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Abstract

Background: RNA performs many diverse functions in the cell in addition to its role as a messenger of genetic
information. These functions depend on its ability to fold to a unique three-dimensional structure determined by the
sequence. The conformation of RNA is in part determined by its secondary structure, or the particular set of contacts
between pairs of complementary bases. Prediction of the secondary structure of RNA from its sequence is therefore of
great interest, but can be computationally expensive. In this work we accelerate computations of base-pair
probababilities using parallel graphics processing units (GPUs).

Results: Calculation of the probabilities of base pairs in RNA secondary structures using nearest-neighbor standard
free energy change parameters has been implemented using CUDA to run on hardware with multiprocessor GPUs. A
modified set of recursions was introduced, which reduces memory usage by about 25%. GPUs are fastest in single
precision, and for some hardware, restricted to single precision. This may introduce significant roundoff error.
However, deviations in base-pair probabilities calculated using single precision were found to be negligible compared
to those resulting from shifting the nearest-neighbor parameters by a random amount of magnitude similar to their
experimental uncertainties. For large sequences running on our particular hardware, the GPU implementation
reduces execution time by a factor of close to 60 compared with an optimized serial implementation, and by a factor
of 116 compared with the original code.

Conclusions: Using GPUs can greatly accelerate computation of RNA secondary structure partition functions,
allowing calculation of base-pair probabilities for large sequences in a reasonable amount of time, with a negligible
compromise in accuracy due to working in single precision. The source code is integrated into the RNAstructure
software package and available for download at http://rna.urmc.rochester.edu.
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Background
RNA performs many diverse functions in the cell in addi-
tion to its role as a messenger of genetic information. It
can form enzymes, for example for cleavage of itself or of
other RNA, or to create peptide bonds as a fundamental
constituent of the ribosome [1]. It can act as a signalling
molecule for regulation of gene expression, for protein
export, or for guiding post-translational modifications
[2-5].
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As for proteins, RNA function depends on its folding
to a well-defined three-dimensional shape. In contrast to
proteins, the folding of RNA is hierarchical [6]. Secondary
structure, or the particular set of contacts between pairs
of complementary bases mediated by hydrogen bonding
and stacking of bases, provides a significant amount of
information. This can be helpful in predicting function
or accessibility to ligands [7-10]. Computational predic-
tion of the secondary structure of RNA from its sequence
is therefore of great interest. The most widely-used auto-
mated prediction methods attempt to estimate the ther-
modynamic stability of RNA, using empirical parame-
ters determined from experiments on oligonucleotides
[11,12].
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CUDA is a programming interface developed by the
company NVIDIA to facilitate general-purpose, parallel
high-performance computing on multiprocessor graph-
ics processing units (GPUs) [13]. In recent years, many
scientific computing applications have been implemented
on GPUs using CUDA, in many cases yielding speed-ups
of several orders of magnitude [14,15]. However, to our
knowledge, only a handful of publications have appeared
describing GPU implementations of codes for RNA sec-
ondary structure prediction. Rizk and Lavenier described
a CUDA implementation of structure prediction by free
energy minimization [16]. Their work was limited to rel-
atively short sequences (up to 120 bases) and a simplified
energy model that neglects coaxial stacking. The GPU
implementation was faster than the serial implementa-
tion by a factor of 10 and 17 depending on the particular
hardware. More recently, Lei et al. [17] also reported a
parallelized implementation of free energy minimization
using CUDA. They used only a coarse-grained paralleliza-
tion scheme where the minimum-free-energy structures
for subsequences of a given length are calculated in par-
allel, but the search over structures for each subsequence
is done serially. Their work was also limited to rela-
tively short sequences (up to 221 bases). They reported
speedups of up to a factor of 16. It should be noted that
these parallelized implementations neither use the latest
thermodynamic parameters for loops [18], nor include
coaxial stacking interactions [19].
In addition, recent work demonstrates that calcula-

tions of base-pairing probabilities calculated with parti-
tion functions can provide additional useful information
[20]. Structures composed of highly probable pairs are
more accurate than lowest free energy structures [20,21].
The base pair probabilities provide confidence intervals
for prediction of individual pairs. Base pairing probabili-
ties can also be used to predict pseudoknots [22]. We have
additionally extended this work to predictions using mul-
tiple, homologous sequences, where the same principles
hold true [23-26].
In this paper, we present the calculation of base-pair

probabilities for 44 sequences containing up to 10,000
bases, using an optimized and parallelized version of the
“partition” code in the RNAstructure package [27]. Our
test set contained both random sequences of varying
lengths (up to 10,000 bases) and actual sequences of bio-
logical importance (see Table 1), the longest being the
HIV-1 NL43 genome (GenBank: AF324493) containing
9709 bases.
We employed a sophisticated and accurate energy calcu-

lation that includes coaxial stacking [19]. Before attempt-
ing a parallel implementation, we first wrote an optimized
serial version of the original code (the “partition” pro-
gram in RNAstructure), implementing only a subset of
its functionality, while improving efficiency and reducing

