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Abstract

Background: Statistics in ranked lists is useful in analysing molecular biology measurement data, such as
differential expression, resulting in ranked lists of genes, or ChIP-Seq, which yields ranked lists of genomic
sequences. State of the art methods study fixed motifs in ranked lists of sequences. More flexible models such as
position weight matrix (PWM) motifs are more challenging in this context, partially because it is not clear how to
avoid the use of arbitrary thresholds.

Results: To assess the enrichment of a PWM motif in a ranked list we use a second ranking on the same set of
elements induced by the PWM. Possible orders of one ranked list relative to another can be modelled as
permutations. Due to sample space complexity, it is difficult to accurately characterize tail distributions in the group
of permutations. In this paper we develop tight upper bounds on tail distributions of the size of the intersection of
the top parts of two uniformly and independently drawn permutations. We further demonstrate advantages of this
approach using our software implementation, mmHG-Finder, which is publicly available, to study PWM motifs in
several datasets. In addition to validating known motifs, we found GC-rich strings to be enriched amongst the
promoter sequences of long non-coding RNAs that are specifically expressed in thyroid and prostate tissue samples

and observed a statistical association with tissue specific CpG hypo-methylation.

Conclusions: We develop tight bounds that can be calculated in polynomial time. We demonstrate utility of
mutual enrichment in motif search and assess performance for synthetic and biological datasets. We suggest that
thyroid and prostate-specific long non-coding RNAs are regulated by transcription factors that bind GC-rich
sequences, such as EGRT, SP1 and E2F3. We further suggest that this regulation is associated with DNA

hypo-methylation.

Keywords: Statistical enrichment, Position weight matrices, High-throughput sequencing data analysis, Tissue

specific methylation patterns, INCRNA

Background

Modern data analysis often faces the task of extracting
characteristic features from sets of elements singled out
according to some measurement. In molecular biology,
for example, an experiment may lead to measurement
results pertaining to genes and then questions are asked
about the properties of genes for which these were high
or low. This is an example, of course, and the set of
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elements does not have to be genes. They can be
genomic regions, proteins, structures, etc. A central
technique for addressing the analysis of characteristic
properties of sets of elements is statistical enrichment.
More specifically — the experiment results are often rep-
resentable as ranked lists of elements and we then seek
enrichment of other properties of these elements at the
top or bottom of the ranked list. GSEA [1], for example,
is a tool that addresses characteristic features of genes
that are found to be differentially expressed in a com-
parative transcriptomics study. GOrilla [2,3] addresses
GO terms enriched in ranked lists of genes where the
ranking can be, for example, the result of processing

© 2014 Leibovich and Yakhini; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public

Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this

article, unless otherwise stated.


mailto:zohar_yakhini@agilent.com
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Leibovich and Yakhini Algorithms for Molecular Biology 2014, 9:11
http://www.almob.org/content/9/1/11

differential expression data or of correlations computed
between genomic DNA copy number and expression
[4-6]. FATIGO [7] is also a tool that is useful in the con-
text of analysing GO terms in ranked lists of genes. DRI-
Must [8-10] searches for sequence motifs that are
enriched, in a statistically significant manner, in the top
of a ranked list of sequences, which can be produced by
techniques like ChIP-Seq.

All the aforementioned tools utilize a statistical ap-
proach that is based on assessing enrichment of an input
set in an input ranked list by quantifying the enrichment
obtained at various cutoffs applied to the ranked list. It
is often the case, however, that two quantitative proper-
ties need to be compared to each other. For example,
when the elements are genes, we may have measured
differential expression values, as well as measured ChIP-
Seq signals. We are therefore interested in assessing mu-
tual enrichment in two ranked lists. Another example
consists of one ranking according to differential expres-
sion and one according to prediction scores for miRNA
targets. miTEA [11,12] addresses this latter case by sta-
tistically assessing the enrichment of miRNA targets in a
ranked list of genes (also see [13]). To address mutual
enrichment in two ranked lists over the same set of N
elements, miTEA [11] performs analysis on permuta-
tions. Mutual enrichment in the top of two ranked lists
can be simplified, from a mathematical point of view, by
arbitrarily setting the indices of one list to the identity
permutation (1,2,...,N) and treating the other list as a
permutation 7 =7(1),..., m(N) over these numbers. For
the purpose of assessing the intersection of the top of
the two ranked lists in a data driven manner, miTEA
asks which prefix [1,...,n;] is enriched in the first 7, ele-
ments of 7, that is in the set 7(1), ..., 71(715). The statistics
introduced by miTEA is called mmHG (minimum-mini-
mum-Hyper-Geometric). A slightly different variant of
mmHG is described later in this section.

Statistics in the group of permutations Sy is often dif-
ficult because the number of entities to be considered by
any null model is N!. Direct exhaustive calculation of tail
distributions over Sy is therefore impractical for all but
very small values of N. This difficulty is addressed by
several heuristic techniques. Mapping into continuous
spaces, such as in [14], has proven useful in certain cases
but not for studying large deviations. In the case of en-
richment statistics that focuses on the top of the permu-
tation and seeks to assess extreme events, such as
mmHG, we prefer to use bounds on tail probabilities.
Tail probabilities are useful constructs when applied to
analysing molecular biology measurement data as they
enable statistical assessment of observed results.

In this work we derive tight bounds on the tail probabil-
ities of mutual enrichment at the top of two random per-
mutations uniformly drawn over Sy and demonstrate the
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utility of this approach in the context of flexible motif dis-
covery. Our bounds are computable in polynomial time
and potentially add to the accuracy of reported position
weight matrix (PWM) motifs for nucleic acid sequences.

Mutual enrichment in ranked lists - the mmHG statistics
The mmHG statistics [11] is a generalization of the mHG
statistics [2,15-17]. The mHG statistics quantifies the en-
richment level of a set of elements at the top of a ranked
list of elements of the same type, whereas the mmHG
statistics assesses the level of mutual enrichment in two
ranked lists over the same set of elements. While any
parametric or non-parametric correlation statistics (e.g.
Spearman’s correlation coefficient), that takes the same in-
put, calculates the overall agreement between the two
ranked lists, the mmHG statistic focuses only on agreement
at the top of the two ranked lists. mmHG counts elements
common to the top of both lists, without predefining what
top is. Its intended output is the probability of observing an
intersection at least as large in two randomly ranked lists
(defined as the enrichment p-value). In this section we de-
scribe the mmHG statistics and in later sections we suggest
tight bounds for the p-value. Our definition of the mmHG
statistics varies slightly from that of Steinfeld et al [11],
which is used by miTEA.

