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Abstract

The core–periphery model for protein interaction (PPI) networks assumes that protein complexes in these networks
consist of a dense core and a possibly sparse periphery that is adjacent to vertices in the core of the complex. In this
work, we aim at uncovering a global core–periphery structure for a given PPI network. We propose two exact
graph-theoretic formulations for this task, which aim to fit the input network to a hypothetical ground truth network
by a minimum number of edge modifications. In one model each cluster has its own periphery, and in the other the
periphery is shared. We first analyze both models from a theoretical point of view, showing their NP-hardness. Then,
we devise efficient exact and heuristic algorithms for both models and finally perform an evaluation on subnetworks
of the S. cerevisiae PPI network.
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Background
A fundamental task in the analysis of PPI networks is
the identification of protein complexes and functional
modules. Herein, a basic assumption is that complexes
in a PPI network are strongly connected among them-
selves and weakly connected to other complexes [1].
This assumption is usually too strict. To obtain a more
realistic network model of protein complexes, several
approaches incorporate the core–attachment model of
protein complexes [2]. In this model, a complex is con-
jectured to consist of a stable core plus some attachment
proteins, which have only transient interactions with the
core. In graph-theoretic terms, the core thus is a dense
subnetwork of the PPI network. The attachment (or:
periphery) is less dense, but has edges to one or more
cores.
Current methods employing this type of modeling are

based on seed growing [3-5]. Here, an initial set of promis-
ing small subgraphs is chosen as cores. Then, each core
is separately greedily expanded by adding vertices to its
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core or its attachment (in each step, a vertex maximizing
some specific objective function is chosen). The aim of
these approaches was to predict protein complexes [4,5]
or to reveal biological features that are correlated with
topological properties of core–periphery structures in
networks [3]. In this work, we use core–periphery mod-
eling in a different context. Instead of searching for local
core–periphery structures, we attempt to unravel a global
core–periphery structure in PPI networks.
To this end, we hypothesize that the true network con-

sists of several core–periphery structures. We propose
two precise models to describe this. In the first model,
the core–periphery structures are disjoint. In the second
model, the peripheries may interact with different cores,
but the cores are disjoint. Then, we fit the input data to
each formal model and evaluate the results on several PPI
networks.

Our approach. In spirit, our approach is related to the
clique-corruption model of the CAST algorithm for gene
expression data clustering [6]. In this model, the input is
a similarity graph where edges between vertices indicate
similarity. The hypothesis is that the objects correspond-
ing to the vertices belong to disjoint biological groups of
similar objects, the clusters. In the case of gene expres-
sion data, these are assumed to be groups of genes with
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the same function. Assuming perfect measurements, the
similarity graph is a cluster graph.

Definition 1. A graph G is a cluster graph if each con-
nected component of G is a clique.

Because of stochastic measurement noise, the input
graph is not a cluster graph. The task is to recover the
underlying cluster graph from the input graph. Under
the assumption that the errors are independent, the most
likely cluster graph is one that disagrees with the input
graph on a minimum number of edges. Such a graph
can be found by applying a minimum number of edge
modifications (that is, edge insertions or edge deletions)
to the input graph. This paradigm directly leads to the
optimization problem CLUSTER EDITING [7-9].
We now apply this approach to our hypothesis that there

is a global core–periphery structure in the PPI networks.
In both models detailed here, we assume that all proteins
of each core interact with each other; this implies that each
core is a clique. We also assume that the proteins in the
periphery interact only with the cores but not with each
other. Hence, the peripheries are independent sets.
In the first model, we assume that ideally the protein

interactions give rise to vertex-disjoint core–periphery
structures, that is, there are no interactions between
different cores and no interactions between cores and
peripheries of other cores. Then each connected compo-
nent has atmost one core which is a clique and atmost one
periphery which is an independent set. This is precisely
the definition of a split graph.

Definition 2. A graph G = (V ,E) is a split graph if V
can be partitioned into V1 and V2 such that G[V1] is an
independent set and G[V2] is a clique.

We call the vertices in V1 periphery vertices and the
vertices in V2 core vertices. Note that the partition for a
split graph is not always unique. Split graphs have been
previously used to model core–periphery structures in
social networks [10]. There, however, the assumption is
that the network contains exactly one core–periphery
structure. We assume that each connected component is
a split graph; we call graphs with this property split clus-
ter graphs. Our fitting model is described by the following
optimization problem.

SPLIT CLUSTER EDITING
Input: An undirected graph G = (V ,E).
Task: Transform G into a split cluster graph by

applying a minimum number of edge modifications.

In our secondmodel, we allow the vertices in the periph-
ery to be attached to an arbitrary number of cores, thereby

connecting the cores. In this model, we thus assume
that the cores are disjoint cliques and the vertices of the
periphery are an independent set. Such graphs are called
monopolar [11].

Definition 3. A graph is monopolar if its vertex set
can be two-partitioned into V1 and V2 such that G[V1]
is an independent set and G[V2] is a cluster graph. The
partition (V1,V2) is called monopolar partition.

Again, we call the vertices in V1 periphery vertices and
the vertices in V2 core vertices. Our second fitting model
now is the following.

MONOPOLAR EDITING
Input: An undirected graph G = (V ,E).
Task: Transform G into a monopolar graph by

applying a minimum number of edge modifications
and output a monopolar partition.

Figure 1 shows an example graph along with optimal
solutions for SPLIT CLUSTER EDITING and MONOPO-
LAR EDITING and, for comparison, CLUSTER EDITING.
Clearly, the models behind SPLIT CLUSTER EDITING and
MONOPOLAR EDITING are simplistic and cannot com-
pletely reflect biological reality. For example, subunits of
protein complexes consisting of two proteins that first
interact with each other and subsequently with the core
of a protein complex are supported by neither of our
models. Nevertheless, our models are less simplistic than
pure clustering models that attempt to divide protein
interaction networks into disjoint dense clusters. Further-
more, there is a clear trade-off between model complexity,
algorithmic feasibility of models, and interpretability.

