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Abstract

Background: Identifying ligand-binding sites is a key step to annotate the protein functions and to find applications in
drug design. Now, many sequence-based methods adopted various predicted results from other classifiers, such as
predicted secondary structure, predicted solvent accessibility and predicted disorder probabilities, to combine with
position-specific scoring matrix (PSSM) as input for binding sites prediction. These predicted features not only easily
result in high-dimensional feature space, but also greatly increased the complexity of algorithms. Moreover, the
performances of these predictors are also largely influenced by the other classifiers.

Results: In order to verify that conservation is the most powerful attribute in identifying ligand-binding sites, and to show
the importance of revising PSSM to match the detailed conservation pattern of functional site in prediction, we have
analyzed the Adenosine-5'-triphosphate (ATP) ligand as an example, and proposed a simple method for ATP-binding sites
prediction, named as CLCLpred (Contextual Local evolutionary Conservation-based method for Ligand-binding
prediction). Our method employed no predicted results from other classifiers as input; all used features were extracted
from PSSM only. We tested our method on 2 separate data sets. Experimental results showed that, comparing with other
9 existing methods on the same data sets, our method achieved the best performance.

Conclusions: This study demonstrates that: 1) exploiting the signal from the detailed conservation pattern of residues will
largely facilitate the prediction of protein functional sites; and 2) the local evolutionary conservation enables accurate
prediction of ATP-binding sites directly from protein sequence.

Keywords: ATP-binding site, Sequence-based, Local evolutionary conservation
Background
Identification of ligand-protein binding sites is a key step to
annotate the protein functions and find applications in drug
design. Since physical experimental methods are expensive
and time consuming, computational methods are indis-
pensable for guiding the physical experimental analysis.
So far, several computational methods have been pro-

posed for identifying protein functional sites [1-17]. These
methods can be categorized into three groups: 1) ap-
proaches that focus on molecular docking with known
protein structures [1-5]; 2) methods that predict putative
interacting sites based on protein sequences [6-17]; 3)
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methods that identify interacting sites based on the hybrid
features of protein structure and sequences [15]. Due to
the structures of most proteins are not available, the
structure-based methods cannot be generally used. Here,
we focus on the sequence-based methods of ligand-
binding sites prediction. The inputs of previous sequence-
based methods also can be categorized into three groups:
(i) direct output of PSSM [6-10]; (ii) combination of PSSM
with other sequence features, including amino acid distance
and physicochemical prosperity [11] ; (iii) combination of
PSSM with other predicted structural information, such as
predicted secondary structure [12,16,17], predicted solvent
accessibility [12,16,17], predicted disorder probabilities
[16,17], predicted dihedral angles [16] and predicted B-
factors. Of course, analyzing the various features of the
binding partner is important for understanding the ligand-
binding behavior. However, incorporating many other
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
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Figure 1 Statistics of continuous ATP-binding residues.
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features, especially some predicted feature as input for
binding sites prediction has some potential shortcom-
ings: 1) multi-features easily result in high-dimensional
feature space. In machine learning, if the training sam-
ples are limited, high-dimensional feature space easily
leads to over fitting to noise data and then cause a deg-
radation in performance; 2) incorporating predicted re-
sults from other predictors greatly increases the
complexity of the algorithm. Many studies even pro-
vided no Web services because of the complexity in
their design; 3) the performance of the predictors which
employed other predicted results are also largely af-
fected by other classifiers. Thus, more simple and high
efficient method for identifying interacting residues is
indispensable.
Evolutionary information included in PSSM has been

considered to be the most effective feature for functional
site predication. Nearly all the sequence-based methods
adopted PSSM as an input feature for prediction. Raghava’s
group has used the standard PSSMs for various functional
sites predication [7-10]. John A. C. et al. [13] also found
that conservation features was highly predictive in identi-
fying ligand-binding sites and catalytic sites compared to
identify other functional site. Ke Chen et al. [18] proved
that the exclusion of PSSM profile leads to a larger de-
crease in prediction performance than the exclusion of
other input features, which suggests that the evolution-
ary information plays a key role in determination of the
nucleotide-binding residues.
Here, we developed a novel sequence-based predictor for

