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Abstract

Background: As a main method of structure-based virtual screening, molecular docking is the most widely used in
practice. However, the non-ideal efficacy of scoring functions is thought as the biggest barrier which hinders the

improvement of the molecular docking method.

Results: A new multi-objective strategy for molecular docking, named as MoDock, is presented to further improve the
docking accuracy with available scoring functions. Instead of simple combination of multiple objectives with fixed
weight factors, an aggregate function is adopted to approximate the real solution of the original multi-objective and
multi-constraint problem, which will simultaneously smooth the energy surface of the combined scoring functions.
Then, method of centers and genetic algorithm are used to find the optimal solution. Tests of MoDock against the
GOLD test data set reveal the multi-objective strategy improves the docking accuracy over the individual scoring
functions. Meanwhile, a 70% ratio of the good docking solutions with the RMSD value below 1.0 A outperforms other
6 commonly used docking programs, even with a flexible receptor docking program included.

Conclusions: The results show MoDock is an effective strategy to overcome the deviations brought by single scoring
function, and improves the prediction power of molecular docking.
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Background

Structure-Based Virtual Screening (SBVS) has become a
routine tool in both pharmaceutical companies and aca-
demic groups for early-stage drug discovery [1]. As a
main method of SBVS, molecular docking is the most
widely used in practice, and there have reported a num-
ber of successful examples [2]. As a result, the docking
method has received increasing interest in recent times.
To date, over 60 docking programs and 30 scoring func-
tions (SFs) have been disclosed [3]. For comparing their
efficiency, there have been many comparative studies to
evaluate the relative performance of the most popular
programs and SFs [4-22]. However, previous compara-
tive studies have revealed that none of the docking pro-
grams and SFs truly outperforms the others, and a
universally accurate docking method is still out of reach.
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It is fundamentally an optimization problem of docking a
ligand into the binding site of a receptor. As the objects
during the optimization process, SFs estimate binding af-
finities between small ligands and proteins, and rank the
compounds, playing an essential role in molecular docking.
The non-ideal efficacy of SFs is thought as the biggest bar-
rier which hinders the improvement of the molecular
docking method. The conflict between the accuracy and
speed of SF is a difficult problem need to make great ef-
forts in. More recently, many techniques have been applied
to further improve the efficacy of SE such as including
thermodynamic data [23,24], including data derived from
quantum chemical calculation [25,26], application of mod-
ern computation technique and computational intelligence
[27,28], etc. Despite many achievements have been ob-
tained, the development of an ideal SF still has a long way
to go. Therefore, how to improve the docking accuracy
with available SFs is a practical and urgent task. Most
docking methods are based on one single objective, ie., a
SE. However, due to the approximation adopted in the SF
developing, deviations from the real binding energy are un-
avoidable. Based on this consideration, consensus scoring
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was developed by combining multiple SFs to reduce the
deviations brought by individual SFs as possible. The crit-
ical step in consensus scoring is the design of an appropri-
ate consensus scoring strategy of individual scores so that
the true modes/binders can be discriminated from others
accordingly. However, classic consensus strategy like linear
combination is strongly dependent on the initial parame-
ters, and simple combination of multiple SFs will make the
energy curves discontinuous and non-smooth, and make
the optimization problem more difficult to solve.

The application of multiple SFs makes docking become
a multi-objective optimization problem. How to choose
and combine the SFs, and design relevant optimization
strategy to the multi-objective problem are crucial for im-
proving the docking efficiency with consensus scoring. In
this work, a multi-objective docking strategy MoDock is
proposed to further improve the pose prediction with
available SFs. The SFs used in consensus scoring are pre-
ferred to be not correlated, so that errors can be dimin-
ished. The available scoring functions can generally be
divided into the following three types: force-field-based,
empirical-based and knowledge-based SFs. They focus on
diverse aspects of ligand binding, and are derived from
different principles. Therefore, three representative scoring
functions from these three types are introduced as the
objectives, and then a multi-objective optimization method
is designed to optimize these three objectives simultan-
eously. The publicly available GOLD test set containing
134 protein-ligand complexes is applied to evaluate the re-
liability of MoDock. The results indicate that the multi-
objective strategy can enhance the pose prediction power
of docking with the available SFs.

