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Abstract

Gene Ontology (GO) is a hierarchical vocabulary for the description of biological functions and locations, often
employed by computational methods for protein function prediction. Due to the structure of GO, function
predictions can be self- contradictory. For example, a protein may be predicted to belong to a detailed functional
class, but not in a broader class that, due to the vocabulary structure, includes the predicted one.
We present a novel discrete optimization algorithm called Functional Annotation with Labeling CONsistency
(FALCON) that resolves such contradictions. The GO is modeled as a discrete Bayesian Network. For any given input of
GO term membership probabilities, the algorithm returns the most probable GO term assignments that are in
accordance with the Gene Ontology structure. The optimization is done using the Differential Evolution algorithm.
Performance is evaluated on simulated and also real data from Arabidopsis thaliana showing improvement compared
to related approaches. We finally applied the FALCON algorithm to obtain genome-wide function predictions for six
eukaryotic species based on data provided by the CAFA (Critical Assessment of Function Annotation) project.
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Background
Central aim of computational protein function predic-
tion methods is to provide reliable and interpretable
results, in order to be useful for the biological commu-
nity. For this reason, prediction methods often make use
of the Gene Ontology (GO) controlled vocabulary [1] to
describe functional properties of proteins. GO terms are
organized in three separate domains that describe dif-
ferent aspects of gene and protein function: Molecular
Function (MF), Biological Process (BP) and Cellular Com-
ponent (CC). Within each domain the terms are arranged
in a Directed Acyclic Graph (DAG). Due to the hierarchi-
cal structure of the GO-DAG, a protein that is assigned
to a particular term is by definition assigned to all of
its predecessors, which are more general GO terms. On
the other hand, if a protein does not perform a particu-
lar function, it is not assigned to the corresponding GO
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term, nor to any of the successors (more detailed terms)
of that term. This constraint of the GO-DAG is referred
to as the True Path Rule (TPR) and provides a frame-
work to ensure that functional descriptions of proteins
are not self-contradictory. Computational methods often
neglect the TPR in their predictions, making their inter-
pretations problematic. Taking the GO DAG (and thus
TPR) into account in protein function predictionmay lead
to improvement of the performance and interpretation.
Violation of TPR can be described in a continuous or in

a discrete manner. In the former, the probability (or con-
fidence) of membership to a GO term does not decrease
monotonically whenmoving frommore general GO terms
to themore detailed ones. Therefore the space of probabil-
ity vectors (where a vector denotes the joint set of per-GO
term probabilities of memberships) can be divided in two
sets: one set (C) that contains the probability vectors that
satisfy the monotonicity constraint and another set (V )
that contains those that violate the constraint. The chal-
lenge from the continuous point of view is, given a vector
V to find an optimal corresponding vector in C, according
to a criterion.

© 2013 Kourmpetis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Obozinski et al. [2] developed different “reconciliation”
approaches to infer consistent probability vectors from
Support Vector Machines (SVM) outputs transformed to
probabilities. Performance comparisons between meth-
ods based on Belief Propagation, Kullback-Leibner min-
imization and Isotonic Regression (IR), showed that the
last outperformed the rest. In IR [3,4] predictors are the
ranks in the ordering of terms in the GO-DAG from gen-
eral to detailed and the responses are the membership
probabilities. The aim is to identify the probability vector
that minimizes the squared error with the original input
vector and that is monotonic for the predictors and thus
belongs to C.
In the discrete case, the interest is shifted from the prob-

abilities of membership to the memberships themselves.
The TPR violation can be evaluated by checking whether
all dependencies are satisfied or not. Given an inconsis-
tent probability vector, the aim is to find themost probable
set of GO assignments that do not violate TPR. The task
of inferring the most probable latent binary vector given
the input probabilities is a decoding problem, which is
well-studied in information theory when the underlying
structure of constraints has a tree-like structure (including
chains). The Viterbi algorithm [5] (also called min-sum
[6]) performs such exact inference in tree-like struc-
tures. Standard hierarchical classification is not a suitable
approach to this problem due to the the DAG structure of
GO and multi-functionality of proteins [7]. For instance,
applying hierarchical classification to the DAG depicted
in Figure 1A, one starts from the root (x1) and moves to
either x2 or x3. Regardless the outcome of this classifica-
tion, it is not possible to give a positive prediction for x4
without violating the TPR (since exactly one of its parents
will not be predicted). However, Vens et al. [8] proposed
an hierarchical classification methodology adapted for the
GO vocabulary. Other interesting approaches come from
fuzzy classification [9]. Exact inference in DAG struc-
tures is an NP-hard problem [10] that can be performed