ATP-binding sites prediction. In our approach, only the
high local evolutionary conservation scores in the PSSMs
are considered as input. We employed no other predicted
results as input features. Our method is based on the as-
sumptions that: 1) the most effective features for predicting
functional sites are embedded in the sequence itself; 2) the
local evolutionary conservation is distinct enough to enable
an accurate prediction of ATP-binding sites directly from
amino acid sequence, without requiring any additional pre-
dicted structural information. In order to assess the pre-
dictive quality, we compared our method with 9 other
existing methods which adopted various predicted struc-
tural features. The Support Vector Machine (SVM) was
adopted to build the classifiers.

Methods
Benchmark datasets
We took ATP as an example of ligands. For facilitating
comparison, we collected 2 data sets from the existing pa-
pers [10,16,17].
Dataset 1: It is extracted from the reference [10], which

was also used in the reference [17]. This data set includes
168 ATP-binding protein chains, that contain 3,104 ATP-
interacting residues (AIRs) and 59,226 non-ATP interacting
residues (non-AIRs), named as ATP168. It is available at
http://www.imtech.res.in/raghava/atpint/.
Dataset 2: It is extracted from the reference [16], which

was also used in the reference [17]. This data set includes
227 ATP-binding protein chains that contain 3,393 AIRs
and 80,409 non-AIRs, named as ATP227. It is available at
http://biomine.ece.ualberta.ca/ATPsite/.

Continuous binding residues analysis
In order to conform whether ATP-binding sites are
clustered closely together in sequence, the 168 ATP-
binding protein chains in Dataset 1 were analyzed as
example. As shown in Figure 1, 68% of binding-sites
appear alone, 22% of them appear in two consecutive
residues, and the others appear continuously with
lengths distribution between 3 to 5 residues. This result
suggests that, the ATP-binding sites have certain inde-
pendence, and meanwhile are affected by their flanking
regions to some extent.

Composition and physicochemical properties analysis
We next analyzed the composition and physicochemical
properties of the ATP-binding proteins. Sequences were di-
vided into 3 regions: the ATP-interacting residues (AIRs),
regions flanking the AIRs, and general non-ATP interacting
regions (non-AIRs). Regions flanking on either side of the
interacting sites with 15-residue long were analyzed.
Difference between the flanking regions and general

non-AIRs regions (percentage of flanking - percentage of
non_AIRs) with respect to 20 amino acids composition is
shown in Figure 2. The Pearson product-moment correl-
ation coefficients between the flanking length and the
composition difference for each amino acid were also cal-
culated (Table 1 for the left flanking side and Table 2 for
the right flanking side). For both the flanking regions, the
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Figure 2 Differences with respect to amino acids composition between AIRs and non-AIRs. The values at position 0 on the horizontal axis
mean the values for AIRs, L means the left flanking side and R means the right flanking side.

Table 1 Correlation coefficients between the left flanking length and composition difference (left ATP_flanking – non_ATP)
for each amino acid

I L V C A G M F Y W

Correlation coefficient 0.436261 -0.69187 0.205958 -0.44066 5.56E-05 0.89866 -0.4487 -0.03841 -0.37415 0.182664

p-value 9.12E-02 2.98E-03 0.4441 0.08756 -0.83563 2.24E-06 8.13E-02 8.88E-01 1.53E-01 4.98E-01

H K R E Q D N S T P

Correlation coefficient -0.19525 -0.449 -0.18163 -0.84979 -0.86288 0.279555 0.042733 0.833508 0.911421 -0.16532

p-value 4.69E-01 0.08105 0.5008 3.08E-05 1.69E-05 0.2944 0.8751 6.05E-05 9.05E-07 0.5406

Table 2 Correlation coefficients between the right flanking length and composition difference (right ATP_flanking –
non_ATP) for each amino acid

I L V C A G M F Y W

Correlation coefficient -0.1635 0.791152 0.410819 0.531454 0.665265 -0.7964 0.163617 0.485453 -0.04779 0.510287

p-value 5.45E-01 2.62E-04 0.1139 0.03413 0.004918 0.000223 5.45E-01 5.66E-02 8.61E-01 4.34E-02