Further related work. In the following, we point to some
related work in the literature that is not directly relevant
for our algorithms and their evaluation but either consid-
ers models of core–periphery structure or optimization
problems that are related to SPLIT CLUSTER EDITING or
MONOPOLAR EDITING.
Della Rossa et al. [12] proposed to compute core–

periphery profiles that assign to each vertex a numeri-
cal coreness value. The computation of these values is
based on a heuristic random-walk model. Their evalua-
tion showed that the S. cerevisiae PPI network exhibits a
clear core–periphery structure which significantly devi-
ates from random networks with the same degree distri-
bution. An adaption of the Markov Clustering algorithm
MCL that incorporates the core-attachment model for
protein complexes was presented by Srihari et al. [13].
The SPLIT EDITING problem is closely related to SPLIT

CLUSTER EDITING as it asks to transform a graph into a
(single) split graph by at most k edge modifications. SPLIT
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Figure 1 An example input and optimal solutions to CLUSTER EDITING, SPLIT CLUSTER EDITING, and MONOPOLAR EDITING. Dashed edges are edge
deletions, bold edges are edge insertions. CLUSTER EDITING and SPLIT CLUSTER EDITING produce the same two clusters but SPLIT CLUSTER EDITING
assigns the blue vertex of the size-four cluster to the periphery. In an optimal solution to MONOPOLAR EDITING the two blue vertices are in the
periphery which is shared between two clusters. Note that the number of necessary edge modifications decreases from CLUSTER EDITING to SPLIT
CLUSTER EDITING to MONOPOLAR EDITING.

EDITING is, somewhat surprisingly, solvable in linear
time [14]; in fact, the number of required modifications
depends only on the degree sequence. Thus, split graphs
are recognizable by their degree sequence. Another prob-
lem that is related to CLUSTER EDITING is COGRAPH
EDITING which asks to destroy induced P4’s by modifying
at most k edges [15]. COGRAPH EDITING has applica-
tions in the computation of phylogenies [16]. In a cograph,
every connected component has diameter at most two;
in split cluster graphs every connected component has
diameter at most three.
Finally, a further approach of fitting PPI networks to

specific graph classes was proposed by Zotenko et al. [17]
who find for a given PPI network a close chordal graph,
that is, a graph without induced cycles of length four or
more. The modification operation is insertion of edges.
One notable difference is that the algorithm may be
unable to construct a chordal graph from the input
network [17].

Preliminaries. We consider undirected simple graphs
G = (V ,E) where n := |V | denotes the number of ver-
tices and m := |E| denotes the number of edges. The
open neighborhood of a vertex u is defined as N(u) :=
{v | {u, v} ∈ E}. We denote the neighborhood of a set U
by N(U) := ⋃

u∈U N(u) \ U . The subgraph induced by a
vertex set S is defined asG[ S] := (S, {{u, v} ∈ E | u, v ∈ S}).
One approach to solving NP-hard problems is based

on the concept of fixed-parameter tractability [18,19].
Herein, instances I of a problem come along with a param-
eter k, for example the size of a solution. The aim is to
obtain a fixed-parameter algorithm, that is, an algorithm
with running time f (k) · nO(1) where f depends only on k.

Such an algorithm is efficient if k is small and f does not
grow too rapidly.
The exponential-time hypothesis (ETH) states that

there is a constant c > 1 such that 3-SAT cannot be solved
in (c − ε)n time for any ε > 0 [20]. Assuming the ETH,
tight running time lower bounds can be shown; a sur-
vey on ETH-based running time lower bounds is given by
Lokshtanov et al. [21]. If it is known that a parameterized
problem L does not admit a 2o(k) · nO(1)-time algorithm
(assuming the ETH), then a polynomial-time reduction
from this problem to a problem L′ with parameter k′ =
O(k) implies that L′ cannot be solved in 2o(k′) · nO(1) time
(assuming the ETH). Note that the parameter in this case
may also be the number of vertices or the number of edges
of a graph.

Combinatorial properties and complexity
Before presenting concrete algorithmic approaches for the
two optimization problems, we show some properties of
split cluster graphs and monopolar graphs which will be
useful in the various algorithms. Furthermore, we present
computational hardness results for the problems which
will justify the use of integer linear programming (ILP)
and heuristic approaches.

Split cluster editing
Each connected component of the solution has to be a
split graph. These graphs can be characterized by forbid-
den induced subgraphs (see Figure 2).

Lemma 1 ([22]). A graph G is a split graph if and only
if G does not contain an induced subgraph that is a pair
of disjoint edges or a cycle of four or five edges, that is, G is
(2K2,C4,C5)-free.
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Figure 2 The forbidden induced subgraphs for split graphs (2K2, C4, and C5) and for split cluster graphs (C4, C5, P5, necktie, and bowtie).

To obtain a characterization for split cluster graphs, we
need to characterize the existence of 2K2’s within con-
nected components. The following lemma will be useful
for this purpose.

Lemma 2. If a connected graph contains a 2K2 as
induced subgraph, then it contains a 2K2 = (V ′,E′) such
that there is a vertex v /∈ V ′ that is adjacent to at least one
vertex of each K2 of (V ′,E′).

Proof. Let G contain the 2K2 {x1, x2}, {y1, y2} as induced
subgraph. Without loss of generality, let the shortest path
between any xi, yj be P = (x1 = p1, p2, . . . , pk = y1).
Clearly, k > 2. If k = 3, then x1 and y1 are both adjacent
to p2. Otherwise, if k = 4, then {x2, x1 = p1}, {p3, p4 = y1}
is a 2K2 and x1 and p3 are both adjacent to p2. Finally, if
k > 4, then P contains a P5 as induced subgraph. The
four outer vertices of this P5 induce a 2K2 whose K2’s each
contain a neighbor of the middle vertex.

We can now provide a characterization of split cluster
graphs (see Figure 2).

