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Abstract

Background: Progressive methods offer efficient and reasonably good solutions to the multiple sequence alignment
problem. However, resulting alignments are biased by guide-trees, especially for relatively distant sequences.

Results: We propose MSARC, a new graph-clustering based algorithm that aligns sequence sets without guide-trees.
Experiments on the BAliBASE dataset show that MSARC achieves alignment quality similar to the best progressive
methods.
Furthermore, MSARC outperforms them on sequence sets whose evolutionary distances are difficult to represent by a
phylogenetic tree. These datasets are most exposed to the guide-tree bias of alignments.

Availability: MSARC is available at http://bioputer.mimuw.edu.pl/msarc

Keywords: Multiple sequence alignment, Stochastic alignment, Graph partitioning

Background
Determining the alignment of a group of biological
sequences is among the most common problems in com-
putational biology. The dynamic programming method of
pairwise sequence alignment can be readily extended to
multiple sequences but requires the computation of an n-
dimensional matrix to align n sequences. Since the size of
such a matrix is exponential with respect to n, the time
and space complexity of this method is exponential too.
Progressive alignment [1] offers a substantial complexity

reduction at the cost of possible loss of the optimal solu-
tion. Within this approach, subset alignments are sequen-
tially pairwise aligned to build the final multiple align-
ment. The order of pairwise alignments is determined by
a guide-tree representing the phylogenetic relationships
between sequences.
There are two drawbacks of the progressive alignment

approach. First, the accuracy of the guide-tree affects the
quality of the final alignment. This problem is particu-
larly important in the field of phylogeny reconstruction,
because multiple alignment acts as a preprocessing step
in most prominent methods of inferring a phylogenetic
tree of sequences. It has been shown that, within this

*Correspondence: dojer@mimuw.edu.pl
Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warszawa,
Poland

approach, the inferred phylogeny is biased towards the
initial guide-tree [2,3].
Second, only sequences belonging to currently aligned

subsets contribute to their pairwise alignment. Even if
a guide-tree reflects correct phylogenetic relationships,
these alignments may be inconsistent with remaining
sequences and the inconsistencies are propagated to fur-
ther steps. To address this problem, in recent programs
[4-8] progressive alignment is usually preceded by consis-
tency transformation (incorporating information from all
pairwise alignments into the objective function) and/or
followed by iterative refinement of the multiple alignment
of all sequences. Moreover, recently several strategies
avoiding guide trees altogether were also proposed [9-11].
In the present paper we propose MSARC, a new

non-progressive multiple sequence alignment algorithm.
MSARC constructs a graph with all residues from all
sequences as nodes and edges weighted with alignment
affinities of its adjacent nodes. Columns of best multi-
ple alignments tend to form clusters in this graph, so in
the next step residues are clustered (see Figure 1). Finally,
MSARC refines the multiple alignment corresponding to
the clustering.
Experiments on the BAliBASE dataset [12] show that

our approach is competitive with the best progres-
sive methods and significantly outperforms most non-
progressive algorithms. Moreover, MSARC is the best
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Figure 1 Alignment graph and its desired clustering. Clusters
form columns of a corresponding multiple sequence alignment.

aligner for sequence sets with very low levels of conserva-
tion. This feature makes MSARC a promising preprocess-
ing tool for phylogeny reconstruction pipelines.

Methods
MSARC aligns sequence sets in several steps. In a prepro-
cessing step, following Probalign [8], stochastic alignments
are calculated for all pairs of sequences and consistency
transformation is applied to resulting posterior probabil-
ities of residue correspondences. Transformed probabili-
ties, called residue alignment affinities, represent weights
of an alignment grapha.
MSARC clusters this graph with a top-down hierarchi-

cal method (Figure 2). Division steps are based on the
Fiduccia-Mattheyses graph partitioning algorithm [13],
adapted to satisfy constraints imposed by the sequence
order of residues. Finally, the multiple alignment corre-
sponding to the resulting clustering is refined with the
iterative improvement strategy proposed in Probcons [7],
adapted to remove clustering artefacts.

Pairwise stochastic alignment
The concept of stochastic (or probability) alignment was
proposed in [14]. Given a pair of sequences, this frame-
work defines statistical weights of their possible align-
ments. Based on these weights, for each pair of residues
from both sequences, the posterior probability of being
aligned may be computed.
A consensus of highly weighted suboptimal alignments

was shown to contain pairs with significant probabilities
that agree with structural alignments despite the opti-
mal alignment deviating significantly.Mückstein et al. [15]
suggest the use of the method as a starting point for
improved multiple sequence alignment procedures.
The statistical weight W (A) of an alignment A is the

product of the individual weights of (mis-)matches and
gaps [16]. It may be obtained from the standard similarity
scoring function S(A) with the following formula:

W (A) = eβS(A), (1)

where β corresponds to the inverse of Boltzmann’s con-
stant and should be adjusted to the match/mismatch scor-
ing function s(x, y) (in fact, β simply rescales the scoring
function).
The probability distribution over all alignments A∗ is

achieved by normalizing this value. The normalization
factor Z is called the partition function of the alignment
problem [14], and is defined as

Z =
∑

A∈A∗
W (A) =

∑
A∈A∗

eβS(A). (2)

