 4 Bounding minimal separators of proper minimal triangulations. An example of the bound in Lemma 4.8. H has five minimal
separators, obtained from every pair of vertices from the set {χ1

1 ,χ
2
2 ,χ

3
0 ,χ

4
0 } except {χ1

1 ,χ
4
0 }. There are four taxa, so Lemma 4.8 gives an upper

bound of five minimal separators. Therefore, the bound in Lemma 4.8 is tight for n = 4 taxa.

make this correspondence explicit, for each node x of T
we will write Kx to mean the maximal clique of H that
corresponds to x. A classic result in chordal graph theory
says that if S ∈ �H , there is an edge xy of T such that
S = Kx ∩ Ky [11,21]. Therefore the number of minimal
separators in H is at most the number of edges of T .
First, consider any leaf a of T . We claim thatKa contains

a vertex of G that is not in any other maximal clique of
G (this fact is well known in the chordal graph literature
[22], but we prove it here for completeness). Suppose a′ is
the neighbor of a in T . By maximality, Ka �⊂ Ka′ so there
is a vertex v ofH that is contained in Ka but not contained
in Ka′ . If v is contained in a maximal clique ofG that is not
Ka, then the second property of clique trees implies that
v ∈ Ka′ as well. Hence v is only contained in Ka, proving
the claim. Further, v is some character-state χ i

j , and there
is a taxon t ofM such that χ i(t) = j. Taxon t can only label
a because no other node of T corresponds to a maximal
clique that contains χ i

j . Thus for each leaf of T there is a
unique taxon that labels it.
To complete the proof, we show a similar result for inter-

nal nodes of T with degree two. Let z be such a node with
neighbors z1 and z2. If z contains a vertex that is only con-
tained in z′s maximal clique Kz, our previous argument
shows that z can be labeled by a unique taxon. Suppose
this is not the case. Let Si = Kz ∩ Kzi for i = 1, 2. It must
be that Kz = S1 ∪ S2 because we are considering the case
when Kz does not contain a unique vertex. Further, we
cannot have S1 ⊆ S2 since otherwiseKz = S2 ⊆ Kz2 would
not be maximal. Similarly, S2 �⊆ S1. Pick u1 ∈ S1 − S2 and
u2 ∈ S2 − S1, noting that u1 /∈ Kz2 and u2 /∈ Kz1 . We
argue that Kz is the only maximal clique containing both
u1 and u2. This is because if any other maximal clique K
contains both vertices, then eitherKz1 orKz2 is on the path

from Kz to K in T (K has degree two) and by the second
property of clique trees, this maximal clique also contains
both vertices. Further, because each S ∈ �H is of the form
S = Kx ∩ Ky for an edge xy of T , there is no minimal sep-
arator of H containing both u1 and u2. By Theorem 2.6,
u1u2 = χ

i1
j1 χ

i2
j2 is an edge of G(M) (i.e. it is not a fill edge)

because H is a minimal triangulation of G(M), so all fill
edges come from saturating each S ∈ �H . Therefore there
is a taxon t′ of M such that χ i1(t′) = j1 and χ i2(t′) = j2.
As in the unique vertex case, z is the unique node with
label t′.
Therefore any node of T with degree at most two is

labeled by a unique taxon, implying there are at most n
such nodes. Any tree containing at most n leaves and
internal nodes of degree two has at most 2n − 3 edges.
Hence T has at most 2n − 3 edges, and in turn H has at
most 2n − 3 minimal separators, proving the bound.

Remark. The proof of Lemma 4.8 requires minimal-
ity of the triangulation, but it does not require that M
lacks missing values or that the number of states for each
character is bounded.

This Lemma along with the fact that each S ∈ �∗
G(M)

has fewer thanm vertices gives the following result.

Lemma 4.9. Suppose that H is a proper minimal tri-
angulation of G(M) obtained by saturating a maximal
pairwise parallel legal set of minimal separators Q. Then
H has O(n) minimal separators, O(m) vertices, and O(m2)
edges. Furthermore, H can be calculated in O(nm2) time.

Proof. The minimal separator bound follows from
Lemma 4.8, and the vertex and edges bounds follow from
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Observation 4.2 and the fact that H and G(M) have the
same vertex set. In order to calculate H, we must cal-
culate the fill edge set E(H) − E(G(M)). Recall that, by
Theorem 2.6, the fill edges ofH are obtained by saturating
each minimal separator in Q. Each S ∈ Q has fewer than
m vertices by Lemma 4.1 and |Q| = O(n) by Lemma 4.8.
It is straightforward to check for each S ∈ Q and each pair
u, v ∈ S if uv defines a fill edge with an amortized running
time of O(nm2).

In [23], Tarjan and Yannakakis developed Maximum
Cardinality Search (MCS), which recognizes chordal
graphs in linear time. Blair and Peyton [11] showed how
MCS can be used to construct a clique tree for a chordal
graph while retaining the linear time bound.

Lemma 4.10. [11] Let G be a chordal graph. Then Max-
imum Cardinality Search (MCS) can be implemented to
produce a clique tree T of G with running time O(|V (G)|+
|E(G)|).

Combining these lemmas show that our minimal sep-
arator algorithm for constructing perfect phylogenies for
r = 3 is competitive with the algorithm of Dress and Steel
[1], giving our main result.

Theorem 4.11. The algorithm Proper Triangulation for
3-State Characters runs in O(nm2) time.