Theorem 1. A graph G is a split cluster graph if and only
if G is a (C4,C5,P5, necktie, bowtie)-free graph.

Proof. Let G be a split cluster graph, that is, every con-
nected component is a split graph. Clearly, G does not
contain a C4 or C5. If a connected component of G con-
tains a P5, then omitting the middle vertex of the P5 yields
a 2K2, which contradicts the assumption that the con-
nected component is a split graph. The same argument
shows that the graph cannot contain a necktie or bowtie.
Conversely, let G be (C4,C5,P5, necktie, bowtie)-free.

Clearly, no connected component contains a C4 or C5.
Assume towards a contradiction that a connected compo-
nent contains a 2K2 consisting of the K2’s {a, b} and {c, d}.
Then according to Lemma 2 there is a vertex v which is,
without loss of generality, adjacent to a and c. If no other
edges between the 2K2 and v exist, then {a, b, v, c, d} is a
P5. Adding exactly one of {b, v} or {d, v} creates a necktie,
and adding both edges results in a bowtie. No other edges
are possible, since there are no edges between {a, b} and
{c, d}.

This leads to a linear-time algorithm for checking
whether a graph is a split cluster graph.

Theorem 2. There is an algorithm that determines
in O(n + m) time whether a graph is a split cluster graph
and outputs a forbidden induced subgraph if this is not the
case.

Proof. For each connected component, we run an algo-
rithm by Heggernes and Kratsch [23] that checks in linear
time whether a graph is a split graph, and if not, pro-
duces a 2K2, C4, or C5. If the forbidden subgraph is a C4
or C5, we are done. If it is a 2K2, then we find, using the
method described in the proof of Lemma 2, in linear time
an induced 2K2 such that there is a vertex v that is adjacent
to at least one vertex in each K2. The subgraph induced by
this 2K2 plus v is either a P5, necktie, or bowtie, as shown
in the proof of Theorem 1.

In contrast, SPLIT CLUSTER EDITING is NP-hard even
in restricted cases. Before proving the hardness, we make
the following observation that follows from a simple local
improvement argument. It will be used in our hardness
proof and also in our algorithms.

Observation 1. There is an optimal solution to SPLIT
CLUSTER EDITING such that

• every degree-one vertex whose neighbor has degree
at least two is a periphery vertex, and

• no inserted edge is incident with a periphery vertex.

Theorem 3. SPLIT CLUSTER EDITING is NP-hard even
on graphs with maximum degree 10. Further, it cannot be
solved in 2o(k) ·nO(1) or 2o(n) ·nO(1) time if the exponential-
time hypothesis (ETH) is true.

Proof. We reduce from CLUSTER EDITING:

Input: An undirected graph G = (V ,E) and an
integer k.
Question: Can G be transformed into a cluster graph
by applying at most k edge modifications?



Bruckner et al. Algorithms for Molecular Biology  (2015) 10:16 Page 5 of 13

CLUSTER EDITING is NP-hard [24], even if the maxi-
mum degree of the input graph is five [25] and it cannot
be solved in 2o(k) · nO(1) time assuming ETH [25,26].
The reduction works as follows; we assume that the

original instance does not contain isolated vertices.
Given an instance (G, k) of CLUSTER EDITING, build a
graph G′ = (V ′,E′) that has the same vertices and edges
as G and degG(v) additional degree-one vertices attached
to each v ∈ V .
We show that G can be transformed by at most k

edge modifications into a cluster graph if and only if G′
has a split cluster editing set of size at most k. First,
if a set S of at most k edge modifications transforms
G into a cluster graph G̃, then performing the same
modifications on G′ transforms G′ into a split cluster
graph G̃′: Each connected component of G̃′ contains a
clique K of G̃ plus degG(v) degree-one vertices adjacent
to each v ∈ K . The set of these degree-one vertices is an
independent set.
For the other direction, we show that there is a

minimum-cardinality edge modification set S′ that trans-
forms G′ into a split cluster graph G̃′, such that perform-
ing S′ on G transforms G into a cluster graph. By Obser-
vation 1 and the fact that each vertex in G has degree
at least one, we can assume that every vertex in V ′ \ V
is a periphery vertex in G̃′. Consider some vertex v ∈
V . If v is a periphery vertex in G̃′, then all degG(v)
edges between v and V ′ \ V are deleted (there are no
edges between periphery vertices). Then, however, a solu-
tion with the same cost is to delete all degG(v) edges
between v and V instead. This solution makes v a core
vertex with neighbors in V ′ only. Hence, we can assume
that S′ makes every vertex in V a core vertex. Since G̃′
is a split cluster graph, each core is a clique and different
cores are disjoint. Hence, S′ transforms G into a cluster
graph.
This shows the correctness of the reduction. The hard-

ness results follow from the previous hardness results
and the fact that the solution size remains the same and
that the maximum degree of the constructed graph G′ is
exactly twice the maximum degree of G.

This hardness result motivates the study of algorith-
mic approaches such as fixed-parameter algorithms or
ILP formulations. For example, SPLIT CLUSTER EDITING
is fixed-parameter tractable for the parameter number of
edge modifications k by the following search tree algo-
rithm: Check whether the graph contains a forbidden
subgraph. If this is the case, branch into the possibili-
ties to destroy this subgraph. In each recursive branch,
the number of allowed edge modifications decreases by
one. Furthermore, since the largest forbidden subgraph
has five vertices, at most ten possibilities for edge inser-
tions or deletions have to be considered to destroy a

forbidden subgraph. By Theorem 2, forbidden subgraphs
can be found inO(n+m) time. Altogether, this implies the
following.

Theorem 4. SPLIT CLUSTER EDITING can be solved
in O(10k · (n + m)) time.

This result is purely of theoretical interest. With fur-
ther improvements of the search tree algorithm, practical
running times might be achievable.
For example, one could focus on improving the base of

the exponential factor by a more elaborate case distinc-
tion, either designed manually (e. g. [27]) or automatically
[28]. Another approach could be to study parameterized
data reduction known as kernelization [18,19].