The probability P (A) of an alignment can be calculated
by

P (A) = W (A)

Z
= eβS(A)

Z
. (3)

Let P
(
ai ∼ bj

)
denote the posterior probability that

residues ai and bj are aligned.
We can calculate it as the sum of probabilities of all

alignments with ai and bj in a common column (denoted
by A∗

ai∼bj ):

P
(
ai ∼ bj

)
=

∑
A∈A∗

ai∼bj

P(A) =

∑
A∈A∗

ai∼bj

eβS(A)

Z

=

( ∑
Ai−1,j−1

eβS(Ai−1,j−1)

)
eβs(ai,bj)

⎛⎝ ∑
Âi+1,j+1

eβS(Âi+1,j+1)

⎞⎠
Z

= Zi−1,j−1 eβs(ai,bj) Ẑi+1,j+1

Z
.

(4)

Here we use the notation Ai,j for an alignment of the
sequence prefixes a1 · · · ai and b1 · · · bj, and Âi,j for an
alignment of the sequence suffixes ai · · · am and bj · · · bn.
Analogously, Zi,j is the partition function over the prefix
alignments and Ẑi,j is the (reverse) partition function over
the suffix alignments.
An efficient algorithm for calculating the partition func-

tion can be derived from the Gotoh maximum score
algorithm [17] by replacing the maximum operations with
additions [14-16]:

ZM
i,j =

(
ZM
i−1,j−1+ZE

i−1,j−1+ZF
i−1,j−1

)
eβs(ai,bj), (5)

ZE
i,j =

(
ZM
i,j−1 + ZF

i,j−1

)
eβgo + ZE

i,j−1e
βgext, (6)

ZF
i,j =

(
ZM
i−1,j + ZE

i−1,j

)
eβgo + ZF

i−1,je
βgext, (7)

Zi,j = ZM
i,j + ZE

i,j + ZF
i,j. (8)
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Figure 2 Hierarchical divisive clustering of residues. An alignment graph is recursively partitioned by finding a balanced minimal cut while
maintaining the ordering of residues until all parts have at most one residue from each sequence. The final alignment is constructed by
concatenating these parts (alignment columns) from left to right.

The reverse partition function can be calculated using the
same recursion in reverse, starting from the ends of the
aligned sequences.
We also considered a slight modification of formulas 6

and 7:

ZE
i,j = ZM

i,j−1e
βgo + ZE

i,j−1e
βgext , (9)

ZF
i,j = ZM

i−1,je
βgo + ZF

i−1,je
βgext . (10)

In this case insertions and deletions must be separated by
at least one match/mismatch position. This variant was
proposed by Miyazawa [14] and applied in the Probalign
[8] and MSAProbs [18] aligners.

Alignment graphs
Let us regard probabilities P

(
ai ∼ bj

)
as a representation

of a bipartite graph with weighted edges, i.e. a graph with
residues from both sequences as nodes and edges joining
each ai with each bj.
Given a set S of k sequences to be aligned, we would like

to analogously represent their residue alignment affinity
by a k-partite weighted graph. It may be obtained by join-
ing pairwise alignment graphs for all pairs of S-sequences.
However, separate computation of edge weights for each
pair of sequences does not exploit information included
in the remaining alignments. Thus we decided to address
this problem with a so called consistency transformation
[4,7], successfully used in progressive methods.

In order to incorporate correspondence with residues
from other sequences, MSARC re-estimates the residue
alignment affinity according to the following formula:

P′ (ai ∼ bj
) ←

∑
c∈S

wacwcb∑
c′∈S

wac′wc′b

|c|∑
l=0

P (ai ∼ cl)P
(
cl∼bj

)
,

(11)

where wxy are weights specifying the relative contribution
to the transformation of a sequence pair xy.
If Pab is a matrix of current residue alignment affini-

ties for sequences a and b, the matrix form equivalent
transformation is given by

P′
ab ←

∑
c∈S

wacwcb∑
c′∈S

wac′wc′b
Pac · Pcb, (12)

where · stands for matrix multiplication.
MSARC allows for two options of weight assignments.

In the first one all the weights are set to 1 and the above
formula simplifies to the following:

P′
ab ←

∑
c∈S

1
|S|Pac · Pcb. (13)

It results in the variant of consistency transformation used
in Probalign [8] and ProbCons [7].
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In the second option weights are calculated according to
the following formula:

wab ←

|a|∑
i=1

|b|∑
j=1

P
(
ai ∼ bj

)
min(|a|, |b|) . (14)

The idea behind the above formula is that the sum of a
row/column of a matrix Pab yields the probability that
the corresponding residue is aligned to one in the other
sequence (not a gap). If sequences a and b are similar,
alignments with fewer gaps are preferred, so (at least for
the shorter sequence) most of the sums are close to 1.
Consequently, the wab is close to 1 as well. On the other
hand, weights are much closer to 0 for pairs of dissimilar
sequences.
Thus wab measures the similarity of sequences a and

b. Therefore sequences c that are similar to a and b
contribute to P′

ab more significantly than others.
The consistency transformation may be iterated any

number of times, but excessive iterations blur the struc-
ture of residue affinity. Following Probalign [8] and Prob-
Cons [7], MSARC performs two iterations by default.

