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Abstract

Background: An important problem in systems biology is to model gene regulatory networks which can then be
utilized to develop novel therapeutic methods for cancer treatment. Knowledge about which proteins/genes are
dysregulated in a regulatory network, such as in the Mitogen Activated Protein Kinase (MAPK) Network, can be used
not only to decide upon which therapy to use for a particular case of cancer, but also help in discovering effective
targets for new drugs.

Results: In this work we demonstrate how one can start from a model signal transduction network derived from prior
knowledge, and infer from gene expression data the probable locations of dysregulations in the network. Our model is
based on Boolean networks, and the inference problem is solved using a version of themessage passing algorithm. We
have done simulation experiments on synthetic data to verify the efficacy of the algorithm as compared to the results
from the much more computationally intensive Markov Chain Monte-Carlo methods. We also applied the model to
analyze data collected from fibroblasts, thereby demonstrating how this model can be used on real world data.

Keywords: Message passing, Sum-product, Markov chain Monte-Carlo

Background
Modeling cellular behavior is a first step towards the holis-
tic understanding of the multivariate interactions among
various genes. One possible approach to do that is through
gene regulatory networks. These networks could also help
in developing better intervention strategies in order to
shift the state of the cell or the tissue to a more favorable
one.Many different approaches have been proposed in the
literature for modeling the behavior of genetic regulatory
networks. These include differential equations [1], deter-
ministic and probabilistic Boolean networks [2,3], and
Bayesian and dynamic Bayesian networks [4,5]. Some of
these methods rely on the assumption that the transition
probabilities are provided beforehand. Such an assump-
tion may not be realistic since the sheer volume of data
required to effectively estimate the transition probabilities
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makes it a practically difficult proposition. Some meth-
ods such as the REVEAL algorithm [6] provide approaches
to learn deterministic Boolean networks from discretized
time course data. However time course data from biologi-
cal samples itself can be difficult to come by.
One way to get around the problem of insufficient data

is to use prior knowledge about the regulatory interac-
tions between the various biological molecules in a cell.
In the biological literature, a lot of information is avail-
able regarding the various regulatory interactions. This
information has been collected by biologists over a long
period of time. These regulatory interactions, collectively
referred to as pathway knowledge, are generally not incor-
porated into the various methods of modeling gene regu-
latory networks. Using this information, however, would
result in models which describe cellular behavior more
accurately.
A possible approach to use such prior information has

been developed in [7]. In that reference, the authors use
Boolean logic to model signal transduction networks. In
[8], the authors have used boolean models derived from
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prior information to model the heterogeneity of cancer-
ous tissues. Furthermore, in [9] Boolean logic is used to
model the Mitogen Activated Protein Kinase (MAPK) sig-
nal transduction network and the result of that modeling
is shown in Figure 1. Here, each connecting wire cor-
responds to a variable which represents the state of the
corresponding protein/gene. In this model each variable is
assumed to have two states, an activated and a deactivated
one. For example the state of EGFR will be upregulated
or activated when the cell is exposed to EGF. The way

Figure 1 A Boolean network model of the MAPK signal
transduction network with target locations of inhibitory drugs
shown.

the various variables are dependent on each other can be
modeled using standard Boolean logic functions such as
AND, OR, NOT, NAND, etc. This is shown in Figure 1.
In [9] the authors presented a stuck-at fault model of
the mutations which result in the neoplastic behavior of
the tissue. A stuck-at-one fault corresponds to a vari-
able permanently being in an activated state irrespective
of the states of the variables upstream of it. Similarly
a stuck-at-zero fault would mean a variable has a per-
manently downregulated state irrespective of the states
of the other upstream variables. These “stuck” variables
would however affect the variables downstream of them
through the Boolean Logic gates which have these vari-
ables as inputs. To show how Boolean regulatory networks
with stuck-at faults can be used to model cancerous tis-
sue, we give the following examples. In 30% of human
breast cancers there is an over expression of the ERBB2
gene [10]. This causes ligand independent firing trans-
lating to a stuck-at-one fault in the Boolean network. A
stuck-at one fault at ERBB2 means that the variable cor-
responding to ERBB2 in the Boolean network shown in
Figure 1 is always upregulated regardless of the activity
status of the variables upstream of it. Similarly in 90% of
the pancreatic cancer cases we see a mutated Ras gene
which causes it to lose its gtpase activity [10]. In other
words, we have a stuck-at-one fault associated with the
Ras variable. Stuck-at faults could also be interpreted as
points of dysregulation in the Boolean network brought
about by certain genes irrespective of the presence of
mutations.
Figure 1 also shows the locations where some important

kinase inhibitory drugs act. The inputs in the Boolean net-
work corresponding to these drugs are ‘1’ when the drugs
are administered, ‘0’ otherwise. When the input corre-
sponding to a drug is ‘1’, it causes the target variable to get
downregulated irrespective of the variables upstream of it,
which in turn affects other downstream variables. At the
bottom of the network, various observable variables such
as the transcription factors (FOS-JUN, SP1, SRF-ELK) are
represented as arrows. Other proteins of interest (BCL2,
BCL2L1, CCND1) are also represented as arrows. Activ-
ity of transcription factors can be determined by the use
of appropriate reporter genes. Hence this network can be
considered as a multi input multi output system with the
inputs being the exposure to various drug combinations
and the output being the activity of the observable vari-
ables. The growth factors can also be considered as inputs,
but in this paper we are simply considering the drugs as
inputs whereas the growth factors are all considered to be
one, that is, constantly active.
Locating stuck-at faults in a given Boolean regulatory

network could help in the identification of key dysregu-
lated genes that have a strong impact on the observable
variables. This in turn could be used to identify targets for
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new drugs. Knowledge about the locations of the stuck-
at faults along with knowledge about the targets of the
kinase inhibitory drugs can be used to come up with
optimal intervention strategies. A method to devise opti-
mal intervention strategies using such Boolean regula-
tory networks with stuck-at faults is described in [9].
Accordingly, the problem we pose is this: given data
points, where each data point consists of a combina-
tion of drugs used as the input and the activity of the
observable variables as outputs, is it possible to locate
the variables where stuck-at-faults have occurred? In
the following sections we represent the problem as a
statistical model with unknown parameters which are
estimated from the data points using the message pass-
ing algorithm. This algorithm allows for rapid compu-
tation of the posterior probabilities of the parameters.
The estimates obtained are evaluated by comparison
with the results given by Markov Chain Monte Carlo
methods.