Table 1 Biological RNA sequences examined*

Sequence # bases Reference

tRNA RQ2640 75 [28]

tRNA RD0500 76 [28]

tRNA RA7680 76 [28]

tRNA RD0260 77 [28]

tRNA RR1664 77 [28]

Candida albicans 5S rRNA 114 [29]

Escherichia coli 5S rRNA 120 [30]

P546 folding domain of Tetrahymena
thermophilia group I intron

155 [31]

Bacillus stearothermophilus SRP RNA 268 [32]

3’ UTR of Bombyxmori R2 element with flanking
vector sequence

300 [33]

Tetrahymena thermophilia group I intron 433 [30]

Saccharomyces cerevisiae A5 group II intron 632 [34]

Escherichia coli small subunit rRNA 1542 [30]

Escherichia coli large subunit rRNA 2904 [29]

human ICAM-1 mRNA 2986 [35]

HIV-1 NL43 genome (GenBank: AF324493) 9709 [36]

*28 random sequences of length 10–10,000 were also examined.

memory usage. Subsequently, we parallelized the opti-
mized code for GPU hardware, using CUDA. Here we
made use of a fine-grained parallelization scheme, in
which the calculation of the restricted partition function
for each subsequence of a given length is parallelized, as
well as the calculation of the restricted partition func-
tion for each subsequence.We found that this fine-grained
parallelization resulted in greater speedups than a sim-
pler coarse-grained-only parallelization (up to factors of
∼60 compared to the optimized serial version and ∼116
compared to the original code).

Implementation
Calculating base pair probabilities
The probability pi,j of a canonical pair between bases i and
j related to the standard free energy change �G0

i,j of the
restricted ensemble of structures containing the pair, and
the standard free energy change �G0 of the unrestricted
ensemble of all possible structures, both relative to the
state in which all bases are unpaired:

pi,j =
w

(
�G0

i,j

)

w
(
�G0) (1)

where

w(g) ≡ exp
(−g/RT

)
(2)

is the Boltzmann weight corresponding to standard free
energy change g at temperature T.
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The standard free energy changes�G0
i,j and�G0 are estimated using the Turner nearest-neighbor rules [11,18,37], and

pseudoknots are excluded. In that case, �G0
i,j depends on two independent contributions, one for the interior fragment

containing the pair i, j and bases in between (but excluding bases from the 5’ end to i − 1 and from j + 1 to the 3’ end),
and one for the exterior fragment containing the pair and bases from the two ends (but excluding bases from i + 1 to
j − 1). We define Vi,j to be the relative standard free energy change for the interior fragment in the case that i < j and
for the exterior fragment otherwise, following the convention used in the mfold prediction software [38]. In that case,

�G0
i,j = −RT log

[
exp

(−Vi,j/RT
) + exp

(−Vj,i/RT
)]

(3)

or more succinctly

w
(
�G0

i,j

)
= w

(
Vi,j

) + w
(
Vj,i

)
(4)

The standard free energy changes Vi,j are calculated using the following set of recursions:

w
(
Vi,j

) =
⎧⎨
⎩
Qhairpin
i,j + Qstack

i,j + Qinternal
i,j + Qmultibranch

i,j for i < j

Qexterior
i,j + Qstack

i,j + Qinternal
i,j + Qmultibranch

i,j for i > j
(5)

where

Qhairpin
i,j = w

(
�Ghairpin

i,j

)
(6)

Qstack
i,j = w

(
Vi+1,j−1 + �Gstack

i,j,i+1,j−1

)
(7)

Qinternal
i,j =

∑
i<i′<j′<j

w
(
Vi′,j′ + �Ginternal

i,j,i′,j′
)

(8)

Qmultibranch
i,j = w

(
WMB

i+1,j−1 + a + c
)

