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Abstract

Previous studies show that the same type of bond lengths and angles fit Gaussian distributions well with small
standard deviations on high resolution protein structure data. The mean values of these Gaussian distributions have
been widely used as ideal bond lengths and angles in bioinformatics. However, we are not aware of any research done
to evaluate how accurately we can model protein structures with dihedral angles and ideal bond lengths and angles.
Here, we introduce the protein structure idealization problem. We focus on the protein backbone structure
idealization. We describe a fast O(nm/e) dynamic programming algorithm to find an idealized protein backbone
structure that is approximately optimal according to our scoring function. The scoring function evaluates not only the
free energy, but also the similarity with the target structure. Thus, the idealized protein structures found by our
algorithm are guaranteed to be protein-like and close to the target protein structure.

We have implemented our protein structure idealization algorithm and idealized the high resolution protein
structures with low sequence identities of the CULLPDB_PC30_RES1.6_R0.25 data set. We demonstrate that idealized
backbone structures always exist with small changes and significantly better free energy. We also applied our
algorithm to refine protein pseudo-structures determined in NMR experiments.
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Background

When studying the functions of a protein, it is crucial
to know the three-dimensional structure consisting of
the Cartesian coordinates of all the atoms of the protein.
These atoms are bonded together by inter-atomic forces
called chemical bonds. It has been observed that the bond
lengths and angles of the same type assume a Gaussian
distribution with a small standard deviation (STDEV)
in high resolution protein structure data. Typically, the
bond lengths on protein backbones have STDEVs between
0.019A and 0.033A and the bond angles on protein back-
bones have STDEVs between 1.5° and 2.7° [1,2]. These
results suggest the possibility of modeling protein struc-
tures with the mean values of bond lengths and angles,
which are often referred to as ideal values.
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Ideal bond lengths and angles have been widely used
in nuclear magnetic resonance (NMR) protein structure
determination [3,4] and in protein structure prediction
[5-9]. Moreover, stereochemical restraints are also used in
X-ray protein structure determination [10,11]. In protein
structure prediction, the main advantage of using ideal
bond lengths and angles is a reduction in the search space
for the target protein structure [12,13]. Specifically, if the
target protein has # amino acids, the number of N, C, and
C atoms on the backbone is 3#, and thus the Cartesian
search space for the idealized backbone structure has a
degree of freedom of 9n [12,13]. However, if all bond
lengths and angles have ideal values, the protein backbone
structure can be represented by a series of bond torsion
angles in the feasible bond torsion angle space. In this
case, the degree of freedom is reduced to approximately
one tenth of that in the Cartesian space [12,13].

Although ideal bond lengths and angles have been
widely used and accepted, we are not aware of any
research done to evaluate how accurately it is possible
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to model protein structures with dihedral angles. This
motivates us to solve what we call the protein structure
idealization problem: Given the coordinates of the target
protein structure, find the coordinates of the optimal ide-
alized protein structure. Here, an idealized protein struc-
ture is a protein structure with bond lengths and angles
that are ideal with respect to a given scoring function; the
function depends on the resultant structure’s free energy,
as well as its similarity with the target structure. Thus,
the idealized protein structure is taken to be a protein-like
structure that is close to the target protein structure.

First, we solve the protein structure idealization prob-
lem by idealizing the backbone structure and then ide-
alizing the side-chain structure. This approach is widely
accepted because previous research suggests that the
backbone conformation is archived before the side-chain
conformations are archived [14]. In our work, 2 dihedral
angles are rounded to be either 0° or 180°. Some discus-
sions on the properness of idealizing Q2 dihedral angles
can be found in [15,16].

We introduce a novel dynamic programming algorithm
with a run-time complexity of O(11/€®), where € is a small
constant, to find the optimal idealized protein backbone
structure according to our scoring function. In practice,
we observed that it is unnecessary to remember the entire
dynamic programming table. Thus, with a filtering tech-
nique, the run-time complexity is further reduced to
O(nm/e€), where m is a constant integer.

In our initial study on the protein structure idealiza-
tion problem, side-chain structures are determined using
an exhaustive search which assumes that side-chain struc-
tures of different residues are independent from each
other. The scoring function is similar to the one we
used for backbone structure idealization. In practice, we
observe that it is fast to regenerate idealized structures
that are similar to a given idealized structure. We also
refine the idealized backbone and side-chain structures
according to our scoring functions iteratively.

