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Abstract

Background: A multi-labeled tree, or MUL-tree, is a phylogenetic tree where two or more leaves share a label, e.g., a
species name. A MUL-tree can imply multiple conflicting phylogenetic relationships for the same set of taxa, but can
also contain conflict-free information that is of interest and yet is not obvious.

Results: We define the information content of a MUL-tree T as the set of all conflict-free quartet topologies implied
by T, and define the maximal reduced form of T as the smallest tree that can be obtained from T by pruning leaves
and contracting edges while retaining the same information content. We show that any two MUL-trees with the same
information content exhibit the same reduced form. This introduces an equivalence relation among MUL-trees with
potential applications to comparing MUL-trees. We present an efficient algorithm to reduce a MUL-tree to its
maximally reduced form and evaluate its performance on empirical datasets in terms of both quality of the reduced
tree and the degree of data reduction achieved.

Conclusions: Our measure of conflict-free information content based on quartets is simple and topologically
appealing. In the experiments, the maximally reduced form is often much smaller than the original tree, yet retains
most of the taxa. The reduction algorithm is quadratic in the number of leaves and its complexity is unaffected by the
multiplicity of leaf labels or the degree of the nodes.
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Background
Multi-labeled trees, also known as MUL-trees, are phylo-
genetic trees that can have more than one leaf with the
same label [1-5] (Figure 1). MUL-trees arise naturally and
frequently in data sets containingmultiple gene sequences
for the same species [6], but they can also arise in bio-
geographical studies or co-speciation studies where leaves
represent individual taxa yet are labeled with their areas
[7] or hosts [8].
MUL-trees, unlike singly-labeled trees, can contain con-

flicting species-level phylogenetic information due to bio-
logical processes such as whole genome duplications [9]
or incomplete lineage sorting [10], to artifactual processes
such as inferential error, or, frequently, an unknown com-
bination of several factors. However, they can also contain
substantial amounts of conflict-free information.
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Here we provide a way to extract this information;
specifically, we have the following results.

• We introduce a new quartet-based measure of the
information content of a MUL-tree, defined as the set
of conflict-free quartets that the tree displays (see
MUL-Trees and information content on page 3).

• We introduce the concept of the maximally-reduced
form (MRF) of a MUL-tree T, the smallest tree with
the same information content as T (seeMaximally
reduced MUL-Trees on page 4), and show that any
two MUL-trees with the same information content
have the same MRF (Theorem 3).

• We present a simple algorithm to construct the MRF
of a MUL-tree (see The reduction algorithm on
page 7). Its running time is quadratic in the number
of leaves and does not depend on the multiplicity of
the leaf labels or the degrees of the internal nodes.

• We present computational experience with an
implementation of our MRF algorithm (see Results
and discussion on page 8). In our test data, the MRF
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Figure 1 AMUL-tree. Numbers in parenthesis next to labels indicate
the multiplicity of the respective labels and are not part of the labels
themselves.

is often significantly smaller than the original tree,
while retaining most of the taxa.

Wenow give the intuition behind our notion of informa-
tion content, deferring the formal definitions of this and
other concepts to the next section. Quartets (i.e., sets of
four species) are a natural starting point, since they are
the smallest subsets from which we can draw meaning-
ful topological information. A singly-labeled tree implies
exactly one topology on any quartet. More precisely, each
edge e in a singly-labeled tree implies a bipartition (A,B)

of the leaf set, where each part is the set of leaves on
one of the two sides of e. From (A,B), we derive a collec-
tion of bipartitions ab|cd of quartets, such that {a, b} ⊆ A
and {c, d} ⊆ B. Clearly, if one edge in a singly-labeled
tree implies some bipartition q = ab|cd of {a, b, c, d},
then there can be no other edge that implies a bipartition,
such as ac|bd, that is in conflict with q. Indeed, the quar-
tet topologies implied by a singly-labeled tree uniquely
identify it [11].
The situation for MUL-trees is more complicated, as

illustrated in Figure 1. Here, the presence of two copies
of labels b and c — b(1) and b(2), and, c(1) and c(2)
— leads to two conflicting topologies on the quartet
{b, c, d, e}. Edge (u, v) implies the bipartition bc|de, corre-
sponding to the labels {b(1), c(1), d, e}, while edge (v,w)

implies bd|ce corresponding to the leaves {b(2), c(2), d, e}.
On the other hand, the quartet topology af |bc, implied
by edge (t,u), has no conflict with any other topology
that the tree exhibits on {a, b, c, f }. We show that the set
of all such conflict-free quartet topologies is compatible
(Theorem 1). That is, for every MUL-tree T there exists at
least one singly-labeled tree that displays all the conflict-
free quartets of T — and possibly some other quartets as