by the Junction Tree algorithm [11] but the computa-
tional cost is intractable for the size of graphs such as the
GO. Barutcuoglu et al. [12] modeled the GO-DAG as a
Bayesian Network and they combined SVM outputs per
GO term in order to obtain GO assignments. In their case,
exact inference was feasible because of the small size of
the GO-DAG part used in the study (105 terms). Another
related approach was developed by Sokolov and Ben-Hur
[13] where SVM classifiers for structured spaces, such as
the Gene Ontology, were developed. Valentini et al. [14]
and Cesa-Bianchi et al. [15] developed ensemble algo-
rithms that transfer the decisions between base (GO term)
classifiers according to the GO DAG structure. Jiang et al.
[10] first converted the GO DAG to a tree structure and
then applied exact inference.
Here, we take a discrete approach to the problem of TPR

violations andwe develop an algorithm for the inference of
most probable TPR consistent assignments using per-GO
term probabilities as input. To the best of our knowledge
there is no other algorithm for this task that is suitable
for large DAGs. We model the GO DAG as a Bayesian
Network and we infer the most probable assignments
employing the global optimization method of Differential
Evolution [16], which is adapted for discrete space. We
test our algorithm on small graphs of size 6 and 15 nodes,
for which we can perform exact inference. We show that
our algorithm consistently finds the correct optimal con-
figuration. Further we evaluate the performance of the
algorithm on probabilistic outputs of Bayesian Markov
Random Fields (BMRF) [17] as applied previously in Ara-
bidopsis thaliana protein function prediction [18]. Our
algorithm is applied to a graph that contains 1024 GO
terms. We show that besides providing consistent pre-
dictions, our algorithm improves the performance of the
predictions compared to a supervised method used in
a previous study. We finally applied our algorithm in
large scale and we provide function predictions for 32,000
unannotated proteins from six eukaryotic species.

Figure 1 Example graphs. AMinimal Directed Acyclic Graph (DAG). B DAG with 15 nodes, that was used in our experiments.
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Materials andmethods
The GO is a vocabulary that describes the functions and
locations of genes and its terms are arranged in a DAG
structure, i.e. every node has zero, one or more parents
and children. A protein can be assigned to one or mul-
tiple terms from each domain of GO [7]. The TPR of
the GO-DAG implies that when a protein is known to
be assigned to a particular GO term, it should also be
assigned to all ancestor terms. In contrast, when a pro-
tein is known not to be a member of a GO term, it
should not be a member of any of all the successors of
that term. By GO-DAG consistency we denote satisfac-
tion of the TPR (also see Table 1). In terms of prediction,
given a probably inconsistent vector of input probabil-
ities, one has to find the most probable multiple and
consistent GO-DAG paths that the protein has to be
annotated to.
Naturally, methods that treat GO terms independently

and neglect the DAG structure of the GO can make
predictions that are inconsistent. In particular for proba-
bilistic methods those inconsistencies may appear in the
form of pi > pj in which the term j is an ancestor of
term i, and thus more general. In this study, we aim to
find the most probable consistent GO term assignments,
using such probability vectors as input. We first describe
the general probabilistic setting, then derive two likeli-
hood based objective functions and finally an evolutionary
algorithm for the optimization.

Bayesian network modelling of GO
Consider a Directed Acyclic Graph (DAG) G = (V ,E)

with nodes V (denoting the set of GO terms) and E
directed edges (the set of parent-child relationships). Vec-
tor θ denotes the input probability vector which is |V | -
dimensional and x is the corresponding binary labeling,
where xg = 1 denotes membership for a particular protein
to the g-th GO term in V GO term.
We model the GO-DAG as a Bayesian Network, with

density for x:

p (x | G, θ) =
|V |∏
g=1

p
(
xg | xpa(g)

)
(1)

where pa(g) denotes the parent set of node g and xpa(g)
the set of labels that correspond to those parents.

Table 1 Parent-child relationship in a GO-DAG

Parent

1 0

Child 1 C V

0 C C

C denotes consistent configuration while V denotes violating configuration.