We use our algorithm to evaluate how accurately it is
possible to model protein structures with dihedral angles.
We idealize all the X-ray protein structures from PDB [17]
which satisfy the high resolution and the low sequence
identity constraints downloaded on June 6, 2008 [18,19].
The results show that such idealized structures always
exist and that they are very similar to the target structures
in terms of the root mean square deviation (RMSD) of C,
or all atoms. Moreover, the idealized backbone structures
tend to have dDFIRE free energy scores [20,21], which are
significantly better than the target structures. The results
support our conclusion that it is possible to model pro-
tein structures accurately with dihedral angles on all high
resolution protein backbone structures.

One application of the protein structure idealization
algorithm is to refine protein pseudo-structures either
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determined in experiments or predicted by computers.
We have demonstrated one such case to improve poor
(®, V) dihedral angles of protein structures determined
by NMR. The experiment result is also consistent with
the previous experiment showing that the idealized struc-
ture has a small RMSD and better backbone free energy.
We discuss several potential applications for our protein
structure idealization algorithm in the conclusion.

Protein backbone structure idealization

Given the target protein backbone structure, we would
like to find the optimal idealized backbone structure. For
an idealized protein backbone structure, the coordinates
of O, H and Cg backbone atoms can be calculated from
the coordinates of N, C, and C backbone atoms. Thus, we
specifically describe how to generate coordinates of N, C,
and C atoms in this section. For simplicity, a structure is
always referred to as a protein backbone structure unless
strictly specified.

Idealized backbone structure generation

Given the target structure, we would like to generate ide-
alized structures fulfilling two generation goals. First, the
idealized structures should be similar to the target struc-
ture. Second, each pair of idealized structures should be at
least some distance away to avoid redundant computation.
Furthermore, we are interested in generating as many of
these idealized structures as possible.

Before describing how we fulfill the generation goals, we
describe a simple distance metric to measure the distance
between two sets of coordinates representing the target
protein. Let P; be a set of coordinates representing the tar-
get protein, and P, € P; be the coordinate of the j-th atom
of the target protein. Thus, there is P; = {P},Piz, ...,Pig”},
where # is the number of amino acids of the target protein.
For simplicity, let Py always represent the target structure,
and P; represent a generated idealized structure for i > 0.
Let D(P{f, P]Z‘) be the Euclidean distance between Pg‘ and

PX. We describe the distance between P; and P; as the
bottleneck distance:

D(P; Py) = max D(P}, P}). (1)

Using this distance metric, we fulfill both generation
goals by satisfying the following generation constraints:

D(Po,P;) <r Vi>0 @
D(P;,P) > € Vi,j>0"

The first generation constraint assumes that the accuracy
of the coordinates of the target structure is reasonably
good, and no-worse than r. If this constraint is satisfied,
the distance between the target coordinate and any gen-
erated coordinate representing the same atom is upper
bounded by r. Thus, it is reasonable for any generated
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idealized structure P; to be considered similar to target
structure Py. If the second generation constraint is satis-
fied, for each pair of generated idealized structures, there
exists a pair of coordinates, one from each structure rep-
resenting the same atom, such that they are at least ¢
distance away from each other. Therefore, both generation
goals are achieved.

These generation constraints suggest limiting the search
space inside a sphere with radius r, and discreting the
search space with grids of size . When ¢ = 0.0014,
the accuracy of X-ray crystallography [22] and PDB (pro-
tein database) format [23] is reached. Thus, this method
is capable of generating all possible idealized structures at
the accuracy of X-ray crystallography and PDB format.

Given the limited and discrete search space of each
atom, one can generate idealized structure coordinates
from the first atom to the last atom. For the first atom,
an idealized coordinate lies within a sphere. Thus, the
number of generated coordinates is bounded by O(1/¢3).
For each generated coordinate Pl.1 of the first atom, an
idealized coordinate of the second atom lies on a ball sur-
face with a constant distance to P}. Thus, the number of
generated coordinates is bounded by O(1/€?). For each
generated coordinate pair (P},Plz) of the first two atoms,
an idealized coordinate of the third atom lies on a circle
with a constant distances to P! and P?. Thus, the number
of generated coordinates is bounded by O(1/¢). Similarly,
the number of generated coordinates for any of the follow-
ing atoms is also bounded by O(1/¢). Moreover, since we
round €2 dihedral angles to either 0° or 180°, the coordi-
nate of any C, atom is unique and can be calculated from
the coordinates of the previous three atoms.

Therefore, the total number of coordinates generated
for all atoms is bounded by O(1/€***%) by induction.
Here, it is acceptable to assume that r is a constant
because it is only related to the first atom. For subsequent
atoms, we did not limit the search space to be inside the
sphere with radius r as described above, and thus the
actual number of generated coordinates should be much
smaller in practice.