Mutual enrichment in the top of two ranked lists can
be simplified, from a mathematical point of view, by ar-
bitrarily setting the indices of one list to the identity per-
mutation (1,2,...,N) and treating the other list as a
permutation. Details of this transform are given in the
next section. We now define mmHG for the simple
case of one permutation. Consider a permutation =
7(1), ..., m(N) € Sy - the group of all permutations over
the numbers 1,....N. mmHG is a function that takes 7 and
calculates two numbers 1<y, 1, <N such that the ob-
served intersection between the numbers 1,...,7; and the
first 7, elements of 7 — namely, (1), ..., 7z(n5) - is the most
surprising in terms of the hypergeometric p-value.

Formally, given € Sy and for every 1<mn;,n, <N, let
b,(n1, ny) be the size of the intersection of 1,...,n; with
(1), ..., m(ny). Set

mmHG score(rr)

= Miny <, NnMiM <, <NHGT (N, 1y, 13, by (11, 13))

where HGT is the tail distribution of an hypergeometric
random variable:

) ny N—l’ll
min(ny,n3) i My—i
HGTN. mom by = 3 AL\ mt)

<)
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The mmHG score cannot be considered as a signifi-
cance measure, due to the multiple testing involved in
finding #; and n,. A simple way to correct an mmHG
score s for multiple testing and report an upper bound
on the p-value is to use the Bonferroni correction. Basically,
s is multiplied by the number of multiple tests conducted
(which is N?), yielding an upper bound on the p-value, as
follows:

mmHG p-value(s,N)<s-N*

In the Results section we present significantly tighter
bounds.

Position weight matrix motifs

Data produced by techniques such as ChIP-Seq [18],
ChIP-exo [19], CLIP [20], PAR-CLIP [21] and others are
readily representable as ranked lists of sequences, where
the ranking is according to the measured binding affin-
ity. Computational tools and approaches to motif discov-
ery form part of the data analysis workflow that is used
to extract knowledge and understanding from this type
of studies. We are often interested in sequence motifs
that are observed to be enriched in sequences where
strong binding affinity is measured. A position weight
matrix (PWM) is a commonly used representation of
motifs in biological sequences [22-24]. This representa-
tion is more faithful to the underlying biology than rep-
resentation by exact words, owing to the tendency of
binding sites to be short and degenerate [25]. A PWM is
a matrix of score values that gives a weighted match to
any given substring of fixed length. It has one row for
each symbol in the alphabet, and one column for each
position in the pattern. Assuming an input sequence of
length equal to the PWM width, we simply multiply the
scores assigned to each letter in each of the positions in
the input sequence to obtain the likelihood of the input
string (alternatively, we can sum the logarithms of the
probabilities). That is, the score assigned by a PWM to a

K
substring S = S;...Sk is defined as Hps/‘j, where j repre-
j=1
sents a position in the substring; s; is the symbol at pos-
ition j in the substring; and p,; is the score in row a,
column j of the matrix. In other words, a PWM score is
the product of position-specific scores for each symbol in
the substring. This definition can be generalized to yield a

score for a sequence S = S;...Sy longer than the PWM by
K

calculating maxlggM_KHHpsHH e Alternatively, an en-
j=1

hanced model that takes into account multiple occur-

rences of the PWM in the sequence can be applied by

summing over sufficiently strong occurrences of the

PWM or by other more sophisticated approaches [26].
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mmHG statistics for PWM motifs

Given a set of sequences that were tested in a high
throughput experiment such as ChIP-Seq [18], CLIP [20]
and others, they can be ranked according to the measured
binding affinities, yielding a ranked list L;. Since usually
we are interested in finding motifs amongst sequences
having strong binding affinities, we actually search for mo-
tifs that are more prevalent at the top of this list. It is clear
that any algorithm for de-novo flexible motif search would
need to evaluate candidate PWMs. Given a PWM which
we want to assess, the sequences can also be ranked ac-
cording to their PWM scores, yielding another ranked list
L,, different from L;. A significant PWM motif would yield
significant scores for sequences having strong binding af-
finities. Therefore, the question of PWM motif discovery
from ranked experimental data can be formulated as quan-
tifying the mutual enrichment level for the two ranked lists
L, and L,. Given two ranked lists L; and L, over the
universe of N sequences, they can be transformed into two
respective permutations, 7, = (771(1), ..., 11(N)) and 7, =
(7115(1), ..., m5(N)). The relative permutation 7, of 5 w.r.t.
i3, is defined by 7(rr,(f)) = 72(j), for every j = 1,...,N, or sim-
ply, using operations in the group Sx: 77 =7, - 77 . Using
the relative permutation 7, we can represent the mutual
enrichment of the top parts of L, and L, as mmHG score
(7r), defined above.

Results

Estimation of the mmHG p-value - introducing first upper
bound - B1

Given an mmHG score s, observed in analysing real
measurement data, we would like to assess the statistical
significance of this observation. Assuming endless com-
putational power, we would enumerate all permutations
and calculate the mmHG score for each, in order to
characterize the distribution of mmHG as a random
variable over Sy. The p-value for s is then simply:

mmHG p-value(s,N)

_ The number of permutations having mmHG scoress
B N!

Since the number of permutations is huge, the process
described above is very far from feasible. Therefore, we seek
a computationally tractable upper bound, preferably tight.

A trivial upper bound is the Bonferroni corrected mmHG
score defined by s - N A more subtle upper bound was
suggested by Steinfeld et al. [11] and is briefly described
later as bound B3. In this work we introduce tighter bounds
that are polynomially computable.