The probability p(xg | xpa(g)), under the DAG con-
straints, is given using the Conditional Probability
Table (CPT) of Table 2. The table shows that when
min(xpa(g)) = 0 (i.e. at least one of the parents has label
0) then xg = 0 with probability 1. Otherwise xg = 1 with
probability θg and xg = 0 with probability 1−θg . Note that
all inconsistent labelings have zero probability.
Given equation 1 and conditional probability tables with

parameters = (θ1, · · · , θ|V |), one wishes to identify the
most probable labelings vector x. There are two challenges
in this. The first is how to choose the parameter vec-
tor θ , discussed in this section, and the second is how to
search for the most probable labelings vector x, which is
discussed in the next section.
Most computational methods for GO term prediction

are developed under a multi-class classification frame-
work, where each GO term denotes a class and for each
protein the probability of being member of that class is
evaluated by the method. Classes are arranged accord-
ing to a DAG hierarchy and further each protein may
belong to one or multiple classes. In GOStruct [13] a
SVM approachwas developed to performmulti-class clas-
sification in a single step. However, the vast majority
of the methods split the multi-class problem in mul-
tiple binary classification ones (i.e. one versus all) and
therefore act per GO term and disregard the GO hier-
archy. GeneMANIA [19], Kernel Logistic Regression [20]
and BMRF [17] propagate function information through
networks of protein associations and this operation is per-
formed per GO term. Blast2GO [21], GO-At [22] and
Aranet [23] perform overrepresentation analysis for each
GO term separately. Such methods do not return the
conditional probabilities in the sense of equation 1. The
membership probabilities that they return are perhaps
best viewed as marginal probabilities, i.e. summed over
all configurations for GO terms other than the specific
term g. We might have tried to retrieve θ from the rela-
tion between marginal and conditional probabilities, but
this is certainly not an easy way. We attempted other
ways.
Methods such as BMRF return low probabilities for

detailed GO terms and high ones for general terms. Pri-
oritization of the proteins in a particular GO term can
then be achieved by simply sorting them. By contrast, pri-
oritization of GO terms for a particular protein (a more

Table 2 Conditional probability table, under the DAG
constraints

min(xpa(g))

1 0

xg 1 θg 0

0 1 - θg 1
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important task) is not simple as the sets of probabilities for
different GO terms are not directly comparable. To make
them comparable, the probabilities need to be calibrated.
We derive two approaches.
The first, called DeltaL is based on the maximization of

the difference of the likelihood and prior probability of the
labelings as they are defined in equation (1). The second,
called LogitR, is based on explicit calibration of the input
probability vector.
For DeltaL, we modify the objective function of

equation (1) by incorporating the prior probabilities of
membership θ∗. The prior probability θ∗

g depends on the
generality of the GO term g (i.e. the class size) and is esti-
mated as the fraction of the total proteins annotated to
that GO term. We use the log ratio between the input
probability and the prior, log(p(xg | θg)/p(xg | θ∗

g )) as
score function for the labeling of the g-th GO term. For
xg = 1 the score is equal to log(θg/θ∗

g ), while for xg = 0 it
takes the value of log((1 − θg)/(1 − θ∗

g )). When θg > θ∗
g

then xg = 1 maximizes the function. In the opposite case
xg = 0 gives the maximum. The extended function is
given by the difference of the log likelihoods:

�L
(
X; θ , θ∗) =

|V |∑
g=1

log
p

(
xg | θg

)

p
(
xg | θ∗

g

) , (2)

giving

�L
(
X; θ , θ∗) = log (p(X | θ)) − log

(
p

(
X | θ∗)) . (3)

Note that when the input probabilities are very close
to the priors, the objective function of DeltaL becomes
multimodal.
In LogitR optimization of equation 1 is performed on a

calibrated input probability vector. The calibration is done
as follows:

logit
(
θcg

) = logit
(
θ∗
g

)
+ α

(
logit

(
θg

) − logit
(
θ∗
g

))

(4)

where θcg is the calibrated probability for node g and can
be calculated using the inverse of the logistic transforma-
tion, θ∗

g is the prior probability of membership for node g
and α a slope parameter. In this objective function, when
the posterior probability θ = θ∗ then the probability of
membership is equal to θ∗ (Figure 2A). As θ deviates from
the prior, the calibrated probability θcg changes according
to the logistic function given θg and α (Figure 2B). The α

parameter was tuned using Saccharomyces cerevisiae data.
In particular, for a range of α = 1, 1.5, 2.0, 2.5, 3.0 the
LogitR approach was applied taking as input BMRF based
predictions obtained from a previous study [17] before
March 2010. The evaluation set consisted of 327 proteins
that were annotated after March 2010, according to the
GO annotation file of July 2011. The relevant part of GO

DAG contained 423 terms from Biological Process. For
each value of α the prediction performance was measured
using the F-score, which is the harmonic mean of preci-
sion and recall. The largest F-score was obtained for α = 2
and therefore we fixed α to that value.