Idealized backbone structure scoring function

Given the generated idealized structures {P;}, we need
a scoring function Spp(P;) to find the optimal idealized
structure. The scoring function should evaluate not only
the similarity between generated idealized structure P;
and target structure Py, but should also evaluate the free
energy of P;, to ensure that P; is protein-like. Thus, we

define our scoring function as follows:
Sp(Pi) =Sf(P;) — w1Dy(Pj, Pg) — woDg(P;, Po) 3)
— w3Dy (P;, Po) — waDo,w (P, Po),

where w, are the weighting parameters, Sf(P;) is the
free energy score, D, (P;,Py) is the root mean square
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divergence (RMSD) of C atoms, Dg(P;, Pp) is the RMSD
of Cg atoms, Dy (P;, Po) is the RMSD of the hydrogen
and oxygen atoms participating in hydrogen bonds, and
Doy (P;, Py) is the RMSD of (®, V) dihedral angles.

In our scoring function, the free energy is evaluated by
a (P, V) dihedral angle log-odd score as the free energy
score Sy (P;). Specifically, we discrete the Ramachandran
plot into grids of 360 by 360, and draw one plot for each
type of amino acid. Then, we calculate the log-odd score
Sr (Pl-l’t) of idealized structure Pil't of the first ¢ atoms:

Sp(Pit) = Z log

5<i<t,A;=Cqy

Ppa; 5 (®i3,¥;3)

) (4)
Pnull(qu—fS; qji—S)

where one log-odd score is calculated at each C, atom
(by checking that atom type A; is Cy) for the previous
amino acid (represented by the previous C, atom at i —
3), Paa;_5(P;—3,V;_3) is the probability of the grid con-
taining (®;_3, ¥;_3) on the Ramachandran plot of amino
acid type AA;_3, and Py, (®;_3, V;_3) is the probability
of the null model with a uniform distribution such that
Prun(®i-3,Vi-3) = 555 360+

Structure similarity is evaluated by other distance matri-
ces in our scoring function. We use Dy (P;,Py) and
Dy w(P;, Py) to serve as distance metrics to conserve the
backbone structures, and Dg(P;, Pp) to serve as a distance
metric to conserve the side-chain structure compatibili-
ties; we also use Dy (P;, Py) to serve as a distance met-
ric to conserve the hydrogen bonds. Thus, some global
dependencies are addressed implicitly by distance matri-
ces Dg (P}, Py") and Dy (P, Po).

Dynamic programming algorithm
Theoretically, one can calculate scores for all generated
idealized structures and find the optimal one with the
maximum score. This method works well as long as sim-
ilar structures always have similar scores. More formally,
the method requires the assumption that D(P;,P;) <
€ = |Sp(P;) — Spa(Pj)| < €, which is reasonable for
small €. Note that, since the total number of generated ide-
alized structures is bounded by O(1/ €2"*4) this method is
computationally expensive. Thus, we introduce a dynamic
programming algorithm with a filtering technique to find
the optimal idealized structure efficiently.

The dynamic programming algorithm has two assump-
tions. One assumption is that given two generated ide-
alized structures Pil":_1 and le‘t_l of the first t — 1

atoms, such that D(Pf_k’t_l,Pjt_k’t_l) < ¢, for any gen-
erated coordinate P! of the #th atom, there always exists
a generated coordinate Pf, such that D(P%, P]-t) < €. The
other assumption is that the scoring function satisfies the
additive property, such that SBB(P}’t) = SBB(PL‘I'tfk) ®
SBB(Pf7k+1’t), under some addition operator &.
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We observed that counter examples of the first assump-
tion when k > 5 are rare, though counter examples
do exist theoretically. The second assumption holds for
our scoring function. Distance matrices Da(Pil’t,P(l)‘t),
Dg (P, Py"), Dy (P}, Py and Doy (P}, Py") satisfy the
additive property because RMSD Dpass (Pil’t, Pé’t) satisfies
the additive property:

Drus (P}, Py")

= Drus(PP ™, Py ™) @ Druss (P41, PR 1)

B \/DlzeMS(Pil,tk,P(l),tk)(t —k +D%MS(Plf—kﬂ,tjp(t)—kﬂ,t)k
7 .

