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Abstract

Systematically perturbing a cellular system and monitoring the effects of the perturbations on gene expression
provide a powerful approach to study signal transduction in gene expression systems. A critical step of revealing a
signal transduction pathway regulating gene expression is to identify transcription factors transmitting signals in the
system. In this paper, we address the task of identifying modules of cooperative transcription factors based on results
derived from systems-biology experiments at two levels: First, a graph algorithm is developed to identify a minimum
set of co-operative TFs that covers the differentially expressed genes under each systematic perturbation. Second,
using a clique-finding approach, modules of TFs that tend to consistently cooperate together under various
perturbations are further identified. Our results indicate that this approach is capable of identifying many known TF
modules based on the individual experiment; thus we provide a novel graph-based method of identifying
context-specific and highly reused TF-modules.

Background
In order to survive, a cell responds to a variety of envi-
ronmental and internal perturbations, e.g., environmen-
tal stresses and gene mutations respectively. A common
response to cellular perturbations is to activate gene
expression programs that induce or repress expression
of genes to cope with changed homeostatus. Signals
which originate as a result of the perturbation are often
propagated to transcription factors (TFs), which serve as
bottlenecks of signal transduction pathways that regulate
transcription programs. Often multiple TFs are involved
in regulating one set of genes in a cooperative manner,
hence they are referred to as a TF module, and their
binding sites in the genome are often referred to as cis-
regulatory modules.
Figure 1 shows the concept structure of information

flow, where information is transmitted through signalling
proteins to TF modules that regulate gene transcriptions.
The binding relations between TFs and genes can be
represented by a bipartite graph.
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There is an extensive body of literature on identifying
cis-regulatory modules by combining a variety of data
[1-7]. The most commonly used approach is to study
the combinatory patterns of transcription factor binding
sites (TFBSs) in a set of co-expressed genes, often derived
from clustering analysis of multiple gene expression data.
Since the space of combination of TFs is extraordinarily
large, contemporary TF-module-searching methods usu-
ally adopt heuristic or stochastic searching algorithms,
which cannot guarantee optimal solutions based on given
searching criteria. In addition, searching TF modules
based on clustering analysis of gene expression data intro-
duces an implicit assumption that the enriched TFBSs
regulate the expression of the genes under all conditions.
However, in reality, activation of TFs and subsequent
binding to their TFBSs are often dependent on the state
of cellular signaling systems in a context-specific fashion.
Therefore, there is a need for identification methods that
are capable of identifying an optimal combination of TFs
that explain gene expression patterns in a context-specific
setting, which need cannot be effectively addressed within
the conventional statistical framework. Therefore, in this
study, we address the task of identifying cooperative TFs
from a new perspective—using a graph-based approach.
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Figure 1 Bipartite graphs for TFs and Genes.

The main ideas underlying our approaches are as fol-
lows: First, given a set of differentially expressed genes
identified from an individual microarray experiment, we
identify the cooperative TFs by searching for a minimum
set of TFs that bind (cover) these genes with high reliabil-
ities (reflected as weights associated with TFs) and where
each gene is covered by at least t TFs, a WEIGHTED t-
COVER HITTING SET problem. Our results indicate that
the latter constraint enables our approach to recover
known cooperative TFs. Second, based on sets of TFs
identified from each microarray experiment, we further
find a set of TFs that tend to cooperatively function
together in multiple instances, thus revealing TF modules
at the systems level.
The t-COVER HITTING SET problem is an NP-hard

problem. As the previous best algorithm for solving this
problem cannot deal with the weighted case and has
impractical time complexity for our task, we developed
a new exact algorithm, which not only deals with the
weighted case of the problem, but also has significantly
less time complexity, thus enabling us to find exact solu-
tions for the problems in our study.

Problem Formulation
Data sets:

• We collected the gene expression data from the
seminal study by Hughes et al., [8], in which
transcriptional responses to systematic genetic and
pharmacological perturbations were investigated.

• We collected a protein-DNA interaction graph from
Huang et al., and Yeger-Lotem et al., [9,10]. In this
bipartite graph, vertices on one side are TF proteins
while the vertices on the other side are potential target
genes. An edge between a TF and a gene indicates
that the TF likely binds to the promoter of the gene as
based on the ChIP-chip experimental results [9,10],
and the edge weight reflects the reliability of a binding
event between a corresponding TF and gene pair.