Model description
There are many ways to model a gene regulatory net-
work which describes the behavior of neoplastic tis-
sue. The general rule is that the more the number of
unknown parameters, the more the amount of data that
is required to get an effective estimate of those param-
eters. Hence the modeling must be done keeping in
mind the limited amount of data available from biological
experiments.
Before we go into the details, we would like to point

out that literature survey would enable us to know the
most likely locations in the Boolean network where stuck-
at faults can take place. As stated in the previous section,
in 30% of human breast cancers there is an over expression
of the ERBB2 gene, and in 90% of the pancreatic cancer
cases we see a mutated Ras gene. These are among many
examples where prior knowledge about locations of faults
is available. This knowledge would allow us to limit the
search space for faults in the network. For example we
may provide a set of locations where we want to search for
faults.
One important assumption made in the modeling of

mutations is that they are random events that occur inde-
pendently of each other [11-13]. We make use of this
assumption in ourmodel by assuming that the faults occur
unconditionally independent from each other with cer-
tain unknown probabilities associated with them. These
unknown probability parameters are to be estimated from
the collected data. These estimated probabilities will indi-
cate our confidence about where the faults have occurred
in the Boolean regulatory network.
We now explain the key ideas through a simple exam-

ple. Let us assume that we have narrowed down the set
of locations where we want to search for faults to be

composed of RAF, IRS1, and RHEB as shown in Figure 1
(we are assuming stuck-at-one faults). Let their probabil-
ities of occurrences be ρ1, ρ2, and ρ3 which are to be
determined. Define ρ = (ρ1 ρ2 ρ3)

T as the vector of
the three parameters. Three possible locations of faults
implies that there are 23 different fault combinations and
their associated networks corresponding to the binary
numbers 000, 001, ...., 111. The first network is one with no
faults and has a probability of

P (M = 0/ρ) = (1 − ρ1) (1 − ρ2) (1 − ρ3) . (1)

The second network has a single stuck-at-one
fault at RHEB alone, and it’s probability is given by
P (M = 1/ρ) = (1 − ρ1)(1 − ρ2)ρ3. Similarly, the third
network has a single stuck-at-one fault at IRS1 alone,
with a probability of P (M = 2/ρ) = (1 − ρ1)ρ2(1 − ρ3),
and so on. The variable M is the decimal equivalent of
the binary number representing the different fault com-
binations and could equivalently represent the particular
faulty Boolean network being considered. Since there are
three possible locations where stuck-at-faults can take
place in this example, M can take 23 = 8 different values.
In our convention, we use integers from 0 to 23 − 1 to
represent the values taken by M. For example M = 6
corresponds to a network with faults at RAF and IRS1
but not at RHEB and has a corresponding probability of
ρ1ρ2(1 − ρ3).
In this example the dimension of ρ is three, but it can

be any integer depending on the size of the search space.
Determining the entries of ρ allows us to determine the
most likely faulty networks. Let V be the dimension of
ρ. Then it is clear that P (M = m/ρ) has the following
form:

P (M = m/ρ) =
V∏
v=1

ρ
Rv,m
v (1 − ρv)

1−Rv,m (2)

where Rv,m is either 0 or 1 andm can vary from 0 to 2V −1.
Consider any one of the variables represented as arrows

at the bottom of Figure 1. Let us represent that variable by
Oj. j varies from 1 to 7 in our example based on Figure 1.
The behavior orOj is determined by the network and what
faults are in it. Let oi,j be an observation of that variable
when the combination input is Ii. oi,j can be either 0 or 1
since we are dealing with a boolean network here. Given
that the networkM is any one of the 2V possible networks
and given that the drug combination input is Ii, the prob-
ability P

(
Oj = oi,j/M = m, Ii

)
can be either 0 or 1. It is 1

when oi,j matches the output of the jth output variable of
themth network for the the input drug combination Ii, and
is 0 otherwise. Let us represent P

(
Oj = oi,j/M = m, Ii

)
by

Sm,i,j. The probability P (M = m/ρ) is a function of ρ as
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described in equation (2). Therefore, by the theorem of
total probability,

P
(
Oj = oi,j/Ii, ρ

) =
2V−1∑
m=0

Sm,i,jP (M = m/ρ) (3)

In our example, we will proceed by assuming that the
observable variables (the Oj’s) are independent given the
faulty network and the drug combinations. This assump-
tion can be easily relaxed for the case when the 7 observ-
able variables represented as arrows at the bottom of
Figure 1 are observed together for each drug combination
used as the input. In this case, instead of P

(
Oj/M

)
, we

will be working with P (O1,O2, . . . ,O7/M). This however
does not affect our fundamental results and is a simple
extension of our example.
Let O represent all of the observed data for all the

observable variables and I represent the entire set of the
corresponding inputs. Let J be the number of observable
variables and N be the number of observations for each
observable variable. Then we have

P (O/ρ, I) =
J∏

j=1

N∏
i=1

P
(
Oj = oi,j/Ii, ρ

)
(4)

which is nothing but the likelihood function. In order to
handle experimental repeats, we can have the the drug
combinations Ii to be the same for more than one value of
the index i.
An estimate of ρ can be obtained from equation 4, either

by maximum likelihood estimation, or by calculating the
posterior mean of the parameters. If the prior distribu-
tions of all the elements of ρ are assumed to be uniformly
distributed between 0 and 1, the posterior distribution of
ρ is directly proportional to P (O/ρ, I). If P(O/ρ, I) comes
out to be zero for all values of ρ, then we have every
reason to question the validity of the Boolean network
used to model the behavior of the biological network,
or the set of possible locations of faults. Various esti-
mates of ρ, such as the posterior mean or the posterior
mode (the value of ρ where the posterior distribution is
maximal) can be obtained from P (O/ρ, I). Now we can
algebraically expand the right hand side of equation (4) to
write P (O/ρ, I) as

P (O/ρ, I) =
∑
k

V∏
v=1

ρ
Q1v,k
v (1 − ρv)

Q2v,k (5)

where Q1v,k and Q2v,k are non negative integers. Calcu-
lating P (ρ/O, I) from P (O/ρ, I) is now trivial since it
only involves calculation of a multiplicative normalization
constant.