Monopolar graphs
The class of monopolar graphs is hereditary, and thus
it is characterized by forbidden induced subgraphs. The
set of minimal forbidden induced subgraphs, however,
is infinite [29]; for example among graphs with five or
fewer vertices, only the wheel W4 is forbidden, but
there are 11 minimal forbidden subgraphs with six ver-
tices. In contrast to the recognition of split cluster graphs,
which is possible in linear time by Theorem 2, deciding
whether a graph is monopolar is NP-hard [30]. Algorith-
mic research is focused on the recognition problem for
special graph classes. A fairly general such approach uses a
2-SAT formulation [31,32]. Thus MONOPOLAR EDITING
is NP-hard already for k = 0 edgemodifications. As a con-
sequence, it is not fixed-parameter tractable with respect
to the number of edge modifications k unless P = NP (in
contrast to SPLIT CLUSTER EDITING).

Solution approaches
To evaluate our model, it is helpful to obtain optimal solu-
tions to eliminate or at least estimate the systematic bias
that might be introduced by heuristics. We use an integer
linear programming (ILP) formulation for this. Since it is
not able to solve the hardest instances, we also present a
heuristic based on simulated annealing.

Forbidden subgraph ILP
From Theorem 1, we can easily derive an ILP formulation
for SPLIT CLUSTER EDITING. For each (undirected) pair of
vertices {u, v}, we introduce binary variables euv indicating
whether the edge {u, v} is present in the solution graph.
Defining ēuv := 1 − euv, we have

minimize
∑

{u,v}∈E
ēuv +

∑

{u,v}/∈E
euv subject to (1)

∑

{u,v}∈EF
ēuv +

∑

{u,v}/∈EF
euv ≥ 1∀ (VF ,EF) ∈ F ,

(2)
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where F is the set of forbidden induced subgraphs on V.
A constraint of type (2) forces that at least one edge dif-
fers from the forbidden subgraph. Since an n-vertex graph
may contain �(n5) forbidden subgraphs, in practice we
use row generation (lazy constraints) and add in a callback
only the constraints that are violated; by Theorem 2, we
can find a violated constraint in linear time.
The effectivity of ILP solvers is largely based on getting

good lower bounds from the LP relaxation. A common
technique to improve this further is to add cutting planes,
that is, inequalities that are already implied by any inte-
gral solution, but that cut off part of the polytope of
the LP relaxation. We can derive some cutting planes by
strengthening the forbidden subgraph constraints. For a
C5, at least two edits are required to obtain a split cluster
graph, so we can replace the 1 on the right-hand side by
a 2. For a P5 uvwxy, we can use

ēuv + ēvw + ēwx + ēxy + 1
2
euw + evx + 1

2
ewy + 1

2
exu

+ 1
2
eyv ≥ 1. (3)

A factor 1
2 is permissible for edits that require at least one

more edit; for example inserting {u,w} produces a necktie.
The summand euy is omitted, since this insertion pro-
duces a C5, which needs at least two more edits. Similar
strengthenings are possible for neckties and bowties.

Partition variable ILP
Since monopolar graphs have infinitely many forbidden
subgraphs, which are NP-hard to find, the forbidden sub-
graph ILP formulation is not feasible for MONOPOLAR
EDITING. We show an alternative formulation based on
the observation that if we correctly guess the partition into
core and independent set vertices, we can get a simpler
forbidden subgraph characterization for both split cluster
graphs and monopolar graphs.

Lemma 3. Let G = (V ,E) be a graph and C ∪̇ I = V
a partition of the vertices. Then G is a split cluster graph
with core vertices C and periphery vertices I if and only if G
does not contain an edge with both endpoints in I, nor an
induced P3 with both endpoints in C.

Proof. “⇒”: We show the contraposition. Thus assume
that there is an edge with both endpoints in I or an
induced P3 with both endpoints in C. Then I is not an
independent set or C does not form a clique in each
connected component, respectively.
“⇐”: We again show the contraposition. If G is not a

split cluster graph with core vertices C and periphery ver-
tices I, then it must contain an edge with both endpoints
in I, or C ∩ H does not induce a clique for some con-
nected component H of G. In the first case we are done;

in the second case, there are two vertices u, v ∈ C in the
same connected component with {u, v} /∈ E. Consider a
shortest path (u = p1, . . . , pl = v) from u to v. If it con-
tains a periphery vertex pi ∈ I, then pi−1, pi, pi+1 forms a
forbidden subgraph. Otherwise, p1, p2, p3 is one.

For annotated monopolar graphs, the situation is even
simpler. By Definition 3, the two-partition into C and I
exactly demands that I is an independent set and G[C] is
a cluster graph or, equivalently, P3-free.

Lemma 4. Let G = (V ,E) be a graph and C ∪̇ I = V
a partition of the vertices. Then G is a monopolar graph
with core vertices C and periphery vertices I if and only if it
does not contain an edge with both endpoints in I, nor an
induced P3 whose vertices are contained in C.

Proof. “⇒”: This follows directly from Definition 3.
“⇐”: If G is not monopolar with core vertices C and

periphery vertices I, then it must contain an edge with
both endpoints in I, or G[C] is not a cluster graph. In the
first case we are done; in the second case, there is a P3
with all vertices in C, since that is the forbidden induced
subgraph for cluster graphs.

From Lemma 3, we can derive an ILP formulation for
SPLIT CLUSTER EDITING. As before, we use binary vari-
ables euv indicating whether the edge {u, v} is present in
the solution graph. In addition, we introduce binary vari-
ables cu indicating whether a vertex u is part of the core.
Defining ēuv := 1 − euv and c̄u := 1 − cu, and fixing an
arbitrary order on the vertices, we have

minimize
∑

{u,v}∈E
ēuv +

∑

{u,v}/∈E
euv subject to (4)

cu + cv + ēuv ≥ 1 ∀u, v (5)
ēuv + ēvw + euw + c̄u + c̄w ≥ 1 ∀u 
= v, v 
= w > u.