Finding cooperative TFs for a set of co-regulated genes
Given a set of co-regulated genes, finding a set of coop-
erative TFs regulating them is a challenging problem
in studying transcriptional regulation [2]. In this study,
we cast the task as a graph problem, referred to as the
WEIGHTED t-COVER HITTING SET problem, and designed
an efficient algorithm to solve it.
For a set of co-regulated genes, we induce a subgraph

from the bipartite graph representing protein-DNA inter-
action. The new graph remains a bipartite graph, with
one part being all TFs and the other being the given co-
regulated genes. If a TF is connected to a gene, we say
that the TF covers the gene. The task is to find a subset
of TFs with minimum weight, called the t-TF cover, such
that each gene is covered by at least t TFs in the cover. The
weight of the t-TF cover is the sum of the weights of TFs
in the cover.We defined the weight of a TF to be the recip-
rocal of the sum of edge weights, which is defined in the
input bipartite graph by Huang et al., [9,10]. More specif-
ically, if TF t1 is connected to genes g1, g2, . . . , gk , then
weight(t1) = 1

∑k
i=1 Edge Weight(t1,gi)

. Recall that, in our case,
an edge weight reflects the binding reliability between
the TF and its target gene; as such, a TF which interacts
with many genes with high reliability will have a small
TF weight, and thus is more likely to be included in the
solution of the t-TF cover problem.
When t = 1, the solution finds a set of TFs such that

each gene must be covered by at least one TF, which will
return a minimum set of TFs that covers all those co-
regulated genes. Such a result is not interesting because
we aim to find cooperative TFs. By constraining t to be
greater than 1, we are able to try to find a set of TFs such
that each gene must be covered by more than one TF in
the set. By definition, a solution will preferentially search
for and include TFs that co-cover as many genes in a tar-
get set as possible and with as high reliability as possible.
From a biological viewpoint, the more genes a set of TFs
co-covers, themore likely the TFs act cooperatively to reg-
ulate the genes. Thus, finding an optimal solution for the
t-TF cover problem in this setting is a biologically sensible
approach for identifying TF modules.
The problem of finding the t-TF cover is NP-hard,

where the problem is equivalent to two well-known NP-
hard problems, the SET MULTICOVER problem and the
t-COVER HITTING SET problem [11,12]. The t-TF cover
problem can be reduced to the t-COVER HITTING SET
problem easily. The formal definition of the WEIGHTED
t-COVER HITTING SET is as follows:

WEIGHTED t-COVER HITTING SET: Given a
universal set X of m elements, a weight function
w(x) : X → R+, a family T = {S1, . . . , Sn} of subsets
of X, where the size of any subset in T is at least t, and
an integer t, find a subset H ⊆ X of minimum weight
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such that every subset in T has at least t elements in
H, where the weight of H is defined as

∑
x∈H w(x).

We denote an instance of the problem as (X, T ,w, t)
and call H the minimum t-cover hitting set.a

As mentioned above, the WEIGHTED t-COVER HITTING
SET problem is NP-hard and the previous best algorithm
for the unweighted case of the problem has a time com-
plexity of O((t + 1)nnm) [12]. In terms of our application,
n is the number of co-regulated genes and m is the num-
ber of TFs; these two numbers are usually large enough to
render the existing algorithms impractical for our prob-
lem. Thus, designing an efficient exact algorithm to solve
the WEIGHTED t-COVER HITTING SET problem becomes
the main goal and therefore the main contribution of this
study.

Identify repeatedly used TF modules
For each perturbation instance, a set of differentially
expressed genes (considered to be co-regulated genes) can
be decided. Using the method in the previous subsection,
we can obtain a set of cooperative TFs for each pertur-
bation instance. At this stage, a biologist may want to
find modules of TFs that are repeatedly used under vari-
ous experimental conditions, as they are more likely to be
part of signal transduction pathways that are repeatedly
involved in responses to different perturbations.
We refer to a set of TFs sharing a common set of tar-