well. Motivated by this, we only view conflict-free quartet
topologies as informative, and define the information con-
tent of a MUL-tree as the set of all conflict-free quartet
topologies it implies.
We should note that conflicting quartets may well pro-

vide valuable information, whether about paralogy, deep
coalescence, or mistaken annotations. In some cases,
species-level phylogenetic information can be recov-
ered from conflicted quartets through application of,
e.g., gene-tree species-tree reconciliation (generally an
NP-hard problem [12]). However, this is not feasible
when the underlying cause of multiplicity is unknown or
when conducting large-scale analyses. Our definition of
information content is deliberately designed to make no
assumptions about the cause of conflict. It is also con-
servative with respect to species relationships, i.e., it does
not introduce quartets not originally supported by the
data. Further, knowing the information content of aMUL-
tree allows us to easily identify its conflicting quartets
as well.
A MUL-tree may have leaves that can be pruned and

edges that can be contracted without altering the tree’s
information content, i.e., without adding or removing
conflict-free quartets. For example, in Figure 1, every
quartet topology that edge (v,w) implies is either in con-
flict with some other topology (e.g., for set {b, c, d, e}) or
is already implied by some other edge (e.g., af |ce is also
implied by (t,u)). Thus, (v,w) can be contracted with-
out altering the information content. In fact, the infor-
mation content remains unchanged if we also contract
(u, v) and remove the leaves labeled b(1) and c(1). We
define the MRF of a MUL-tree T as the tree that results
from applying information-preserving edge contraction
and leaf pruning operations repeatedly to T, until it is no
longer possible to do so. TheMRF of the tree in Figure 1 is
shown in Figure 2. In this case, the MRF is singly-labeled;
however, this is not true in general (see An example on
page 8). If theMRF is itself aMUL-tree, it is not possible to
reduce the original to a singly-labeled tree without either

Figure 2 The MRF for the Mul-tree in Figure 1.



Deepak et al. Algorithms for Molecular Biology 2013, 8:18 Page 3 of 11
http://www.almob.org/content/8/18

adding at least one quartet that did not exist conflict-free
in T or by losing one or more conflict-free quartets.
Since any two MUL-trees with the same information

content have the sameMRF, rather than comparingMUL-
trees directly, we can instead compare their MRFs. This is
appealing mathematically, because it focuses on conflict-
free information content, and also computationally, since
an MRF can be much smaller than the original MUL-tree.
Indeed, on our test data, the MRF was frequently singly-
labeled. This reduction in input size is especially signifi-
cant if the MUL-tree is an input to an algorithm whose
running time is exponential in the label multiplicity, such
as Ganapathy et al.’s algorithm to compute the contract-
and-refine distance between two area cladograms [7] or
Huber et al.’s algorithm to determine if a collection of
“multi-splits” can be displayed by a MUL-tree [13].
For our experiments, we also implemented a post-

processing step, which converts the MRF to a singly-
labeled tree, rendering it available for analyses that require
singly-labeled trees, including supermatrix [14,15] and
supertree methods [16-19]. On the trees in our data set,
the combined taxon loss between the MRF computation
and the postprocessing was much lower than it would
have been had we simply removed all duplicate taxa from
the original trees.
Previous work on MUL-trees has concentrated on find-

ing ways to reduceMUL-trees to singly-labeled trees (typ-
ically in order to provide inputs to supertree methods) [5],
and to develop metrics and algorithms to compare MUL-
trees [7,20-22]. In contrast to our approach — which is
purely topology-based and is agnostic with respect to
the cause of label multiplicity — the assumption under-
lying much of the literature on MUL-trees is that taxon
multiplicity results from gene duplication. Thus, meth-
ods to obtain singly-labeled trees fromMUL-trees usually
work by pruning subtrees at putative duplication nodes.
Although the proposed algorithms are polynomial, they
are unsatisfactory in various ways. For example, in [5] if
the subtrees are neither identical nor compatible, then the
subtree with smaller information content is pruned, which
seems to discard too much information. Further, the algo-
rithm is only efficient for binary rooted trees. In [20]
subtrees are pruned arbitrarily, while in [21] at each puta-
tive duplication node a separate analysis is done for each
possible pruned subtree. Although the latter approach is
better than pruning arbitrarily, in the worst case it can end
up analyzing exponentially many subtrees.