(6)

Herein, Constraint (5) forces that the periphery vertices
are an independent set and Constraint (6) forces that core
vertices in the same connected component form a clique.
For MONOPOLAR EDITING, we replace Constraint (6) by

ēuv + ēvw + euw + c̄u + c̄v + c̄w ≥ 1 ∀u 
= v, v 
= w > u
(7)

which forces that the graph induced by the core vertices is
a cluster graph.

Data reduction
Data reduction (preprocessing) proved very effec-
tive for solving CLUSTER EDITING optimally [8,9].
Indeed, any instance can be reduced to one of at most
2k vertices [33,34], where k is the number of edge
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modifications. Unfortunately, the data reduction rules we
devised for SPLIT CLUSTER EDITING were not applicable
to our real-world test instances. However, Observation 1
allows us to fix the values of some variables of Con-
straints (4) to (6) in the partition variable ILP for SPLIT
CLUSTER EDITING: if a vertex u has only one vertex v as
neighbor and deg(v) > 1, then set cu = 0 and euw = 0
for all w 
= v. Since our instances have many degree-one
vertices, this considerably reduces the size of the ILPs.

Heuristics
The integer linear programming approach is not able to
solve the hardest of our instances. Thus, we employ the
well-known simulated annealing heuristic. This is a local
search method, where we try a random modification of
our current solution, and accept it if it improves the objec-
tive; but to escape local minima, we also accept it with
a small probability if it makes the objective worse. More
precisely, a change in the objective of � is accepted with
probability exp(−�/T), where the factor T is reduced
over the course of the algorithm down to zero, such
that the algorithm initially explores a larger part of the
search space, but eventually settles in a local minimum.
We restart the simulated annealing algorithm, where each
repetition has a fixed number of steps.
For SPLIT CLUSTER EDITING, we start with a clustering

where each vertex is a singleton. As random modifica-
tion, we move a vertex to a cluster that contains one of its
neighbors. Since this allows only a decrease in the num-
ber of clusters, we also allow moving a vertex into an
empty cluster. For a fixed clustering, the optimal number
of modifications can be computed in linear time by count-
ing the edges between clusters and computing for each
cluster a solution for SPLIT EDITING in linear time [14].
For MONOPOLAR EDITING, we additionally have a set
representing the shared periphery. Accordingly, we allow
moving a vertex into another cluster or into the indepen-
dent set. Here, the optimal number of modifications for
a fixed clustering can also be calculated in linear time: all
edges in the independent set are deleted, all edges between
clusters are deleted, and all missing edges within clusters
are added.

Experimental results
We test exact algorithms and heuristics for SPLIT CLUS-
TER EDITING (SCE) and MONOPOLAR EDITING (ME) on
several PPI networks, and perform a biological evaluation
of the modules found. We use three known methods for
comparison.

• The algorithm by Luo et al. [3] (“LUO” for short)
produces clusters with core and periphery, like SCE,
but the clusters may overlap and might not cover the
whole graph. LUO produces two types of

core–periphery structures, those with a dense core,
called k-plex core, and those with a star core. In the
comparison, we consider only the structures with
k-plex cores, since this model is closer to our models.
For periphery, we consider only neighbors of the core
(called 1-periphery by Luo et al. [3]) and not vertices
with distance two to the core (called 2-periphery).

• The SCAN algorithm [35], like ME, partitions the
graph vertices into “clusters”, which we interpret as
cores, and “hubs” and “outliers”, which we interpret
as periphery. SCAN is run with several parameter
combinations, obtaining different results. For
consistency, we select the results where the clusters
have the highest modularity, as reported by the
SCAN program itself.

• In addition, we compare the solutions of SCE and ME
with optimal solutions of CLUSTER EDITING (CE)
(see Section ‘Split cluster editing’ for a formal
problem definition). The result of such a solution is a
cluster graph and the size-1 clusters of this cluster
graph are an independent set. Accordingly, we
interpret the size-1 clusters as periphery. We solve
CE by a simple ILP with row generation, using the
characterization by the forbidden subgraph P3.

Experimental setup
Implementation details. The ILPs and the simulated
annealing heuristic were implemented in C++ and com-
piled with the GNU g++ 4.7.2 compiler. As ILP solver,
we used CPLEX 12.6.0. For both formulations, we use
the heuristic solution found after 10 rounds as MIP
start. For the forbidden subgraph formulation (Section
‘Forbid- den subgraph ILP’), in a lazy constraint callback,
we find a forbidden subgraph using Theorem 2 and add
the corresponding inequality of type (2) to the model. We
then delete one of its vertices and try to find another
forbidden subgraph, adding up to n inequalities per
callback.
For the partition variable formulation (Section ‘Partition

variable ILP’), we initially add all independent set con-
straints (5) and those P3 constraints ((6), (7)) for which the
vertices u, v,w induce a P3 in the input graph. In a lazy
constraint callback, we add violated P3 constraints (usu-
ally only a few are needed). These constraints are also used
as cutting planes, that is, we already add them in a cut-
ting plane callback when they are violated by the fractional
solution. In addition, we use the forbidden subgraphs
C4 and P5 for SCE and the forbidden subgraph W4 for
ME as cutting planes (Eq. 2). In the cutting plane call-
backs, we add the 500 inequalities which are violated the
most, if the violation is at least 0.3 (these parameters were
heuristically determined).
In the simulated annealing heuristic, we use 20,000 steps

and an initial T0 = 1, and restart the procedure 100 times.
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The test machine is a 4-core 3.6GHz Intel Xeon E5-
1620 (Sandy Bridge-E) with 10MB L3 cache and 64GB
main memory, running Debian GNU/Linux 7.0. CPLEX
was allowed to use up to 8 threads, and we report wall
clock times.