H K R E Q D N S T P

Correlation coefficient -0.38939 0.074529 -0.2761 0.807045 0.746647 -0.47301 -0.60543 -0.89214 -0.92875 -0.19277

p-value 1.36E-01 7.84E-01 0.3006 0.000158 0.000891 0.06425 0.01295 3.41E-06 2.07E-07 0.4744
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Figure 3 Differences in physicochemical properties between AIRs and non-AIRs. The values at position 0 on the horizontal axis mean the
values for the AIRs, L means the left flanking side and R means the right flanking side.
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correlation coefficients related to Leu, Gly, Glu, Gln, Ser,
and Thr have absolute value > 0.69 at the p-value <0.001.
It illustrates that, composition of these amino acids in the
flanking regions and in the general non-binding regions is
significantly different.
Difference between the flanking regions and general

non-AIRs regions with respect to 10 physicochemical
properties is shown in Figure 3. The corresponding
Pearson correlation coefficients between the flanking
length and each physicochemical property difference
are shown in Table 3 (for the left flanking side) and
Table 4 (for the right flanking side). For the left flank-
ing side, correlation coefficients related to small, tiny,
negative and charged have absolute value > 0.60 at the
p-value < 0.001; for the right flanking side, correlation
Table 3 Correlation coefficients between the left flanking len
(left ATP_flanking - non-ATP)

Hydrophobic Polar Small Proline

Correlation coefficient 0.20548 -0.35369 0.803793 -0.20618

p-value 4.45E-01 1.79E-01 0.000176 0.4436

Table 4 Correlation coefficients between the right flanking le
(right ATP_flanking - non-ATP)

Hydrophobic Polar Small Proline

Correlation coefficient 0.523796 -0.39506 -0.76834 -0.12863

p-value 3.73E-02 1.30E-01 0.000507 0.635
coefficients related to small, tiny and aliphatic have
absolute value > 0.73 at the p-value < 0.001. This
phenomenon illustrates that, these physicochemical
properties of flanking regions are very different from
those of general non-AIRs regions.
The above analyses of the composition and physico-

chemical properties for the three regions illustrated
that flanking regions are highly relevant to the ATP-
binding sites. Therefore, we assumed that the ATP-binding
sites in protein sequences are highly contextual. Because
ATP-binding sites are found to be more conserved than
surrounding residues [7-10,13,18], we considered in-
corporating contextual information of residues with local
evolutionary conservation to improve the prediction of
ATP-binding sites.
gth and each physicochemical property difference

Tiny Aliphatic Aromatic Positive Negative Charged

0.802904 -0.07958 -0.30385 -0.44621 -0.72413 -0.60791

0.000181 7.70E-01 2.53E-01 8.32E-02 1.51E-03 1.25E-02

ngth and each physicochemical property difference

Tiny Aliphatic Aromatic Positive Negative Charged

-0.75009 0.732382 0.299015 -0.13031 0.570493 0.322113

0.000818 1.25E-03 2.61E-01 6.31E-01 2.10E-02 2.24E-01
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Prediction model
Our approach focuses on using high local evolutionary
conservation scores in the PSSMs for prediction. The
prediction model is shown in Figure 4.

Evolutionary information (PSSM)
Evolutionary information was obtained from PSSMs
generated by PSI-BLAST [19] with searching against
NCBI non-redundant (nr) database [20] by three times
iteration with an e-value of 0.001. Evolutionary infor-
mation for each amino acid was encapsulated in a vec-
tor of 20 dimensions. The size of PSSM of a protein
with N residues is 20 × N, where N is the length of a
protein. 20 dimensions were considered as a standard
amino acid size.
Masking and filtering the PSSM
The modified PSSM is used to describe the local evolu-
tionary information of each residue in a protein. It is
converted from a standard PSSM according to formula
(1) and (2).
Figure 4 Prediction model. The length of sliding window is
represented by 2 h+1, n is the length of sequence, and vi represents
the corresponding amino acids i in the feature vector.
Firstly, a masking sliding window with appropriate size
is used to calculate the mean conservation score for each
residue in a standard PSSM, and then, scores in PSSM
are converted to local conservation scores according to
formula (1). After that, the local conservation scores
below the average scores are changed to 0 according to
formula (2). This can strengthen the high conservative
information while filtering out the low ones.