We next describe an intuitive upper bound (B1) which
we later refine to produce a tighter bound (B2). The in-
put of the problem consists of an mmHG score s and
the total number of elements N. The output is an upper
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bound on the p-value. The efficiency of our approach re-
lies on enumerating all possible HGT scores rather than
enumerating all permutations in Sy. This approach is
computationally efficient as HGT is a function of four
input parameters: N, n;, ny and b. Given N, there are
O(N?) possible combinations of #;, #,, and b. Also, given
N, n; and n,, b can be any integer in the range [max(0,
ny — N +n,), min(ny, n,)]. Next, all is left to do is to de-
termine how many permutations correspond to each
HGT score. To this end, let A(N, n;, ny, b) be the num-
ber of permutations for which it holds that b out of the
first n, entries in the permutation are taken from the
range [1,...,n;]. This formulation is equivalent to count-
ing permutations for which we attain, at some point, the
value HGT(N, n;, ny, b), had we taken the exhaustive
approach. A(N, ny, ny, b) can be represented as:

AN, 3, 12, b) = (’Zl) (’22)1;!(1;[2‘_”1; ) (2=b)!(N=np)!

as we first choose b elements from the range [1,...,n1] to
appear at the first n, entries of the permutation (there
m
b
amongst the first 7, entries that are occupied by these b
elements, while considering all internal arrangements
n .
< ;)b! possi-
bilities). We next choose n,-b elements from the range
[#, +1,...,N] to appear at the rest of the first n, entries

are possibilities). Then, we choose the positions

(for each choice of b elements there are

. N-
of the permutation (there are ( " nbl
”—

that) and consider all possible (1, - b)! arrangements.
Finally, we take into account all possible (N-n,)!
arrangements of the remaining N-n, entries of the
permutation.

A straightforward upper bound for the number of per-
mutations in Sy having mmHG score better than s
follows:

) possibilities for

|{]T,ESN.'}’I’[WIHG(]T/>SS}|S A(N,n1,n9,b)
ny,n2,b:HGT (N iy 12 ,b)<s

From which an upper bound is easily derived:

mmHG p-value(s,N)< Z"l‘”z7”:”GT(N>V!11"2-,17)SSA(N’nl’nz’b)

N!

By algebraic manipulations we get:

mmHG p-value(s,N)<
ny,1,b:HGT (N iy ,12,b)<s ( N )
ny
This upper bound is simple and requires O(N®) HGT
calculations. An HGT calculation takes O(N) time,

(3) (%)
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assuming binomial coefficients can be calculated in con-
stant time. Constant time computation can be achieved

using Stirling’s approximation [27): /2rn(2)"emi<nl<
V21n (g)neﬁ, which is tight for large factorials.

A refined upper bound for the p-value - B2

The upper bound introduced in the previous section
counts the number of permutations for which the value
HGT(N, ny, ny, b) is calculated when taking the non-
practical exhaustive approach that enumerates over all
N! permutations. Ideally, we wish to count the number
of permutations for which the value HGT(N, ny, ny, b) is
also their mmHG score, as a permutation may corres-
pond with many HGT values that are better than s, so it
can be counted more than once. This explains why the
formula introduced earlier is an upper bound and not an
exact p-value. A second observation that follows is that
the smaller the mmHG score s, the tighter the bound,
because a permutation will have fewer combinations (N,
ny, Ny, b) having HGT values better than s.

Therefore, if we can reduce the extent of multiple
counting of the same permutation, we will get a tighter
bound. We do this by looking one step backwards. If,
for example, HGT(N, ny, ny, b) < s, we can exclude from
the counting permutations that contain b elements
from the range [1,...,;-1] at their first #, entries because
they are already taken into account in AN, n; -1, 1y, b)
(because necessarily HGT(N, n; — 1,15, b) <5, as we will
later explain).

Let W(N, ny, ny, b) be the set of permutations for which
it holds that b out of the first 7, entries are taken from
the range [1,...,n;] (note that A(N, ny, ny, b) introduced
earlier is, in fact, the size of Y(N, ny, 1y, b)). Assuming
HGT(N, ny, ny, b) <s, we can partition the set Y(N, ny,
ny, b) into five disjoint subsets yj,..., 5 such that
W= U U s,V s, as follows:

v, = W(N,ny,n2,b)ny(N, m-1, my-1,b-1)ny(N, n1-1, ny, b)
Wy = Y(N,ny,ny, b)ny(N, ny-1, ny-1,b-1)ny(N, ny, ny-1,b)
W3 = W(N,n1,n2,b)ny(N, n1-1, n-1,b-1)ny(N, n1-1, ny, b-1)
"(N, ny,ny-1,b-1)
Wy = Y(N,ny,n2,b)nY(N, n1-1,n,-1,b)
e = Y(N,ny,ny, b)ny(N, n1-1, n,-1,b-2)
"W(N,n-1,n, b-1)nY(N, 1y, n-1,b-1)

The properties of the hypergeometric distribution
imply that given a tuple (N, ny, 1y, b), the permutations
in ¥y, Yo, Yy can be disregarded from the current count-
ing iteration. To explain why, we will demonstrate the
argument on ;. The permutations in y; contain b ele-
ments from the range [1,...,n;-1] at their first 7, entries.
Recall that we also assume that HGT(N, 1y, 1y, b) <s.



Leibovich and Yakhini Algorithms for Molecular Biology 2014, 9:11
http://www.almob.org/content/9/1/11

Therefore HGT(N, n; — 1,15, b) <s also holds, as the
same intersection is observed for even a smaller set.
Thus, the permutations in y; have already been counted
as having HGT value better than s when handling the
triplet n,-1, n, and b, and can be disregarded for the
combination of n;, n, and b. Similar arguments hold for
¥, and .

The permutations in 3 should be counted if three
conditions hold: the first is HGT(N,n; - 1,n, - 1,b-1)
>s; the second is HGT(N, n; — 1,15, b—1) >s; and the
third is HGT(N, ny, ny - 1, b — 1) > 5. Otherwise, the per-
mutations in 3 have been counted by former triplets.
Similarly, the permutations in s should be counted if
the following three conditions hold: HGT(N, n; - 1, ny —
1,b-2)>s, HGT(N, n; - 1,ny5,b - 1) >s, and HGT(N, ny,
ny—1,b-1) >s. Finally, we calculate the sizes of y3 and
s, in the relevant cases. The definition of w3 implies
that it consists of permutations that contain b-1 ele-
ments taken from the range [1,...,n;-1] at their first n,-1
entries, and also #; is positioned at entry 7,. Therefore:

vl = (52 ) () emn (Y mmrmy

Equivalently, the permutations in s contain b-2 ele-
ments taken from the subset [1,...,7;-1] at their first 7,-1
entries; 7, is positioned at one of the first n,-1 entries;
and entry n, contains an element from [1,...,7;-1].
Therefore:

sl = (5 ) (55 ) o-2rm-b+ 0 ()
% (=) (m1~b + 1)(N-n»)!