(5)

Moreover, the free energy score Sf(Pil‘t) satisfies the
additive property as follows:

Sy = Sy @ 5P (6)
- Sf(Pil,t—k) +Sf(Pf_k+l’t)-

The second assumption is fundamental to our dynamic
programming algorithm. By induction, the first assump-
tion implies that if D(Pf_k‘t_l,P;_k't_l) < ¢, for
any generated idealized structure Pf’",
exists a generated idealized structure P;’" such that
D(Pf’",P;’") < e. Recall that the scoring function
assumes that D(Pf’”,Pjt'”) < e = [SgP") -
SBB(P;’”)| < &, and thus there is Sgp(P}") ~ SBB(P]’?’”).
If Spp(P*™ ") >

> SBB(P/.I’t_I), there is approximately
Spa(P) = Sgs(P"™) @ Sgp(P") = Sg(P'Th) @

Spa(P}") = Spp(P)). Therefore, if D(pffk’tfl,p;*"’tfl) <
€ and SBB(PZ-I’t_l) > SBB(P]-M_l), there is no need to

there always

generate Pjt’” to find an approximately optimal solution.
Based on this observation, we developed a novel
dynamic programming algorithm. Idealized structures are
still generated as previously described, but the genera-
tion process is stopped for some idealized structures if
we know it cannot lead us to the optimal one. First, the
search space for each atom of the target protein is dis-
cretized to grids of size €. When generating coordinates
for atom ¢, if Pf_kﬂ’t P;_k+1‘t
Gf, k+1,¢

and are located in the same

grid set , we know that there is no need to con-
tinue the generation process on the lower scoring one of
Pl«1 * and Pl-l’t. Thus, we define the dynamic programming

table Tpp(t, ngﬂ’t) to be the optimal idealized structure

t—k+1,t
Gg

for each observed tail grid set as follows:

Tp(t, Gé_k—H'[) = max;; Tpp(t—1, Gf_k't_l)
@D SBB(P;) @)
Tpp(k, G;’k) = max; SBB(PZ.I'k)
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where Gé*kJrl,tfl — Gf*k+l,t71, Pjtfk+1,t c Gé*k«%l,t and

Spa(P;* 1) ®Spa(P!) = Sps(P;"). Thus, the dynamic pro-
gramming table can be calculated from the first atom to
the last atom. Finally, the optimal idealized structure is the
one with the highest score max, Gf,"_kﬂ’gn.

The run-time complexity of our dynamic programming
algorithm depends on the value of k. To keep all possible
(®, W) dihedral angles of the previous residue when gen-
erating C, atoms, we have to choose k > 5. For speed,
we choose k = 5 in our implementation. In this case,
the number of score calculations required to calculate
Tga(t, G§_4’t) is no more than the maximum number of
coordinates sampled for six consecutive backbone atoms.
Recall that there are exactly two C, atoms in six con-
secutive backbone atoms, and the Q dihedral angle is
rounded. Thus, the coordinate of one C, atom can be cal-
culated from the coordinates of the other C,, atom and the
two atoms between them. For this reason, the maximum
number of sampled coordinates is bounded by O(1/¢®).
Moreover, the number of score calculations required to
calculate Tpp(k, Gél,’k) is no more than the maximum
number of possible coordinates sampled for five consec-
utive backbone atoms, which is also O(1/€®). Therefore,
the run-time complexity of our dynamic programming
algorithm is O(n/€®).

To increase the speed for the dynamic programming
algorithm, we applied an additional filtering technique
to remember only the highly scored idealized structures.
Specifically, the algorithm only remembers the optimal
idealized structure for the top 7 scored tail configurations
instead of all possible conformations. Thus, the run-time
complexity is reduced to O(nm/¢€). This approach works
well in practice because an optimal idealized structure
with a long poorly scored fragment is rare. Thus, we
assumed that the local quality of the idealized structure
should be reasonably high (in the top m score list).

Protein side-chain structure idealization

After the backbone structure of the target protein has
been idealized, we begin to idealize the side-chain struc-
tures. When doing this, the idealized backbone structure
is considered to be rigid. This approach is widely accepted
because previous research suggests that the backbone
conformation is archived before the side-chain conforma-
tions are archived [14]. After the side-chain idealization,
we should have a complete idealized protein structure
with all of the backbone and the side-chain structures
idealized.

Protein side-chains suffer from low quality problems
when determining protein structures. This is mainly
because side-chains are not as stable as backbones, and
they are more likely to have disorder problems than are
backbones in crystals [22]. Thus, the target side-chain
structure might be a poor reference for defining the search
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space and for evaluating the structure similarity score for
generated idealized side-chain structures. To address this,
we perform an exhaustive search on the entire feasible tor-
sion angle space, instead of the limited torsion angle space,
around the target side-chain structure.