get genes as a “hard” TF clique. The formal definition of
a “hard” TF clique is as follows: a subset of TFs T forms
a “hard” TF clique if there exists a subset of genes G such
that T and G make a complete induced subgraph in the
protein-DNA interaction graph. From a biological view-
point, the more common target genes are shared by the
TFs, the more likely the TFs truly cooperate to regulate
the genes. Thus, we weigh a hard clique using the num-
ber of common target genes covered by the TFs to reflect
the “goodness” of the clique. In such a setting, one way to
find the TF modules that are repeatedly used in many per-
turbation instances is to find hard TF cliques that occur
in multiple instances, where the overall weight of such
hard cliques is the sum of weights of the clique from all
instances. The higher the weight of a clique, the more
likely the TFs in the clique will function as amodule. How-
ever, as there are usually noise and errors in microarray
data, it is difficult to consistently find hard cliques from
multiple instances. To address this issue, we introduce a
new formulation: search for a TF module whose mem-
ber TFs tend to cooperatively regulate gene expression in
multiple instances but not necessarily in all perturbation
instances.
First, we use the cooperative TFs found in each instance

to make one TF-TF-relation graph for each case of t =
1, 2, 3, 4. In such a graph, each TF is a node; a weighted

edge between a pair of TFs is added if the TFs are found to
cooperate in one or more instances, of which the weight
is the sum of the number of common target genes from
all instances. Hence, the higher the weight of an edge, the
more cooperation instances the two TFs have. Then we
search for all 3-cliques and 4-cliques from such a TF-TF
graph and sort them by weights, where the weight of a
clique is the sum of all edge weights for the clique. Since
we have relaxed the requirement so that the TFs in these
cliques do not need to form a hard clique in all individ-
ual instances, we refer to this approach as finding “soft”
TF cliques. At this stage, we limit the search for cliques to
3-cliques and 4-cliques because our data [9,10] indicated
that only 15% of genes in yeast are connected tomore than
5 TFs.
The clique finding problem is a well-known NP-hard

problem. However, since we only need to find cliques of
size 3 and size 4, we can search for cliques of these sizes in
a graph with at most 214 (the total number of TFs in our
case) vertices in a reasonable time. In the Results section,
we will compare the results for “soft” 3-cliques for the
cases of t = 1, 2, 3, 4 and hard 3-cliques for the case of
t = 3, and “soft” 4-cliques for the cases of t = 1, 2, 3, 4 and
hard 4-cliques for the case of t = 4.

Exact algorithm for t-cover problem
Usually, finding an exact optimal solution for an NP-hard
problem in practical time is difficult; it is not uncom-
mon for such a program to run as long as months or
years. Hence, heuristic or greedy algorithms are often
designed to approximately solve NP-hard problems. How-
ever, heuristic or greedy algorithms cannot guarantee the
performance. Therefore, in order to design an exact algo-
rithm, we investigated the characteristic of our problem
and found that the degrees of many genes were very small
(i.e., they were only connected to a small number of TFs in
the protein-DNA interaction graph [9,10]). More specifi-
cally, about 70% of genes had degrees less than or equal
to 3, about 85% of genes had degrees which are at most
5, and about 96% of genes had degrees less than or equal
to 10. This characteristic enabled us to design an efficient
exact algorithm, which was presented in Figure 2, for the
problem. In addition to its efficiency, our algorithm is the
first exact algorithm that can solve a WEIGHTED t-cover
hitting set problem.
Before proving the correctness and time complexity of

the algorithm, we give the basic idea of our algorithm,
which is based on the dynamical programming technique.
When we expand the sub-solutions, if two sub-solutions
H1 and H2 hit exactly the same group of subsets in T , we
prove that keeping any one of these two sub-solutions is
sufficient. Hence, if |T | = n, then we keep at most (t+1)n
different sub-solutions (Note: there are n subsets, where
each subset can be hit by 0, 1, 2, . . ., or at least t elements in
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Figure 2 Algorithm for solving the WEIGHTED t-COVER HITTING SET problem.