Masking�Ci ¼ Ci−
1

2nþ 1

Xiþn

i−n

Cj ð1Þ

Filtering�Ci ¼ Masking�Ci; Masking�Ci > 0ð Þ
0; Masking�Ci ≤0ð Þ

�

ð2Þ
Masking_Ci is the mean conservation score of residue

i, Ci is the standard conservation score in PSSM, 2n+1 is
the masking window size. Figure 5 illustrates an example
of a masked and filtered PSSM.

Smoothing the modified PSSM
Every value in a standard PSSM is calculated based on
the assumption that the position of each value in the
matrix is independent from the others. However, ligand-
binding residues tend to appear continuously. The flank-
ing regions also largely affect the binding behavior. In
order to incorporate the dependency on surrounding
neighbors of a central residue, we adopt the same
smoothing method as Cheng-Wei C’s group [21], firstly,
in order to deal with the N-terminal and C-terminal of a
protein sequence, m (m is an odd number) ZERO vec-
tors are appended to the head and the tail of a standard
PSSM profile, where 2 m+1 is the size of a smoothing
sliding-window. Then the smoothing sliding-window is
used to incorporate the evolutionary information from
upstream and downstream residues. Each row vector of
an amino acid residue Ci is smoothed according to for-
mula (3).

Smoothing�Ci ¼
Xiþm

i−m

Filtering�Cj ð3Þ

Finally, each value in the smoothed PSSM matrix is
scaled to the range of [-1, 1] according to a certain ratio.
Procedure of preparing feature sets for the predictor is
shown in Figure 5.

Support vector machines (SVM) and 5-fold
cross-validation
Identification of ATP-binding sites can be addressed as a
two-classification problem, i.e., determining whether a
given residue is binding residue or not. In this study, like
the other researches, we adopted SVM to build the binary



Figure 5 Procedure of preparing feature sets for the predictor.
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classifier. The prediction models were trained by the
libSVM software package which was written by in Chih-Jen
[22,23]. Here, the Radial Basis Function (RBF kernel) was
adopted to construct the SVM classifiers. The grid search
method [22,23] was used to search for the best parameters
c and g for training. The negative samples were selected
randomly with an equal number of positive samples. 5-fold
cross-validation was used to evaluate the performance of
the developed models, that is, the patterns were randomly
divided into five sets. Four sets were used for training and
the remaining one set was used for testing. The process
was repeated until each set was used once for testing.

Evaluation criteria
We adopted the evaluation criteria used in CASP10 [24].
The area under the corresponding ROC curve (AUC),
MCC, and the accuracy (ACC) were adopted to evaluate
the performance of the classifiers. The ROC plots with the
AUC values were created by using the R statistical package
[25]. The sensitivity, specificity, true positive rate (TPR),
false negative rate (FPR) and ACC are defined as follows:

Specifity ¼ TN
TN þ FP

ð4Þ

TPR ¼ Sensitivity ¼ TP
TP þ FN

ð5Þ

FPR ¼ 1−Specificity ¼ FP
TN þ FP

ð6Þ

ACC ¼ 1
2

Sensitivityþ Specificityð Þ ð7Þ

Where TP, TN, FP and FN represents true positive, true
negative, false positive and false negative respectively.
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Results and discussion
Window sizes
For developing the CLCLpred model, 3 window sizes
are necessary; the masking-window size which is used
to calculate average local conservation scores, the out-
side sliding-window size which would finally decide
the dimensions of feature vectors, and the inside
smoothing-window size which is used to strengthen
the local conservation features. Here, for a fair com-
parison, we chose the same size 17 with the researches
[10,16,17] as the outside-sliding window size. The
masking-window size has the similar meaning with the
outside sliding-window size. Both of them indicate the
length of flanking regions that would be considered to
affect a central residue. So, 17 was also adopted as our
masking window size. With an outside sliding-window
and a masking-window size of 17, the CLCLpred model
was further tested according to different smoothing
window sizes. The relative best ROC plots would be
chosen to represent the performance of the related
models.
Figure 6 Distribution of conservation scores for protein 2B6F (PDB ID
PSSM, (B) distribution of scores in the masked and filtered PSSM, and (C) d
mark the position of ATP-binding residues (only residues 51~121 in the A c
Effectiveness of the feature extracting methods