Optimization by differential evolution: The FALCON
algorithm
The DeltaL in equation(3) and LogitR in equation(4)
approaches do not involve directly the TPR constraints.
We develop an optimization algorithm inspired from
Differential Evolution (DE) [16] that by construction is
restricted to the subspace of consistent labelings. We call
our algorithm Functional Annotationwith Labeling CON-
sistency (FALCON). In general, DE works by evolving a
population of candidate solutions to explore the search
space and retrieve the maximum. Because DE is derivative
free, it has appealing global optimization properties. Also,
it is suitable for optimization in discrete spaces (like the
labelings space in our problem).
The graph representation of the labelings is helpful to

explain how the algorithm works. Given the graph G and
its corresponding labeling X, we define a reduced graph
R = (VR,ER) which contains the nodes with corre-
sponding labels x = 1. If X is consistent, in the TPR
sense, R will be a connected sub-graph of G and main-
taining the original structure for the VR nodes. Consider
two labelings L1, L2 and their graphs R1, R2 respec-
tively is given in Figure 3. Graph union R1 ∪ R2 gives
the expanded graph Runion = (VR1 ∪ VR2 ,ER1 ∪ ER2),
while graph intersectionR1∩R2, gives the contracted one
Rint = (VR1 ∩ VR2 ,ER1 ∩ ER2). The nodes that will be
included in the resulting graph are given by set operations
(i.e. (VR1 ∪ VR2) and (VR1 ∩ VR2) respectively), but also
equivalently by performing logical OR (for union),X1∨X2,
and logical AND (for intersection), X1 ∧ X2 operations on
the labelings directly. Table 3 and Figure 3 illustrate those
operations.
Operations between consistent graphs (labelings) result

in consistent graphs (labelings) as well, because the edge
set of the last is the union or the intersection of the
operands and therefore a particular edge has to pre-exist
in at least one of the operands without violating the TPR.
This property can be seen as follows: For any parent-child
pair of nodes there are three types of configurations that
are consistent (Table 1). Graph union and intersection
between any combination of those pairs leads to locally
consistent labeling. This holds for all the parent-child
pairs, so it holds for the full labeling. Therefore the out-
come of graph union and intersection will be consistent as
well. Further, operations between more than two labelings
will be consistent as well due to the associativity prop-
erty. The FALCON optimization algorithm is based on
the generation and evolution of a population of subgraphs
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Figure 2 Calibration of posterior probabilities using α = 2. A. Calibrated probabilities (y-axis) against the posterior probabilities (x-axis) when
the prior is equal to 0.2. B. Image plot, for the entire range of prior and posterior probabilities. The colors denote the calibrated probabilities.

i.e. R1...RN , with N = 2 | V |. The population is first
initialized with consistent labelings (graphs) and evolved
exploiting the graph-union and graph-intersection oper-
ations between individuals. Through the generations, all
the constructed labelings will be consistent due to the
abovementioned property. In our optimization problem
we used four strategies to propose a new candidate solu-
tion (labelings) for the i-th graphRi, that is member of the
population:

• S1: Global UnionRCand = R1 ∨ R2 ∨ e
• S2: Global IntersectionRCand = R1 ∧ R2 ∨ e
• S3: Local UnionRCand = Ri ∨ R1 ∨ R2 ∨ e
• S4: Local IntersectionRCand = Ri ∧ R1 ∨ R2 ∨ e

The first two types are called global because they do not
involve Ri while the latter two are local moves. Graph e
is a random subgraph of the original full graph (i.e. GO-
DAG), constructed by sampling a random node and all its

ancestors. e ensures that all consistent configurations can
be eventually proposed and reached.
With f the objective function i.e. being DeltaL or Log-

itR, the scheme of the FALCON algorithm is as fol-
lows:

Initialize Population R of size N = 2 | V | by picking
random consistent vectors (see below):
while Convergence or Maximum generations not
reached do

for i = 1 to N do
Sample two labelings from the population
R1,R2 �= Ri
Construct RCand using the a randomly picked
strategy S1, S2, S3, S4
if f (RCand) > f (Ri) then,Ri := RCand

end for
end while
Initialization of the population for DeltaL is done by

random sampling GO terms according to their individual

Figure 3 Examples of graph (upper row) and logical (lower row) operations, using the DAG structure of Figure 1A.
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Table 3 Logical operations OR and AND for all the
combinations of labels

x1 x2 OR (x1 ∨ x2) AND (x1 ∧ x2)