Residue clustering
Columns of any multiple alignment form a partition of
the set of sequence residues. The main idea of MSARC is
to reconstruct the alignment by clustering an alignment
graph into columns. The clustering method must satisfy
constraints imposed by alignment structure. First, each
cluster may contain at most one residue from a single
sequence. Second, the set of all clusters must be orderable
consistently with sequence orders of their residues. Viola-
tion of the first constraint will be called ambiguity, while
violation of the second one – conflict (see Figure 3).
Towards this objective, MSARC applies top-down hier-

archical clustering (see Figure 2). Within this approach,
the alignment graph is recursively split into two parts until
no ambiguous cluster is left. Each partition step results
from a single cut through all sequences, so clusterings
are conflict-free at each step of the procedure. Conse-
quently, the final clustering represents a proper multiple
alignment.
Optimal clustering is expected to maximize residue

alignment affinity within clusters andminimize it between
them. Therefore, the partition selection in recursive steps
of the clustering procedure should minimize the sum of
weights of edges cut by the partition. This is in fact the
objective of the well-known problem of graph partition-
ing, i.e. dividing graph nodes into roughly equal parts such
that the sum of weights of edges connecting nodes in
different parts is minimized.
The Fiduccia-Mattheyses algorithm [13] is an effi-

cient heuristic for the graph partitioning problem. After

Figure 3 Clusterings inconsistent (left andmiddle) and
consistent (right) with the alignment structure.

selecting an initial, possibly random partition, it calcu-
lates for each node the change in cost caused by moving
it between parts, called gain. Subsequently, single nodes
are greedily moved between partitions based on the maxi-
mum gain and gains of remaining nodes are updated. The
process is repeated in passes, where each node can be
moved only once per pass. The best partition found in a
pass is chosen as the initial partition for the next pass. The
algorithm terminates when a pass fails to improve the par-
tition. Grouping single moves into passes helps the algo-
rithm to escape local optima, since intermediate partitions
in a pass may have negative gains. An additional balance
condition is enforced, disallowing movement from a par-
tition that contains less than a minimum desired number
of nodes.
Fiduccia-Mattheyses algorithm needs to be modified in

order to deal with alignment graphs. Mainly, residues are
not moved independently; since the graph topology has to
be maintained, moving a residue involves moving all the
residues positioned between it and a current cut point on
its sequence. This modification implies further changes
in the design of data structures for gain processing. Next,
the sizes of parts in considered partitions cannot differ
by more than the maximum cluster size in a final clus-
tering, i.e., the number of aligned sequences. This choice
implies minimal search space containing partitions con-
sistent with all possible multiple alignments. In the initial
partition sequences are cut in their midpoints.
The Fiduccia-Mattheyses heuristic may be optionally

extended with a multilevel scheme [19]. In this approach
increasingly coarse approximations of the graph are cre-
ated by an iterative process called coarsening. At each
iteration step selected pairs of nodes are merged into sin-
gle nodes. Adjacent edges are merged accordingly and
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weighted with sums of original weights. The final coars-
est graph is partitioned using the Fiduccia-Mattheyses
algorithm. Then the partition is projected back to the orig-
inal graph through the series of uncoarsening operations
(see Figure 4), each of which is followed by a Fiduccia-
Mattheyses based refinement. Because the last refinement
is applied to the original graph, the multilevel scheme in
fact reduces the problem of selecting an initial partition to
the problem of selecting pairs of nodes to be merged. In
alignment graphs only neighboring nodes can be merged,
so MSARC just merges consecutive pairs of neighboring
nodes (see Figure 5).

Refinement
An example of alignment columns produced by residue
clustering can be seen in Figure 6(ab). Presented align-
ments contain surprisingly many spaces, especially in
their right parts. Some of them are clearly superfluous,
e.g. in both alignments there are 3 consecutive columns
near the right end, each consisting of 4 spaces and 1
G-nucleotide occupying a different row.
Therefore we decided to add a refinement step, follow-

ing the method used in ProbCons [7]. Sequences are split
into two groups and the groups are pairwise re-aligned.
Re-alignment is performed using the Needleman-Wunsch
algorithm with the score for each pair of positions defined
as the sum of posterior probabilities for all non-gap pairs
and zero gap-penalty. First each sequence is re-aligned
with the remaining sequences, since such division is very
efficient in removing superfluous spaces. Next, several
randomly selected sequence subsets are re-aligned against
the rest.

Figures 6(cd) show the results of refining the align-
ments from Figures 6(ab). Refinement removed superflu-
ous spaces from the clustering process and optimized the
alignment. Note that the final post-refinement alignments
turned out to be the same for both Fiduccia-Mattheyses
and multilevel method of graph partitioning.
Löytynoja and Goldman argue in [3] that progressive

methods tend to force alignments of non-homologous
sequence fragments inserted in corresponding locations
of aligned sequences. This tendency leads to systematic
errors of the downstream analyses in phylogenetic pipe-
lines, including overestimation of substitution and dele-
tion events. Unfortunately, iterative refinement may be
one of possible source of such effects. Therefore the num-
ber of iterations in subset re-alignment step in MSARC is
adjustable, in particular the whole step may be turned off.