From the above we next conclude an upper bound.
Denote

1, if HGT(N,ny,ny,b) >
I(HGT(N,m,n2,b) > s5) = {0 ! (N e ot)hermszise

And let A*(N, ny, 1y, b) =

lys] x (HGT(N,n1-1,n-1,b-1) > s)
xI(HGT(N,n1-1,nz,b-1) > s)
xI(HGT(N,n,ny-1,b-1) > s)

+

lys| x (HGT(N,n1-1,n-1,b-2) > s)
xI(HGT(N,n1-1,n3,b-1) > s)
xI(HGT (N, ny,ny-1,b-1) > s)

We can thus derive the following upper bound for the
p-value:
A (N, my, 13, b)

an 2,b:HGT (N 1y ,13,b)<s
mmHG p-value(s,N)< N

Since A* is recursive, we need to define a base case.
Recall that given N, n; and n,, b can be any integer in
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the range [max(0,7n, - N+ n;), min(ny, ny)], hence de-
termining a base case for n; and n, is sufficient (N is
known). The base case here is that when n, <1 or n, <1,
A*(N, ny, ny, b) is defined the same as A(N, ny, 15, b).

This upper bound uses more delicate counting than the
bound B1 introduced in the previous section. In the following
sections we assess the tightness of this bound. In later sections
we demonstrate an application for PWM motif search.

Comparison to a different mmHG variant - B3

We note that the bound described in Steinfeld et al. [11]
addresses a slightly different variant of mmHG as a ran-
dom variable over Sp. The definition with which we
work here is more amenable to deriving tight bounds as
described above. Given a single permutation € Sy and
for every i =1,...,N, a binary vector A; is defined in which
exactly i entries are 1 and N-i entries are 0, as follows:
A7) = 1 iff 7(j) <i. The mmHG score of a permutation
is then defined by Steinfeld et al. [11] as:

mmHG (1) = min gP-value(mHG();))<min ;onmHG (M) i

Where mHG(\;) = min, ., < \HGT(N, i, n,b,,), N=|A
and b, = lei(k). A possible upper bound is then given
k=1
by:

(x)  P-value(mmHG (ir))<miny;onmHG(A;) i N

Computing the latter quantity requires O(N*) HGT
calculations, and is therefore computationally more effi-
cient than the two bounds Bl and B2 of this current
work (that require O(N?) HGT calculations). We ob-
served that our bound B2 was tighter than the bound in
(*), as later shown in Figure 1D. For example, for a per-
mutation having mmHG score = 7.8.107>° (N = 100), our
bound was 3.5:1072% while (*) yielded 421072, For one
permutation with mmHG score = 5.1.10™ (N = 100), our
bound was 0.026 while (*) yielded 0.2. The latter ex-
ample demonstrates that a tighter bound is important
for classifying an observation as statistically significant
(assuming a significance threshold of 0.05).

Assessment of tightness

In order to assess the quality of our bound B2, we com-
pared it to the p-value, which can be calculated exactly
for small values of N (that is, in cases where N! is not
too large) and empirically for larger values of N (by
randomly sampling permutations). Evidently, our bound
B2 was significantly tighter than the Bonferroni bound
for N=10 (Figure 1A) and N =20 (Figure 1B). We also
observed that the smaller the mmHG scores — the
tighter the bound, consistent with lesser over-counting
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Figure 1 Assessment of tightness. (A) Four lines are shown for N = 10: the mmHG score, which also serves as a lower bound for the p-value; the
exact p-value calculated by enumerating all 10! permutations; our refined upper bound B2; and the Bonferroni corrected p-value. (B) Here again the four
lines are shown - for N =20. However, instead of an exact p-value, which cannot be calculated exhaustively, an empirical p-value is produced by randomly
sampling 107 permutations. (C) In addition to the four lines shown in B, the upper bound B1 is shown (N = 20). (D) Four lines are shown for N=100: the
mmHG score, our upper bound B2, the bound B3 and the Bonferroni corrected p-value. The exact p-value line is positioned between the green and the
blue lines. An empirical p-value was not calculated here as even if we sample 10" permutations, a p-value smaller than 10~ cannot be obtained.

for smaller scores as explained in previous sections. approach developed in [15] for the minimum hyper-
Furthermore, our refined bound B2 is tighter than the geometric statistics. Namely, given the number of ele-
bound B1 (Figure 1C), and the latter is significantly = ments N and an attainable mmHG score s for which
better than the Bonferroni bound. Both bounds Bl and B2 we want to calculate the p-value, for each 1 <b <N and
are derived by enumerating HGT scores rather than enu-  for each 1 <n; < N, let n, (b, n;) be the maximal integer
merating permutations in Sy. The refinement of this ap-  n, so that if in a permutation m € Sy, b out of the first
proach produced by reducing the extent of multiple n, entries in  are taken from the range [1,...,n1], then
counting of permutation further improves the upper 7 satisfies HGT (N, ny, n,, b) <s. Monotonicity prop-
bound. In addition, the bound B2 was almost always ob-  erties of the hyper-geometric distribution imply the

served to be tighter than the bound B3 (Figure 1D). existence of such n, integers. By definition, they are

constants and independent of the original permuta-
An upper bound which balances between tightness and tion for which the mmHG score s was obtained. Due
computational cost - B4 to monotonicity properties, given b and #;, the max-

The bound B2 is, evidently, very tight. It is, however, imal value n, (b, n;) can be calculated efficiently using
computationally heavy. We would still like to have an  binary search, which means that an upper bound that
upper bound which is tighter than the Bonferroni requires O(N*logN) calculations of HGT (instead of
bound and than the variant B3 but also faster to calcu- O(N’)) can be computed by using the following
late. Such a compromise is achieved by generalizing an  formula:

(%) Catsomios)

b,n1,m2(b,n1 ):HGT (N ,n1,m2(b,ny),b)<s < N )

mmHG p-value(s,N)<
na(b, m1)
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The performance of this bound, as well as of other
bounds (in terms of tightness and running time), is demon-
strated in Table 1. On average, this bound was 16.5 times
tighter than the Bonferroni bound; B3 was approximately 7
times tighter than Bonferroni’s bound, while B2 was 38
times tighter than Bonferroni’s, on average. The average
computation time for B4 was 3 minutes, in comparison
with 1 second for B3 and 26 minutes for B2. We conclude
that the bound B4 presented in this section may be a
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good compromise between tightness and computa-
tional cost compared with the other bounds introduced
in this paper.