the sub-solution. Hence, totally, there are at most (t + 1)n
cases.). This is the main part of the time complexity and
the space complexity. In the algorithms, we also sort T
such that sizes of subsets in T are ordered from the small-
est to the largest (when there is a tie, an arbitrary order
suffices). If sizes of many subsets in T are bounded, such
as sizes of first k subsets {S1, S2, . . . , Sk} are bounded by d,
we also sort X such that the first | ∪ j

i=1 dSi| elements are
∪ j
i=1Si for all j = 1, 2, . . . , k. Hence, the first | ∪k

i=1 Si| ele-
ments are ∪k

i=1Si. In the algorithm, we add the elements
of sorted X orderly into the sub-solutions (i.e., first, try to
add the first element of X into sub-solutions. Then try to
add the second element of X into sub-solutions, and so
on.) such that, first, wemake S1 be hit by at least t elements
of each sub-solution. Then we make S1 and S2 be hit by at
least t elements of each sub-solution, and so on. It is easy
to know that when we have considered first | ∪k

i=1 Si| ele-
ments in the sorted X, all {S1, S2, . . . , Sk} are hit by at least
t elements of each sub-solution. At that time, the number
of sub-solutions is bounded by 2|∪k

i=1Si| (all possible com-
binations of first | ∪k

i=1 Si| elements in the sorted X). After
that, as we only need to remember the hitting statuses of
remaining n−k subsets in T , the number of sub-solutions
is bounded by (t+1)n−k . We will show that if sizes of many
subsets in T are bounded, 2|∪k

i=1Si| and (t + 1)n−k will be
much smaller than (t + 1)n.
Let X = {u1,u2, . . . ,um} and T = {S1, S2, . . . , Sn}.

We define TX[1:i] = {S|S ∈ T and S ⊂ {u1,u2, . . . ,ui}}
for 1 ≤ i ≤ m. Let H be a subset of X. We define
hit(H) =[ c1, c2, . . . , cn], and weight(H) = ∑

u∈H w(u),
where ci = hit(H)[ Si]= min(t, |Si ∩ H|) for 1 ≤ i ≤ n,

i.e., ci remembers how many element(s) in Si is(are) in H
(Note: if any Si already has at least t elements in a par-
tial solution, we can removed Si from the problem and do
not need to further remember its covering status. Hence,
there is no need to remember any |Si∩H| that is large than
t). Following lemmas are needed in the proof of the main
theorem.

Lemma 0.1. Let H1, H2, H ′ be three subsets of X such
that H1 ∩ H ′ = ∅ and H2 ∩ H ′ = ∅. If hit(H1) = hit(H2),
then hit(H1 ∪ H ′) = hit(H2 ∪ H ′).

Proof. As hit(H1) = hit(H2), for any Si ∈ T , hit(H1)
[ Si]= hit(H2)[ Si], i.e.,min(t, |Si∩H1|) = min(t, |Si∩H2|).
Furthermore, because H1 ∩ H ′ = ∅ and H2 ∩ H ′ = ∅, we
will have that, for any Si ∈ T , min(t, |Si ∩ (H1 ∪ H ′)|) =
min(t, |Si∩H1|+|Si∩H ′|) = min(t, |Si∩H2|+|Si∩H ′|) =
min(t, |Si∩(H2∪H ′)|). Therefore, hit(H1∪H ′) = hit(H2∪
H ′) and the lemma is proved.

The Lemma 0.1 guarantees that if any two sub-solutions
cover in the same way, then keeping the sub-solution with
the smaller weight is enough.

Lemma 0.2. Let H� = {ui1 ,ui2 , . . . ,ui�}, whose elements
are in the same order as in the sorted X in Algorithm-1
(i.e., if j1 < j2 with respect to the index of H�, then ij1 <

ij2 with respect to the index of X), be the minimum t-cover
hitting set, and H�

j = {ui1 ,ui2 , . . . ,uij}, 1 ≤ j ≤ �. For any
1 ≤ j ≤ �, if there is a H ⊂ {u1,u2, . . . ,uij} such that
hit(H) = hit(H�

j ), then weight(H) ≥ weight(H�
j ).
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Proof. Let H ′ = {uij+1 ,uij+2 , . . . ,ui�}. Then H ∩ H ′ =
∅. If weight(H) < weight(H�

j ), then by Lemma 0.1, H ∪
H ′ will be a t-cover hitting set with a smaller weight than
the weight of H�, which causes contradiction. Hence, the
lemma is correct.

The Lemma 0.2 shows that Algorithm-1 always keeps
a sub-solution that will lead to the full-solution with min-
imum weight. Now, let us present and prove the main
theorem.