P (ρ/O, I) = P (O/ρ, I)∫
P (O/ρ, I) dρ

(6)

where in the denominator there is the normalization con-
stant which turns out to be

∫
P (O/ρ, I) dρ =

∑
k

V∏
v=1

β
(
Q1v,k + 1,Q2v,k + 1

)
(7)

where β(∗, ∗) is the beta function. This equation is derived
by considering a uniform prior on all the elements of ρ.
The integrations can be done easily because of the form
of equation 5. Each variable ρv is integrated from 0 to 1.
Equation 6 shows the joint posterior distribution of all the
unknown parameters ρ1 through ρV considered together.
In order to find the marginal distribution of any given
parameter of interest, we will need to integrate out the rest
of the parameters. For example P(ρl/O, I) for any given
value of l can be found out to be

P(ρl/O, I) =
∑

kρ
Q1l,k
l (1 − ρl)

Q2l,k∏V
v=1
v�=l

β
(
Q1v,k + 1,Q2v,k + 1

)
∑

k
∏V

v=1 β
(
Q1v,k + 1,Q2v,k + 1

)
(8)

Following this the posterior means can also be calculated.
However the number of additive terms in equation 5

represented by the summing variable k in general rises
exponentially with the number of data points collected. In
the worst case, the left hand side of equation (3) will con-
tain 2V terms. Since the number of multiplicative terms
in equation 4 is NJ (the number of data points collected),
upon expanding the right hand side of equation 4 we get
2VNJ additive terms in equations 5, 7, and 8. Thus the com-
putational cost to compute the mean of any given ρl is
O(2VNJ ). Hence the total computation cost to compute the
posterior means of all the elements of ρ (ρ1 through ρV )
is O

(
V × 2VJN

)
. Therefore the straightforward approach

for calculating the posterior distributions of ρl ’s and their
posterior means will get intractable as the amount of data
collected increases.
To get around this difficulty we will use an iterative

algorithm to obtain an approximation of the marginal
distributions of the elements of the parameter vector ρ.
From the marginal distribution it will be straightforward
to obtain the posterior means and confidence intervals of
the individual elements of ρ.

Factor graph representation of themodel
Factor Graphs are an important tool used in various
applications such as signal processing and telecommuni-
cations. Many algorithms can be easily understood and
derived using the factor graph approach. These include
Kalman Filters, the Viterbi Algorithm, the Forward-
Backward algorithm and Turbo Codes to name a few.
The approach involves first representing the probability
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model as a factor graph and then applying the message
passing algorithm along the edges. The reader is referred
to [14,15] for an in-depth coverage of factor graphs and
the message passing algorithm. Here we provide a short
primer to the subjects and go into the details of only our
particular example.

A simple example
Consider a simple function g (x1, x2, x3) = f1 (x1, x2)×
f2 (x2, x3) f3 (x3), where xi are discrete variables. Suppose
we want to calculate

∑
x1,x3 g (x1, x2, x3) for a particular

value of x2 (the marginal of x2). In addition, suppose that
each xi can take A different values. Hence the straight for-
ward approach would require us to sum g (x1, x2, x3) over
A2 different values. However

∑
x1,x3 g (x1, x2, x3) can also

be calculated as

∑
x1,x3

g (x1, x2, x3) =
(∑

x1
f1 (x1, x2)

) (∑
x3

f2 (x2, x3) f3 (x3)

)

(9)

which sums over 2A different values. For continuous
variables, the summation is replaced by integration. The
optimal strategy for calculating the marginal of x2 is
straightforward to derive in this simple example. How-
ever a systematic approach to find the optimal strategy
to calculate the marginal of any variable for any given
probability function is given by the message passing algo-
rithm which acts on the factor graph representation of the
function.
The factorization of a function can be represented by

a factor graph. A factor graph is a bipartite graph with a
variable node corresponding to each variable xi and a fac-
tor node corresponding to each independent factor fj and
has an undirected edge connecting a variable node of xi to
a factor node of fj iff xi is an argument of fj [14,15]. The
factor graph of g (x1, x2, x3) is shown in Figure 2.
Messages pass along the edges in both directions. Mes-

sages are functions of the variable whose node is associ-
ated with the edge. Let μfj→xi (xi) and μxi→fj (xi) denote

Figure 2 The factor graph representation of a factorizable
function. The variable nodes are circular and the factor nodes are
rectangular.

the messages from fj to xi and vice versa. We simply write
down the update equations below. For an in-depth discus-
sion on their derivation, the reader is referred to [14,15].
The messages are calculated as follows:

μxi→fj (xi) =
∏

h∈n(xi)\{ fj}
μh→xi (xi) (10)

μfj→xi (xi) =
∑
∼{xi}

⎛
⎝fj (X)

∏
y∈n( fj)\{xi}

μy→fj (y)

⎞
⎠ (11)

where n (xi) and n
(
fj
)
denote the neighbors of xi and fj

respectively in the factor graph. n (xi) \{ fj} represents the
set of all the neighbors of xi except fj. The definition of
n

(
fj
) \{xi} is similar. Since the factor graph is bipartite,

the neighbors of a variable node can only be factor nodes,
and the neighbors of a factor node can only be variable
nodes.X denotes the set of arguments of fj.

∑
∼{xi} denotes

summation over all local variables except xi. The set of
local variables will simply be the set X, since the factor
node fj is connected by undirected edges only to the vari-
able nodes of its arguments. Themessage going away from
a leaf variable node is the constant 1, while the message
going away from a leaf factor node is the value of that local
factor. Using these rules on the simple example, we have
μx1→f1 (x1) = 1 and μf3→x3 (x3) = f3(x3).