Models and Methods

The optimization model and scoring functions

In this work, three representative SFs chosen from dif-
ferent categories are treated as objectives. Then math-
ematically, the docking problem can be written as
follows:

Min {fl(X)7f2(X)7f3(X)} (1)
s.t.g;(X) <0,j=1,2,-.q

where f/(X) is the objective function derived from one of
the three classes of SFs: the force-field-based, the
empirical-based and the knowledge-based. X is the vec-
tor of design variables which serve to describe the con-
formational information of a ligand molecule. As we
assume that the ligand is flexible and the receptor is
rigid, X can then be expressed by the state variables of a
molecule as follows:

T
X = {TxaTyaTz;RxaRyaRuTthva"'7Tbn} (2)

where T, T, T,, R,, R, R, are the position coordinates
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and rotational angles of the entire ligand for the
matching-based orientation search, and Ty, Ty, ...y Tpp
are the torsional angles of the rotatable bonds which
account for the flexibility of the ligand.

The constraints g(X), j=1, 2, ..., g is the size limits of
the design variables shown as follows:

Ty<T,<Ty
T,<T,<T,
Es T,<T,
_HSRx,yﬁz; Tb1,~~

(3)
bn ST

The force-field-based scoring function adopts the clas-
sical AMBER molecular mechanics energy function
[29,30], which approximates the binding affinity as the
summation of van der Waals and electrostatic interac-
tions, with an assumption that the hydrogen-bonding
energies can largely be accounted for in the electrostatic
term.

e s (Aj By 49,
[0=)) 7 e +3320 7 (4)
i=1 j=1 \' ¥ i Y

where each term is a double sum over the ligand atom
i and the receptor atom j. n;,, 1, are the number of
atoms in the ligand and the receptor, respectively; A;, B;
are van der Waals repulsion and attraction parameters,
r is the distance between atoms i and j, g; g; are the
point charges on atoms i and j, D is dielectric function,
and 332.0 is a factor that converts the electrostatic en-
ergy into kilocalories per mole.

As a commonly used empirical scoring function,
X-Score is used here to evaluate the empirical-based
scoring of the binding affinity [31]. It assumes that the
van der Waals interaction (E,;,), hydrogen-bonding en-
ergy (Ejp), hydrophobic (Ej,,) and deformation (Egy)
terms are primary parts of binding energy. The scoring
function is composed as follows with three ways for cal-
culating the hydrophobic term.

f2(X) = (pKa1 + pKas + pKa3)/3 (5)

PKai= Co;i+ CriEvaw + CoiEpp + C3Eqer
+ CyiEpnya i (6)

The knowledge-based scoring function is more accur-
ately referred to as Potential of Mean Force, PMF. Es-
sentially, it is designed to reproduce the experimental
structures rather than the binding energies. According
to the inverse Boltzmann law, it can be directly derived
from the statistical analysis of different types of atom
pairs encoded in available crystal complex structures,
and many approaches have emerged in recent years with
different atom types and definitions of the reference
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state. We adopt the knowledge-based SF KScore in this
work [32], which is defined as follow:

£0=" Ai(n=>" -KsTln

pl pl
r < Teut—off 7 < Feut—off

vol-corr ij
bulk

j ( )péleg(r):|

(7)

where Kj is the Boltzmann constant, 7 is the absolute

/)

temperature, f,, . is the ligand volume correction fac-

tor, pé’;g(r) is the number density of atom pair ij that oc-
curs in a spherical shell with a thickness of Ar ranging

ij .
from r to r+ Ar, and p,,, expresses the number density
when no interaction between i and j occurs.