Computational complexity
Let n denote a number of sequences to align and let l be
their maximum length. Both time and space complexities
of stochastic alignment areO(n2l2).
Computations in the other steps use data structures for

sparse matrices, so the complexity depends on the num-
ber c of non-zero values per row/column. This number
depends on the cutoff parameter tc (entries < tc are set to
0), namely c ≤ 1/tc. However, we observe that c tends to
be much lower than this bound, e.g. c rarely exceeds 5 for
the default tc = 0.01.
MSARC implementation of consistency transformation

requires O(n2c2l) time. Space complexity of this and the
remaining steps is dominated by sparse matrices and
equalsO(n2cl).

Figure 4 An example of the coarsening of a graph, the partitioning of the coarse graph, and the subsequent uncoarsening of the
partitioned coarse graph (without a refinement step after each iteration of uncoarsening). Pairs of nodes selected for merging in each step
of coarsening are highlighted. Initial node and edge weights are all one. Node size and edge width, and the nearby number values indicate the
weights after merging.
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Figure 5 The coarsening of an alignment graph. Lighter colored edges represent edges between the top and bottom sequences, darker edges
represent edges between neighboring sequences.

The time complexity of one pass of the Fiduccia-
Mattheyses algorithm on whole sequences is O(n2cl2).
We observe that the algorithm converges after very few
passes, but it is hard to prove a reasonable asymptotic
bound. The complexity of the whole clustering is asymp-
toticly equal to the complexity of the main partition
step.
The time complexity of iterative refinement belongs to

the classO(n2cl2).

Results
Benchmark data andmethodology
MSARC was tested against the BAliBASE 3.0 benchmark
database [1]. It contains manually refined reference pro-
tein alignments based on 3D structural superpositions.
Each alignment contains core-regions that correspond
to the most reliably alignable sections of the alignment.
Alignments are divided into five sets designed to evaluate
performance on varying types of problems:

RV1X Equidistant sequences with two different levels of
conservation

RV11 very divergent sequences (< 20% identity)
RV12 medium to divergent sequences

(20 − 40% identity)

RV20 Families aligned with a highly divergent “orphan”
sequence

RV30 Subgroups with < 25% residue identity between
groups

RV40 Sequences with N/C-terminal extensions
RV50 Internal insertions

BAliBASE 3.0 also provides a program comparing given
alignments with a reference one. Alignments are scored
according to twometrics. A sum-of-pairs score (SP) show-
ing the ratio of residue pairs that are correctly aligned,
and a total column (TC) score showing the ratio of cor-
rectly aligned columns. Both scores can be applied to full
sequences or just the core-regions.

Figure 6 Example visualization of the alignment produced by the graph partitioningmethods alone (ab) and graph partitioning followed
by refinement (cd). Residue colors reflect how well the column is aligned based on residue match probabilities (darker is better). Partition cuts are
colored to show the order of partitioning with darker cuts being performed earlier.
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We decided to present results based on core-region
scores only, since the corresponding sections of the ref-
erence alignments are most reliable. Moreover, results for
full sequence scores are very similar.

Benchmarking MSARC variants
Two steps of MSARC algorithm: stochastic alignment
and iterative refinement follow the respective steps in
Probalign [7]. Therefore we decided to set a bunch
of related parameters to Probalign’s defaults. Namely,
MSARC was run with Gonnet 160 similarity matrix [20],
gap penalties of −22, −1 and 0 for gap open, extension
and terminal gaps respectively, β = 0.2, a cut-off value for
posterior probabilities of 0.01 (values smaller than the cut-
off are set to 0 and operations designed for sparsematrices
are used in order to speed up computations), two itera-
tions of the consistency transformation and 100 iterations
of iterative refinement.
On the other hand, we decided to evaluate three param-

eters that seem to be crucial for steps specific for MSARC
approach. First, residue clustering may be performed with
basic or multilevel Fiduccia-Mattheyses algorithm. Sec-
ond, weighted or unweighted consistency transformation
may be applied. Third, stochastic pairwise alignment may
be based on equations (5)-(8) (i.e. stochastic version of
classical Gotoh algorithm) or equations (6) and (7) may
be replaced with equations (9) and (10), respectively. The
modified formula disallows consecutive insertions and
deletions, as is done in Probalign and MSAProbs.
Various combinations of the above options were tested

on the BAliBASE sequences. Results are presented in
Table 1. The variant with neighboring insertions and

deletions allowed, weighted consistency transformation
and residue clustering with basic Fiduccia-Mattheyses
algorithm has the best overall results, so it was selected for
comparison with other methods. However, the differences
are rather marginal.