Application in PWM motif search

In this section we discuss mmHG as a framework for asses-
sing the significance of PWM motifs in ranked lists. Given
a ranked list of sequences and a PWM motif, by using the
mmHG statistics and the bounds introduced earlier, we can

Table 1 Performance of various bounds

Protein N mmHG score Bound B2 Bound B3 Bound B4 Bonferroni bound

TNWMNG 500 2.17e-18 2.75e-14 7.5e-14 6.28e-14 543e-13
0.274 min 0.0028 min 0.079 min

CTNNNAT 500 2.86e-27 1.32e-28 3.66e-28 2.37e-28 2.86e-27
0.155 min 0.0029 min 0.059 min

MMMMMMMM 500 1.08e-43 1.07e-39 347e-39 1.69e-39 2.71e-38
0.104 min 0.003 min 0.048 min

REB1 4000 1.66e-137 9.18e-133 1.19e-131 1.54e-132 1.67e-131
17.25 min 0.04 min 2.753 min

CBF1 4000 1.95e-80 9.15e-76 4.62e-75 1.84e-75 1.96e-74
26.05 min 0.03 min 3.409 min

UME6 4000 542e-88 262e-83 3.04e-82 5.11e-83 543e-82
23.81 min 0.03 min 3.374 min

TYE7 4000 1.62e-43 5.63e-39 2.83e-38 1.3%-38 1.62e-37
34.25 min 0.02 min 4.05 min

GCN4 4000 2.04e-50 7.66e-46 4.62e-45 1.80e-45 2.04e-44
3543 min 0.03 min 3.95 min

Puf5 4795 791e-85 3.38e-80 5.60e-79 6.95e-80 7.93e-79
31.51T min 0.027 min 451 min

Pub1 4251 1.49e-84 6.86e-80 1.33e-78 1.37e-79 1.5e-78
27.74 min 0.033 min 3.81 min

Pab1 4142 246e-11 3.57e-7 5.17e-7 1.37e-6 2.46e-5
4846 min 0.007 min 541 min

Khd1 4773 2.74e-20 5.09%e-16 146e-14 1.73e-15 2.74e-14
47.58 min 0.015 min 5.84 min

Nab2 4101 2.09%e-11 3.08e-7 1.48e-5 1.18e-6 2.09e-5
48.7 min 0.016 min 5.34 min

Visl 1787 1.44e-10 4.74e-6 1.33e-5 14e-5 145e-4
21.94 min 0.003 min 2,07 min

Pin4 4261 8.16e-14 132e-9 8.08e-9 4.83e-9 8.18e-8
49.38 min 0.011 min 548 min

Nrd1 3947 5.72e-12 9.09e-8 571e-6 3.36e-7 5.74e-6
47.67 min 0.014 min 511 min

Y1l032c 2286 1.06e-9 2.62e-5 1.61e-4 83e-5 0.001
35.58 min 0.003 min 2.77 min

Four bounds are compared over 17 datasets (3 synthetic and 14 biological). For each dataset, the number of sequences (N) and the mmHG score are indicated,

together with the performance of each bound (in terms of tightness and running ti

me).



Leibovich and Yakhini Algorithms for Molecular Biology 2014, 9:11
http://www.almob.org/content/9/1/11

assign a p-value to represent the significance of that PWM
being enriched at the top of the list. To apply this approach
for de-novo motif search, one needs to theoretically con-
sider all possible PWMs. However, the search space - when
considering position weight matrix motifs — is huge. As-
suming the probabilities in the matrix are multiples of 0.1
and the alphabet is of size 4, there are 286" possible candi-
date PWMs of length k (since each column must sum to 1,
the number of combinations in each column of the matrix
is equal to the number of integer solutions for the equation

X; + Xy + X3 + X4 = 10, which is ( i?)) ). Our approach to

navigating in this search space is to narrow the search using
the IUPAC alphabet, which considers all possible combina-
tions of letters in the alphabet, and then represent the motif
as a PWM based on its actual occurrences in the list. This
heuristic approach, called mmHG-Finder, takes as input a
ranked list of DNA or RNA sequences and returns signifi-
cant motifs in PWM format. In cases where sequence rank-
ing is not relevant or not available, it allows the use of
positive and negative sets of sequences, searching for
enriched motifs in the positive set using the negative set as
the background.

We next describe the methodology implemented in
mmHG-Finder. The input consists of a ranked list of se-
quences (or, alternatively, two sets of sequences repre-
senting target and background), as well as the motif
width, given as a range [k, k).

The algorithm:

1. Build a generalized suffix tree for the input
sequences.

2. For each k=ky,....k;

+ Traverse the tree to find all k-mers

*+ Sort the k-mers according to their enrichment at the
top of the list (this is done using the mHG
statistics), as explained in Leibovich et al. [8].

+ Take the most significant fifty k-mers, to be used as
starting points for the next step. This set of
candidates is chosen such that the members are
quite different. Note that this is a heuristic
approach and the number 50 is somewhat
arbitrary, chosen to succeed in catching the best
performing PWMs without heavily paying in
complexity.

» For each starting point, we iteratively replace one
position in the k-mer by considering all possible
IUPAC replacements and taking the one that
improves the enrichment the most. We repeat this
process for all positions several times, and eventually
we get a motif in the [UPAC alphabet. We note that
given an IUPAC pattern B, the occurrences of P in
the list are extracted efficiently by traversing the
paths in the suffix tree that agree with P.
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» Each IUPAC word is then expanded through a
heuristic approach which is based on the Hamming
neighbors of that word. Hamming neighbors are
added as long as the new addition improves the
enrichment p-value of the set of words, and as long
as the overall similarity between the members in the
set does not decrease below a similarity threshold.
Since the neighbors are defined as exact words, they
usually help in fine-tuning the correct weights of
each letter in each position of the resulting PWM.
Finally, the expanded motif is converted to a PWM.

3. The PWMs found in the previous step are assessed
using the mmHG statistics and the best PWMs are
returned as output, together with their p-value. The
score assigned by a PWM to a string S is the
maximal score obtained for a substring of S. To
obtain the likelihood of a substring of length k
(where k is the PWM width), we simply multiply the
scores assigned to each letter in each of the
positions in that substring.