0 0 0 0

1 0 1 0

0 1 1 0

1 1 1 1

In this example X1 and X2 are univariate.

score (log ratio of the input and prior probability), while
LogitR by sampling from the binomial distribution with
probability equal to the calibrated one. In both cases the
nodes were up-propagated in order to construct a con-
sistent labeling. The computation was terminated after
10,000 generations or after reaching a plateau (i.e. there is
no improvement in the objective function for 100 genera-
tions). Finally we point that a valid Markov Chain Monte
Carlo algorithm cannot be derived using those proposal
strategies because they do not represent reversible moves.
The bitwise exclusive OR move proposed by Sterns in
[24] is reversible but does not lead to consistent labelings.
Implementation of the algorithm was done in R language
for Statistical Computing and using the igraph R package
[25].

Performance evaluation
We evaluated the performance of the FALCON algorithm
on the DeltaL and LogitR objective function using Pre-
cision, Recall and F-score. Precision is defined as the
percentage of correct GO terms in the list of the GO
predictions. Recall is equal to the percentage of the GO
assignments that were identified and F-score is the geo-
metric mean of the Precision and Recall.

Simulated data
First, we tested the capability of FALCON to retrieve the
most probable graph using the full graphs in Figure 1
with hundred simulated probability vectors. The first con-
tains six nodes and the second fifteen. Because the graphs
are small, exhaustive search of the most probable labeling
was computationally tractable. We generated a hundred
random probability vectors, by sampling probabilities for
each node from the uniform distribution. Then we iden-
tified the most probable labeling for each simulated prob-
ability vector and the one returned by FALCON using
equation (1) as objective function. Performance measures
were calculated by comparing the vectors obtained by
FALCON with the most probable ones as calculated from
the exhaustive search.

Real data
The performance of FALCON was further evaluated
using as input the GO membership probabilities of the

Arabidopsis proteins as computed by BMRF in [18]. This
method provides membership probabilities per GO term
independently. We constructed two evaluation datasets
from those data. First, we randomly picked 100 Arabidop-
sis proteins that were already annotated at the time of
computing the BMRF posterior probabilities. One con-
straint was that they should have at least fifty annota-
tions (after up-propagating their original annotations). In
this way we ensured that they were annotated in rather
detailed GO terms, and therefore the attempt to get GO-
DAG consistent predictions would be sensible. Although
these proteins had a fixed labeling in the computations,
BMRF can calculate membership probabilities for them,
by reconstitution, i.e. as if they were unknown. The sec-
ond dataset consisted of 387 proteins that were annotated
later than the date of the BMRF computations. Thus,
at the time of the computation the proteins were not
annotated. We used this second set of proteins to evalu-
ate the performance of FALCON in realistic conditions.
In addition, we obtained a further list of predictions
using the supervised approach proposed in [18]. In this
approach, from the posterior probabilities of the anno-
tated proteins, an F-score based optimal threshold was
calculated per GO term. Using this approach, called maxF,
we derived a set of predictions for each evaluation dataset.
Note that those lists are not guaranteed to be GO-DAG
consistent.

Results and discussion
Performance of FALCON on simulated data
We initially evaluated the performance of FALCON in
the two small graphs of Figure 1. For each graph we
simulated 100 probability vectors by drawing from the
uniform. Because the graphs are small we could identify
the most probable labeling by exhaustive searching. Using
equation 1 as objective function and setting all the prior
probabilities to 0.5, LogitR retrieved the 98/100 of the
labelings for the 6-node graph and 92/100 of the labelings
for the 15-node graph. The DeltaL approach also retrieved

Table 4 Mean performancemeasures for the evaluation
dataset consisting of 100 Arabidopsis proteins

LogitR DeltaL maxF

Per Protein

Precision 0.79 0.27 0.85

Recall 0.55 0.90 0.46

F-score 0.63 0.41 0.56

Per GO term

Precision 0.70 0.25 0.81

Recall 0.50 0.80 0.40

F-score 0.70 0.44 0.66
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Figure 4 Performance on the evaluation dataset for the methods LogitR (red), DeltaL (blue), maxF (yellow). ABC. F-score, Precision and
Recall scores for different size of GO terms. DEF. The same scores against the number of annotations per protein. Smoothed splines in each subplot
show fitted generalized additive models and using the R function smoothṡpline. Because a large number of points in the scatterplot coincided, we
performed jittering by adding a small error term to each value e ∼ N(0, 10−4), in order to make the maximum number of points visible.