μf1→x2(x2) =
∑
∼{x2}

f1 (x1, x2) μx1→f1 (x1)

=
∑
x1

f1 (x1, x2)
(12)

μx3→f2(x3) =
∏

h∈n(x3)\{ f2}
μh→x3(x3) = μf3→x3(x3)

= f3(x3)
(13)

μf2→x2(x2) =
∑
∼{x2}

f2 (x2, x3) μx3→f2 (x3)

=
∑
x3

f2 (x2, x3) f3 (x3)
(14)

The marginal distribution of a variable is simply the
product of all the messages being received by the cor-
responding variable node. Hence

∑
x1,x3 g(x1, x2, x3) =

μf1→x2(x2) × μf2→x2(x2) and thus equation (9) is derived
using factor graphs and the message passing algorithm.
Calculating the rest of the messages would allow us to cal-
culate the marginals of x1 and x3 as well. The message
passing algorithm would terminate when messages along
both directions of all the edges in the graph have been
calculated.
The message passing algorithm terminates and gives

exact marginals for the cases where the factor graph has
no cycles. But the most interesting applications are for
those cases where the factor graph has cycles, where the
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marginals are calculated by iteratively updating the mes-
sages (for example the iterative decoding of turbo codes).
We similarly use an iterative version of the message pass-
ing algorithm in our model to approximate the marginal
posterior distribution of the unknown parameters.

Using factor graphs and the message passing algorithm on
the signal transduction network model
Now, P (ρ/O, I) ∝ P (O/ρ, I) as is evident from
equation (6), while the expression for P (O/ρ, I) is given
in equation (4). Let Pi,j represent the multiplicative fac-
tor P

(
Oj = oi,j/Ii, ρ

)
in equation (4). In a factor graph,

each multiplicative factor is represented by a factor node
and each element of ρ is represented by a variable node.
Hence there are NJ number of factor nodes with each
corresponding to one particular multiplicative term in
equation 4, and there areV number of variable nodes with
each corresponding to one particular unknown parameter
(one out of ρ1 through ρV ). The purpose of this algorithm
is to compute the posterior marginal distributions of the
unknown parameters ρ1 through ρV , which can then be
used to compute their means and confidence intervals.
Figure 3 shows the factor graph of equation (4).
As we can see the factor graph in Figure 3 has cycles. In

a factor graph with cycles, the message passing algorithm
does not terminate and the messages are locally updated
with every iteration. Every time a new message is calcu-
lated, it replaces the old message. The iterative message
passing algorithm is as follows:

1. initialize all μρv→Pi,j (ρv) = 1.
2. calculate all μPi,j→ρv (ρv) as per equation (11).
3. calculate all μρv→Pi,j (ρv) as per equation (10).
4. repeat steps 2 and 3 in that order.

Since we are dealing with continuous variables between
0 and 1, the summations are replaced by integrations.
Every timeμPi,j→ρv (ρv) are computed in step 2, they come
out to be polynomials of degree one due to the mul-
tiplicatively separable nature of the integrands involved
and that all the parameters ρv are being integrated from

0 to 1 (a rectangular integration region). Let them be
represented as b0,v,i,j + b1,v,i,j × ρv. Hence μPi,j→ρv (ρv)

can be represented by a vector bv,i,j = (
b0,v,i,j b1,v,i,j

)T .
Every time μρv→Pi,j (ρv) are computed in step 3, they
will be polynomials of degree NJ − 1 since they are
simply the product of all incoming messages except
one. Let them be represented as

∑NJ−1
k=0 ak,v,i,jρk

v . Hence
μρv→Pi,j (ρv) can be represented by a vector av,i,j =(
a0,v,i,j a1,v,i,j . . . aNJ−1,v,i,j

)T .
The values b0,v,i,j and b1,v,i,j can be updated in step 2 as

follows.

b0,v,i,j ←
2V−1∑
m=0

Sm,i,j
(
1 − Rv,m

) ×
∏

lε{1...V }
l �=v

(NJ−1∑
k=0

ak,l,i,j
k + 2

)Rl,m

×
(NJ−1∑

k=0

ak,l,i,j
(k + 1)(k + 2)

)1−Rl,m

(15)

b1,v,i,j ←
2V−1∑
m=0

Sm,i,j
(
2Rv,m − 1

) ×
∏

lε{1...V }
l �=v

(NJ−1∑
k=0

ak,l,i,j
k + 2

)Rl,m

×
(NJ−1∑

k=0

ak,l,i,j
(k + 1)(k + 2)

)1−Rl,m

(16)

The av,i,j can be updated in step 3 by performing poly-
nomial multiplications of theNJ −1 incoming first degree
polynomials to the v′th variable node and comparing coef-
ficients. That is, the following equation must be satisfied.

NJ−1∑
k=0

ak,v,i,jρk
v =

∏
g �=i,h�=j

(
b0,v,g,h + b1,v,g,h × ρv

)
(17)

By comparing coefficients of either side of equation (17),
the values of the elements of the vector av,i,j are updated.

Figure 3 The factor graph representation of the probability model of the signal transduction network. The variable nodes are circular and
the factor nodes are rectangular.
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This is also equivalent to the convolution of the message
vectors bv,g,h for g �= i, h �= j. At each iteration, the
message vectors can be multiplied by constants so as to
prevent overflow or underflow when implementing the
algorithm on a digital computer with finite precision. In
that case the final solutions we get are simply the required
marginal distributions scaled by some unknown constant.
If we are simply interested in the marginal distributions,
then it is not necessary to keep track of themultiplied con-
stants. We simply need to normalize the marginals so that
their integrals from 0 to 1 give unity.
The message vectors av,i,j and bv,i,j are iteratively

updated until some convergence criteria is satisfied (for
example if the Hellinger distance between themarginals of
two successive iterations is below a certain threshold). In
our simulations, we saw that as few as 2 iterations gave sat-
isfactory results in terms of convergence. Hence the time
complexity of the algorithm is dependent on steps 2 and 3
of the algorithm.
In order to calculate μρv→Pi,j (ρv) in step 3, first cal-

culate the polynomial Uv (ρv) = ∏
g,h μPg,h→ρv (ρv) of

degree NJ. Then find the quotient of the division opera-
tion Uv (ρv) ÷ μPi,j→ρv (ρv). This gives μρv→Pi,j(ρv). Along
with that, we can also calculate and store the value of
θv,i,j,1 = ∫ 1