Comparison to other aligners
MSARC results were compared to CLUSTAL � [1,21]
ver. 1.1.0, DIALIGN-T [9] ver. 0.2.2, DIALIGN-TX [22]
ver. 1.0.2, MAFFT [6] ver. 6.903, MUSCLE [5] ver. 3.8.31,
MSAProbs [18] ver. 0.9.7, Probalign [8] ver. 1.4, ProbCons
[7] ver. 1.12, T-Coffee [4] ver. 9.02, FSA [10] ver. 1.15.7
and PicXAA [11] ver. 1.03. All the programswere executed
with their default parameters.
Table 2 shows the SP and TC scores obtained by the

alignment algorithms on the BAliBASE 3.0 benchmark.
The overall results show that MSARC and PicXAA sub-
stantially outperform other non-progressive methods –
DIALIGN-T and FSA have SP scores lower by ∼ 10 and
TC scores lower by ∼ 15. Furthermore, MSARC and
PicXAA achieve accuracy similar to the progressive meth-
ods MSAProbs and Probalign – the ranges of SP and TC
scores of all four programs are 0.2 and 3.6, respectively.
The differences between best programs are not signif-

icant in most benchmark series (see Table 3) and corre-
spond to their structures – MSARC and PicXAA have
the best results for test series RV11 and RV40, and the
worst performance on RV30. Distances in RV30 fami-
lies are particularly well represented by guide trees (low
similarity between highly conserved subgroups) and pro-
gressive methods can benefit from it. On the other hand,
series RV11 contains highly divergent sequences for which

Table 1 Evaluation of MSARC variants

MSARC variant SP/TC scores

Alt. indels Weighted Multilevel All RV11 RV12 RV20 RV30 RV40 RV50

yes yes no 87.6
57.1

69.9
46.3

94.5
85.7

92.5
39.2

83.7
47.2

93.2
62.3

88.7
51.6

yes yes yes 87.6
57.0

69.7
46.5

94.5
85.8

92.5
39.0

83.6
46.9

93.2
61.8

88.7
51.9

yes no no 87.5
56.6

69.3
45.5

94.4
85.6

92.5
39.6

83.7
47.6

93.0
61.2

88.6
49.6

yes no yes 87.5
56.6

69.6
45.6

94.5
85.8

92.5
39.3

83.4
47.0

93.1
61.4

88.4
49.6

no yes no 87.5
57.0

69.2
45.6

94.4
85.7

92.5
39.5

83.5
47.1

93.2
62.2

89.0
51.9

no yes yes 87.5
57.1

69.2
46.2

94.4
85.6

92.5
39.2

83.7
47.7

93.2
62.4

88.7
51.6

no no no 87.5
56.6

69.4
45.6

94.5
85.7

92.5
39.7

83.5
46.9

93.0
61.3

88.5
49.7

no no yes 87.5
56.7

69.5
45.7

94.4
85.7

92.5
39.1

83.5
47.0

93.1
61.7

88.6
49.7

All the combinations of the following options are evaluated: (dis-)allowing for neighboring insertions and deletions in pairwise alignments, (not) weighting sequence
pairs in consistency transformation and (not) using multilevel scheme in residue clustering. Entries show the mean SP and TC scores for each alignment algorithm on
the whole BAliBASE 3.0 dataset and each of its series. All scores are multiplied by 100. Best results in each column are shown in bold.



Modzelewski and Dojer Algorithms for Molecular Biology 2014, 9:12 Page 8 of 11
http://www.almob.org/content/9/1/12

Table 2 Comparison of multiple sequence alignment methods

SP/TC scores Computation

Aligner All RV11 RV12 RV20 RV30 RV40 RV50 BB40037 Time

Non-progressivemethods

MSARC 87.6
57.1

69.9
46.3

94.5
85.7

92.5
39.2

83.7
47.2

93.2
62.3

88.7
51.6

98.7
70.0 16 : 36 : 37

DIALIGN-T 77.3
42.8

49.3
25.3

88.8
72.5

86.3
29.2

74.7
34.9

82.0
45.2

80.1
44.2

52.6
0.0 1 : 13 : 21

FSA 78.5
42.1

50.3
26.9

92.4
81.8

86.7
18.7

70.7
27.6

85.5
46.2

78.2
39.8

81.8
30.0 35 : 15 : 34

PicXAA 87.8
59.4

69.0
46.3

94.6
86.2

92.5
41.6

86.0
59.8

93.1
62.4

89.2
53.0

98.7
70.0 5 : 54 : 18

Progressive methods

CLUSTAL � 84.0
55.4

59.0
35.8

90.6
78.9

90.2
45.0

86.2
57.5

90.2
57.9

86.2
53.3

61.2
0.0 12 : 15

DIALIGN-TX 78.8
44.3

51.5
26.5

89.2
75.2

87.9
30.5

76.2
38.5

83.6
44.8

82.3
46.6

52.8
0.0 1 : 36 : 05

MAFFT 86.7
58.4

65.3
42.8

93.6
83.8

92.5
44.6

85.9
58.1

91.5
59.0

90.1
59.4

56.4
0.0 54 : 04

MSAProbs 87.8
60.7

68.2
44.1

94.6
86.5

92.8
46.4

86.5
60.7

92.5
62.2

90.8
60.8

59.5
0.0 6 : 43 : 51

MUSCLE 81.9
47.5

57.2
31.8

91.5
80.4

88.9
35.0

81.4
40.9

86.5
45.0

83.5
45.9

48.4
0.0 23 : 32

Probalign 87.6
58.9

69.5
45.3

94.6
86.2

92.6
43.9

85.3
56.6

92.2
60.3

88.7
54.9

54.2
0.0 4 : 31 : 41

ProbCons 86.4
55.8

67.0
41.7

94.1
85.5

91.7
40.6

84.5
54.4

90.3
53.2

89.4
57.3

59.3
0.0 6 : 56 : 32

T-Coffee 85.7
55.1

65.5
40.9

93.9
84.8

91.4
40.1

83.7
49.0

89.2
54.5

89.4
58.5

50.9
0.0 13 : 53 : 02

Columns 2-9 show the mean SP and TC scores for each alignment algorithm on the whole BAliBASE 3.0 dataset, each of its series and case BB40037. The last column
presents total CPU computation time (hh:mm:ss). All scores are multiplied by 100. Best results in each column are shown in bold.