We provide an efficient implementation of the algorithm
described above as publicly available software. Our applica-
tion takes as input a ranked list of sequences and returns
significant PWM motifs. It is compatible with all operating
systems and can be freely downloaded from http://bioinfo.
cs.technion.ac.il/people/zohar/mmHG-Finder-code/.

To evaluate the performance of mmHG-Finder in
comparison to other state-of-the-art methods we ran it
on 18 datasets — 3 synthetically generated datasets and
15 generated from high throughput binding experiments
(6 transcription factors and 9 RNA-binding proteins).
Each synthetic dataset consisted of 500 randomly drawn
sequences of length 100. Then, variants of a predefined
IUPAC motif were planted at the top 64 sequences of
the dataset. We compared the motifs found by mmHG-
Finder to those obtained by using three other methods:
the standard MEME program [28], DREME [29], and
XXmotif [30]. Selected results of this comparison are
summarized in Figure 2, and the full output is shown
in Additional file 1. Evidently, mmHG-Finder outper-
formed all the other three tools on the synthetic exam-
ples, which contained degenerate motifs. DREME didn’t
find the motifs in any case, while MEME and XXmotif
found a somewhat similar result in 1 out of the 3 tests.
The other 15 examples were taken from DNA and RNA
high-throughput experiments [31-33]. For 12 out of
these 15 datasets, mmHG-Finder found the motifs which
were compatible with the known literature motifs, and
as the most significant result. In comparison, DREME
found the known consensus in 11 cases; XXmotif de-
tected the literature motif in 9 cases while MEME de-
tected the known motif in 8 cases. In several datasets,
such as for Pin4, mmHG-Finder identified the consensus
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The protein and mmHG- MEME DREME XXmotif
its consensus Finder
binding motif
Synthetic 6.28¢-14 22et6 Nothing 2.98¢+00
TNWMNG T x= C CM m found 2] LA M
Synthetic 23728 5.8¢+7 Nothing 1.84e+01
CTNNNAT €T AT {mm found ] ol
Synthetic 1.69¢-39 4.1e+6 Nothing 1.58+01
MMMMMMMM  ppspaces CAMACA found ] hahadCh
P53 (DNA) 109174 4ée-T 49e-133 1490
| it b, 0aCaTlze | Aw o “alATi<le #alite bty
GCN4 (DNA)  1.8¢-45 1.7e-16 2.0e-32 4.00¢-17
TCGASTCa “aT+AsTCA T UCAI LT AL
Puf5 (RNA) 6.95¢-80 8.9e+1 6.8¢-42 9.76e-21
SUUGUARLAY TCTAza 'I' M TheaTh # bttt
Al 3.1e-012 1.61¢-20
T(The £ TeTARzs.TA
Pin4 (RNA) 4.83e9 4.2¢13 3.1e-51 1.65¢-28
XUUAALGA ThaxGea | \ J ThzaTh WA

Figure 2 Comparison between mmHG-Finder and other motif discovery tools. We evaluated the performance of mmHG-Finder in comparison
to other state-of-the-art methods: MEME, DREME and XXmotif. Almost all input examples consisted of ranked lists, except for p53 (comprising target
and background sets). Since MEME, DREME, and XXmotif expect to get a target set as input, we converted the ranked lists into target sets by taking
the top 100 sequences for MEME (restricted by MEME's limitation of 60,000 characters) and the top 20% sequences for the other tools. In the synthetic
examples the entire ranked lists were taken as they are sufficiently small (to reflect useful comparison with MEME, as the motif is planted in top
sequences, we had provided MEME, as input, with the ranking information by adding weights to the sequences, decreasing from 1 to 0 proportionally
with the ranking). We used the default parameters in all comparison to other tools (e.g. zero-or-one-occurrence per sequence in MEME) and defined
the expected motif length as the range 6 to 8 where possible (specifically, DREME and XXmotif do not have an input parameter for the motif length).
Data and consensus motifs for p53 were taken from [31]; for REB1, CBF1, UME6, TYE7, GCN4 from [32]; and for the RNA binding proteins from [33].
Selected results are shown.

motif while other tools returned repetitive sequences as tissue specificity score;; — exp;j—H;
their top results. The mmHG statistics avoids such P ¥ Y o
spurious results as they typically do not correlate with

) . Calculating the above measure for all tissues reported
the measurement driven ranking.

in [34] yielded 19 ranked lists comprising 4360 IncRNAs
(302 loci having standard deviation equal to zero were
PWM motif search in long-non-coding RNA sequences removed from the analysis). We then conducted three
We further analysed a collection of datasets comprising enrichment tests for each of these lists:

human long-non-coding (Inc) RNAs. LncRNA sequences

were extracted and ranked according to the data reported 1. We searched for de-novo PWM motifs in the

by Cabili et al. [34]. Specifically, a stringent IncRNA set of promoter sequences of the tissue-specific IncRNAs
4662 loci was tested, where for each locus we know the using mmHG-Finder (introduced in the previous
expression levels in 19 different tissues. From these data section). Promoter sequences were defined as

we generated 19 lists, each ranked according to tissue- 1000 bp upstream the transcription start site.
specificity. Given locus i and tissue j, the tissue specificity 2. We scanned the promoter sequences of the

score is defined as the difference between the expression tissue-specific IncRNAs with PWMs corresponding
of locus i in tissue j (denoted exp;;) and the mean expres- to known transcription factors, downloaded from
sion of locus i (denoted as y;). That said difference is mea- the JASPAR database [35].

sured in terms of the standard deviation of expression in 3. Independently of sequence, we calculated the

locus i (denoted as o;). Formally: statistical enrichment of measured transcription
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factor binding events within our lists of loci.
Transcription factor binding events within IncRNAs
were downloaded from ChIP-Base database [36],
which aggregates high-throughput sequencing data
taken from hundreds of ChIP-Seq experiments.

Interestingly, almost all the motifs returned by mmHG-
Finder were GC-rich (Figure 3). In all three tests, the most
significant results were obtained for thyroid-specific and
prostate-specific IncRNAs. We further checked whether
GC rich sequences are generally enriched amongst the
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promoter sequences of tissue specific IncRNAs by calculat-
ing the mutual enrichment between these two measures.
The mutual enrichment between GC content and tissue
specificity (Table 2) was the most significant for thyroid
(mmHG p-value <3.9-103), prostate (5.8-107>%), adrenal
(5.5:1072°), brain (1.6-10™'*) and ovary (8.8107*?). Interest-
ingly, Pearson’s correlation between the GC content and
the sequence rank was not observed to be strong (strongest
correlation coefficient was -0.1), demonstrating that the
overall agreement between two measures can be weak even
when extremities agree.