Our side-chain idealization method assumes that the
side-chain conformations of different residues are inde-
pendent of each other. Otherwise, all residues with depen-
dencies have to be generated together and the run-time
complexity increases exponentially to the number of
atoms involved. Moreover, the N;; — C; — N — Cj and the
Ny2 — C; — Ne — Cs torsion angles of arginine residues are
rounded to be either 0° or 180°. Then, the degree of free-
dom of the search space for each residue is at most four
and it is now practical to perform an exhaustive search for
each residue independently.

To find the optimal idealized side-chain structure, we
design a new scoring function involving the similarity
among the generated idealized side-chain structures and
the target side-chain structures, and the free energy of
the generated idealized side-chain structures. Let Py be
the target side-chain structure of some residue, and P; for
all i > 0 be a generated idealized side-chain structure of
the same residue. Then, the scoring function Ssc(P;) is
defined:

Ssc(Pi) = S¢(P;) — wiDp (Pi, Po) — waDy (Py, Po),

where wy are the weighting parameters, S¢(P;) is the free
energy score, Dy (P;, Py) is the root mean square diver-
gence (RMSD) of all non-hydrogen atoms, and D, (P;, Po)
is the RMSD of x torsion angles.

In our scoring function, the free energy score Sy(P;) is
defined as a simple x torsion angle log-odd score, which
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is similar to the free energy score of our backbone scor-
ing function. Moreover, the log-odd score is based on the
popular backbone dependent rotamer library downloaded
from Dunbrack’s lab [24]. Certainly, other local free
energy scores can be adopted here. Similar to the back-
bone scoring function, Dy (P;, Po) and D, (P;, Py) serve as
distance metrics to conserve the side-chain structure.

Result

To study the protein structure idealization problem and
its applications, we implemente our protein structure ide-
alization algorithm. In our implementation, we use the
mean bond lengths and angles that had been reported
in [2] as the ideal bond lengths and angles, respectively.
When idealizing the protein backbone structure, we set
the search space radius of an atom as » = 1.6A and the
discrete grid size as € = r/5. We find that m = 50,000
had a reasonable balance between speed and accuracy.
When idealizing the protein side-chain structure, we set
the search space of a rotamer dihedral angle to be within
30 distance from the mean value, where o is the STDEV
of the rotamer dihedral angle, and we set the discrete grid
size to be 10°. We also refine the idealized structure by
iteratively reducing the search space and the discrete grid
size by a constant factor of 0.5. Since finding the best scor-
ing function for the protein structure idealization is out of
the scope of this paper, we set all weights w, = 1.0 for all
a in our scoring function.

PDB protein structure idealization

In this experiment, we addressed how accurately it
is possible to model protein structures with dihedral
angles. We idealized high resolution protein structures
with low sequence identities of the CULLPDB_PC30_RE
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0.1 L L

++

0 200 400
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S1.6_R0.25 data set [18,19]. In fact, the CULLPDB_PC
30_RES1.6_R0.25 data set is the complete set of X-ray pro-
tein structures in PDB [17] with a sequence identity cutoft
of 30%, a resolution cutoff of 1.6A, and an R factor cutoff
of 0.25. In summary, the data set contains 1898 proteins
with an average length of 227 residues, as downloaded on
June 6, 2008.

To show that the idealized and the target backbone
structures are very similar, we calculated the C,-RMSD as
shown in Figure 1. The C,-RMSD is a popular distance
metric to evaluate the backbone distance between two
protein backbone structures. The result shows that most

distances between the idealized and the target backbone
structures are small with mean 0.53A and STDEV 0.08A.
Specifically, the smallest C,-RMSD reaches 0.16A, and
90% of the C,-RMSDs are smaller than 0.63A. Moreover,
the C,-RMSD is upper bounded by 1.00A, although the
search space radius for each atom is set to be 1.6A. This
result is consistent with the result of checking (®, ¥) dihe-
dral angles, where the average difference between the ide-
alized and the target (¥, ¥) dihedral angles is as small as
0.08°. Therefore, it is possible to model protein backbone
structures in CULLPDB_PC30_RES1.6_R0.25 accurately
using only ® and ¥ dihedral angles.
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Figure 3 C,-RMSD of all regions v.s. 8-sheet regions.
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We studied the C,-RMSD further in different regions
of the target protein structures. In Figures 2 and 3, we
see that the C,-RMSD of the «-helix and the B-sheet
regions are smaller than that of the complete protein
by 0.28A and 0.12A, respectively. Indeed, these regions
are more restricted because of using Dy (P;, Py) to con-
serve hydrogen bonds of «-helices and B-sheets in our
scoring function. We also observe that the C,-RMSD
of residues that are closer to the geometric center of
a target protein structure is 0.13A smaller on average
than the C,-RMSD of the other residues that are far-
ther, as shown in Figure 4. Thus, the inner residues tend
to be closer to the idealization state than are the outer

residues. We did not observe any significant differences
on the C,-RMSD between the buried and the exposed
regions.