Theorem 0.3. The WEIGHTED t-COVER HITTING SET
problem can be solved in O((t + 1)nmnt) time and in
O((t + 1)nnt) space, where m is the size of the ground set
and n is the number of subsets for the given instance. If,
furthermore, the problem has at least n

1+d/ log2(t+1) subsets
whose sizes are upper bounded by d, then the problem can
be solved in O(((t + 1)d/(d+log2(t+1)))nmnt) time and in
O(((t + 1)d/(d+log2(t+1)))nnt) space.

Proof. We first prove the correctness of the algorithm.
Given an instance (X, T ,w, t) of the WEIGHTED t-

COVER HITTING SET problem, let X = {u1,u2, . . . ,um},
where X is sorted as shown in Algorithm-1 such that the
order of elements in X is as S1, S2 − X1, . . . , Sn − Xn−1,
where Xj = ∪ j

i=1Si. Let H� = {ui1 ,ui2 , . . . ,ui�}, whose ele-
ments are in the same order as in the sorted X (i.e., if j1 <

j2 with respect to the index ofH�, then ij1 < ij2 with respect
to the index of X), be the minimum t-cover hitting set. Let
H�
j ={ui1 ,ui2 , . . . ,uij} for all 0 ≤ j ≤ �, where H�

0 =∅.
To prove correctness, we claim that when the for loop

in step 2 of Algorithm-1 is at loop i = ij for all 1 ≤ j ≤ �

(Note: uij is the jth element in H� and ij th element in X),
there exists a P = (hit(H),H) inQold (loop in step 3) such
that hit(H) = hit(H�

j−1) and weight(H) = weight(H�
j−1).

We prove this claim by mathematical induction on j.

Induction basis. In the case
of j = 1, as for any i < i1, TX[1:i] = ∅ (else, H� cannot
be the solution), no sub-solution will be removed in
step 5.1 for all loops of i < i1 in step 2. Hence, when
i = i1, P = (hit(∅),∅) is inQold . The claim is correct.
Induction step. Suppose that when
j < q ≤ �, the claim is true. Hence, when i = iq−1
in the loop of step 2, there exists a P = (hit(H),H)

inQold such that hit(H) = hit(H�
q−2)

and weight(H) = weight(H�
q−2). Then by Lemma 0.1,

hit(H ∪ {uiq−1}) = hit(H�
q−2 ∪ {uiq−1}) = hit(H�

q−1),
and weight(H ∪ {uiq−1}) = weight(H�

q−1). Therefore,
P� = (hit(H�

q−1),H
�
q−1) will be saved intoQnew

unless there is another P′ = (hit(H ′),H ′) inQnew
such that hit(H ′) = hit(H�

q−1), and weight(H ′) =
weight(H�

q−1). By Lemma 0.2, if any P′ = (hti(H ′),H ′)

such that hit(H ′) = hit(H�
q−1), and weight(H ′) =

weight(H�
q−1) is already saved intoQnew,

it will not be replaced. Furthermore, as any S ∈ TX[1:i]
for i < iq, hit(H ′)[ S]= t (otherwise, it would cause
a contradiction that H� is a solution as no element in
{uiq , . . . ,ui�} will cover S). Hence, P′ = (hit(H ′),H ′)
will not be removed when loop i < iq in loop 2. Thus,
P′ = (hit(H ′),H ′) will be inQold when i = iq in the
loop of step 2, i.e., the claim is still true when j = q.

Therefore, when j = �, we will save a (hit(H),H)

into Qnew such that hit(H) = hit(H�
� ) = hit(H�), and

weight(H) = weight(H�), i.e., we will find the minimum
t-cover hitting set. The correctness of Algorithm-1 is
proved.
Next, we consider the time complexity and space com-

plexity of the algorithm. Step 2 loops |X| = m times. Step
3 loops |Qold| times. As Qold only remember different
combinations of [ c1, c3, . . . , cn] and each ci is between
0 and t, it is obvious that |Qold| ≤ (t + 1)n. Steps 4.1 to
4.4 take O(nt) time. Steps 4.6 to 4.11 can be finished in
O(log2(t + 1)n) = O(n log2(t + 1)) time if we use AVL
tree to implement Qnew and Qold. Hence the total time
complexity is O((t + 1)nmnt).
In the case that T has at least n