98/100 labelings for the small graph (using priors = 0.5 for
all the nodes).

Performance of FALCON on real data
To assess performance we used Arabidopsis proteins for
which we previously calculated GO membership proba-
bilities [18]. The true labelings of the proteins included in
the evaluation datasets were known, so we were able to
calculate performance metrics. Table 4 shows mean per-
formance measures per protein and per GO term. The
LogitR approach leads to the highest F-score, while maxF
comes second and DeltaL comes last. We see that all three
of them follow the precision-recall trade off (i.e. for larger
precision there is lower recall and vice versa) with maxF
being more precise but with reduced recall and the oppo-
site for DeltaL. LogitR stays in the middle. In Figure 4
performance measures are shown in relation to the GO
term level of detail and to the number of GO assign-
ments per protein. Using the F-score to summarize the
performance (Figure 4A) we see that for the GO terms
that are rather general DeltaL (yellow) performs well, but
for the more detailed ones its performance deteriorates.
On the other hand LogitR and maxF perform well in
detailed GO terms. In terms of Precision (Figure 4B) and

Recall (Figure 4C), the latter methods have similar perfor-
mance but LogitR performs slightly better. On the other
hand DeltaL predicts large numbers of terms and there-
fore shows high recall but low precision, in particular for
the detailed GO terms that are of real interest. Compar-
ing the performance of predicting the assignments per
protein (Figure 4D-F), the LogitR approach performs con-
sistently better than the others in terms of the proteins
that need either small or large number of GO terms to be
functionally described.
We further evaluated the performance of our

approaches using a set of proteins that were annotated
after obtaining the BMRF predictions (Table 5). From the

Table 5 Mean performancemeasures for the newly
annotated proteins

Precision Recall Fscore Proteins

maxF 0.34 0.35 0.23 84

DeltaL 0.08 0.58 0.19 328

LogitR 0.26 0.50 0.27 147

Every method predicted different numbers of proteins. The number of proteins
returned (out of the total 387) are given in the last column of the table.
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total of 387 newly annotated proteins, maxF returned
predictions for 84 of them, DeltaL for 328 proteins
and LogitR for 147 proteins. Again, maxF and DeltaL
show comparable performance while logitL returned an
improved list in terms of F score. Further, the higher recall
rates of DeltaL tend to give longer lists of predictions.
Importantly however, DeltaL and LogitR return predic-
tions that are consistent with GO-DAG and are therefore
preferred because such predictions are biologically
interpretable.

Novel predictions
We performed protein function predictions using the
FALCON algorithm on the unannotated parts of the
genomes of 6 eukaryotes (human, mouse, rat, slime mold,
frog and arabidopsis). This dataset includes the eukary-
otic targets used in the Critical Assessment of protein
Function Annotation (CAFA) experiment of 2011 [26]
and consists of 32,201 proteins. Function predictions were
made for 1,917 GO terms from the Biological Process
andMolecular Function compartments of GeneOntology.
The input probabilities were computed during CAFA’11
by BMRF integrating protein networks constructed from
the STRING database [27] with orthology information
obtained from ProgMap [28]. The BMRF and FALCON
predictions are available in the BMRF website: http://
www.ab.wur.nl/bmrf_yk/FALCON_CAFA.tab.gz.

Conclusions
Overall, we examined the performance of FALCON for
two objective functions, but FALCON is in principle
suitable for optimization of a wide range of objective
functions. The main purpose of FALCON is to provide
GO DAG consistent predictions. We showed that this
comes with no loss of the prediction performance. In
fact LogitR outperforms the maxF method. The predic-
tions of FALCON are GO-DAG consistent and therefore
biologically much easier interpreted by the curators of
protein function annotations. In this study an estimate
of the calibration parameter α for LogitR was obtained
using a yeast data set and the input probabilities were
obtained from a semi-supervised method (BMRF), but,
thereafter, FALCON is unsupervised; it infers the opti-
mal GO term assignment using only the input probability
vectors and the prior probabilities per GO term (com-
puted from a set of predictions or using external Gene
Ontology information). In contrast, in maxF, a training
set is necessary in order to obtain the optimal cutoffs per
GO term. In this study both approaches were applicable
but the FALCON algorithm is expected to have broader
applicability.
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