We also calculated the all-atom RMSD to show that
the idealized and the target structures are very similar.
In Figure 5, we see that most distances between the ide-
alized and the target structures are small, with mean
0.79A and STDEV 0.13A. Moreover, the smallest all-atom
RMSD reaches 0.45A, and 90% of the all-atom RMSDs
are smaller than 0.94A. Note that both the C,-RMSD
and the all-atom RMSD between the idealized and the
target structures tend to be stable when the target pro-
tein is long. Therefore, it is possible to model protein
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Figure 5 All-atom RMSD.
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structures accurately with only &, W, and x dihedral
angles.

The idealized backbone structures are also favored in
terms of free energy. This is shown by checking the free
energy differences between the idealized and the target
protein backbone structures in Figure 6. Here, we calcu-
late the free energy using dDFIRE [20,21], and observe
that the dDFIRE free energy of most idealized backbone
structures are significantly better than are those of the
target backbone structures. For the rest without signifi-
cant improvements, the difference is close to zero. This
may be the result of some tight thereochemical restraints
used in existing X-ray structure refinement programs

[15,16]. It is also interesting that the observed free energy
improvements are clearly not independent from the
protein length. The figure suggests that the free energy
difference has a square dependence on the protein length.

After idealizing the side-chain structures, the free
energy is either improved by a relatively biger amount
or worsened by a relatively smaller amount as shown in
Figure 7. Unfortunately, in most cases, the free energy is
worsened slightly but is still in a stable state with negative
values. Again, here we used dDFIRE [20,21] to calculate
the free energy. We observed that the dDFIRE free energy
is improved for 90 or 4.74% of the idealized protein struc-
tures and is worsened slightly by 44 on average. Moreover,
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Figure 7 Protein all-atom free energy (calculated by dDFIRE).
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Table 1 DSSP hydrogen bond differences before and after
idealization

Type Count difference Percent difference
Parallel Bridge 9 0.04%
Antiparallel Bridge =211 -0.37%
27 Helix 7080 26.46%
310 Helix 1018 -2.35%
o Helix 1644 -1.48%
7 Helix -82 -1.27%
All 5183 1.85%

the dDFIRE free energy is improved by 1585 in the best
case, and worsened by 293 in the worst case. The figure
also suggests that the free energy difference has a linear
dependence on the protein length.

Several side-chain prediction tools have been proven
to predict accurate side-chain structures from native
backbone structures [8,9,25,26]. However, these tools
does not perform well when predicting side-chain struc-
tures from predicted backbone structures. To address
this, we compared the predicted side-chain structures
given the native backbone structures and those given
the predicted backbone structures in terms of free
energy. Here, we treat the idealized backbone struc-
tures of the CULLPDB_PC30_RES1.6_R0.25 data set as
those which are best possibly predicted. Moreover, we
used SCWRL4 [9] to predict side-chain structures and
dDFIRE [20,21] to calculate free energies. The result
shows that the free energy is worsened slightly by 43
if the predicted backbone structures are used. We do

Page 9 0of 13

not think this difference is significant to side-chain pre-
diction. Certainly, more experiments will show if this is
conclusive.

Finally, we study the effects of idealization on hydro-
gen bonds. As shown in Table 1, we compare the num-
ber of hydrogen bonds detected by the DSSP program
[27,28]. Here, only differences of the most popular types of
hydrogen bonds are included. We note that the total num-
ber of hydrogen bonds is increased by 1.59% or 0.012 per
residue after idealization. Specifically, the effects of ideal-
ization on hydrogen bonds of 8 bridges is minor, and the
loss of the hydrogen bonds on « helices is reasonably con-
trolled under 1.48%. Interestingly, the idealized backbone
structures have significantly more 27 ribbons. The reason
behind this observation remains open.