1+d/ log2(t+1) subsets
whose sizes are bounded from above by d, then when
i = dn

1+d/ log2(t+1) , both Qold and Qnew have at most

2
dn

1+d/ log2(t+1) = ((t + 1)
1

1+log2(t+1)/d )n elements. Further-
more, when i = dn

1+d/ log2(t+1) , for any P = (hit(H),H)

in Qold or in Qnew, if let hit(H) =[ c1, c2, . . . , cn],
then cj = t for 1 ≤ j ≤ n

1+d/ log2(t+1) . Hence, when
i > dn

1+d/ log2(t+1) , all elements in Qold or in Qnew have

at most (t + 1)n− n
1+d/ log2(t+1) combinations of hit(H), i.e.,

the size ofQold orQnew is always bounded from above by
(t+ 1)n− n

1+d/ log2(t+1) = ((t+ 1)
1

1+log2(t+1)/d )n. Therefore, the
total time complexity is O(((t + 1)

1
1+log2(t+1)/d )nmnt).

It is obvious that the space complexity is O(|Qold| · max
(lengthes of elements in Qold)) = O(|Qnew|) · max
(lengthes of elements inQnew)). The lengthes of elements
in both Qold and Qnew are bounded from above by O(nt).
Therefore, in the general case, the space complexity is
O((t + 1)nnt) and in the case sizes of many subsets in
T are bounded from above by d, the space complexity is
O(((t + 1)d/(d+log2(t+1)))nnt).

The Algorithn-1 only reports one solution with the
minimum weight, even problems in application have mul-
tiple solutions with the minimum weight. The setting of
weights of TFs increases the probability that any solution
with the minimum weight includes most correct TFs that
regulate differently expressed genes. However, in some
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cases of the application, we may also want to study other
top weight solutions (as the data error, the actual solu-
tionmay not have theminimumweight). Bymodifying the
algorithm such that for each distinct cover way, save k top
weight sub-solutions, then the new algorithm can output
k top weight solutions. It is also easy to prove that the time
complexity and space complexity of the new algorithm
will only increase by a ratio k.
Before we finish this section, we briefly summarize the

time complexity of our algorithm and compare it with the
previously reported one [12]:

• If there are at least n
1+d/ log2(t+1) subsets whose sizes

are upper bounded by d, then the time complexity of
our algorithm isO(((t+1)d/(d+log2(t+1)))nmnt), while
the time complexity of the previous best algorithm is
always �((t + 1)nmn) [12] (and only works for the
unweighted case). As d/(d + log2(t + 1)) < 1,
((t + 1)d/(d+log2(t+1)))n is much less than (t + 1)n.
For example, if we let d = 5 (note: 85% of genes in
our case have degrees less than or equal to 5) and
t = 2, 3, 4, our algorithm is bounded byO(2.303nmn),
O(2.692nmn), or O(3.002nmn) respectively, while the
the previous best algorithm is bounded by �(3nmn),
�(4nmn), or �(5nmn) respectively. Suppose n = 30,
then our algorithm is at least 1393 times faster if
t = 2, or 48131 times faster if t = 3, or 1108459 times
faster if t = 4 than the previous best algorithm.

• The time complexity shown above is only the worst
case upper bound; in most cases, the actual time
complexity is usually much better. In fact, we can
further improve the running time by removing a gene
from the graph whenever we find a gene’s degree is
less than t. Thus the value of n can be greatly reduced.

Results
When applied to the protein-DNA interaction graph
induced from ChIP-chip experiments [9,10] and the
results from microarray experiments from Hughes et al.,
[8], our algorithms identify TF modules at two levels:
First, given genes differentially expressed in each pertur-
bation experiment, we find a set of cooperative TFs at the
perturbation-instance level in a context-specific manner.
Second, we further combine context-specific TFs to find
TFmodules that are repeatedly utilized at the system level.
In the following subsections, we show that our approach
produces biologically sensible results at both levels.