� Effectiveness at the individual protein level
) relat
istribu
hain a
To confirm the effectiveness of our feature extracting
method in distinguishing AIRs from non-AIRs and to
determine how this might benefit the predication, we
selected the protein [PDB: 2B6F] as an example. It has
a continuous ATP-binding region of “G-G-C-H-R” lo-
cated at residues 81~ 85 in the A chain.
Because the binding region “G-G-C-H-R” contains
two residues of ‘G’, we extracted the ‘G’ column of
position-specific scores from the standard PSSM
(there are a total of 20 columns, corresponding to
the 20 standard amino acids). Then, the distribu-
tion of the scores in the standard PSSM, masked
PSSM, and smoothed PSSM were counted
(Figure 6). In the standard PSSM, the distribution
of scores between the AIRs and non-AIRs showed
no distinct difference. The AIR region contains
both highly conserved residues (‘G’) and highly
variable residues (other amino acids). In the
ed to the three steps. (A) distribution of scores in the standard
tion of scores in the smoothed PSSM. The red dotted rectangles
re displayed).
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masked PSSM, scores below the average have been
filtered out, thereby discarding the noise data (low
conservative scores), that are undesirable for pre-
diction. In the smoothed PSSM, scores of residues
that are surrounded by conserved residues have
been enhanced after smoothing, and scores of resi-
dues that are surrounded by poorly conserved resi-
dues have been weakened. Since AIRs are found to
be more conserved than surrounding residues and
flanked by less conserved residues [7-10,13,18],
they are easy to appear as highly conserved peaks
compared to the non-AIR regions. We have shown
the results for just the ‘G’ column, similar results
re 7 Distribution of the summation scores of AIRs and non-AIRs rel
e standard PSSM (B) distribution of the summation scores in the masked
smoothed PSSM.
were obtained for ‘C’, ‘H’ and ‘R’ columns of the
PSSM (data not shown).

� Effectiveness at the whole dataset level.
We next analyzed the distributions of local
conservation scores for all residues in the data
set ATP168 in three stages: in the standard
PSSM, after masked and filtered, and after
smoothed. We assumed that the summation of
scores in each row in the corresponding PSSM
represented the local conservation of the
related residues Ci. Then the local
conservation score in each stage is able to be
calculated according to formula (8~10).
ated to the three steps. (A) distribution of the summation scores
and filtered PSSM, and (C) distribution of the summation scores in



Figure 8 ROC plots of CLCLpred with different smoothing window sizes applied on ATP168 (A) and ATP227 (B) (W indicates the
flanking window length).

Figure 9 The best ROC plot of the CLCLpred method tested on ATP168 (A) and ATP227 (B).
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Table 5 Performance comparison with other three PSSM-based methods on ATP168

Dataset Method ACC TPR FPR AUC

ATP168 CLCLpred 0.824 0.785 0.137 0.894

PSSM 0.755 0.700 0.191 0.823

Smooth_PSSM 0.811 0.770 0.149 0.879

Mask_PSSM 0.750 0.692 0.192 0.823



Figure 10 ROC plots of the four PSSM-based methods verified
on ATP168.

Table 6 Performance of CLCLpred and the existing
predictors tested on the ATP168 and ATP227

Dataset Method ACC TPR FPR AUC

ATP168 CLCLpred (our proposed method) 0.824 0.785 0.137 0.894

PSSM (reference [10]) 0.752 0.700 0.196 0.823

binary (reference [10]) 0.663 0.655 0.330 0.725

PSSM (reference [17]) 0.757 0.757 0.243 0.841

LogisticPSSMa (reference [17]) 0.765 0.763 0.234 0.849

LogisticPSSM+ Bipro-aa
(reference [17])

0.770 0.769 0.228 0.855

LogisticPSSM+ Bipro-dis
(reference [17])

0.769 0.766 0.229 0.854

LogisticPSSM+ Bipro-sa
(reference [17])