Tissue mmHG-Finder output  Transcription factors having
similar recognition sites
Thyroid 6.48¢-37 E2F3, E2F2, Zfpl61, Zfx, SP1,
H c C Egrl, Belob, KIf7, Sp4
ST ¥ e e
Prostate 8.69¢-23 Bcl6éb, Egrl, Smad3, SP1, Nr2f2,
i C C Zfp410, Mafb, Zfx, Zfp740
Brain 1 54e-18 7fp161, E2F3, TFAP2A, E2F2,
: Egrl, SP1, Myc, Sp4
e(Csctl T
Ovary 2.11e-16 Egrl, Nr2f2, Plagll, Bel6b, Smad3,
‘,<= CCC < SP1, Zfx, Zfp740
Foreskin ?.37&-16 Zfx, Ni2f2, Egrl, SP1, Z{pl61,
C CC = TFAP2A, Smad3, Bel6b, Sp100,
AN Zicl
Kidney 8.0le-11 Egrl, SP1, Sp4, KIf7, Zip281,
;cc CG-cC CTCF, INSM1, Zfp740
Breast 2.52-10 Farl, N2f2, Zfx, TEAP2A,
..C Cc _c Zpl61, Zicl, Plagll, Zic2, Tcfap2a
Adipose 2.79¢-10 Egrl, Tefap2b, Plagll, SP1,
N c c NHLHI, INSM1, E2F2, Smad3,
AT VAT e e Sp4
Adrenal 3.78e-10 E2F3, E2F2, Myf6, Nr22, Plagl1,
] Sp4, Bel6b, Smad3, CTCF, Zfpl6l
fcc [Ce=s
Lymph node 2.01e-7 Smad3, Sp4, Zfpl161, E2F2, E2F3,
: C Glis2, INSMI, Egrl, SP1, Zfp740
JASEVICCT WY
Testes 9.55¢-6 Zip410, Foxll, Gm397, Six2,
Sox30
IGACATTQ h
Liver Nothing found
Lung Nothing found
White blood cell Nothing found
Colon Nothing found
Heart Nothing found
Skeletal muscle  Nothing found
Placenta Nothing found
Lung fibroblasts Nothing found

Figure 3 Motifs in tissue-specific IncRNA promoter sequences. \We analysed the promoter sequences of IncRNAs that are ranked according
tissue-specificity. The motifs returned by mmHG-Finder are shown in the figure together with their p-value. We compared those motifs to
known consensus motifs of transcription factors using TOMTOM [37] (motif database = JASPAR Vertebrates and UniPROBE Mouse) and the most
significant results are shown (specifically, all similarity p-values are better than 0.018).
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Table 2 CpG hypo-methylation in tissue-specific IncRNA promoters
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Tissue Mutual enrichment between Mutual enrichment between hypo-methylation and tissue-specificity
GC content and tissue-specificity Normal/subnormal cells Cancer cells
Thyroid 3.8%-31 No methylation data No methylation data
Prostate 5.76e-22 4.16e-11 (PrEC) 0.002 (LNCaP)
Adrenal 5.46e-20 No methylation data No methylation data
Brain 157e-14 1.27e-8 (NH-A) 5.55e-5 (U87)
Ovary 8.80e-12 No methylation data 0.0085 (ovcar-3)
Lymph node 3.64e-6 No methylation data No methylation data
Adipose 9.25e-6 No methylation data No methylation data
Foreskin 2.25e-5 0.72 (B)) No methylation data
Breast 4.40e-5 5.08e-5 (HMEQ) 845e-5 (MCF7)
2.0e-10 (MCF10A) 0.0065 (T-47D)
Kidney 6.34e-5 1.56e-5 (HEK293) No methylation data
White blood cell 3.78e-4 0.6 (GM12878) 0.21 (Jurkat)
Placenta 0.011 No methylation data No methylation data
Colon 0.012 No methylation data 1.0 (Caco-2)
Skeletal muscle 0.04 0.34 (SKMCQ) No methylation data
Lung 033 No methylation data No methylation data
Heart 1.0 1.0 (HCM) No methylation data
1.0 (HCF)
Liver 1.0 1.0 (Hepatocytes) 1.0 (HepG2)
Testes 1.0 No methylation data 1.0 (NT2-D1)
Lung fibroblasts 1.0 1.0 (IMR90) No methylation data

1.0 (AGO4450)

We calculated the mutual enrichment between DNA hypo-methylation and tissue specificity for the InNcRNA promoters. CpG methylation data was taken from

UCSC Table Browser [39] (ENCODE/HAIB).

Furthermore, by intersecting the results of the sec-
ond and the third tests together, we identified tran-
scription factors that may regulate IncRNAs, mainly in
thyroid and prostate. This set includes NRF1, E2F1,
E2F3, E2F4, E2F6, EGRI1, SP1, SP2 and ZBTB33. More-
over, the consensus recognition sites of EGR1, SP1 and
E2F3 were found to be similar to the motifs returned
by mmHG-Finder in thyroid, prostate and other tissues
(Figure 3; the comparison was done using the motif discov-
ery tool TOMTOM [37]). The full output of the second
and the third tests are summarized in Additional file 2.

As GC-rich motifs may be associated with CpG methy-
lation, and due to the possible binding of SP1 which has
been suggested to protect CpG islands from de novo
methylation [17,38], we further tested the association be-
tween hypo-methylation and tissue specificity. For that,
we downloaded genome wide (450 K) CpG Methylation
data from UCSC Table Browser [39] (ENCODE/HAIB).
We intersected IncRNA promoter regions with CpG
methylation data, and continued only with the 1099 loci
that were covered by the methylation experiment. For

them, we calculated the mutual enrichment between
hypo-methylation and tissue-specificity (the results are
summarized in Table 2). Thyroid cells were not covered in
this experiment, however two cell lines corresponding to
prostate were tested (normal prostate epithelial cell line
and cancerous prostate endodermal cell line). We ob-
served that prostate-specific IncRNA promoters were less
methylated than non-prostate-specific IncRNAs, and this
was much stronger in normal cells than in cancer (mmHG
p-value <4.16e-11 in normal prostate cells, and 0.002 in
prostate adenocarcinoma cells). We observed strong mu-
tual enrichment between CpG hypo-methylation and
tissue-specificity also in brain, ovary, breast and kidney.
That is, significant mutual enrichment values were found
for tissues where tissue-specific IncRNAs had GC-rich
promoter sequences, but these values were not significant
for tissues that did not show such GC-bias (heart, liver,
testes, and lung fibroblasts). Additionally, in most cases
the significance in normal cells was stronger than in can-
cer, which may be related to changes in methylation pat-
terns acquired during carcinogenesis [40,41].