TFs for sets of co-regulated genes
For each yeast genetic/pharmacological perturbation
experiment, we identified genes that were differently
expressed. Then, we applied our WEIGHTED t-COVER
HITTING SET algorithm to each bipartite component

induced by connecting the differentially expressed genes
and TFs to identify a set of cooperative TFs from the com-
ponent. In addition, we applied our algorithm by setting
t to 2, 3, and 4 respectively to investigate the impact of
setting this parameter. Empirically, we found that setting
t = 2 was sufficient to force our algorithm to find a set
of cooperative TFs. We recommend setting t = 2 as a
beginning parameter and exploring other settings based
on the degree of the genes in the organism of interest.
After inspecting the resulting TFmodules, we foundmany
of them to be already well-known. Due to page limita-
tions, we will discuss just one of the well-known modules
identified by our algorithm below.
The pheromone response pathway of S. cerevisiae,

which consists of more than 20 proteins [13], is a well-
studied signal transduction pathway in yeast. When this
pathway is activated by pheromone, a well-studied tran-
scription program is initiated which is known to be
cooperatively regulated by TFs: Ste12p, Dig1p/Dig2p [13]
or Ste12p, Dig1p/Dig2p, and Mcm1p [9]. In the experi-
ments by Hughes et al., 12 gene-encoding proteins in the
pathway were perturbed, and many canonical pheromone
response genes were differentially expressed. Hence, one
may expect that Ste12p, Dig1p or Ste12p, Dig1p, and
Mcm1p are involved inmediating these responses. Indeed,
our results show that, when we set t = 2, Ste12p, Dig1p
were returned as members of the set of cooperative TFs
identified in all those 12 perturbations and Ste12p, Dig1p,
Mcm1pwere found in the set of cooperative TFs in 9 out of
those 12 perturbation experiments. In comparison, when
we set t = 1, Ste12p, Dig1p were found in 5 instances,
and Ste12p, Dig1p,Mcm1p were found in only 1 instance.
These results indicate that our algorithm is capable of
identifying cooperative TFs from individual experiments
in a context-specific manner.
We further studied the coverage of 7 robust pheromone

response genes (i.e., their expression levels change sig-
nificantly in almost all 12 perturbations of genes on
the pheromone response pathway), namely FAR1, FUS1,
GPA1, SST2, STE2, STE6, TEC1, to investigate how they
were covered by TFs in the results obtained from the t-
cover hitting set algorithm. Figure 3 shows the coverage
of these genes by the TFs in the results returned by t-TF
cover algorithm. As expected, when t = 1, the algorithm
failed to find cooperative TFs but returned Ste13p as the
regulating TF. On the other hand, when we set t = 2,
the algorithm returned all three TFs, Ste12p, Dig1p, and
Mcm1p, as the members of solution TFs covering these
genes, which form a dense graph.
Above examples show that if we know a set of genes that

are co-regulated, our new program can find correct TFs
that regulate them when we set t to 2 or 3. There exist
more examples to indicate that the algorithm is working
as expected.
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Figure 3 Comparing TF module for t = 1 and t = 2.

Finding TF modules involved in multiple instances
Using the t-cover hitting set results (for t = 1, 2, 3, 4)
from 300 microarray data, we constructed a TF-TF rela-
tion graph and searched for 3-cliques and 4-cliques in
the graph. The cliques are ranked according to their
weights; the larger the weight, the higher the rank is. Our
assumption is that, because high-ranking cliques consist
of the TFs deemed to function cooperatively in multi-
ple instances by our algorithm, they may truly function
as partners in real biological settings. We evaluated this
assumption looking at two factors: 1) whether members
of the cliques are known to function as a module based on
literature, and 2) whether the members of the cliques have
shown physiological or genetic interactions in previous
experiments.
1. High scores for known cooperative TFs: We first

inspected the top 20 high-ranking 3 cliques identified
in the TF-TF graph derived from the results of the t-
cover hitting set with t = 2. We found that the majority
of them are well known cooperative TF modules. For
example, TFs participating in cell cycle checkpoint [9],
Swi4p, Swi6p, and Mbp1p, ranked 2nd and, interestingly,
the 3-clique including Dig1p, Mcm1p, and Ste12p (the
pheromone responding TF module) ranked 4th. Similarly,
many of the high ranking 4-cliques constitute TF modules
that are also supported by existing knowledge. However,
it is interesting to note that the 3-clique that ranked the
highest consists of Dig1p, Ste12p and Tec1p, for which we
could not find any published results reporting that they
work together; thus it would be an interesting case to
investigate if our approach has found previously unknown
interactions.
We further investigated if the input data, the TF mod-

ules returned using the t-cover hitting sets with different
settings of t, has an impact on the results of TF cliques.
We found that the ranking and the members of cliques
were similar when t was set to 2, 3, and 4, respectively.
However, the results for when t = 1 and for hard cliques
were totally different. For example, when the TF-TF graph
is built using the results with t = 1, the first 3-clique
containing Swi4p, Swi6p, and Mbp1p ranks 254th. Fur-
thermore, if we rank this commonly used TF module by
finding common “hard” cliques, the highest ranking 3-
clique containing Dig1p,Mcm1p, and Ste12p ranks 273rd.