0.772 0.770 0.225 0.856

LogisticPSSM+ Bipro-ss
(reference [17])

0.775 0.774 0.224 0.858

LogisticPSSM+ Bipro-allb
(reference [17])

0.772 0.770 0.227 0.857

ATP227 CLCLpred (our proposed method) 0.828 0.789 0.133 0.899

ATPsite (reference [16]) 0.675 0.361 0.012 0.854

Rate4site (reference [16,26]) 0.658 0.446 0.130 0.749

PSSM (reference [17]) 0.782 0.783 0.218 0.861

LogisticPSSMa (reference [17]) 0.794 0.792 0.204 0.873

LogisticPSSM+ Bipro-aa
(reference [17])

0.798 0.798 0.201 0.877

LogisticPSSM+ Bipro-dis
(reference [17])

0.798 0.797 0.201 0.876

LogisticPSSM+ Bipro-sa
(reference [17])

0.800 0.800 0.199 0.880

LogisticPSSM+ Bipro-ss
(reference [17])

0.802 0.801 0.197 0.881

LogisticPSSM+ Bipro-allb
(reference [17])

0.801 0.800 0.197 0.880
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Sum�Masking�Ci ¼
X20
j¼1

Masking�Cj ð8Þ

Sum�Filtering�Ci ¼
X20
j¼1

Filtering�Cj ð9Þ

Sum�Smoothing�Ci ¼
X20
j¼1

Smoothing�Cj ð10Þ

Distribution of summation score related to The
AIRs and non-AIRs was compared (Figure 7). In the
standard PSSM, more non-AIRs showed stronger
conservation than the AIRs. However, that, after fil-
tered, the percentage of the AIRs with high local con-
servation scores increased significantly (Figure 7(B)).
This can illustrate that, most of filtered out scores
were belonging to the non-AIRs. Finally, after
smoothed, more AIRs showed stronger local conser-
vation than the non-AIRs (Figure 7(C)). Unsurpris-
ingly, most of the AIRs and their flanking residues
have stronger local conservation than the general
non-AIRs. Because in order to maintain certain func-
tion, the functional sites of proteins must maintain a
high degree of conservation. Figure 7 shows that, our
feature extracting method can effectively extract the
local conservation information of residues to distin-
guish the AIRs from non-AIRs.
Performance of the CLCLpred and comparison with other
PSSM-based methods
ROC plots of the CLCLpred method apply to the
ATP168 and ATP227 with different masking window
sizes are shown in Figure 8. The respective best plots are
shown in Figure 9.

Performance comparison with other PSSM-based methods
In order to verify the importance of revising PSSM to
match the detailed conservation pattern of ATP-binding
sites, we have compared the CLCLpred method with
three other PSSM-based methods on the ATP168 dataset:
1) the ‘PSSM’ method, which uses the direct output of
PSSMs for prediction; 2) the ‘Smooth_PSSM’ method,
which uses smoothed PSSMs without masking and fil-
tering; and 3) the ‘Mask_PSSM’ method, which uses



Figure 11 Detailed comparison of ACC and AUC for all the predictors on ATP168.

Fang et al. Algorithms for Molecular Biology 2014, 9:7 Page 11 of 13
http://www.almob.org/content/9/1/7
masked and filtered PSSMs without smoothing. Perfor-
mances of the four methods are shown in Table 5, and
the ROC plots of them are shown in Figure 10. The re-
sults demonstrate that, although all the four methods
are based on PSSM of sequence, the CLCLpred method
achieves the best performance.
We speculate that the reasons for the above results