Data. For comparison of the algorithms, we first use ran-
dom graphs, where each possible edge is present with
probability p, to examine variability of running times and
limits of feasibility. For more realistic data, we generate
subnetworks of the S. cerevisiae (yeast) protein interac-
tion network from BioGRID [36]. Our networks contain
only physical interactions. For each Gene Ontology (GO)
term in the annotations of the Saccharomyces Genome
Database (SGD) [37], we extract the subnetwork induced
by only those proteins that are annotated with this term.
We omit networks with fewer than 30 vertices (these can
all be solved in less than one second). This yields 178
graphs with up to 2198 vertices, with a median of 66
vertices and 226 edges.
For the biological evaluation, we focus on three partic-

ular subnetworks, corresponding to three essential pro-
cesses: cell cycle, translation, and transcription.a These
are important subnetworks known to contain complexes.
Table 1 shows some properties of these networks.

Biological evaluation. We evaluate our results using the
following measures. First, we examine the coherence of
the GO terms in our modules using the semantic sim-
ilarity score calculated by G-SESAME [38]. We use this
score to test the hypothesis that the cores are more sta-
ble than the peripheries. If the hypothesis is true, then the
GO terms within a core should be more similar than the
GO terms in the periphery. Hence, the pairwise similarity
score within the core should be higher than in the periph-
ery. We test only terms relating to process, not function,
since proteins in the same complex play a role in the same
biological process. Since ME, SCAN, and CE return mul-
tiple cores and only a single periphery, we assign to each
cluster C its neighborhood N(C) as periphery. We con-
sider only clusters with at least two core vertices and one
periphery vertex.
Next, we compare the resulting clusters with known

protein complexes from the CYC2008 database [39]. Since

the networks we analyze are subnetworks of the larger
yeast network, we discard for each network the CYC2008
complexes that have less than 50% of their vertices in the
current subnetwork, restrict them to proteins contained
in the current subnetwork, and then discard those with
fewer than three proteins. We test the overlap between
the algorithm results and these complexes, treating the
complexes as the “ground truth”. We expect that the cores
mostly correspond to complexes and that the periphery
may contain complex vertices plus further vertices.

Results
Randomnetworks
Figure 3 shows running times for random graphs using the
fastest ILP version (using partition variables and cutting
planes). Each box represents 25 runs. For SCE, running
times show large variation (note the logarithmic scale).
Density p = 0.3 here yields harder instances than either
denser or sparser instances. Already for n = 22, two
instances with p = 0.3 could not be solved with available
memory, although another one takes only three seconds.
For ME and p = 0.1 or p = 0.3, there are fewer outliers
and the instances can be solved much quicker than for
the SCE model. Running times and variance of running
time seem to increase monotonously with density, how-
ever. Thus, for p = 0.5 SCE could be solved quicker than
ME.
The heuristic optimally solves SCE for all instances with

known optimal solution; for ME, it is off by one for five
instances.

PPI subnetworks
Figure 4 shows running times for the different ILP
approaches on PPI subnetworks. Overall, we can observe
that these instances are much easier than the random
graph instances. For SCE with the forbidden subgraph for-
mulation, we see that the strengthened inequalities such
as Constraint (3) allow to solve more instances, and that
using the P5 (in our instances the most frequent forbid-
den subgraph) not only as a forbidden subgraph but also
as a cutting plane further improves running time. How-
ever, neither version is as effective as the partition variable
formulation. Here, using forbidden subgraphs as cutting
planes has less effect, solving only one more instance.

Table 1 Input properties of the process networks

n m nlcc mlcc C p AC ig

Cell cycle 196 797 192 795 7 148 6.3 1151

Transcription 215 786 198 776 11 54 7.5 1479

Translation 188 2352 186 2351 5 88 27.4 174

Here, n is the number of proteins, without singletons, andm is the number of interactions; nlcc andmlcc are the number of proteins and interactions in the largest
connected component; C is the number of CYC2008 complexes with at least 50% and at least three proteins in the network, p is the number of network proteins that
do not belong to these complexes, and AC is the average complex size. Finally, ig is the number of genetic interactions between proteins without physical interaction.
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Figure 3 Running times for random graphs. Left: SPLIT CLUSTER EDITING; right: MONOPOLAR EDITING. A star indicates an instance that was aborted
due to insufficient memory.

This is probably because adding the initial constraints ((5)
to (7)) already produces a fairly tight relaxation. Moreover,
finding the cutting planes is quite slow.
For ME, we note that instances can be solved slightly

quicker in general, consistent with the observations on
sparse random networks. Using W4 (the smallest for-
bidden subgraph for monopolar graphs) as a cutting
plane also helps little, solving one more instance, but
might be useful for difficult instances with long running
time.
The heuristic for SCE finds an optimal solution for

all 126 instances for which the optimal solution size is
known. The ME heuristic optimally solves 104 of 129
instances for which the optimal solution size is known.
The average error is very small (0.61), but for one instance
the heuristic produces a solution size too high by 27.
Possibly the independent set, which interacts with all
clusters, makes local search approaches less effective here
compared to SCE.

Figure 5 shows the running times for the fastest ILP
approaches, that is, the partition variable ILPs with cuts,
and the heuristics for both problems. Also shown are the
running times of SCAN, LUO, and the ILP for CE. For the
majority of the instances, the ILP approaches for SCE and
ME are much slower than all other methods including the
ILP for CE. SCAN and the ME heuristic are the fastest
methods, solving each instance in less than a minute and
most instances within a second. The SCE heuristic is sub-
stantially slower than the ME heuristic; this behavior is
consistent with the observations for the ILP approaches.
Finally, LUO is comparable with the SCE heuristic: it is
faster than the exact ILP approaches but substantially
slower than SCAN and the ME heuristic.

Process networks
Our results are summarized in Table 2 (size statistics
and average GO term coherence) and Table 3 (complex
detection).

Figure 4 Running times of the different ILP formulations for the PPI subnetworks. Left: SPLIT CLUSTER EDITING; right: MONOPOLAR EDITING.
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Figure 5 Running times of the best ILP formulations, of the two
heuristics, and of LUO and SCAN for the PPI subnetworks.