In summary, we demonstrate that using dihedral
angles with ideal bond lengths and angles is capable of
modeling protein structures that are highly similar to
the ones in CULLPDB_PC30_RES1.6_R0.25 [18,19]. Since
CULLPDB_PC30_RES1.6_R0.25 is the complete set of
PDB protein structures satisfying the high resolution and
the low sequence identity constraints, it is reasonable
to extend the conclusion to all protein backbone struc-
tures. A positive side effect is that idealization improves
backbone free energy, while most hydrogen bonds are
conserved.

NMR protein structure refinement

In this experiment, we demonstrate an application of
the protein structure idealization problem in NMR by
idealizing 32 NMR protein structures. The NMR pro-
tein structures were randomly chosen from PDB [17]

Table 2 The percentages of the favored (®, ¥) dihedral angles of 32 NMR protein structures before and after idealization

PDB Native Ideal Diff PDB Native Ideal Diff
1SSK 44.6% 71.9% 27.3% 2LBN 59.7% 77.6% 17.9%
2KQP 62.9% 80.0% 17.1% TWPI 64.4% 81.4% 17.0%
TEXE 60.5% 76.7% 16.2% 2LNV 58.6% 72.4% 13.8%
TX6F 64.1% 73.1% 9.0% 2L6B 72.2% 81.1% 8.9%
2GFU 72.3% 80.4% 8.1% 1PC2 79.3% 87.4% 8.1%
2LMR 79.7% 87.0% 7.3% 2KAO 72.6% 78.3% 5.7%
2130 71.3% 76.9% 5.6% 101W 67.2% 72.1% 4.9%
2CQ9 78.3% 82.6% 4.3% 2RQA 72.0% 75.4% 34%
2086 89.0% 92.1% 3.1% INTC 80.5% 83.1% 2.6%
21T 76.6% 79.0% 2.4% 2CZN 76.5% 76.5% 0.0%
TRCH 754% 74.6% -0.8% 2JU1 77.1% 75.9% -1.2%
2KV7 85.5% 84.2% -1.3% 2112 83.6% 81.5% -2.1%
2KYW 83.8% 81.1% -2.7% 20SR 82.7% 80.0% -2.7%
2L6M 81.7% 78.5% -3.2% 2CU1 81.1% 77.8% -3.3%
1AJ3 93.3% 88.8% -4.5% TWI5 84.0% 78.0% -6.0%
TNMW 85.0% 78.0% -7.0% 2LBV 83.9% 74.8% -9.1%
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with a sequence identity cutoff of 30% and a gapless
fragment length cutoff of 80 residues. In cases of multi-
ple chains or models of some NMR protein structures,
only the first chain from the first model is used in
this experiment. This addition to the conclusion of the
previous experiment shows that poor (®,W¥) dihedral
angles of the NMR protein structures are improved by
idealizing them.

To demonstrate this, we compared the percentage of
favored (®, V) dihedral angles calculated by PROCHECK
[29] in Table 2. After idealization, we see that 19 out of 32
NMR protein structures have more favored (®, V) dihe-
dral angles. Overall, the percentage is increased by 4.34%
on average and 27.30% in the best case, which is closer
to the minimum percentage of 90% expected in a good
quality model [29].
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Note that for those NMR protein structures that already
have more than approximately 75% of favored (®,WV)
dihedral angles, idealization harms the percentage by
—0.85% on average. There are at least two reasons for
this. First, our free energy score Sp(P;) is calculated
from a data set that is different from the one used by
PROCHECK. In fact, we used 1898 protein structures
of the CULLPDB_PC30_-RES1.6_R0.25 data set [18,19],
while PROCHECK used 118 protein structures, with a
resolution cutoff of 2.0A and an R factor cutoff of 0.20
[29]. Although the percentages of favored (®, W) dihedral
angles are decreased in Table 2, our free energy scores
of proteins 1WI5, INMW, and 2LBV are increased by
0.22, 1.35, and 0.31, respectively, after idealization. Sec-
ond, our implementation is trying to optimize our scor-
ing function Sgp(P;), instead of optimizing only the free
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energy score. Thus, it is possible to see decreased free
energy scores after idealization, especially when the target
protein structure has a high percentage of favored (¥, V)
dihedral angles.