MUL-Trees and information content
A MUL-tree is a triple (T ,M,ψ), where (i) T is an
unrooted treea with leaf set L(T) all of whose internal
nodes have degree at least three, (ii) M is a set of labels,
and (iii) ψT : L(T) → M is a surjective map that assigns
each leaf of T a label fromM. (Note that if ψ is a bijection,

T is singly labeled; that is, singly-labeled trees are a special
case of MUL-trees.) For brevity we often refer to a MUL-
tree by its underlying tree T. In what follows, unless stated
otherwise, by a tree we mean a MUL-tree.
An edge (u, v) in T is internal if neither u nor v belong

to L(T), and is pendant otherwise. A pendant node is an
internal node that has a leaf as its neighbor.
Let (u, v) be an edge in T and T ′ be the result of deleting

(u, v) from T. Then Tuv
u (Tuv

v ) denotes the subtree of T ′
that contains u (v). Muv

u (Muv
v ) denotes the set of labels

in Tuv
u (Tuv

v ) but not in Tuv
v (Tuv

u ). Cuv is the set of labels
common to both Tuv

u and Tuv
v . Observe thatMuv

u ,Muv
v and

Cuv partition M. For example, in Figure 1, Muv
u = {

a, f
}
,

Muv
v = {e, d}, Cuv = {b, c}.
A (resolved) quartet in a MUL-tree T is a bipartition

ab|cd of a set of labels {a, b, c, d} such that there is an edge
(u, v) in T with {a, b} ∈ Muv

u and {c, d} ∈ Muv
v . We say that

(u, v) resolves ab|cd. For example, in Figure 1, edge (t,u)

resolves af |bc.
The information content of an edge (u, v) of a MUL-tree

T, denoted �(u, v), is the set of quartets resolved by (u, v).
An edge (u, v) in tree T is informative if |�(u, v)| > 0;
(u, v) is maximally informative if there is no other edge
(u′, v′) in T with �(u, v) ⊂ �(u′, v′). The information
content of T, denoted I(T), is the combined informa-
tion content of all edges in the tree; that is I(T) =⋃

(u,v)∈E �(u, v), where E denotes the set of edges in T.
The next result shows that the quartets in I(T) are

conflict-free.

Theorem 1. For every MUL-tree T, there is a singly
labeled tree T ′ such that I(T) ⊆ I(T ′).

Proof. Repeat the following step untilT has nomultiply-
occurring labels. Pick any multiply-occurring label � in T,
select an arbitrary leaf labeled by �, and relabel every other
leaf labeled by �, by a new, unique, label. The resulting
tree T ′ is singly labeled, and all labels of T are also present
in T ′. Consider a quartet ab|cd in T, that is resolved by
edge (u, v). Assume that {a, b} ∈ Muv

u and {c, d} ∈ Muv
v .

Thus, Tuv
u contains all the occurrences of label a. Clearly,

this also holds for the only occurrence of a in T ′. Similar
statements can be made about labels b, c, and d. Thus, the
quartet ab|cd is resolved by edge (u, v) in T ′, and, hence,
T ′ displays all quartets of T.

Note that there are examples where the containment
indicated by the above result is proper.
To conclude this section, we give some results

that are useful for the MUL-tree reduction algorithm
(see The reduction algorithm, beginning on page 7). In
the next lemmas, (u, v) and (w, x) denote two edges in tree
T that lie on the path Pu,x = (u, v, . . . ,w, x) as shown in
Figure 3.
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Figure 3 Supportive illustration for the proof of Lemma 1.

Lemma 1. If |Muv
u | = |Mwx

w | then Muv
u = Mwx

w . Other-
wise, Muv

u ⊂ Mwx
w .

Proof. Refer to Figure 3. Since Tuv
u is a subtree of Twx

w ,
Muv

u ⊆ Mwx
w by definition ofMuv

u . Thus, if |Muv
u | = |Mwx

w |,
we must haveMwx

w = Muv
u and, if |Muv

u | �= |Mwx
w |, we must

haveMuv
u ⊂ Mwx

w .

Together with Lemma 1, the next result allows us to
check whether the information content of an edge is a sub-
set of that of another based solely on the cardinalities of
theMuv

u s.

Lemma 2. �(u, v) ⊆ �(w, x) if and only if Muv
v = Mwx

x .

Proof. (Only if ) Suppose �(u, v) ⊆ �(w, x); therefore,
Muv

v ⊆ Mwx
x . By definition, Muv

v ⊇ Mwx
x ; hence, Muv

v =
Mwx

x .
(If ) Suppose Muv

v = Mwx
x . By definition, Muv

u ⊆ Mwx
w ,

which implies that �(u, v) ⊆ �(w, x).