0 ρvμρv→Pi,j(ρv)dρv and θv,i,j,0 = ∫ 1
0 (1 −

ρv)μρv→Pi,j(ρv)dρv which will be used in step 2. Note that
θv,i,j,1 = ∑NJ−1

k=0
ak,v,i,j
k+2 and θv,i,j,0 = ∑NJ−1

k=0
ak,v,i,j

(k+1)(k+2) .
Calculating the coefficients of Uv (ρv) is of time com-
plexity at most O

(
(NJ)2

)
. This is because it involves

the convolution of NJ different first degree polynomi-
als. Calculating the quotient of Uv (ρv) ÷ μPi,j→ρv , and
θv,i,j,1 and θv,i,j,0 are of time complexity O (NJ). The last
three operations of O (NJ) have to be done for all NJ of
the factor nodes for each variable node. Hence the time
complexity of calculating the messages from one variable
node to all factor nodes is of time complexity O

(
(NJ)2

)
.

Repeating this action for all V variable nodes gives us
the time complexity of step 3 of the algorithm to be
O

(
(NJ)2V

)
.

If we look at equations (15) and (16), the computa-
tion of bv,i,j seems to be of O

(
NJV2V

)
time complexity.

Since there are NJV of bv,i,j to be computed, step 2 seems
to be of O

(
(NJ)2(V )22V

)
time complexity. However

some of the computations are repeated and storing these
computations for reuse can reduce the time complex-
ity. Let κm,i,j = ∏V

l=1 θ
Rl,m
l,i,j,1θ

1−Rl,m
l,i,j,0 . Then μPi,j→ρv(ρv) =∑2V−1

m=0 Sm,i,jρ
Rv,m
v (1 − ρv)1−Rv,m × κm,i,j

θ
Rv,m
v,i,j,1 θ

1−Rv,m
v,i,j,0

. Compu-

tation of κm,i,j for all m is of O
(
V2V

)
time complexity

for a given factor node Pi,j. Computation of μPi,j→ρv(ρv)

for all v is of O
(
V2V

)
time complexity for a given fac-

tor node Pi,j. Hence computation of μPi,j→ρv(ρv) from a
single factor node to all variable nodes is of O

(
V2V

)

time complexity. Hence total computation for all fac-
tor nodes in step 2 comes out to be of O

(
NJV2V

)
time

complexity.
Hence the complexity of each iteration of the algorithm

comes out to be O
(
NJV (2V + CNJ)

)
, where C is a con-

stant. This is quadratic with respect to the number of
data points NJ, as opposed to the exponential complex-
ity of the straightforward approach discussed in section
‘Model description’.
Once the convergence criteria is met and the algorithm

is terminated, the marginal distribution of ρv is calculated
as

P (ρv/O, I) = γ
∏
i,j

μPi,j→ρv (ρv) (18)

where γ is a normalization constant which can be calcu-
lated to give

∫ 1
0 P (ρv/O, I) dρv = 1.

Simulation experiments
We did simulations where the algorithm was tested on
synthetic data as well as applied to real world data. The
marginal posterior distributions estimated using the iter-
ative message passing algorithm were compared with the
marginal posteriors estimated using the time consum-
ing and computationally intensive Markov Chain Monte
Carlo (MCMC)methods and the estimates obtained using
both methods came out to be close thereby verifying the
iterative message passing algorithm’s correctness.
Various literature on MCMCmethods exist [16-18]. We

will describe the details used in our simulations instead
of going into a detailed discussion of MCMC meth-
ods. The Markov Chain Monte Carlo Method involves
creating a Markov Chain whose stationary distribution
is the required posterior distribution. The Metropolis-
Hastings Algorithm will be used to generate such a
Markov Chain since the samples need to be generated
from a non standard probability distribution. This method
will be used to generate samples from the posterior dis-
tribution of the unknown parameters of the vector ρ.
These samples can then be used to get an estimate
of the joint as well as the marginal posterior distribu-
tions of the unknown parameters using kernel density
estimation.
Samples are drawn from the posterior distribution of

ρ using the Metropolis-Hastings (MH) Algorithm in the
following manner. Let the nth sample drawn from the pos-
terior distribution of ρ be ρ(n) =

(
ρ

(n)
1 ρ

(n)
2 . . . ρ

(n)
V

)
.

1. Initialize all elements of ρ(0) to be 0.5.
2. At the nth iteration of the MH algorithm, generate ρ∗

from the proposal distribution U(ρ/ρ(n),�). The
proposal distribution and the tuning parameter �

will be discussed in the next paragraph.
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3. Calculate the acceptance ratio

D = P (O/ρ∗, I)U
(
ρ(n)/ρ∗,�

)
P

(
O/ρ(n), I

)
U

(
ρ∗/ρ(n),�

)
(Recall that the prior of the parameter vector is
constant). P(O/ρ∗, I) and P(O/ρ(n), I) can be easily
calculated for known values of ρ∗ and ρ(n) without
the expansion of P(O/ρ, I) described in equation (5).
Accept ρ∗ as the next sample ρ(n+1) with probability
min(1,D), or keep ρ(n+1) equal to ρ(n) with
probability 1 − min(1,D).

4. Repeat steps 2 and 3 to generate samples from the
posterior of P(ρ/O, I).

The proposal distributionU(ρ/ρ(n),�) is such that ρi is
Beta distributed with parameters ρ

(n)
i
�

and 1−ρ
(n)
i

�
, that is

U
(
ρ/ρ(n),�

)
=

V∏
i=1

ρ

ρ
(n)
i
�

−1
i (1 − ρi)

1−ρ
(n)
i

�
−1

Beta
(

ρ
(n)
i
�

, 1−ρ
(n)
i

�

) (19)

where Beta(x, y) is the beta function with parameters x
and y and � is a scalar tuning parameter which con-
trols the variance of the distributions of the ρi’s. It can be
adjusted to give autocorrelation properties of the Markov
Chain within acceptable ranges.