The multi-objective optimization strategy
Eq. (1) is a complex multi-objective and multi-constraint
optimization problem, which is difficult to solve. Actu-
ally, there are more than twenty mathematical multi-
objective optimization techniques, and most of them
compromise the objects to find pareto-optimal solutions
from which the optimal design is chosen for a certain
application. In this work, method of centers is intro-
duced to solve this multi-objective problem. This
method introduces an upper bound «a; on each objective
function and consecutively calculates the centers of
intersection sets of the original feasible region with the
level sets of objective functions. In initiation of the algo-
rithm, all upper bounds «; are set to be sufficiently large
such that the iteration is forced to move towards the ori-
ginal feasible region, and then are reduced according to
a certain criterion whenever the iterations become
feasible

ﬂir( = ViF,‘ (Xk) (8)
where k is iteration number, and r; is a weight parameter
and is set to be 1.5 in this work. As such, the feasible re-
gion becomes smaller and smaller with iterations. F(XY)
is the normalized objective function, as three different
score functions are adopted and their values cannot be
directly compared. The normalized score F(X") are rep-
resented as follows:

f:(xY)

FO0=F )

(©)

where k is the number of iteration in the optimizing

process, and X is the optimal solution of the iteration.
Then, with the aggregate function proposed by Li [33],

a smooth approximate function was constructed for
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transforming Eq. (1) to a single-objective and uncon-
straint problem

min S(X, ) :% an explp(Fi(X)-a;)]

+% lnz exp (pgj(X)>

=1

(10)

where p is the coherent function parameter, and A is the
penalty factor. Theoretically, problem (10) and (1) will
have the same solution when p— co. For numerical
computation, p is set to be 10° and A = 100 in this work.

Despite the multi-objective docking problem (1) has
been simplified with the method of centers and aggre-
gate function, the objective function of problem (10) is
still nonlinear and the design space is non-convex, which
means we still need a powerful optimization tool to
solve this problem. Genetic algorithms (GA) provide
such a capability, and they have been successful adapted
and implemented in a series of optimal design problems.
In this work, an improved adaptive genetic algorithm is
adopted [34], in which an entropy-based searching tech-
nique with multi-population is developed to ensure
rapid and steady convergence. The GA firstly generates
arbitrary # populations with the same design space, and
the design space is treated as the initial searching space.
Information entropy is used to measure the uncertainty
which population the optimal solution occurs in. During
the optimization process, the uncertainty and informa-
tion entropy will be decreased. Meanwhile, the position
of the optimal solution in the design space will be grad-
ually clear, and the searching space will be narrowed
until the optimal solution is found. The detailed steps of
the genetic algorithm used in this study are given in the
Additional file 1. In traditional GA, fixed genetic param-
eters such as the crossover and mutation probabilities p,.
and p,, will lead to an unsteady and slow convergence of
the optimization process. In the applied GA, p. and p,,
are treated as another two design variables which will
also evolve in the execution of the applied GA. There-
fore, these two parameters are self-adaptive, and rational
determination of their values will be obtained. In this
work, p,. and p,, are defined in [0.6, 1.0] and [0.0, 0.1],
respectively.

Preparation of the test data set

The main purpose of this study is to show the multi-
objective strategy we proposed can improve the prediction
accuracy with available popular SFs and the prediction ac-
curacy are comparable with several popular docking pro-
grams. Therefore, the commonly used GOLD test data set,
originally proposed by Jones et al. [35], was chosen for our
studies. Each complex was separated into a probe molecule
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and a docking ligand according to the biological interacting
pairs. Each protein molecule was obtained by excluding li-
gands, all structural water molecules, cofactors and metal
ions from the receptor PDB file [36]. Next, a mol2 file was
generated by adding hydrogen atoms and Kallman charge.
Residues around the bound ligand within a radius of 6.5 A
were isolated from the protein to define as the active site.
The ligands were then prepared by adding hydrogen atoms
and Gasteiger-Marsili atomic charges. The heavy atoms
number of the ligands ranged from 6 to 55, with 83.6% of
the ligands possessing fewer than 30 such atoms. Besides,
the rotatable bonds of the ligands ranged widely from 0 to
22, with greater than 88.8% of the ligands possessing fewer
than 15 such bonds.