Thus, the results indicate that, by setting t > 1 and find-
ing “soft” cliques, our methods enhance the capability of
finding TF modules that are repeatedly utilized in mul-
tiple conditions, and are thus likely to play key roles in
cellular signal transduction systems. Due to page limita-
tion, we made the results available by listing the top 100
soft 3-cliques and 4-cliques on the supplement.
2. Interactions between proteins inside the cliques:

From a biological point of view, if a set of TFs work
together to regulate the transcription processes, there
should be physical or genetic interactions among those
TFs. If the results of the t-cover hitting set algorithm
truly capture the cooperations, one would expect that
TFs in the repeatedly utilized cliques have a high proba-
bility of interacting. The following section evaluates the
TF cliques through analyzing their protein-protein inter-
actions, where we define that there exists an interaction
between a pair of TFs if they have a physical interaction, a
genetic interaction determined by synthetic lethality [14],
or both.
We constructed multiple TF-TF relation graphs using

the results from the t-cover hitting set algorithm with
t = 1, 2, 3, 4 to assess the impact of setting t. From each
graph, we identified the top 100 4-cliques and assessed the
percent (aka, the probability) that the cliques have at least
a given number of interactions. As a control, we also ran-
domly sampled 100 groups of 4 TFs for comparison. The
results are plotted as a cumulated distribution in Figure 4.
From the figure, we can see that the majority of randomly
picked TF groups have no interaction, with less than 20%
of groups containing 1 or more interaction(s). Similarly,
the curve for the cliques that are derived from the results
with t = 1 —a setting that is not optimized for finding
cooperations among TFs—is located close to that curve of
the random groups. On the other hand, with t = 2, 3, 4,
over 50% of 4-cliques contain at least 3 interactions. These
results indicate that when one sets t > 1, the t-cover
hitting set algorithm indeed strives to find the TFs that
cooperatively regulate transcriptions; the results also indi-
cate that setting t = 2 is sufficient to find cooperative
TFs.
To illustrate the difference in performance between the

“soft” and “hard” cliques, we also identified the top 100
“hard” 4-cliques that were obtained directly from the
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Figure 4 Comparing interaction rate of cliques for different methods. (Note: a point (3,0.54) on the curve means that 54% of top 100 score
cliques for the corresponding method have at least 3 interactions).

t-cover hitting set for individual perturbation instances
by setting t = 4 and studied interactions among the TFs
in these cliques. The results show that the performance
of the “hard” cliques is superior to those of the ran-
dom TF groups and the “soft” cliques derived from t = 1
results, indicating that the t-cover hitting set algorithm
is capable of revealing cooperation among TFs. However,
“hard” cliques consistently underperform in comparison
with the “soft” cliques that are derived from integrating
results in multiple instances (i.e., except the case of t = 1),
which indicates that the information integration approach
further enhances the quality of the TF modules.

Conclusion
In this paper, we have developed graph-based approaches
to address the problem of finding cooperative TF mod-
ules at two levels. First, given a set of co-regulated genes,
we find a set of TFs that cooperatively regulate the genes
in a context-specific manner. Second, given a collection
of context-specific TF modules, we find the TFs that tend
to function cooperatively in multiple instances at systems
level, where the behind idea here is: if two TFs are work-
ing together in multiple time, then it is more possible that
they are in the same TF module. For the first part, we cast
the task as a WEIGHTED t-COVER HITTING SET problem
and developed an exact algorithm to solve the problem.
The main contribution of this paper is that, by taking
advantage of the knowledge of the limited gene degrees,
we have developed a very efficient exact algorithm capa-
ble of solving the problem at hand in a practical time. For
the second problem, we cast the task as a clique-finding
problem, and our approach produced results that are

biologically sensible and generate new biological hypothe-
ses. Our graph-based approaches are significantly differ-
ent from statistics-based approaches, hence providing a
new perspective to study transcriptional regulation [2].

Endnote
aIn applications, if there is any subset whose size is less
than t, we add dummy element/elements to make its size
to t.
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