+ w
(
WMB

i+2,j−1 + �G3′dangle
i,j,i+1 + a + b + c

)
+

w
(
WMB

i+1,j−2 + �G5′dangle
i,j,j−1 + a + b + c

)
+

w
(
WMB

i+2,j−2 + �Gterminal mismatch
i,j,i+1,j−1 + a + 2b + c

)
+

∑
i<k<j

w
(
Vi+1,k + Yk+1,j−1 + �Gcoaxial flush

j,i,i+1,k + a + 2c
)

+
∑
i<k<j

w
(
Vi+2,k + Yk+2,j−1 + �Gcoaxial mismatch(2)

j,i,i+2,k + a + 2b + 2c
)

+
∑
i<k<j

w
(
Vi+2,k + Yk+1,j−2 + �Gcoaxial mismatch(1)

j,i,i+2,k + a + 2b + 2c
)

+
∑
i<k<j

w
(
Vk,j−1 + Yi+1,k−1 + �Gcoaxial flush

k,j−1,j,i + a + 2c
)

+
∑
i<k<j

w
(
Vk,j−2 + Yi+1,k−2 + �Gcoaxial mismatch(1)

k,j−2,j,i + a + 2b + 2c
)

+
∑
i<k<j

w
(
Vk,j−2 + Yi+2,k−1 + �Gcoaxial mismatch(2)

k,j−2,j,i + a + 2b + 2c
)

(9)
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Qexterior
i,j = w

(
W 3′

i+1 + W 5′
j−1

)
+ w

(
W 3′

i+2 + W 5′
j−1 + �G3′dangle

i,j,i+1 +
)

+
w

(
W 3′

i+1 + W 5′
j−2 + �G5′dangle

i,j,j−1 +
)

+ w
(
W 3′

i+2 + W 5′
j−2 + �Gterminal mismatch

i,j,i+1,j−1

)
+

∑
i<k<j

w
(
Vi+1,k + W 3′

k+1 + W 5′
j−1 + �Gcoaxial flush

j,i,i+1,k

)
+

∑
i<k<j

w
(
Vi+2,k + W 3′

k+2 + W 5′
j−1 + �Gcoaxial mismatch(2)

j,i,i+2,k

)
+

∑
i<k<j

w
(
Vi+2,k + W 3′

k+1 + W 5′
j−2 + �Gcoaxial mismatch(1)

j,i,i+2,k

)
+

∑
i<k<j

w
(
Vk,j−1 + W 3′

i+1 + W 5′
k−1 + �Gcoaxial flush

k,j−1,j,i

)
+

∑
i<k<j

w
(
Vk,j−2 + W 3′

i+1 + W 5′
k−2 + �Gcoaxial mismatch(1)

k,j−2,j,i

)
+

∑
i<k<j

w
(
Vk,j−2 + W 3′

i+2 + W 5′
k−1 + �Gcoaxial mismatch(2)

k,j−2,j,i

)
(10)

w
(
WL

i,j

)
= w

(
WL

i+1,j + b
)

+ w
(
Vi,j + c

) + w
(
Vi,j−1 + �G3′dangle

j−1,i,j + b + c
)

+
w

(
Vi+1,j + �G5′dangle

j,i+1,i + b + c
)

+ w
(
Vi+1,j−1 + �Gterminal mismatch

j−1,i+1,j,i + 2b + c
)

(11)

w
(
WQ

i,j

)
= w

(
Vi,j

) + w
(
Vi,j−1 + �G3′dangle

j−1,i,j

)
+ w

(
Vi+1,j + �G5′dangle

j,i+1,i

)
+

w
(
Vi+1,j−1 + �Gterminal mismatch

j−1,i+1,j,i

)
(12)

w
(
Wi,j

) = w
(
Wi,j−1 + b

) + w
(
WL

i,j

)
(13)

w
(
W coax

i,j

)
=

∑
i<k<j

w
(
Vi,k + Vk+1,j + �Gcoaxial flush

i,k,k+1,j + 2c
)

+
∑
i<k<j

w
(
Vi+1,k + Vk+2,j + �Gcoaxial mismatch(1)

i+1,k,kj+2,j + 2b + 2c
)

+
∑
i<k<j

w
(
Vi,k + Vk+2,j−1 + �Gcoaxial mismatch(2)

i,k,k+2,j−1 + 2b + 2c
)