Results and discussion
The evaluation of the docking accuracy is based on the
root-mean-square deviation (RMSD) value of the locations
of all heavy atoms in the model from those of the crystal
structure. In general, the docking accuracy is acceptable if
the RMSD value between the docked pose and X-ray crys-
tal structure is less than 2.0 A. Depending on the RMSD
values, the accuracy is assigned to seven categories. The
first, excellent, is for those predictions the top scoring
pose of which is within 0.5 A RMSD from the experimen-
tal results. The following three are for those good results
with values between 0.5 and 2.0 A. The fifth category,
close, is used for those predictions the RMSD values of
which are between 2.0 and 2.5 A. The sixth category, error,
is used for those predictions the RMSD values of which
are between 2.5 and 3.0 A. Finally, the seventh category,
wrong, is used for completely incorrect predictions with
RMSD values larger than 3.0 A.

The docking RMSD results on the test set with the
multi-objective strategy are listed in the Additional file 1.

Multi-objective versus single-objective

The improvement of the multi-objective strategy against
the single objectives is investigated first. Single-objective
dockings with the above-mentioned three SFs separately
are also performed on the test benchmark, and the
RMSD values of the docking results are also listed in the
Additional file 1.

PDB 1IG]J is an immunoglobulin complex with digoxin,
and is chosen here to describe the docking procedure.
The RMSD value of the multi-objective docking of 11G] is
0.83, and those of single-objective dockings with the
force-field-based score, the empirical-based score and the
knowledge-based score are 4.43, 1.01 and 6.13 respect-
ively, and the docked poses are given in Figure 1. The
molecule shown in green is the native pose derived from
the crystal structure, and the binding score of the native
pose is 16.06 (force-filed-based score), —9.64 (empirical-
based score) and -120.74 (knowledge-based score). The
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molecules shown in blue, cyan and yellow are docked
poses of single-objective dockings with the force-filed-
based, empirical-based and knowledge-based score, and
the binding scores are —-29.37, -10.49, and -360.21 re-
spectively. The score values show that the native pose
does not correspond with the energy minima of any of
these three scoring functions, so single-objective docking
will not give a satisfactory result. The molecule shown in
red is the docked pose with the multi-objective strategy, and
the binding score is —12.54 (force-filed-based score), —-9.75
(empirical-based score) and -138.84 (knowledge-based
score), and the latter two are close to the score values
of the native pose. From the view of this case, the
multi-objective strategy will find a pose with more bal-
anced energy distribution among the multiple SFs, thus
decrease the deviations derived from individual SFs and
find a more reasonable solution.

Figure 2 gives the docking optimization procedures
with different scoring strategies. The black lines denote
the change of SFs adopted in the multi-objective strat-
egy, and the red lines are the SFs adopted in the single-
objective dockings. In Figure 2A, the force-field-based
score optimization procedures with the multi-objective and
with the single-objective strategy are compared. The com-
parisons of the empirical-based score and knowledge-based
score are plotted in Figure 2B and 2C respectively. The iter-
ation number of the docking procedure with the multi-
objective strategy is 184, and that of the single-objective
docking with the force-field score is the longest 281, and the
iteration numbers with the empirical score and knowledge-
based score are 249 and 248 respectively. As indicated in
the figure, the single-objective optimization is a mono-
tonic decreasing procedure, while docking with the
multi-objective strategy can hinder single SF to fall into
its energy minimum.

For a more comprehensive comparison of the docking
accuracy with the multi-objective strategy over the single-
objective strategy, a statistics on the docking RMSD values
of 134 complexes is performed, and the statistical results
are shown in Figure 3. As shown in the blue color, in 43.4%
cases, the RMSD of the multi-objective docking is less than
all those of the single-objective docking with all the three
SFs. In 27.9% and 21.7% cases, the multi-objective docking
outperforms two and one of the three single-objective
dockings. Only in about 7.0% cases, the multi-objective
strategy gets the worst results.