Running times and objective function. For SCE, the
ILP approach failed to solve the cell cycle and tran-
scription network, and for ME, it failed to solve the
transcription network, with CPLEX running out of mem-
ory in each case. Thus, consistent with the previous types
of instances, the theoretically harder ME problem was
easier to solve in practice. This could be explained by
the fact that the number k of necessary modifications is
much lower, which could reduce the size of the branch-
and-bound tree. For two of the three optimally solved
instances, the heuristic finds the optimal solution within
one minute. For the third instance (ME transcription) it
finds the optimal solution only after several hours; after
one minute, it is 2.9% too large. This indicates the heuris-
tic gives good results, and in the following, we use the
heuristic solution for the three instances not solvable by
ILP. From experiments with other networks, we conjec-
ture that the heuristic SCE solutions are optimal; we are
less sure about the heuristic solutions for ME.
As for the PPI subnetworks, the SCAN algorithm runs

very fast, finishing within seconds on all three networks;
the LUO algorithm is considerably slower as it needs

several minutes on the translation network. CE is again
slower than LUO but still considerably faster than SCE and
ME.

Cluster statistics andGO term coherence. Table 2 gives
an overview of the number and average sizes of the out-
put clusters and of their average GO term coherence in
core and periphery. We say that a cluster is nontrivial if
it has at least three vertices and at least two core vertices.
We describe the results for the cell cycle network in more
detail since the results here are the most representative of
the three networks. Then, we summarize our findings for
the transcription and translation network.
The SCE solution identifies 14 nontrivial clusters; all

other clusters are singletons. Only for one of the 14 non-
trivial clusters, the GO term coherence is lower in the core
than in the periphery (for two clusters the scoring tool
does not return a result, four clusters have empty periph-
eries). This is in line with the hypothesis that cores have
higher GO term coherence than peripheries.
The ME result contains more nontrivial clusters than

SCE (24). Compared to SCE, clusters have on average
about the same size, but a slightly smaller core and a
slightly larger periphery (recall that a periphery vertex
may occur in more than one cluster). The average coher-
ence in the cores is 0.58, lower than for SCE (0.64), this
might be due to the fact that the cores are smaller for
ME. On average, coherence in the periphery ismuch lower
than in the cores, but for six clusters it is higher than in
the core.
SCAN identifies 7 hubs and 41 outliers, which then

comprise the periphery. There are even more nontrivial
clusters than for ME. Clusters are smaller than for SCE or
ME, in particular the periphery has on average only 4.4
vertices as opposed to 7.3 for SCE or 9.8 for ME. Coher-
ence on cores is similar to SCE andME, and also lower for
the periphery.
LUO outputs only large clusters (this is true for all sub-

networks we tested). For the cell cycle network, 16 clusters
are identified, each having at least 5 proteins in the cores,
and 3 in the periphery, and the largest having 15 proteins
in the core and 126 in the periphery (for SCE, one cluster

Table 2 Solution statistics and average GO term coherence for the process networks

Cell-cycle Transcription Translation

k K c̄ p̄ ct cc cp k K c̄ p̄ ct cc cp k K c̄ p̄ ct cc cp

SCE 321 14 5 7 0.60 0.64 0.40 273 14 6 6 0.54 0.56 0.57 308 6 13 14 0.70 0.73 0.69

ME 126 24 3 9 0.45 0.57 0.40 106 26 3 7 0.50 0.60 0.54 240 11 8 12 0.59 0.61 0.54

SCAN — 28 5 4 0.41 0.62 0.34 — 29 4 3 0.48 0.59 0.47 — 5 30 4 0.66 0.66 0.76

Luo — 16 9 63 0.34 0.50 0.31 — 12 8 41 0.40 0.52 0.38 — 4 24 24 0.72 0.84 0.67

CE 461 28 4 1 0.51 0.51 0.38 392 28 4 1 0.56 0.57 0.68 937 10 11 4 0.71 0.73 0.71

Here, k is the number of edge modifications, K is the number of nontrivial clusters, c̄ and p̄ are the average size of the core and periphery in a nontrivial cluster,
respectively, and ct , cc , and cp are the average coherence within the cluster, core, and periphery, respectively.
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Table 3 Complex detection statistics for the process networks

Cell-cycle Transcription Translation

D core% comp% extra% D core% comp% extra% D core% comp% extra%

SCE 4 93/100 100/100 71/ 67 8 87/ 88 100/100 73/ 85 4 89/100 96/ 96 50/ 50

ME 5 89/100 99/100 90/ 89 11 89/100 93/100 76/ 79 4 89/100 95/ 96 55/ 64

SCAN 4 87/ 91 98/100 100/100 8 81/ 84 100/100 96/100 0 —/— —/— —/—

Luo 5 76/ 81 100/100 100/100 6 89/ 87 100/100 100/100 4 84/ 92 96/ 96 72/ 73

CE 5 80/ 87 94/100 40/ 0 9 87/ 91 94/100 89/100 4 84/ 92 90/ 94 55/ 60

Here, D is the number of detected complexes, core% is among the detected complexes the mean/median percentage of core vertices that are in this complex, comp%
is themean/median percentage of complex proteins that are in the cluster, and extra% is themean/median percentage of periphery proteins that are not in the cluster.

has 10 proteins in the core and 56 in the periphery, and
all other clusters for the three other methods have cores
of at most 16 and peripheries of at most 30 vertices). The
cores have much lower coherence on average than the
other methods, but again coherence in the periphery is
even lower.
CE outputs many nontrivial clusters, on average the

cores and periphery are smaller than for SCE and ME.
The average coherence is lower than for SCE and ME, but
again the average coherence is higher in the core than in
the periphery.
We now describe the results for the transcription net-

work. Again, ME outputs the smallest cores, followed by
SCAN and CE. LUO again finds the largest cores and also
the largest peripheries. Concerning GO term analysis, we
see a similar pattern here that LUO has worse coherence.
The average core coherence is the highest for ME and,
unlike CE and SCE, the average coherence is higher in the
cores than in the periphery for ME.
In the translation network, ME outputs the most non-

trivial clusters, followed by CE and SCE. SCAN and LUO
output the fewest nontrivial clusters (5 and 4, respec-
tively). LUO has the best coherence values here. The
average coherence is higher for CE than for ME but the
difference between the average core and periphery coher-
ence is less pronounced in CE than in ME.