(14)

w
(
Zi,j

) = w
(
W coax

i,j

)
+ w

(
Vi,j + c

) + w
(
Vi,j−1 + �G3′dangle

j−1,i,j + b + c
)

+
w

(
Vi+1,j + �G5′dangle

j,i+1,i + b + c
)

+ w
(
Vi+1,j−1 + �Gterminal mismatch

j−1,i+1,j,i + 2b + c
)

(15)

w
(
WMBL

i,j

)
= w

(
WMBL

i+1,j

)
+ w

(
W coax

i,j

)
+

∑
i<k<j

w
(
Zi,k + YL

k+1,j

)
(16)

w
(
WMB

i,j

)
= w

(
WMB

i,j−1 + b
)

+ w
(
WMBL

i,j

)
(17)

w
(
Yi,j

) = w
(
Wi,j

) + w
(
WMB

i,j

)
(18)

w
(
YL
i,j

)
= w

(
WL

i,j

)
+ w

(
WMBL

i,j

)
(19)

w
(
W 5′

i

)
= w

(
W 5′

i−1

)
+

∑
j<i

w
(
W 5′

j−1 + WQ
j,i

)
(20)

w
(
W 3′

i

)
= w

(
W 3′

i+1

)
+

∑
j>i

w
(
W 3′

j+1 + WQ
i,j

)
(21)
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These recursions are slightly different from—but equiv-
alent to—those presented in reference [20] and used
in the previous code. It should be noted that there
was an error in equation 15 of reference [20]: in the
second line, WMBL(k + 1, j) should be replaced by
[WMBL(k + 1, j) + WL(k + 1, j)].
The quantities V, W, WMB, WL, W coax, W 5′ , and W 3′

are simply −RT times the logarithms of the quantities in
reference [20]. In addition, four new arrays are introduced:

1. WQ is the standard free energy change
corresponding to the sum of terms on the right hand
side of equation 11 of reference [20] not including
the scaling by W5(k).

2. Elements of Y are −RT times the logarithm of the
sum of the Boltzmann weights of corresponding
elements of W andWMB.

3. Elements of YL are −RT times the logarithm of the
sum of the Boltzmann weights of corresponding
elements ofWL andWMBL.

4. Elements of Z are −RT times the logarithm of the
sum of the Boltzmann weights of corresponding
elements ofWL (except for the term depending on
the next-smallest fragment) andW coax.

Reorganizing the recursions in this way might appear to
usemorememory because of the additional arrays. In fact,
the modified version requires less memory, because sev-
eral of the arrays do not need to be stored in their entirety.
Specifically, using the modified recursions, storage is only
required for two diagonals of W, WL, and WMBL; for five
diagonals of WMB; and for a half-triangle of WQ. Reduc-
ingmemory usage is important as the size of the full arrays
scales as O(N2) and the available GPU memory on our
hardware was limited to ∼2.5 GB. The modified recur-
sions use four full N × N arrays and one half-triangle,
rather than the six full N × N arrays used in the original
recursions, and therefore reduce memory usage by about
25%. In addition, the calculation of W 5′ and W 3′ is sim-
plified (compare equations 20 and 21 above with equation
11 of reference [20]).
As in the previous work, the various �G parameters

above are from the Turner nearest-neighbor rules [11],
while a, b, and c are from the following estimate of the
standard free energy change for multibranch loop initia-
tion:

�G0 = a + bn + ch (22)

Here n is the number of unpaired nucleotides and h is the
number of branching helices [21]. By convention, the size
of internal loops is limited to thirty unpaired nucleotides,
so the number of terms in equation 8 and the overall com-
putational expense scales as O(N3) where N is the size of
the sequence.

The largest difference in the new implementation is that
logarithms of probabilities and partition functions (i.e.,
standard free energy changes) are used rather than prob-
abilities themselves, which is convenient when working in
single precision in order to avoid overflow or underflow
errors. This requires that exponentials and logarithms are
calculated at each step of the calculation where sums are
performed. This approach is a departure from the pre-
vious implementation, which used scaling factors. Hav-
ing to compute logarithms and exponentials does entail
some additional computational expense, but this does
not appear to be exhorbitant on the GPU, because opti-
mized intrinsic mathematical functions are used. (i.e.,
the code was compiled with the NVIDIA compiler using
the -use_fast_math option). The function required
for the sum of two free energies a and b (expressed in units
such that RT = 1) is

f (a, b) = − log
(
e−a + e−b

)
(23)