Lemma 3. Suppose �(u, v) ⊆ �(w, x). Then, for any
edge (y, z) on Pu,x such that v is closer to y than to z,
�(u, v) ⊆ �(y, z) ⊆ �(w, x).

Proof. By Lemma 2, since �(u, v) ⊆ �(w, x), we have
Muv

v = Mwx
x . Now consider an edge (y, z) on Pu,x. By def-

inition Muv
v ⊇ Myz

z ⊇ Mwx
x . But Muv

v = Mwx
x , therefore

Muv
v = Myz

z = Mwx
x . By definition Muv

u ⊆ Myz
y ⊆ Mwx

w .
Hence, by Lemma 2, �(u, v) ⊆ �(y, z) ⊆ �(w, x).

Maximally reducedMUL-Trees
Our goal is to provide a way to reduce a MUL-tree
T as much as possible, while preserving its informa-
tion content. Our reduction algorithm uses the following
operations.

Prune(v): Delete leaf v from T. If, as a result, v’s neighbor
u becomes a degree-two node, connect the former two
neighbors of u by an edge and delete u.
Contract(e): Delete an internal edge e and identify its
endpoints.

A leaf v in T is prunable if the tree that results from
pruning v has the same information content asT. An inter-
nal edge e in T is contractible if the tree that results from
contracting e has the same information content as T. T
is maximally reduced if it has no prunable leaf and no
contractible internal edge.

Theorem 2. Every internal edge in a maximally reduced
tree T resolves a quartet that is resolved by no other edge.

Proof. We rely on two facts. First, every internal node
in the tree has degree at least three. Second, every inter-
nal edge in the tree resolves a quartet; otherwise, the
edge would be contractible and the tree would not be
maximally reduced.
Consider any edge (u, v) in the tree. To prove that (u, v)

resolves a quartet not resolved by any other edge, we need
to show that there exists a quartet ab|cd of the form shown
in Figure 4. First, we describe how to select leaves a and b.
Consider the following cases:

1. u has at least two neighbors i and j, apart from v, that
are internal nodes. Then, we select any a ∈ Mui

i and
any b ∈ Muj

j .
2. u has only one neighbor i �= v that is an internal

node. Then, at least one of u’s neighboring leaves
must participate in a quartet that (u, v) resolves.
Without such a leaf, (u, v) would resolve the same set
of quartets as (u, i), so one of these two edges would

Figure 4 Supportive illustration for the proof of Theorem 2.
Quartet ab|cd is resolved only by edge (u, v). Here, a ∈ Mui

i , b ∈ Muj
j ,

c ∈ Mvk
k and d ∈ Mvl

l .
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be contractible, contradicting the assumption that
the tree is maximally reduced. We select this leaf as b
and we select any a ∈ Mui

i .
3. All neighbors of u, except v, are leaves. Then, at least

two of its neighbors must participate in a quartet,
because (u, v) must resolve a quartet. We select the
two neighbors as a and b.

In every case, we can select the desired leaves a and
b. By a similar argument, we can also select the desired
c and d. This proves the existence of the desired quartet
ab|cd. Therefore, each internal edge of T uniquely resolve
a quartet.

The next result shows that the set of quartets resolved
by a maximally reduced tree uniquely identifies the
tree.

Theorem 3. Let T and T ′ be two maximally reduced
trees such that I(T) = I(T ′). Then, T and T ′ are isomor-
phic.

The maximally reduced form (MRF) of a MUL-tree T
is the tree that results from repeatedly pruning prunable
leaves and contracting contractible edges from T until this
is no longer possible. Theorem 3 shows that we can indeed
talk about “the” MRF of T. Before proving Theorem 3, we
mention some of its consequences.

Corollary 1. Every MUL-tree has a unique MRF.

Corollary 2. Any two MUL-trees with the same infor-
mation content have the same MRF.

Corollary 3. If a maximally reduced MUL-tree T is not
singly-labeled, there does not exist a singly-labeled tree T ′
such that I(T) = I(T ′).

Note that Corollary 3 does not contradict Theorem 1.
If the MUL-tree in Theorem 1 is maximally reduced and
not singly-labeled, the containment is proper; i.e., I(T) �=
I(T ′), which is the claim of Corollary 3. Figure 5 illus-
trates this. Any singly-labeled tree resolving the same set
of quartets must be obtained by removing one of the
leaves labeled with f. However, doing so will also introduce
quartets that are not resolved by the maximally reduced
MUL-tree.

Corollary 4. The relation “sharing a common MRF” is
an equivalence relation on the set of MUL-trees.