Table 3 Significance of differences in BAliBASE 3.0 SP/TC scores

Aligner RV11 RV12 RV20 RV30 RV40 RV50 Total

Non-progressivemethods

DIALIGN-T +8.6e−8
+1.5e−6

+7.7e−9
+2.2e−8

+1.3e−7
+9.6e−5

+2.7e−6
+0.0024

+2.1e−9
+4.9e−8

+0.00098
+0.027

+5.3e−36
+3.6e−26

FSA +8.6e−8
+1.2e−6

+3.5e−6
+0.00012

+3.6e−8
+1.2e−6

+2.6e−6
+8.5e−6

+8.3e−9
+1.2e−6

+0.00081
+0.021

+3.6e−34
+3.5e−27

PicXAA +0.048
+(0.53)

−(0.82)
−(0.98)

−(0.055)
−0.018

−2.8e−5
−7.2e−6

+(0.11)
−(0.052)

−(0.063)
−(0.37)

−0.0079
−1.3e−6

Progressive methods

Clustal � +2.6e−7
+5.1e−5

+2.4e−5
+0.00019

+0.0048
−0.00054

−0.020
−0.00060

+2.2e−6
+(0.16)

+0.017
−(0.77)

+1.1e−13
+(0.30)

DIALIGN-TX +1.0e−7
+1.3e−6

+6.2e−8
+4.0e−7

+2.3e−7
+0.00040

+8.7e−6
+0.038

+2.8e−9
+1.3e−7

+0.0017
+(0.066)

+3.1e−34
+9.5e−23

MAFFT +0.0031
+(0.11)

+0.00085
+0.005

−(0.64)
−(0.052)

−0.0009
−0.0007

+0.0005
+(0.07)

−(0.072)
−(0.062)

+0.028
−(0.55)

MSAProbs +0.028
+(0.23)

−(0.90)
−(0.67)

−0.011
−0.00032

−0.00017
−1.4e−5

+(0.61)
+0.048

−0.010
−0.0086

−0.020
−5.9e−8

MUSCLE +7.3e−6
+0.00017

+2.8e−6
+0.00015

+0.00015
+(0.15)

+(0.19)
+(0.52)

+7.6e−9
+2.8e−6

+0.010
+(0.072)

+2.9e−22
+3.3e−12

Probalign +(0.67)
+(0.52)

−(0.63)
−(0.88)

−0.032
−6.8e−5

−0.0099
−0.00056

+(0.62)
+(0.060)

−(0.18)
−(0.32)

−0.019
−6.0e−6

ProbCons +0.021
+0.037

+0.0042
+(0.19)

+0.028
−(0.19)

−(0.15)
−0.010

+0.00026
+0.022

−(0.12)
−(0.17)

+0.00087
+(0.93)

T-Coffee +0.0024
+0.016

+0.0017
+0.013

+0.0075
−(0.51)

−(0.29)
−(0.099)

+9.7e−5
+(0.29)

−0.048
−0.026

+1.3e−5
+(0.70)

Entries show p-values indicating the significance of the mean difference of SP/TC scores between MSARC and other aligners as measured using the Wilcoxon
matched-pair signed-rank test. A + means that MSARC had a higher mean score while a − means MSARC had a lower mean score. Nonsignificant p-values (> 0.05) are
shown in parentheses.
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guide-tree is poorly informative, even if it represents the
correct phylogeny, and RV40 contains sequences with
N/C-terminal extensions whichmay affect the accuracy of
the estimated phylogeny. These sequence families expose
progressive methods to guide-tree bias.
We illustrate this observation with an example of test

case BB40037. As is shown in column 9 of Table 2,MSARC
outperforms progressive methods by a large margin. The
TC scores of zero means that each alignment method
has shifted at least one sequence from its correct posi-
tion relative to the other sequences. Figure 7 presents the
structure of the reference alignment, as well as alignments
generated by MSARC, Probalign and MSAProbs. The
large family of red, orange and yellow colored sequences
near the bottom has been misaligned by the progressive
methods. The reason for this is more visible in Figure 8,
where sequences in alignments are reordered according to
related guide-trees.
Probalign aligns separately the first half of the sequences

(blue and green) and the second half of the sequences
(from yellow to red). Next, the prefixes of the second
group are aligned with the suffixes of the first group,
propagating an error within a yellow sub-alignment.