Experiments with synthetic data
To demonstrate the working of the algorithm, we ran
simulations of the message passing algorithm as well
as the MH algorithm on synthetic data. We generated
synthetic data from the example described in section
‘Model description’ which was derived from the MAPK
signal transduction network, which is a well understood
network.
The set of locations where faults can take place was

taken to be composed of RAF, IRS1, and RHEB. The
probabilities of stuck-at-one faults at these locations (The
parameters ρ1, ρ2, and ρ3) were taken as 0.7, 0.4, and
0.2. Synthetic observations of the observable variable (the
variables shown at the bottom of Figure 1 as arrows)
were generated for various drug combinations as inputs
(the drugs being AG1024, AG825, Lapatinib, LY294002,
U0126, and Temsirolimus, whose action on the Boolean
network of the MAPK network is shown in Figure 1)
according to the probability model described in the pre-
vious sections. The inputs at the top of the network
corresponding to growth factors (EGF, HBEGF, IGF, and
NRG1) were all taken as 1 (if the cells were being grown
on petridishes, then this would be equivalent to the case
where all the four growth factors have been supplied in the
serum). Hence the data set

{(
oi,1, oi,2, . . . , oi,J

)
, Ii

}
is gen-

erated. There are 6 drugs in the Boolean model. All the

26 − 1 drug combinations were used to generate the data
points. Hence i varies from 1 to 63.
After the synthetic data set was generated, the marginal

posterior distributions of the elements of ρ (The parame-
ters ρ1, ρ2, and ρ3) were estimated using both the message
passing algorithm as well as the MCMC method. For
the MCMC method, the tuning parameter � is set to
0.04 which gives an acceptance rate of 40%. The reader
is referred to [18] for information on acceptance rates.
Then the Markov Chain was run to generate 50,000 sam-
ples to attain stationarity (the burn in period). Following
this, the Markov chain was run long enough to gener-
ate 250,000 samples and thinned by a factor of 50 (one
in 50 samples generated was stored for each parameter)
resulting in 5000 samples for each ρv. This resulted in
effective sample sizes of atleast 4000 for each of the ρi’s.
the reader is referred to [18] for information on effec-
tive sample sizes. The algorithms were implemented in
MATLAB. The message passing algorithm was termi-
nated after 2 iterations which took about 4 seconds. For
our purposes, we used the Hellinger Distance between
the marginals of the first parameter ρ1 calculated at con-
secutive iterations of the message passing algorithm to
fall below a certain threshold to signal termination of the
algorithm. However other convergence criterions could
also be used. The MCMC samples were generated in 30
minutes after the initial burn in period. The marginal pos-
terior distribution of ρ1 through ρ3 calculated using both
the message passing algorithm and the MCMC approach
are shown in Figure 4. Kernel density estimation with a
Gaussian Kernel was used to estimate the marginals from
the sample values generated using the MH algorithm. The
estimate P̂(ρv/O, I) of P(ρv/O, I) is calculated from the
samples as follows

P̂ (ρv/O, I) = 1
L

L∑
n=1

1√
2πσv

exp

⎛
⎜⎝−

(
ρv − ρ

(n)
v

)2
2σ 2

v

⎞
⎟⎠
(20)

where σv is the bandwidth of the Gaussian kernel which
is set to δv

L
1
5
. L is the number of samples generated by

the MH algorithm (5000 in our case) and δv is the stan-
dard deviation of the generated samples. This rule of
thumb to calculate the bandwidth of the Gaussian kernel
is discussed in [19].
As we can see in Figure 4, there is almost no differ-

ence in the inference of the marginal posterior distri-
butions of the unknown parameters between the mes-
sage passing algorithm and the MCMC approach. The
posterior mean of ρv is calculated from the message
passing algorithm as

∫ 1
0 ρvγ

∏
i,j μPi,j→ρv(ρv)dρv and from

the MCMC approach as 1
L

∑
n ρ

(n)
v . These come out to
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Figure 4Marginal posterior distribution of ρ1 through ρ3 calculated using both the message passing algorithm and the MCMC approach.

be (0.7254 0.3891 0.2799) and (0.7326 0.3961 0.2830)
respectively. These estimates are close to each other and
to the actual values of (0.7 0.4 0.2).
This simulation shows that the message passing algo-

rithm successfully calculates the posterior marginal dis-
tributions of the unknown parameters ρ1 through ρ3
and gives the same inferences as the Metropolis-Hastings
algorithm. We did simulations with various values of ρ

and for different sets of locations of faults. The iterative
message passing algorithm gave estimates of the posterior
marginal distributions of the parameters same as those
estimated using the MCMC approach for all the test cases
considered in our simulations.

Applications to real data
To test our model, we performed experiments on healthy
adult fibroblasts where it is fair to assume that there are
no cancer causing mutations present in the tissue. Hence
it is fair to assume that a Boolean regulatory network with
no faults would best model this tissue.
Adult fibroblasts were grown in petri-dishes till con-

fluence and then maintained in 0.2% FBS (Fetal Bovine
Serum) for four days. It is a general assumption that
FBS contains most of the important growth factors.
After this, the cells were exposed to 0.2% FBS and 100
μM Anisomycin for 30 minutes. Anisomycin is a pro-
tein synthesis inhibitor which activates the MAPK signal
transduction network and keeps it responsive to kinase
specific inhibitors [20,21]. That is, with the addition of

Anisomycin, we anticipate the MAPK signal transduction
network to respond to the addition of kinase inhibitors
such as U0126. Anisomycin, being a protein synthesis
inhibitor, would also cut off any feedback path which
has a translation (protein synthesis) step in it. The cells
were then grouped into three groups (group 0, group
1, and group 2). Group 0 was the control group which
was exposed to 100 μM Anisomycin only. Group 1 was
exposed to 100 μMAnisomycin and 50 μM of LY294002.
Group 2 was exposed to 100 μM Anisomycin, 50 μM of
LY294002, and 10 μM of U0126. All three groups were
also exposed to 20% FBS along with the other chemi-
cals. LY294002 and U0126 are highly specific inhibitors
of PI3 Kinase (PI3K in Figure 1) and MEK1 respec-
tively. The molecular targets of LY294002 and U0126
are shown in Figure 1. Genes having the SP1 and SRF-
ELK response elements in their promoters were quantified
through real time PCR and the delta-delta method [22]