The last result implies that MUL-trees can be parti-
tioned into equivalence classes, where each class consists
of the set of all trees with the same information content.

Figure 5 Amaximally reduced MUL-tree.

Thus, instead of comparing MUL-trees directly, we can
compare their maximally reduced forms.
We now proceed to the proof of Theorem 3. We need

two lemmas.

Lemma 4. There is a bijection φ between the respective
sets of internal edges of T and T ′ with the following prop-
erty. Let (u, v) be an internal edge in T and let (u′, v′) =
φ(u, v). Then, Muv

u = Mu′v′
u′ and Muv

v = Mu′v′
v′ . Therefore,

�(u, v) = �(u′, v′).

Proof. Consider an edge (u, v) in T. By Theorem 2, (u, v)
must resolve a quartet ab|cd not resolved by any other
edge as shown in Figure 4.We claim that this quartet must
be resolved uniquely by an edge (u′, v′) in T ′. Suppose not.
Using arguments similar to those in the proof of Lemma
3, we can show that all edges that resolve ab|cd in T ′ form
a path (u′, x′, . . . ,w′, v′), where possibly x′ = w′, as shown
in Figure 6. Here, {a, b} ⊆ Mu′x′

u′ and {c, d} ⊆ Mw′v′
v′ .

Since (w′, v′) resolves a quartet not resolved by any other
edge, by Theorem 2 there exists a label � as shown, where
� ∈ Mw′m

m . Since ab|�d is a quartet in T ′ and I(T) = I(T),
it must be true that � ∈ Muv

v in T. Clearly, T does not
resolve the quartet on {a, �, d, c} in the same way, a�|cd, as

Figure 6 Supportive illustration for the proof of Lemma 4.
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T ′. This contradicts the assumption that I(T) = I(T ′).
Thus, (u′, v′) must be an edge. Moreover, only one such
edge exists in T ′ as it uniquely resolves the quartet ab|cd.
Now consider any label f ∈ Muv

u such that f /∈ {a, b, c, d}.
Label f must be in Mu′v′

u′ ; otherwise, T and T ′ would
resolve the quartet

{
a, f , c, d

}
differently. Similarly, any

such f ∈ Mu′v′
u′ must be inMuv

u as well. ThusMuv
u = Mu′v′

u′ .
In the same way, we can prove that Muv

v = Mu′v′
v′ . Thus,

�(u, v) = �(u′, v′).
We have shown that there is a one-to-one mapping φ

from edges in T to edges of T ′ such that �(e) = �(φ(e)).
To complete the proof, we show that φ is onto. Suppose
that for some edge e′ in T ′ there is no edge e in T such that
φ(e) = e′. But then e′ must resolve a quartet not resolved
by any other edge in T ′. This quartet cannot be in I(T),
contradicting the assumption that I(T) = I(T ′).

Let φ be the bijection between the edge sets of T and T ′
from the preceding lemma.

Lemma 5. Let (u, v) and (v, x) be any two neighboring
internal edges in T, and let (p, q) = φ(u, v) and (r, s) =
φ(v, x) be the corresponding edges in T ′ such that Muv

u =
Mpq

p and Mvx
v = Mrs

r . Then, (p, q) and (r, s) are neighbors
in T ′ with q = r.

Proof. Since (u, v) and (v, x) are neighbors, and each
resolves a quartet that is not resolved by the other,Muv

u ⊂
Mvx

v andMuv
v ⊃ Mvx

x . By Lemma 4, this implies thatMpq
p ⊂

Mrs
r and Mpq

q ⊃ Mrs
s . Thus, the only way (p, q) and (r, s)

can exist in T ′ is as part of the path Pp,s = (p, q, . . . , r, s).
If q �= r, then consider the edge (t, r) on Pps such that p is
closer to t than to r. Then, the following must hold:

Mpq
p ⊂ Mtr

t ⊂ Mrs
r (1)

and

Mpq
q ⊃ Mtr

r ⊃ Mrs
s (2)

Let (z,w) = φ−1(t, r) be the edge in T corresponding to
(t, r). Irrespective of the position of (z,w) in T, (1) and (2)
cannot be simultaneously true with respect to edges (u, v),
(v, x) and (z,w) in T. Therefore, q = r, which proves the
desired result.