MSAprobs aligns separately the dark blue, light blue
and red sequences. Next the blue sub-alignments are
aligned together. The resulting alignment has erroneously
inserted gaps near the right ends of dark blue sequences.
This error is propagated in the next step, where the suffix
of the blue alignment is aligned with the prefix of the red
alignment. Finally, the single violet sequence is added to
the alignment, splitting it in two.
For both programs, alignment errors introduced in the

earlier steps are propagated to the final alignment. On the
other hand, the non-progressive strategy used in MSARC
yields a reasonable approximation of the reference align-
ment (see Figure 7(ab)).

Conclusions
The progressive principle has dominated multiple align-
ment algorithms for nearly 20 years. Throughout this
time, many groups have dedicated their effort to refine
its accuracy to the current state. Other approaches
were omitted due to high computational complexity
and/or unsatisfactory quality. However, recently several
non-progressive methods were proposed. Two of them,
PicXAA and MSARC proved to be competitive with the

BAliBASE

(a)

MSARC

(b)

Probalig n

(c)

MSAProbs

(d)
Figure 7 Visualization of reference (a) and reconstructed (bcd) alignments for test case BB40037. In all alignments sequences are ordered
accordingly. Each sequence is colored based on the evolutionary distance to its neighbors in a phylogenetic tree, such that families of related
sequences have similar colors. Trees for (a) and (b) are computed with the PhyML 3.0 program [23], using the maximum parsimony method. Trees
for (c) and (d) are the guide-trees used by those aligners.
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Figure 8 Guide trees (ac) and alignment visualizations (bd) for test case BB40037 and programs Probalign (ab) and MSAProbs (cd). Tree
branches and aligned sequences are colored based on the evolutionary distances to their neighbors, as computed from the guide-trees used during
alignment. Sequences in alignments are ordered following their order in trees, so related sequences have similar color and are positioned together.

best progressive approaches. Moreover, both programs
outperform progressive methods on sequence sets with
evolutionary distances that are difficult to represent by a
phylogenetic tree.
Despite the algorithmic novelty, the non-progressive

approaches to multiple alignment are interesting prepro-
cessing tools for phylogeny reconstruction pipelines. The
objective of these procedures is to infer the structure of
a phylogenetic tree from a given sequence set. Multiple
alignment is usually the first pipeline step. When align-
ment is guided by a tree, the reconstructed phylogeny is
biased towards this tree. In order to minimize this effect,
some phylogenetic pipelines alternately optimize a tree
and an alignment [24-26]. The unbiased alignment pro-
cess of MSARC may simplify this procedure and improve
the reconstruction accuracy, especially in the most prob-
lematic cases.
MSARC has also the potential for quality improve-

ments. Alternative methods of computing residue align-
ment affinities could be used to improve the accuracy
of both MSARC and Probalign based methods. Other
approaches to alignment graph partitioning may also lead
to improvements in the accuracy of MSARC, for example
a better method of pairing residues for multilevel coars-
ening than the currently used naive consecutive neighbors
merging.
The main disadvantage of MSARC is its computational

complexity, especially in the case of the multilevel scheme

variant (MSARC is ∼ 2.5× slower than MSAProbs, the
MSARC variant with multilevel scheme is even slower).
This is the cost of avoiding the progressive approach.

Endnote
aOur notion of alignment graph slightly differs from

the one of Kececioglu [27]: removing edges between
clusters transforms the former into the latter.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ND designed the overall algorithm, participated in its evaluation and wrote
the manuscript. MM designed and adapted algorithmic solutions,
implemented the method and participated in its evaluation. Both authors read
and approved the final manuscript.

Acknowledgements
This work was supported by the Polish Ministry of Science and Higher
Education [N N519 652740].

Received: 1 December 2013 Accepted: 6 April 2014
Published: 16 April 2014

References
1. Thompson JD, Higgins DG, Gibson TJ: Clustal w: improving the

sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Res 1994, 22(22):4673–4680.

2. Wong KM, Suchard MA, Huelsenbeck JP: Alignment uncertainty and
genomic analysis. Science 2008, 319(5862):473–476.
doi:10.1126/science.1151532.



Modzelewski and Dojer Algorithms for Molecular Biology 2014, 9:12 Page 11 of 11
http://www.almob.org/content/9/1/12

3. Löytynoja A, Goldman N: Phylogeny-aware gap placement prevents
errors in sequence alignment and evolutionary analysis. Science
2008, 320(5883):1632–1635. doi:10.1126/science.1158395.

4. Notredame C, Higgins DG, Heringa J: T-coffee: A novel method for fast
and accurate multiple sequence alignment. J Mol Biol 2000,
302(1):205–217. doi:10.1006/jmbi.2000.4042.

5. Edgar RC:Muscle: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Res 2004, 32(5):1792–1797.
doi:10.1093/nar/gkh340.

6. Katoh K, Kuma K-i, Toh H, Miyata T:Mafft version 5 improvement in
accuracy of multiple sequence alignment. Nucleic Acids Res 2005,
33(2):511–518. doi:10.1093/nar/gki198.

7. Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S: Probcons:
Probabilistic consistency-based multiple sequence alignment.
Genome Res 2005, 15(2):330–340. doi:10.1101/gr.2821705.