include: 1) the direct outputs of PSSMs contain redun-
dant features, because the ‘Mask_PSSM’ method which
filters out the low local conservation scores achieves
nearly the same performance with the ‘PSSM’ method;
2) ATP-binding sites in protein sequences are highly
contextual, and incorporating the conservation infor-
mation from sequentially neighboring residues results
in improved performance. As can be seen from
Figure 10, the methods with the smoothing step
(‘Smooth_PSSM’ and CLCLpred) significantly outper-
form the methods without the smoothing step
(‘Mask_PSSM’ and ‘PSSM’); and 3) although the ATP-
Figure 12 Detailed comparisons of ACC and AUC for all the predictor
binding sites are affected by neighboring residues, they
maintain a certain degree of independence (Figure 1
also shows that 68% of binding-sites appear alone).
This kind of functional site with their flanking regions
usually contains both highly conserved residues and
highly variable residues and is highly locally conserved
on the whole. Without the masking and filtering steps,
the predictive power of highly conserved residues will
be weakened by noise data (low conservation scores
from the neighboring residues) after smoothing. On
the contrary, if the noise data are discarded by masking
and filtering, the predictive power of intensively highly
conserved residues will be strengthened after smooth-
ing. Therefore, the CLCLpred method outperformed
the ‘Smooth_PSSM’ method. The above results also
confirmed the previous analysis [13] that, better
exploiting the signal from sequentially neighboring
residues would largely facilitate ligand-binding sites
prediction.
s on ATP227.



Table 7 Summarization of feature types and number of
vector dimensions

Method Feature types Dimensionality

CLCLpred Modified PSSM 340

PSSM PSSM 340

binary Binary amino acid
composition

340

ATPsite PSSM+predicted
dihedral angle+ss

NA

Rate4site 3D-structure NA

LogisticPSSMa LogisticPSSM 340

LogisticPSSM+
Bipro-aa

LogisticPSSM+amino
acid composition

374

LogisticPSSM+
Bipro-dis

LogisticPSSM+predicted dis 374

LogisticPSSM+
Bipro-sa

LogisticPSSM+predicted sa 374

LogisticPSSM+
Bipro-ss

LogisticPSSM+predicted ss 374

LogisticPSSM+
Bipro-all

LogisticPSSM+predicted
dis+sa+ss

510
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Performance comparison with other existing predictors
Since we have extracted the data set ATP168 and
ATP227 from the research papers [10,16,17], here, we
also listed them out for the comparison. All the
methods were trained and tested on the same data
sets. Results are shown in Table 6. Detailed compari-
son of ACC and AUC among all the methods on
ATP168 and ATP227 are shown in Figures 11 and 12
respectively. As shown in Table 6, Figures 11 and 12,
the CLCLpred predictor achieved the best ACC and
AUC.
Feature dimensions comparison
Previous researches [10,16,17] combined many pre-
dicted features with PSSM as their input for the
ATP-binding prediction. These predicted features
not only increased the complexity of the algorithm,
but also increased the dimensions of feature vectors.
We summarized them in Table 7 for a comparison.
Table 7 demonstrates that, the vector dimension of
CLCLpred is lower than those of the methods which
incorporated other predicted features, such as pre-
dicted secondary structure (ss), predicted solvent
accessibility (sa), predicted disorder probabilities
(dis) and predicted dihedral angle. In machine lean-
ing, if the number of training samples is limited, in-
creasing the feature dimensions will be harmful for
the classification.
Conclusions
In this study, we proposed a simple method which
adopted a modified PSSM encoding scheme for ATP-
binding predication. In this approach, only the high local
evolutionary conservation scores in PSSMs are consid-
ered as input, without employing any predicted fea-
tures from other classifiers. By means of masking,
filtering and smoothing, the modified PSSM com-
bines predictive features which can distinguish the
AIRs from non-AIRs effectively. When comparing
with 10 other existing methods that used direct out-
put of PSSMs or incorporated various predicted
structural features as their input on the same data-
sets, our method achieved the best performance be-
sides its minimum feature dimensions, i.e., achieving
an ACC of 4.9%~16.1% and an AUC of 0.036~0.169
higher than other methods when tested on ATP168;
achieving an ACC of 2.6%~17.0% and an AUC of
0.018~0.15 higher than other methods when tested
on ATP227. These results demonstrate that, the local
evolutionary conservation is distinct enough to en-
able an accurate prediction of ATP-binding sites dir-
ectly from amino acid sequence, and incorporating
other predicted features for prediction is not always help-
ful. A free Web server has been developed (http://webapp.
yama.info.waseda.ac.jp/fang/LigandPred.php), which al-
lows users to identify ATP-binding residues in a given se-
quence using the model trained on our data sets. Our
CLCLpred model can be also used for identifying other
ligand-binding sites of proteins.
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