Proof of Theorem 3. Lemmas 4 and 5 show that T and
T ′ are isomorphic with respect to their internal edges. It
remains to show a one-to-one correspondence between
their leaf sets. For this, we match up the leaves attached
at every pendant node in T and T ′. We start with pen-
dant nodes to which only one internal edge is attached.
For example, consider an internal edge (u, v) in T such
that v is a pendant node and Tuv

v has only leaves. Let
(u′, v′) = φ(u, v) be the corresponding edge in T ′ such

that Muv
u = Muv

u′ . By Lemma 4, Cuv = Cu′v′ . Moreover,
neither T nor T ′ have prunable leaves. Thus, the same set
of leaves must be attached at v and v′ respectively. In sub-
sequent steps, we select an internal edge (u, v) in T such
that v is a pendant node and all the other pendant nodes
in Tuv

v have already been matched up in previous itera-
tions. Again, let (u′, v′) = φ(u, v) such that Muv

u = Muv
u′ .

Using similar arguments, the same set of leaves must be
attached at v and v′ respectively. Proceeding this way, each
pendant node in T can be paired with the corresponding
pendant node in T ′, and be shown to have the same set
of leaves attached to them. This shows that T and T ′ are
isomorphic, as claimed.

Identifying contractible edges and prunable leaves
In preparation for the MUL-tree reduction algorithm of
the next section, we give some results that help to identify
contractible edges and prunable leaves.
The setting for the next result is the same as for

Lemmas 2 and 3: (u, v) and (w, x) are two edges in tree T
that lie on the path Pu,x = (u, v, . . . ,w, x) (see Figure 3).
We say that subtree Tyz

z branches out from the path Pu,x if
y ∈ Pu,x − {u, x}, and z /∈ Pu,x.

Lemma 6. Suppose �(u, v) ⊆ �(w, x) then

1. every internal edge on a subtree branching out from
Pu,x is contractible, and

2. if �(u, v) = �(w, x), every leaf on a subtree
branching out from Pu,x is prunable. Thus, the entire
subtree can be deleted without changing the
information content of the tree.

Proof. Refer to Figure 7.

1. Consider any edge (a, b) in a subtree branching out
of Pu,x, as shown. We claim thatMab

a ∪ Cab = M; i.e.,
all the labels in M appear in Tab

a . This means that
Mab

b = ∅, so (a, b) is uninformative.
To prove the claim, observe first that, by definition,
Muv

u ∪ Cuv ∪ Muv
v = M. By Lemma 2, since

�(u, v) ⊆ �(w, x), we haveMwx
x = Muv

v , so

Muv
u ∪ Cuv ∪ Mwx

x = M. (3)

Now,Muv
u ∪ Cuv is the set of labels on the leaves of

Tuv
u , while every label inMwx

x appears in Twx
x . Hence,

Tuv
u and Twx

x jointly contain every label in M. Since
Tuv
u and Twx

x are subtrees of Tab
a , this completes the

proof of the claim.
2. Suppose �(u, v) = �(w, x). By an argument similar

to the one used in the proof of Lemma 3, we can
show that any edge (y, z) on the path Pv,w = (v . . .w)

(see Figure 7) satisfiesMuv
v = Myz

z = Mwx
x and

Muv
u = Myz

y = Mwx
w . Consider a leaf c as shown; let �
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Figure 7 Supportive illustration for the proof of Lemma 6.

be its label. Then, � appears in Twx
x , for else

Myz
y �= Mwx

w , a contradiction. Similarly, � appears in
Tuv
u .

Now, let S be the tree obtained after pruning leaf c.

(a) I(T) ⊆ I(S): Suppose pruning c removes a
quartet from I(T). If such a quartet exists in
T, it must be resolved by an edge (j, k) ∈ Tuv

u
(say). But then (j, k) still resolves the same
quartet in S because � ∈ Mwx

x , and the labels
in Twx

x are a subset of those in Tjk
k . This is a

contradiction.
(b) I(S) ⊆ I(T): Suppose pruning c adds a

quartet to I(S) that is not in I(T). Such a
quartet in S must be resolved by an edge
(j, k) in Suvu (say), that before pruning satisfied
� ∈ Cjk , but now has � /∈ Mjk

k . However
� ∈ Mwx

x ; therefore we still have � ∈ Cjk and
the edge still cannot resolve the quartet, a
contradiction.

Hence, c is prunable.

Lemma 7. Suppose that T is a MUL-tree where no pen-
dant node is adjacent to two or more leaves with the
same label. Let � be any multiply-occurring label in T
and let T ′ be the minimal subtree of T that spans all
the leaves labeled by �. Then, any leaf in T labeled �

attached to a pendant node of degree at least three in T ′ is
prunable.