8. Roshan U, Livesay DR: Probalign: multiple sequence alignment using
partition function posterior probabilities. Bioinformatics,
22(22):2715–2721. doi:10.1093/bioinformatics/btl472.

9. Subramanian AR, Weyer-Menkhoff J, Kaufmann M, Morgenstern B:
Dialign-t: an improved algorithm for segment-based multiple
sequence alignment. BMC Bioinformatics 2005, 6:66. doi:10.1186/1471-
2105-6-66.

10. Bradley RK, Roberts A, Smoot M, Juvekar S, Do J, Dewey C, Holmes I,
Pachter L: Fast statistical alignment. PLoS Comput Biol 2009,
5(5):1000392. doi:10.1371/journal.pcbi.1000392.

11. Sahraeian SME, Yoon B-J: Picxaa: greedy probabilistic construction of
maximum expected accuracy alignment of multiple sequences.
Nucleic Acids Res 2010, 38(15):4917–4928. doi:10.1093/nar/gkq255.

12. Thompson JD, Koehl P, Ripp R, Poch O: Balibase 3.0: latest
developments of the multiple sequence alignment benchmark.
Proteins 2005, 61(1):127–136. doi:10.1002/prot.20527.

13. Fiduccia CM, Mattheyses RM: A linear-time heuristic for improving
network partitions. In Proceedings of the 19th Design Automation
Conference. DAC ’82. Piscataway, NJ, USA: IEEE Press; 1982:175–181.
[http://dl.acm.org/citation.cfm?id=800263.809204]

14. Miyazawa S: A reliable sequence alignment method based on
probabilities of residue correspondences. Protein Eng 1995,
8(10):999–1009.

15. Mückstein U, Hofacker IL, Stadler PF: Stochastic pairwise alignments.
Bioinformatics 2002, 18(Suppl 2):153–160.

16. Yu YK, Hwa T: Statistical significance of probabilistic sequence
alignment and related local hiddenmarkov models. J Comput Biol
2001, 8(3):249–282. doi:10.1089/10665270152530845.

17. Gotoh O: An improved algorithm for matching biological sequences.
J Mol Biol 1982, 162(3):705–708.

18. Liu Y, Schmidt B, Maskell DL:Msaprobs: multiple sequence alignment
based on pair hiddenmarkov models and partition function
posterior probabilities. Bioinformatics 1964, 26(16):1958–1964.
doi:10.1093/bioinformatics/btq338.

19. Hendrickson B, Leland R: Amultilevel algorithm for partitioning
graphs. In Proceedings of the 1995 ACM/IEEE Conference on Supercomputing
(CDROM). Supercomputing ’95. New York, NY, USA: ACM; 1995.
doi:10.1145/224170.224228. [http://doi.acm.org/10.1145/224170.224228]

20. Gonnet GH, Cohen MA, Benner SA: Exhaustive matching of the entire
protein sequence database. Science 1992, 256(5062):1443–1445.

21. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam
H, Remmert M, Söding J, Thompson JD, Higgins DG: Fast, scalable
generation of high-quality protein multiple sequence alignments
using clustal omega.Mol Syst Biol 2011, 7:539. doi:10.1038/msb.2011.75.

22. Subramanian AR, Kaufmann M, Morgenstern B: Dialign-tx: greedy and
progressive approaches for segment-based multiple sequence
alignment. Alg Mol Biol 2008, 3:6. doi:10.1186/1748-7188-3-6.

23. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O:
New algorithms andmethods to estimate maximum-likelihood
phylogenies: assessing the performance of phyml 3.0. Syst Biol 2010,
59(3):307–321. doi:10.1093/sysbio/syq010.

24. Redelings BD, Suchard MA: Joint bayesian estimation of alignment
and phylogeny. Syst Biol 2005, 54(3):401–418. doi:10.1080/
10635150590947041.

25. Lunter G, Miklós I, Drummond A, Jensen JL, Hein J: Bayesian
coestimation of phylogeny and sequence alignment.
BMC Bioinformatics 2005, 6:83. doi:10.1186/1471-2105-6-83.

26. Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T: Rapid and accurate
large-scale coestimation of sequence alignments and phylogenetic
trees. Science 2009, 324(5934):1561–1564. doi:10.1126/science.1171243.

27. Kececioglu J: The maximumweight trace problem in multiple
sequence alignment. In Proceedings of the 4th Symposium on
Combinatorial Pattern Matching (CPM). Lecture Notes in Computer Science.
Berlin Heidelberg: Springer; 1993:106–119.

doi:10.1186/1748-7188-9-12
Cite this article as: Modzelewski and Dojer: MSARC: Multiple sequence
alignment by residue clustering. Algorithms for Molecular Biology 2014 9:12.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://dl.acm.org/citation.cfm?id=800263.809204
http://doi.acm.org/10.1145/224170.224228

	Abstract
	Background
	Results
	Availability
	Keywords

	Background
	Methods
	Pairwise stochastic alignment
	Alignment graphs
	Residue clustering
	Refinement
	Computational complexity

	Results
	Benchmark data and methodology
	Benchmarking MSARC variants
	Comparison to other aligners

	Conclusions
	Endnote
	Competing interests
	Authors' contributions
	Acknowledgements
	References