Proof. The first step can be implemented in O(m2) time
as follows. Each pair of characters has a partition intersec-
tion graph with at most six vertices, and it is straightfor-
ward to check for cycles. There are O(m2) such pairs of
characters. Lemma 4.3 states that step two takes O(nm2)
time. For the third and fourth step, we first compute the
connected components of G(M) − S for each S ∈ �∗

G(M).
Lemmas 4.3 and 4.4 tell us there are O(m) computations
that require O(nm) time, so computing all the sets of con-
nected components takes O(nm2) time. There are O(m)

monochromatic pairs (three pairs per character), and for

each monochromatic pair χ i
i1 ,χ

i
i2 we check the connected

components of each S ∈ �∗
G(M) and ensure at least one of

these minimal separators is a (χ i
i1 ,χ

i
i2)-separator. Hence

step three takes O(m2) time. Lemma 4.7 shows that step
four has a running time of O(nm2). Step five runs in
O(nm) time due to the bounds in Lemmas 4.3 and 4.8.
That is, after picking a minimal separator S to be in Q,
there areO(m)minimal separators that can cross S and we
repeat this process O(n) times to construct Q. Construct-
ing GQ was shown to take O(nm2) time in Lemma 4.9.
Lemma 4.9 shows thatO(|V (GQ)|+ |E(GQ)|) = O(m2) so
using MCS in step 7 takes O(m2) time. Hence each step
and the pre-processing for each step takes at mostO(nm2)
time, so the algorithm takes at most O(nm2) time.

Large partition intersection graphs
Ideally, one would like to find an O(n2m) or O(nm) algo-
rithm for 3-state perfect phylogeny (i.e.,m is square-free).
In this section, we will construct a family of 3-state matri-
ces M that have a perfect phylogeny and �(m2) edges
in G(M). This discourages attempts to improve our time
bound using an approach that explicitly computes the
partition intersection graph.
Any 3-state character compatible with a perfect phy-

logeny can be obtained from choosing any two edges
of the phylogeny, removing them, and using the three
resulting subtrees to define each taxon’s state for that char-
acter. 2-state characters are obtained in a similar manner,
removing a single edge instead of two edges. Therefore, if
a 3-state matrixMwith distinct columns (up to relabeling)
has a perfect phylogeny,m = O(

(n
2
)
) = O(n2).

Consider the tree T with taxa t1, t2, . . . , tn as depicted in
Figure 5, and suppose i < j. We construct the character
χ(i,j) using the partition {t1, t2, . . . , ti}, {ti+1, ti+2, . . . , tj},
{tj+1, tj+2, . . . , tn} as in Figure 5. Each set in the partition is
called the cell 0, cell 1, and cell 2 of χ(i,j), respectively. That
is, χ(i,j)(t1) = 0, χ(i,j)(ti+1) = 1, χ(i,j)(tj+1) = 2, and so on.
Let M∗ be the matrix whose columns are the characters
χ(i,j) for 1 ≤ i < j < n. T is clearly a perfect phylogeny for

Figure 5 Characters of a perfect phylogeny with a large partition intersection graph. A 3-state character created using “intervals” of taxa from
a fully resolved tree T. The 0th piece of χ(i,j) is the interval χ(i,j)

0 .
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M∗, and m = (n−1
2

) = �(n2). Next, we show that G(M∗)
has �(m2) edges.

Observation 5.1. Let χ(i,j) and χ(i′,j′) be distinct charac-
ters of M∗. Then χ

(i,j)
k χ

(i′,j′)
k′ is an edge of G(M∗) iff cell k of

χ(i,j) and the cell k′ of χ(i′,j′) have a non-empty intersection
(i.e. share a taxon).

For example, the cell 1 of χ(3,5) and cell 1 χ(4,6) share
taxon t5 so χ

(3,5)
1 χ

(4,6)
1 is an edge in G(M∗). In contrast,

cell 0 of χ(3,5) and cell 1 of χ(4,6) do not share any taxa,
so χ

(3,5)
0 χ

(4,6)
1 is not an edge in G(M∗). Consider the char-

acters χ(i,j) and χ(i′,j′) for distinct i, i′, j, and j′. There are
at least

(n
4
)
pairs of these characters, and each such pair

provides at least one edge to G(M∗) because both cell 0 of
χ(i,j) and cell 0 of χ(i′,j′) share t1. Therefore G(M∗) has at
least o(n4) = o(m2) edges. There are at most

(m
2
)
edges

in any partition intersection graph, so G(M∗) has �(m2)
edges, and reading each entry of M to compute G(M)
requires at least nm time. Hence any construction algo-
rithm that explicitly computes the partition intersection
graph requires at least O(nm + m2) time.

Conclusions
We have demonstrated how to use the minimal separa-
tor approach introduced in [14] to construct a perfect
phylogeny for 3-state data in O(nm2) time. We also con-
structed a 3-state matrix M with a perfect phylogeny that
has �(m2) edges. Thus, any explicit analysis of the edges
ofG(M) or of a proper triangulation ofG(M) is inadequate
to speed up our approach. Faster proper triangulation
algorithms should useM for computation instead ofG(M)
aided with theoretical results about G(M). Constructing
tree representations in order to minimally triangulate a
graph without explicitly computing the fill edges was stud-
ied in [19] in order to achieve a faster time bound, and it
would be interesting to see if these ideas can be extended
to find a faster construction algorithm for 3-state perfect
phylogeny.
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