Proof. Refer to Figure 8. Consider any pendant node v
of degree at least three in T ′ attached to a leaf labeled �.
Clearly deleting the leaf does not change the information
content of any edge in Tu or Ty. Now consider an edge
(w, x) in T ′ as shown. Note that � ∈ Cwx, so � does not
contribute to �(w, x). After deleting the leaf, we still have
� ∈ Cwx, so �(w, x) remains unchanged. Therefore, the
leaf is prunable.

The reduction algorithm
We now describe a O(n2) algorithm to compute the MRF
of an n-leaf MUL-tree T. In the previous section, the MRF
was defined as the tree obtained by applying information-
preserving pruning and contraction operations to T, in
any order, until it is no longer possible. For efficiency,

Figure 8 Supportive illustration for the proof of Lemma 7. The leaves attached to pendant nodes u, v, and y are labeled by �, and the subtrees
indicated by Tu and Ty do not contain a leaf labeled with �. Nodes u and y have degree two in T ′ , while v has degree three.
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however, the sequence in which these steps are performed
is important. Our algorithm has three distinct phases:
a preprocessing step, redundant edge contraction, and
pruning of redundant leaves. We describe these next and
then give an example.

Preprocessing
For every edge (u, v) in T, we compute |Muv

u | and |Muv
v |.

This can be done in O(n2) time as follows. First, traverse
subtrees Tuv

u and Tuv
v to count number of distinct labels

nuvu and nuvv in each subtree. Then, |Muv
u | = |M| − nuvv

and |Muv
v | = |M|−nuvu . We then contract non-informative

edges; i.e., edges (u, v)where |Muv
u | or |Muv

v | is at most one.

Edge contraction and subtree pruning
Next, we repeatedly find pairs of adjacent edges (u, v)
and (v,w) such that �(u, v) ⊆ �(v,w) or vice-versa,
and contract the less informative of the two. By Lem-
mas 1 and 2, we can compare �(u, v) and �(v,w) in
constant time using the precomputed values of |Muv

u |
and |Muv

v |. Lemma 6(1) implies that we should also con-
tract all internal edges incident on v or in the subtrees
branching out of v. Further, by Lemma 6(2), if �(u, v) =
�(v,w), we can in fact delete these subtrees entirely,
since their leaves are prunable. Lemma 3 implies that
all such edges must lie on a path, and hence can be
identified in linear time. The total time for all these oper-
ations is linear, since at worst we traverse every edge
twice.

Pruning redundant leaves
The tree that is left at this point has no contractible edges;
however, it can still have prunable leaves. We first prune
any leaf with a label � that does not participate in any
resolved quartet. Such an � has the property that for every
edge (u, v), � /∈ Muv

u and � /∈ Muv
v . All such leaves can be

found in O(n2) time and O(n) space.
Next, we consider sets of leaves with the same label �

that share a common neighboring pendant node. Such
leaves can be found in linear time. For each such set, we
delete all but one element. Let T be the tree that results
from removing such leaves. Now, the only prunable leaves
with a given label � that might remain are leaves attached
to different pendant nodes. By Lemma 7, we can identify
and prune such leaves by performing the following steps.

1. For each label �, consider the subgraph on the leaves
labeled by �.

2. In this subgraph, delete any leaf not attached to a
degree 2 pendant node as it is a redundant leaf.

This takes O(n) time per label and O(n2) time total.
The space used is O(n). Hence, the overall time and space
complexities are O(n2) time and O(n), respectively.

The resulting tree has no contractible edges nor prun-
able leaves. Therefore, it is the MRF of the orginal MUL-
tree.

An example
We illustrate the reduction of the unrooted MUL-tree
shown in Figure 9(a) to its MRF.

Figure 9 Reduction to the MRF. Supportive illustrations for the
example on page 8.
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Figure 10 Experimental results: Taxon loss in the second step.

1. In the preprocessing step, we find thatMtu
t = ∅,

Msu
s = ∅ andMwx

x = ∅, so edges (t,u), (s,u) and
(w, x) are uninformative. They are therefore
contracted, resulting in the tree shown in Figure 9(b).

2. Since �(u, v) ⊂ �(v,w), contract (u, v). The result is
shown in Figure 9(c).

3. Since �(v,w) = �(w, y), delete the subtree
branching out at w from the path from v to y and
contract (v,w). The result is shown in Figure 9(d).

4. Prune taxon 6, which does not participate in any
quartet, and all duplicate taxa at the pendant nodes.
The result, shown in Figure 9(e), is the MRF of the
original tree.