Table 1 Gene expression levels and their discrete values
for the gene EGR1

group 1 normalized gene 0.5987 0.7320 0.5586 0.6199
expression

discrete value 1 1 1 1

group 2 normalized gene 0.4796 0.2892 0.2535 0.2698
expression

discrete value 1 0 0 0

The threshold level using Otsu’s method comes out to be 0.3824 for EGR1.
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Table 2 Table showing the normalized gene expression ratios and their Reference Sequence (RefSeq) numbers

EGR1 JUN CMYC DECORIN IRF3 VEGFA

RefSeq NM_001964.2 NM_002228.3 NM_002467.4 NM_133503.2 NM_001571.5 NM_003376.5

Group 1 0.5987 0.4931 0.3209 0.4353 0.5176 0.4444

0.7320 0.6736 0.2852 0.4601 0.4204 0.4989

0.5586 0.6598 0.3439 0.4147 0.3560 0.5176

0.6199 0.7792 0.2994 0.4323 0.3345 0.5105

Group 2 0.4796 0.1550 0.2570 0.2793 0.2624 0.3164

0.2892 0.2793 0.2059 0.3789 0.2553 0.4601

0.2535 0.3015 0.2717 0.3737 0.2253 0.4633

0.2698 0.3415 0.2679 0.3536 0.2031 0.3660

with GAPDH as the reference gene and group 0 as the
control. The genes were measured in quadruplets for each
experiment.
EGR1 is measured as a reporter gene of SRF-ELK tran-

scription factor [23]. JUN, and cMYC are measured as
reporters of SP1 [24,25]. Other genes having the SP1
response element in their promoters are Decorin, IRF3
and VEGFA [26-29]. These six genes were quantified in
quadruplets for each experiment. The readings of each
gene are discretized using Otsu’s method [30]. As an
example the readings of ERG1 and their corresponding
discretized values are shown in Table 1. The threshold
level for EGR1 came out to be 0.3824. the expressions
above this level are labeled as 1 and those below are

labeled as 0. The measured normalized gene expression
ratios are shown in Table 2.
For demonstration purposes, we have taken the set of

locations where to search for faults to be composed of
ERK1/2 and IRS1 (shown in Figure 1). The marginal pos-
terior probability distributions of the probabilities of faults
associated with these two locations are shown in Figure 5.
As we can see in Figure 5, the posterior marginal dis-

tribution associated with ERK1/2 comes out to be quite
tightly distributed with a mean of 0.1538 while that for
IRS1 comes out to be uniformly distributed between 0 and
1. This is because the data does not contain any discrim-
inating information about the occurrence of any fault at
IRS1 under this MAPK Boolean model. But it does tell us

Figure 5Marginal posterior distribution of the unknown parameters associated with ERK1/2 and IRS1.
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that the probability of occurrence of a fault at the vari-
able corresponding to ERK1/2 is pretty low, judging by
its mean to be having a low value of close to 15%. This
is expected since the data comes from adult fibroblasts,
where we can be fairly sure that no cancer causing muta-
tions are present. If data had been collected after expo-
sure to other combinations of other drugs (for instance
Lapatinib or Temsirolimus) then the data might have
allowed the model to make meaningful inferences regard-
ing occurrences of faults at locations besides ERK1/2 as
well as give sharper confidence intervals than that shown
in Figure 5.

Conclusion
In this paper we have described a method to estimate the
probabilities with which certain faults have taken place in
a given Boolean Regulatory network, provided we have
the observations of the observable variables whose behav-
ior is determined by the network. We have described the
probability model and described a fast algorithm based
on message passing to make the inferences about the pos-
terior marginal probability distributions of the unknown
parameters of the model (These parameters being the
probabilities of the occurrences of the faults). We have
compared the performance of the algorithm with Markov
Chain Monte Carlo techniques (the Metropolis-Hastings
Algorithm) through simulations, and we have shown that
the message passing algorithm gives results comparable
to those obtained using the MCMC methods with the
added advantage of much smaller computation times. We
also applied the model to analyze data collected from
fibroblasts, thereby demonstrating how this model can be
used on real world data. Such a computationally manage-
able approach has the potential to allow the inference of
locations of faults in a Boolean regulatory network in a
probabilistic setting from data, such as gene expression
data.
Locating the points of dysregulations in a determinis-

tic Boolean signal transduction network could be used to
suggest therapies as described in [9]. Since we are locat-
ing faults in a probabilistic setting, the therapy could be
designed keeping in mind the tradeoff between treating
cancer and managing the side effects of the treatment.
For example, consider a case where we have two possi-
ble locations of faults. Let the computed probability of the
occurrence of a fault at the first location be smaller than
that of the second location. Then we may only consider
the second fault in our therapy design process, thereby
reducing the exposure of the patient to excessive drugs
which may have unwanted side effects.
Future work could focus on performing experiments on

cancerous cell lines being exposed to various combina-
tions of drugs and infer from the collected data the likely
locations of dysregulations in the corresponding Boolean

regulatory network. Also, algorithms could be developed
to automate the process of selecting the set of locations
of faults instead of having the user provide it to the
algorithm.

Availability of codes and data
The MATLAB codes and the data can be obtained by
sending a request to anwoy.rkl@gmail.com.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AKM designed and implemented the algorithm and performed the
computational experiments. AD conceived the study. VV set up the wet-lab
experiments. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the National Science Foundation under Grant
ECCS-1068628 and by a Texas A&M Engineering Genomics and Bioinformatics
Seed Grant.

Author details
1Department of Electrical and Computer Engineering, Texas A&M University,
77843 College Station, USA. 2Department of Veterinary Integrated Biosciences,
College of Veterinary Medicine, Texas A&M University, 77845 College Station,
USA.