A histogram is also plotted in Figure 4 to compare the
docking accuracy of the multi-objective strategy versus the
single-objective strategy in all the seven accuracy categor-
ies. As indicated in Figure 4, in the 0 ~ 0.5 and 0.5 ~ 1.0 in-
tervals, the multi-objective strategy achieves the highest
ratio, and the ratios are 39.6% and 29.9% respectively.
Moreover, in the >3.0 interval, the multi-strategy achieves
the lowest ratio 15.7%.
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Figure 1 The native and docked ligand poses of 11GJ with different docking strategies. The molecule shown in green is the native pose
derived from the crystal structure; the pose docked with the multi-objective strategy is plotted in red, and the poses derived from single-objective
docking are plotted in blue (force-field-based score), cyan (empirical-based score) and yellow (knowledge-based score).

N

Improvement over the other docking strategies

We also conduct a comparison of docking accuracy with
other 5 commonly used docking programs: Glide [37],
GOLD [35], Surflex [38], FlexX [39] and Docké6 [40].
These programs are performed with rigid receptor as-
sumption. In addition, a flexible docking is performed
with Docké separately with default parameters. Table 1
presents the ratios at different RMSD ranges of these
programs. MoDock vyields 53 (nearly 40%) excellent
docking solutions with RMSD value below 0.5 A, and 93
(nearly 70%) good predictions within 2.0 A RMSD,
which obviously outperforms the other programs which
include the flexible receptor docking. In addition, there
are 16% wrong predictions (RMSD value larger than
3.0 A) with MoDock, which is the lowest among the
rigid receptor docking programs and higher than the
flexible receptor docking. Therefore, as shown in Table 1,

the average RMSD of flexible docking have an almost
equal value with our method, and far outperforms the
other programs.

From this point of view, flexible docking can decrease
the ratio of wrong prediction by considering the con-
formational change of the receptor during the receptor-
ligand binding process. However, the flexible docking
method is also seriously limited by the accuracy of the
score function it used, so the ratio of excellent docking
cannot be increased.

Failure analysis

As shown in Table S1 Additional file 1, there are 21
(about 16%) wrong predictions with MoDock. In most of
the failure cases, none of the three scoring functions can
get a good result with single-objective strategy, which
means they seriously deviate from the real energy
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Figure 2 The optimization procedures of 11GJ with single-objective versus multi-objective strategy. The multi-objective strategy is shown
in black lines, and the single-objective strategy is shown in red lines: (A) with the force-field-based scoring function (B) with the empirical-based
scoring function and (C) with the knowledge-based scoring function.

43.41%

27.91%

6.98%

21.71%

Figure 3 The pie chart of comparison results between the multi-objective and single-objective docking strategy. The colors denote the
ratio of the multi-objective docking outperforms all (in blue), two (in green), one (in red) and none of the three single-objective dockings.
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distribution. The poses of their energy minima are far
away from the native pose, and they probably have high
energy barriers at the native pose. In the circumstances,
the multi-objective strategy can rarely find a good dock-
ing solution. While in other cases, one or two of the
three scoring functions get good docking results, and
the multi-objective strategy still cannot find a reasonable
solution. For explaining the reason, we choose a case
4EST for a further analysis. The native and docked poses
are overlapped and plotted in Figure 5. The native pose
are plotted in red, and the binding energy is 8310.42
(force-filed-based score), —8.77 (empirical-based score)
and -173.45 (knowledge-based score). The pose docked
with empirical-based score is plotted in green, which has
the best docking accuracy 0.52 A, and the binding en-
ergy is 3426.94 (force-filed-based score), —9.04 (empir-
ical-based score) and -166.90 (knowledge-based score).
The pose docked with force-field-based score is plotted
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in blue, which has the worst docking accuracy and even the
orientation is completely opposite to the native pose, and
the binding energy is —18.93 (force-field-based score), -6.42
(empirical-based score) and 239.36 (knowledge-based
score). The pose docked with knowledge-based score is
plotted in yellow, and the binding energy is 3203.61
(force-field-based score), -6.89 (empirical-based score)
and -219.73 (knowledge-based score). The pose docked
with MoDock is plotted in magentas, and the binding
energy is —13.22 (force-field-based score), —6.49 (empir-
ical-based score) and -118.91 (knowledge-based score).
From the poses in Figure 5 and their energy distribu-
tion, docking with single-objective can find lower en-
ergy pose, but whether the pose is close to the native
pose depends on whether the adopted scoring function
has an energy minimum near the native pose. In this
case, the empirical-based score has an energy minimum
near the native pose, so docking with empirical score
finds an excellent pose with RMSD value under 1.0 A.
However, the force-field-based score has a very high
binding energy on and near the native pose, and the
optimization on the force-field-based score results in
the change of the orientation of the ligand. The multi-
objective strategy will consider all the three SFs during
the docking process, and it will find a balanced pose
among these three scoring functions. Therefore, the ab-
normal energy distribution of the force-field-based
score is the reason of the failure of the docking with
MoDock.