Results and discussion
We implemented our MUL-tree reduction algorithm, as
well as a second step that restricts the MRF to the set
of labels that appear only once, which yields a singly-
labeled tree. We tested our two-step program on a set of
110,842 MUL-trees obtained from the PhyLoTA database
[6] (http://phylota.net/; GenBank eukaryotic nucleotide
sequences, release 184, June 2011), which included a
broad range of label-set sizes, from 4 to 1500 taxa.
There were 8,741 trees (7.8%) with essentially no infor-

mation content; these lost all resolution either when
reduced to their MRFs, or in the second step. The remain-
ing trees fell into two categories. Trees in set A had a

singly-labeledMRF; 65,709 trees (59.3%) were of this kind.
Trees in set B were reduced to singly-labeled trees in
the second step; 36,392 trees (32.8%) were of this kind.
Reducing a tree to its MRF (step 1), led to an average
taxon loss of 0.83% of the taxa in the input MUL-tree.
The total taxon loss after the second step (reducing the
MRFs in set B to singly-labeled trees), averaged 12.81%.
This taxon loss is not trivial, but it is far less than the
41.27% average loss from the alternative, naïve, approach
in which all MUL-taxa (taxa that label more than one leaf )
are removed at the outset. Note that, by the definition of
MRFs, taxa removed in the first step do not contribute to
the information content, since all non-conflicting quartets
are preserved. On the other hand, taxa removed in the sec-
ond step do alter the information content, because each
such taxon participated in some non-conflicting quartet.
Information content, in this case, will be lost but new
information is never introduced, so the algorithm can be
considered conservative.
Taxon loss is sensitive to the number of total taxa

and, especially, MUL-taxa, as demonstrated in Figure 10.
The grey function shows the percentage of MUL-taxa in
the original input trees, which is the taxon loss if we
had restricted the input MUL-trees to the set of singly-
labeled leaves. The black function shows the percentage
of MUL-taxa lost after steps 1 and 2 of our reduction
procedure.

Figure 11 Experimental results: Quality of reduced singly-labeled trees.

http://phylota.net/
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In addition to the issue of taxon loss, we investigated
the effect of our reduction on edge loss, i.e., the level of
resolution within the resulting singly-labeled tree. Input
MUL-trees were binary and therefore had more nodes
than twice the number of taxa (Figure 11, solid line),
whereas a binary tree on singly labeled taxa would have
approximately as many nodes as twice the number of taxa
(Figure 11, dashed line). We found that, although there
was some edge loss, the number of nodes in the reduced
singly-labeled trees (Figure 11, dotted line) corresponded
well to the total possible, indicating low levels of edge loss.
Note that each point on the dotted or solid lines repre-
sents an average over all trees with the same number of
taxa.
We have integrated our reduction algorithm into

STBase (available at http://stbase.org/), a phylogenetic
tree search engine that takes a user-provided list of species
names and finds matches with a precomputed collection
of phylogenetic trees, more than half of which are MUL-
trees, assembled from GenBank sequence data. The trees
returned are ranked by a tree quality criterion that takes
into account overlap with the query set, support values
for the branches, and degree of resolution. We have added
functionality to provide reduced singly-labeled trees as
well as the MUL-trees based on the full leaf set and the
label sets from the reduced singly-labeled trees are used in
downstream supermatrix construction.

Conclusions
We introduced an efficient algorithm to reduce a multi-
labeled MUL-tree to a maximally reduced form with
the same information content, defined as the set of
non-conflicting quartets it resolves. We showed that
the information content of a MUL-tree uniquely iden-
tifies the MUL-tree’s maximally reduced form. This has
potential application in comparing MUL-trees by sig-
nificantly reducing the number of comparisons as well
as in extracting species-level information efficiently and
conservatively from large sets of trees, irrespective of the
underlying cause of multiple labels. Our algorithm can
easily be adapted to work for rooted trees.
Further work investigating the relationship of the MRF

to the original tree under various biological circumstances
is also underway. We might expect, for example, that
well-sampled nuclear gene families reduce to very small
MRF trees, and that annotation errors in chloroplast gene
sequences (in which we expect little gene duplication),
result in relatively large MRF trees. Comparing the MRF
to the original MUL-tree may well provide a method for
efficiently assessing and segregating data sets with respect
to the causes of multiple labels.
It would be interesting to compare our results with some

of the other approaches for reducingMUL-trees to singly-
labeled trees (e.g., [5]) or, indeed, to evaluate if ourmethod

can benefit from being used in conjunction with such
approaches.

Endnote
aThe results presented here can be extended to rooted
trees, using triplets instead of quartets, exploiting the
well-known bijection between rooted and unrooted
trees ([23], p. 20).
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