Leibovich and Yakhini Algorithms for Molecular Biology 2014, 9:11
http://www.almob.org/content/9/1/11

Discussion

The assessment of mutual enrichment in ranked lists is
often required to support the analysis of biological meas-
urement data, such as in the case of identifying sequence
motifs that are involved in regulation processes. Relative
ranking can be represented by using permutations over
the measured elements. Therefore — the statistical assess-
ment of mutual enrichment can be modelled by character-
izing properties of random permutations. Due to the size
of the measure space, statistics over Sy, the group of per-
mutations over N elements, is difficult to perform and im-
plement. Mutual enrichment is more informative from the
point of view of practical biological science than simple
correlation measures, as it focuses on the top of the lists
and not on the overall agreement, which may be weak
even in cases where extremities agree. In this work we de-
rive polynomially computable bounds for the associated
tail distribution of mutual enrichment in ranked lists.
Namely — we provide methods for computing an upper
bound on the p-value of mutual enrichment at the top of
two permutations uniformly and independently drawn
over Sy. Naive approaches to computing such bounds in-
clude variants of the Bonferroni approach. These do not
provide tight bounds and may lead to mis-labeling results
as non-significant. For several representative datasets,
we note that our bound improves the Bonferroni derived
p-value estimates by a factor of almost 40, on average.
Nevertheless, these improvements become relevant only
for high p-values - for which significant scores should
be treated with care anyway. We therefore note that the
Bonferroni correction is applicable in many cases, as dem-
onstrated in Table 1. Using our bounds is highly beneficial
in borderline cases but is also important in cases where an
accurate estimate of the p-value is desired, even if nuances
do not affect the final biological research conclusions.

We use our statistical/algorithmic framework to support
PWM motif searches and demonstrate the application to
biological data. We identify motifs that characterize tissue
specificity of IncRNA in thyroid and in prostate. Specific-
ally, we find the EGR1 binding motif to be enriched in
the promoter regions of IncRNAs which are thyroid-
specific. EGR1 was observed to be highly expressed in thy-
roid (Additional file 1, taken from [36]), consistent with
our stronger motif findings. Similarly, EGR1 is highly
expressed in adipose tissue and its transcription factor
binding sites are enriched in IncRNAs specific to this tis-
sue. We do not have methylation data for the latter two
tissues types. However — we do observe the promoters of
IncRNAs that are specific to breast to have enriched oc-
currences of motifs that are similar to EGR1 transcription
factor binding sites (p-value of similarity according to
TOMTOM = 3.52:10"°). EGR1 is also highly expressed in
breast. Finally, the promoters of IncRNAs that are specific
to breast are less methylated in breast (MCF10A and
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HMEC cells) than other promoters. This suggests the role
of EGRI in driving tissue differentiation by transcribing
tissue-specific IncRNAs and by protecting the associated
promoters from methylation. EGR1 has been previously
shown to recognize GC-rich consensus sequences located
in CpG island promoters of active genes [42]. Generally,
we observed that tissue-specific IncRNA promoters tend
to be less methylated than those of non-tissue-specific
IncRNAs in prostate, brain, ovary, breast and kidney, which
may be associated with the GC-rich patterns enriched
among their tissue-specific IncRNA promoter sequences.

Threshold-free alternatives to mmHG include the work
of McLeay and Bailey, in which a linear regression method
is applied [43]. It was shown to achieve high accuracy on a
benchmark comprising 237 ChIP-chip datasets, which
was higher than all other data driven methods tested, and
specifically higher than Spearman’s rank correlation. We
note that applying linear regression or Spearman correl-
ation to PWM motif search in ranked lists requires that
for significant motifs we observe an overall agreement be-
tween the biological measurement and the PWM score.
Nevertheless, the standard PWM formulation fails to pre-
dict binding affinity when the latter decreases to the point
of non-specific binding [44]. In other words, the overall
agreement between the PWM score and the binding af-
finity may be relatively weak. High correlation between
the PWM score and the binding affinity needs to hold,
in effect, only for sequences demonstrating high-binding
affinity with respect to the protein of interest (that is,
for sequences that are located at the top of the list)
[45]. This weaker relationship is naturally addressed by
the mmHG statistics. A combination of mmHG and a lin-
ear model, such as suggested in [43], applied to strong
binders (top of the list), may yield an even more faithful
and informative model.

Future research directions include more extensive
application to biological data and the development of
tighter and more efficient bounds. Our results show
promise in enabling efficient and user-friendly PWM
motif search in ranked lists. The software is freely avail
able at http://bioinfo.cs.technion.ac.il/people/zohar/mmHG-
Finder-code/. Finally, the full characterization of the
distribution of mmHG as a random variable over Sy re-
mains an open question.

Conclusions

In this work we developed tight bounds on the tail distri-
bution of mutual enrichment in ranked lists. Our bounds
are computable in polynomial time and potentially add to
the accuracy of reported results. We demonstrated the
utility of mutual enrichment in motif search — specifically,
when searching position weight matrix motifs in ranked
lists, where the ranking can be according to binding affin-
ity or according to any other biological measurement.
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Additionally, we used mutual enrichment to study tissue-
specific long non-coding RNA regulation, and suggest that
tissue-specific IncRNAs are regulated through GC-rich el-
ements located on their promoters, in several tissue types.
We hypothesize that these GC-rich patterns are associated
with DNA hypo-methylation.

Additional files

Additional file 1: Table S1. Comparison between mmHG-Finder and
other motif discovery tools. Figure S1. EGR1 expression profile.

Additional file 2: Table S2. The full output of the second and the third
tests (including their intersection) for tissue-specific INCRNAs.
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