Our conclusion is further supported by the case study
of the NMR structure with PDB ID 1WPI [30]. From
the Ramachandran plots drawn by PROCHECK [29] in
Figures 8 and 9, we find that (¥, V) dihedral angles
tend to move towards favored regions. Specifically, the
native structure contains only 64.4% of (¥, V) dihedral
angles in favored regions, while the idealized structure
contains a significantly improved percentage of 81.4% of
(®, @) dihedral angles in favored regions. Moreover, the
native structure contains three (®, V) dihedral angles
that are not in any feasible areas of the Ramachandran
plot. However, there is only one such case found in the
idealized structure. Thus, two infeasible (®, W) dihedral

Page 11 of 13

angles are fixed by the (&, V) dihedral angle log-odd
score. Here, we did not, but certainly can, implement a
hard constraint to disallow any infeasible (&, ) dihedral
angles.

In summary, we have demonstrated that protein struc-
ture idealization can be used to improve poor (®, W) dihe-
dral angles of protein pseudo-structures. These protein
pseudo-structures can either be predicted or be exper-
imentally determined. More applications of the protein
structure idealization problem will be studied.

Conclusion

We have introduced the protein structure idealization
problem and performed our first attempt to solve it. The
experiment results show that idealized structures always
exist with small changes on the coordinates. Further-
more, the idealized backbone structures have significantly

PROCHECK

Ramachandran Plot
Iwpi.ideal

. —] b
| ! -°
\ = L
Al ]
B il f I
ol Yl mr
g &l | |\ - qn-égm)
%ﬁ 0 I| _I—I
7 L i
454
90— _p*_,_E:,W_J——l—' SER 23 (A) o
N = B
-1351 |
L — )
(180 -135 90 45 45 90 135 180

Phi (degrees)

Plot statistics

Residues in most favoured regions [A,B,L]

Residues in additional allowed regions [a,b,1,p]
Residues in generously allowed regions [~a,~b,~l,~p]
Residues in disallowed regions

Number of non-glycine and non-proline residues
Number of end-residues (excl. Gly and Pro)

Number of glycine residues (shown as triangles)
Number of proline residues

Total number of residues

96 81.4%

19 16.1%

2 1.7%

1 0.8%

118 100.0%
2
5
8

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms
and R-factor no greater than 20%, a good quality model would be expected
to have over 90% in the most favoured regions.

Figure 9 Ramachandran plot of the idealized NMR protein structure TWPI.




Cui et al. Algorithms for Molecular Biology 2013, 8:5
http://www.almob.org/content/8/1/5

better free energy and (®,W¥) dihedral angle distribu-
tions. Therefore, protein structures can be modeled accu-
rately with dihedral angles and ideal bond lengths and
angles, and it is feasible to predict protein backbone
and side-chain structures by searching the dihedral angle
space.

Our protein structure idealization algorithm may be
improved in several ways. Since our scoring functions
are very simple with all weights w, = 1.0 in the cur-
rent implementation, there is space for improvements. We
are also looking forward to adding protein-ligand inter-
action energy to our scoring function and to studying
the effect of idealization on protein-ligand interactions.
Moreover, since some atoms are more flexible than oth-
ers, we can also set different search spaces for different
atoms in our algorithm. For example, when idealizing X-
ray protein structures, the search space of each atom could
be selected according to its B-factor. We can also adopt
a divide-and-conquer algorithm in our algorithm to find
the global, rather than local, optimal idealized structure.
Specifically, we can divide the protein structure into small
fragments, idealize each fragment separately, and merge
idealized fragments. The key is to divide the protein struc-
ture by a tree decomposition of the interaction graph and
to remember the optimal idealized fragment for each pos-
sible configuration of atoms with interactions to external
atoms. Similar ideas have already been used successfully
to improve the speed and the accuracy of backbone and
side-chain structure predictions [8,9,25,26,31,32].

Our protein structure idealization algorithm can also
correct modelling errors of protein structures in PDB [17].
In fact, previous research indicates that many bond con-
formations and side-chain rotamers are likely incorrect in
PDB, and it is useful to have an automated mechanism
to fix these problems [33,34]. Thus, we can address these
problems by idealizing all protein structures in PDB with
our protein structure idealization algorithm and using our
specially tuned scoring functions.

The idealized version of the PDB [17] provides new
protein structure references to study protein structures
and functions. For example, we can rebuild fragment and
rotamer libraries based on the idealized PDB. It would
then be more intuitive to use the idealized fragment or
rotamer libraries in the protein backbone or side-chain
structure prediction algorithms searching the dihedral
angle space. Thus, we expect to see some improvements
of the accuracy of these algorithms with the idealized
fragment and rotamer libraries. Therefore, we also pro-
vide a new approach for discovering unusual atoms and
bonds by comparing the idealized and the original PDB
structures. Although most of these unusual atoms and
bonds are due to errors, we expect to discover some
biochemical insights that assist in understanding protein
functions.
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