Received: 16 April 2014 Accepted: 9 July 2014
Published: 16 August 2014

References
1. Bower JM, Bolouri H: Computational Modeling of Genetic and Biochemical

Networks, 1st edition. Boston: MIT Press; 2001.
2. Shmulevich I, Dougherty ER, Kim S, Zhang W: Probabilistic Boolean

networks: a rule-based uncertainty model for gene regulatory
networks. Bioinformatics 2002, 18(2):261–274.

3. Datta A, Dougherty E: Introduction to Genomic Signal Processing with
Control. New York: CRC Press; 2007.

4. Friedman N, Linial M, Nachman I, Pe’er D: Using Bayesian networks to
analyze expression data. J Comput Biol 2000, 7(3–4):601–620.

5. Zou M, Conzen SD: A new dynamic Bayesian network (DBN)
approach for identifying gene regulatory networks from time
course microarray data. Bioinformatics 2005, 21:71–79.

6. Liang S, Fuhrman S, Somogyi R: REVEAL, a general reverse engineering
algorithm for inference of genetic network architectures. Pac Symp
Biocomput 1998, 3(3):18–29.

7. Layek RK, Datta A, Dougherty ER: From biological pathways to
regulatory networks.Mol BioSyst 2011, 7:843–851.

8. Mohanty AK, Datta A, Venkatraj V: Amodel for cancer tissue
heterogeneity. IEEE T Bio-Med Eng 2014, 61(3):966–974.

9. Layek RK, Datta A, Bittner M, Dougherty ER: Cancer therapy design
based on pathway logic. Bioinformatics 2011, 27(4):548–555.

10. Weinberg RA: The Biology of Cancer, 1st edition. Princeton: Garland Science;
2006.

11. Greenman C, Wooster R, Futreal PA, Stratton MR, Easton DF: Statistical
analysis of pathogenicity of somatic mutations in cancer. Genetics
2006, 173(4):2187–2198.

12. Goldman N, Yang Z: A codon-based model of nucleotide substitution
for protein-coding DNA sequences.Mol Biol Evol 1994, 11(5):725–736.

13. Yang Z, Ro S, Rannala B: Likelihoodmodels of somatic mutation and
codon substitution in cancer genes. Genetics 2003, 165:695–705.

14. Kschischang FR, Frey BJ, Loeliger HA: Factor graphs and the
sum-product algorithm. IEEE T Inform Theory 2001, 47(2):498–519.

15. Wymeersch H: Iterative Receiver Design. New York: Cambridge University
Press; 2007.

16. Gelman A, Carlin JB, Stern HS, Rubin DB: Bayesian Data Analysis, 2nd
edition. Boca Raton, London, New York, Washington D.C.: Chapman and
Hall/CRC; 2004.



Mohanty et al. Algorithms for Molecular Biology 2014, 9:20 Page 12 of 12
http://www.almob.org/content/9/1/20

17. Gelman A, Hill J: Data Analysis Using Regression andMulti-level/hierarchical
Models. New York: Cambridge University Press; 2007.

18. Hoff PD: A First Course in Bayesian Statistical Methods. Dordrecht,
Heidelberg, London, New York: Springer Texts in Statistics; 2009.

19. Scott DW:Multivariate Density Estimation: Theory, Practice, and
Visualization. New York, Chichester, Brisbane, Toronto, Singapore: John
Wiley & Sons; 1992.

20. Bébien M, Salinas S, Becamel C, Richard V, Linares L, Hipskind RA:
Immediate-early gene induction by the stresses anisomycin and
arsenite in human osteosarcoma cells involves MAPK cascade
signaling to Elk-1, CREB and SRF. Oncogene 2003, 22(12):1836–1847.

21. Dhawan P, Bell A, Kumar A, Golden C, Mehta KD: Critical role of
p42/44(MAPK) activation in anisomycin and hepatocyte growth
factor-induced LDL receptor expression: activation of
Raf-1/Mek-1/p42/44(MAPK) cascade alone is sufficient to induce
LDL receptor expression. J Lipid Res 1999, 40(10):1911–1919.

22. Livak KJ, Schmittgen TD: Analysis of relative gene expression data
using real-time quantitative PCR and the 2−��Ct method.Methods
2001, 25(4):402–408.

23. Clarkson RW, Shang CA, Levitt LK, Howard T, Waters MJ: Ternary
complex factors Elk-1 and Sap-1a mediate growth hormone
induced transcription of Egr-1 (early growth response factor-1) in
3T3-F442A Preadipocytes.Mol Endocrinol 1999, 13(4):619–631.

24. Rozek D, Pfeifer GP: In vivo protein-DNA interactions at the c jun
promoter: preformed complexes mediate the UV response.Mol Cell
Biol 1993, 13(9):5490–5499.

25. Levens D: How the c-myc promoter works and why it sometimes
does not. J Natl Cancer I Monographs 2008, 39:41–43.

26. Verrecchia F, Rossert J, Mauviel A: Blocking sp1 transcription factor
broadly inhibits extracellular matrix gene expression in vitro and in
vivo: implications for the treatment of tissue fibrosis. J Invest
Dermatol 2001, 116(5):755–763.

27. Xu HG, Jin R, Ren W, Zou L, Wang Y, Zhou GP: Transcription factors Sp1
and Sp3 regulate basal transcription of the human IRF-3 gene.
Biochimie 2012, 94(6):1390–1397.

28. Samson SL, Wong NC: Role of Sp1 in insulin regulation of gene
expression. J Mol Endocrinol 2002, 29(3):265–279.

29. Pagés G, Pouysségur J: Transcriptional regulation of the vascular
endothelial growth factor gene-a concert of activating factors.
Cardiovasc Res 2005, 65(3):564–573.

30. Otsu N: A threshold selection method from gray-level histograms.
Automatica 1975, 11(285–296):23–27.

doi:10.1186/s13015-014-0020-6
Cite this article as:Mohanty et al.: Using the message passing algorithm
on discrete data to detect faults in boolean regulatory networks.
Algorithms for Molecular Biology 2014 9:20.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Keywords

	Background
	Model description
	Factor graph representation of the model
	A simple example
	Using factor graphs and the message passing algorithm on the signal transduction network model

	Simulation experiments
	Experiments with synthetic data
	Applications to real data

	Conclusion
	Availability of codes and data
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