We calculated this in the following way:

f (a, b) =

⎧⎪⎨
⎪⎩

a − log
(
1 + ea−b) a < b

b − log
(
1 + eb−a) a > b

a − log(2) a = b
(24)

This was done for two reasons: it requires at most a sin-
gle call to exp, rather than two; and it can make use of the
log1p function from the standard math library, which
calculates log(1 + x) accurately even for small x. This is
important because often e−a and e−b will differ by several
orders of magnitude, and simply adding them and then
taking the logarithm can lead to significant roundoff error.
In order to determine how much additional computa-

tional overhead was imposed by the calculation of exp
and log1p we performed a comparison with an artifi-
cial reference calculation, which was identical except that
calls to these functions were omitted. We found that for a
1,000-mer, the actual GPU calculation is only ∼20% more
expensive than this reference calculation.
For a serial calculation on the CPU, there is a larger

performance hit; the actual calculation is about a factor
of two more expensive than the reference without exp
or log1p. However, it should be noted that this is not
the entire story, because overall, the new optimized serial
code, which uses logarithms, is still faster than the original
code, which does not. Running the calculation in log space
results in simplifications such as not requiring checking
for overflow and not having to multiply by scaling factors,
which reduces computational expense.
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Parallelization of the partition function calculation using
CUDA
In the CUDA programming model, overall execution of
the program is still governed by the CPU. Compute-
intensive portions of the program are then delegated to
subroutines executed by the GPU, or kernels. In general,
the GPU has its own memory, so data must be copied
to and from the GPU before and after kernel execu-
tion. Many copies of a kernel, or threads, run in parallel,
each of which belongs to a block. During kernel exe-
cution, threads belonging to the same block can share
data and synchronize, whereas threads belonging to differ-
ent blocks cannot. A program can contain many kernels,
which can execute either serially or in parallel [13].
The algorithm for calculating partition functions is

recursive: partition functions for larger fragments depend
on those for smaller fragments. As such, the overall cal-
culation proceeds serially, in order of fragment size. We
used two levels of parallelization, a block level and a thread
level. Calculations for all fragments of a given size may be
done in parallel, with no communication. This was imple-
mented in CUDA at the level of blocks of threads. The
partition function for a given fragment depends on sums,
with the number of terms on the order of the fragment
size (e.g., equation 9). These sums were parallelized at the
level of threads within a block, since calculating a sum
in parallel relies on communication between the threads.
In our experience, a greater speedup was obtained from
this “inner loop” parallelization, even though it requires
more communication between threads. Most likely, this is
because optimal efficiency on GPU hardware is obtained
when identical mathematical operations are performed
in lockstep on different data [13]. We stress that these
two different levels of parallelization are not mutually
exclusive and optimal performance was obtained from
including both. A separate block of threads was run for
each fragment, while 256 threads were run within a block.
The number of threads per block was chosen by trial and
error and was optimal for our hardware (the simple sum
reduction scheme we chose requires it to be a power of
two). In our code, this value is set at compile time (but this
is not required by CUDA—it could be set at run time if
desired).

Results and discussion
Accuracy
Peak floating point performance for NVIDIA Tesla
GPUs are faster by a factor of two when working
in single compared with working in double precision
(www.nvidia.com), but single precision introduces greater
roundoff error. In order to examine accuracy, we calcu-
lated base-pair probabilities for the same sequences using
both the parallel CUDA/GPU implementation in single

precision, and the serial implementation in double preci-
sion. We also calculated probabilities in double precision
using a set of nearest-neighbor parameters slightly modi-
fied by adding a random variate chosen from a Gaussian
distribution with mean 0 and standard deviation 0.01
kcal/mol, which is comparable to or smaller than their
experimental uncertainty (0.1 kcal/mol for parameters
describing helical stacking and 0.5 kcal/mol for parame-
ters describing loops [18,37]).
Figure 1 shows the root-mean-square deviation (RMSD)

between base-pair probabilities calculated using double
precision and either single precision, or the modified
parameters. The RMSD of the calculation using modi-
fied parameters decreases as the size of the sequences
increases (because the fraction of pairs with very small
probabilities increases). In contrast, the roundoff error
due to working in single precision increases as the cube
of the number of bases in the sequence (i.e., the num-
ber of operations involved in the calculation). However,
it remains relatively small for sequences of up to 10,000
bases, and negligible comparedwith the differences result-
ing from the modified parameters. Our conclusion is that
working in single precision does not introduce unaccept-
able roundoff error for RNA secondary structure predic-
tion for sequences of this size andmost likely substantially
larger.
We also used the calculated base pair probabilities

to determine a single consensus structure for each
sequences, using the ProbKnot algorithm [22]. In this
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Figure 1 Accuracy of base-pair probabilities. Root-mean-square
deviation in base-pair probabilities calculated using the CUDA
single-precision implementation (red plus signs) and the serial
double-precision implementation with slightly modified parameters
(green crosses), compared with the serial double-precision
implementation using the original parameters.