Complex detection. Table 3 gives an overview of the
number of detected complexes. Again, we describe the
results for the cell cycle network in more detail and then
summarize our findings for the transcription and transla-
tion network.
Following our hypothesis, we say that a complex is

detected by a cluster if at least 50% of the core belongs
to the complex and at least 50% of the complex belongs
to the cluster. Out of the seven complexes, three are
detected without any error (anaphase-promoting, DASH,
and Far3p/Far7p/Far8p/Far9p/Far10p/Far11p complex),
and one (Mcm2-7) is detected with an error of two addi-
tional proteins in the core that are not in the complex. The
periphery contains between one and eight extra proteins

that are not in the complex (which is allowed by our
hypothesis).
ME detects the same complexes as SCE, and addition-

ally the mitotic checkpoint complex. For the anaphase-
promoting complex, it misses one protein; all other com-
plexes are detected without error.
SCAN detects almost the same complexes as ME (it

misses the Mcm2-7 complex). It also has slightly more
errors, for example having three extra protein in the core
for the anaphase-promoting complex plus one missing.
LUO detects the same complexes as ME without missing
any complex proteins but it also finds more extra vertices
in the cores. CE detects the same clusters as ME with a
slightly higher number of missed complex proteins and
extra core proteins.
In the transcription network, theMEmethod comes out

a clear winner: it detects all 11 complexes and has fewer
errors than the other methods. CE detects more com-
plexes than SCAN and SCE; LUO detects only 6 complexes
for this network.
In the translation network, SCE, ME, LUO, and CE

detect the same four complexes. The SCAN algorithm
does not seem to deal well with this network, since it
does not detect any complex. LUO finds only four non-
trivial clusters, corresponding to the four complexes also
detected by SCE and ME; this might also explain why it
has the best coherence values here.

Conclusions
Experiment evaluation
The coherence values for cores and peripheries indicate
that a division of clusters into core and periphery makes
sense. Under the assumption that cores should be more
coherent than peripheries, ME and LUO do best with
respect to separating cores from periphery.
In detecting complexes, the ME method does best (20

detected), followed by CE (18), followed by SCE and LUO
(15 each), and finally SCAN (12). This indicates that the
model that peripheries are shared is superior (note that
in CE the size-1 clusters are also a shared periphery).
One advantage of ME compared to CE is that the cores
are smaller and thus contain fewer extra proteins which
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are not in the complex. Note that when comparing the
number of detected complexes, then SCE is at a disadvan-
tage, since it can use each protein as periphery only once,
while having large peripheries makes it easier to count a
complex as detected. One approach here could be to con-
sider clusters of size one as shared periphery (as we did
for CE). The graph modification-based methods showed
a more consistent behavior across the three test networks
than LUO (which performs not so well on the transcrip-
tion network) and SCAN (which performs not so well on
the translation network).
A further notable difference between the algorithms is

that LUO outputs much larger peripheries for each cluster.
Thus, the peripheries of the detected complexes contain
many proteins which are not known to be in the complex
(by our initial hypothesis, these extra proteins are not nec-
essarily errors). The other four methods are much more
conservative in this regard.

Outlook
Concerning the theoretical analysis of SPLIT CLUSTER
EDITING the following questions are open: Is SPLIT CLUS-
TER EDITING amenable to parameterized data reduc-
tion? That is, does SPLIT CLUSTER EDITING admit a
polynomial-time reduction to a polynomial-size problem
kernel (see [18] for a definition of problem kernel)? Does
SPLIT CLUSTER EDITING admit a constant-factor approx-
imation? It would be also interesting to study the SPLIT
CLUSTER DELETION problem in which only edge dele-
tions are allowed to transform the input graph into a split
cluster graph. This variant is also NP-hard by a reduction
that is similar to the one presented for SPLIT CLUSTER
EDITING.
For MONOPOLAR EDITING it would be interesting to

obtain any tractability results, for example by considering
combinations of parameters. A first step here could be to
study the problem of recognizing monopolar graphs more
closely.
There are many further variants of our models that

could possibly yield better biological results or have algo-
rithmic advantages. For instance, one could restrict the
cores to have a certain minimum size. Also, instead of
using split graphs as a core–periphery model, one could
resort to dense split graphs [10] in which every periph-
ery vertex is adjacent to all core vertices. Finally, one
could allow some limited amount of interaction between
periphery vertices.
Further evaluation of the biological properties of the

computed core–periphery structures seems also worth-
while. For example, it would be interesting to examine the
peripheries more closely in order to determine whether
SPLIT CLUSTER EDITING and MONOPOLAR EDITING are
too conservative when determining the periphery of a
cluster. Finally, one could explore the biological properties

of those clusters that were identified by SPLIT CLUSTER
EDITING or MONOPOLAR EDITING but that do not cor-
respond to known protein complexes from the CYC2008
database (all output clusters are listed in the Additional
file 1: Supplemental material).

Endnote
aTo determine the protein subsets corresponding to

each process, we queried BioMart [40] for all yeast genes
annotated with the relevant GO terms: GO:0007049 (cell
cycle), GO:0006412 (translation), and GO:0006351
(DNA-templated transcription). Note that this gives
somewhat different results than using the SGD GO
annotations.

Additional file

Additional file 1: Supplemental material. This file contains the source
code of the programs that generate the CPLEX ILPs, our input data (the
three process networks), and our output clusters. All files are readable as
plain text files.
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