Conclusions

In this work, we present a new multi-objective strategy
MoDock for improving the accuracy of the molecu
lar docking. To reduce the correlations between each
other, three scoring functions chosen from different cat-
egories—force-field-based, empirical-based and knowledge-

Table 1 Docking accuracy comparison of MoDock with 6 commonly used docking programs

RMSD Ratio
MoDock Glide® GOLD" Surflex® Flexx? DOCK6°® Docké-Ff

<05 040 029 0.08 0.16 0.03 0.15 0.09
20.5, <10 0.30 0.19 0.27 0.32 0.18 0.15 0.32
210, <15 0.07 0.12 0.20 0.14 0.14 0.19 0.28
215, <20 0.01 0.11 0.11 0.15 0.14 0.13 0.1
220,25 0.03 0.06 0.02 0.04 0.06 0.04 0.07
225,530 0.04 0.03 0.03 0.02 0.04 0.08 0.03
230 0.16 0.20 0.28 0.17 040 0.27 0.09
Avg. RMSD 1.53 1.98 3.19 215 3.69 2.13 146

“the date are from reference [30].
Pthe date are from reference [29].
‘the date are from reference [31].
dthe date are from reference [32].
the date are from reference [28].
fthe date are derived from running Docké with default parameters.
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Figure 5 The native and docked ligand poses of 4EST with different docking strategies. The molecule shown in red is the native pose
derived from the crystal structure; the pose docked with MoDock is plotted in magentas, and the poses derived from single-objective docking
are plotted in blue (force-filed-based score), green (empirical-based score) and yellow (knowledge-based score).

based, are treated as the objectives during the docking
optimization. Instead of simple combination with predefined
weight factors, an aggregate function is adopted to combine
the multiple objectives and to approximate the real solution
of the original multi-objective and multi-constraint problem.
Finally, method of centers and genetic algorithm are intro-
duced to solve the optimization problem.

The results of the docking experiments on the 134 di-
verse complexes from the GOLD test data set have shown
an obvious improvement of the docking accuracy. Detailed
analysis shows that in about half of the cases, the multi-
objective docking strategy outperforms all the single-
objective dockings. In addition, MoDock yielded 93 (nearly
70%) good docking solutions with a RMSD value below
1.0 A, which clearly outperforms 5 rigid receptor and 1
flexible receptor docking programs, and the average RMSD
value is only slightly higher than the flexible receptor dock-
ing program. The results indicate that the multi-objective
strategy can overcome the deviations brought by single
scoring function, so it makes the strategy an effective
method to improve the docking accuracy with available
scoring functions. However, through the analysis of the fail-
ure cases, we find the multi-objective strategy still limited
by the combined SFs. If the energy distribution of a scoring
function is seriously deviated, then it will result in the fail-
ure of the multi-objective strategy. Therefore, continuous
development of the docking scoring function will further
improve the accuracy of the multi-objective strategy.

In this work, we only consider three diverse scoring
functions—AMBER, X-Score and KScore to demonstrate
the efficacy of the multi-objective strategy, but the

strategy is not restricted to these scoring function and
even not to the quantity of the scoring functions. Differ-
ent scoring functions can be combined with this multi-
objective strategy to research the best combinations, and
this will be the direction of our next work.

Additional file

Additional file 1: The RMSD results of dockings on the 134
complexes of GOLD test set with different docking strategy; the
detailed steps of the genetic algorithm used in this study.
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