www.nvidia.com
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case, working in single precision led to differences
with double precision only for one sequence (a random
sequence of 6000 bases) out of the 44 we examined,
and these were very small (only three bases out of the
6000 were matched with a different partner). Working
with the modified parameters led to larger discrepancies
although these were still fairly small (for sequences con-
taining more than 100 bases, at most 6% of bases were
matched with different partners). This is consistent with
a previous report that predictions using base pair proba-
bilities are significantly less sensitive to errors in thermo-
dynamic parameters than using only lowest free energy
structures [39].

Computational expense
We compared overall execution time for the original serial
code developed in our laboratory, the optimized serial
code, and the parallel CUDA/GPU implementation. Cal-
culations were performed for sequences containing from
10 to 10,000 bases, on compute nodes containing dual
hex-core Intel Xeon 2.67 GHz CPUs and dual NVIDIA
Tesla M2050 GPUs, each of which contains 448 multi-
processor cores (only a single GPU was used). Figure 2
shows the execution time (from the user time reported by
the UNIX “time” command) of the original and optimized
serial codes as well as the parallel CUDA/GPU implemen-
tation. The execution time for all codes scales as the cube
of the sequence length for large sequences. The CUDA
version was able to calculate base-pair probabilities for
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Figure 2 Computational expense. Execution time in seconds for
the original serial implementation (red plus signs), optimized serial
implementation (green crosses), and parallel GPU implementation
(blue asterisks). The red, green, and blue lines are the cube of the
number of bases n in the sequences, multiplied by a constant chosen
to best fit the corresponding execution times.

the sequence for the full HIV-1 NL43 genome (9709
nucleotides) in 27 minutes. We note that there is a small
overhead (a few hundredths of a second) involved in run-
ning calculations with either the original serial code or the
CUDA code, which is not present for the optimized serial
code. This overhead has different origins: for the original
code, it is probably due to reading the parameter files from
disk, while for the CUDA code, it is most likely due to
copying parameters and other data between the GPU and
CPU.

Conclusions
In this work, we introduced a modified set of recur-
sions for calculating RNA secondary structure partition
functions and base-pairing probabilities using a dynamic
programming algorithm, and implemented these in paral-
lel using the CUDA framework for multiprocessor GPUs.
For large sequences, the GPU implementation reduces
execution time by a factor of close to 60 compared with
an optimized serial implementation, and by a factor of
116 compared with the original code. It is clear from our
work that using GPUs can greatly accelerate computation
of RNA secondary structure partition functions, allowing
calculation of base-pair probabilities for large sequences
in a reasonable amount of time, with a negligible com-
promise in accuracy due to working in single precision.
It is expected that parallelization using CUDA should be
applicable to other implementations of dynamic program-
ming algorithms [12] besides ours, and result in similar
speedups.
Two levels of parallelization were implemented. Calcu-

lations for all fragments of a given size were done in par-
allel, with no communication between threads. This was
implemented in CUDA at the level of blocks of threads.
In addition, the sums contributing to the partition func-
tion for a given fragment were calculated in parallel, with
communication required between threads. These sums
were parallelized at the level of thread within a block.
We found that this “inner loop” parallelization resulted
in a significantly greater speedup than the “outer loop”
parallelization alone.

Availability and requirements
• Project name: partition-cuda; part of RNAstructure,

version 5.5 and later
• Project home page: http://rna.urmc.rochester.edu/

RNAstructure.html
• Operating system(s): Unix
• Programming languages: C and CUDA
• Other requirements: CUDA compiler, available from

http://www.nvidia.com/object/cuda_home_new.html
• License: GNU GPL
• Any restrictions to use by non-academics: None.

http://rna.urmc.rochester.edu/RNAstructure.html
http://rna.urmc.rochester.edu/RNAstructure.html
http://www.nvidia.com/object/cuda_home_new.html
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