
Cardona et al. Algorithms Mol Biol  (2015) 10:28 
DOI 10.1186/s13015-015-0059-z

RESEARCH

A reconstruction problem for a class 
of phylogenetic networks with lateral gene 
transfers
Gabriel Cardona, Joan Carles Pons and Francesc Rosselló* 

Abstract 

Background:  Lateral, or Horizontal, Gene Transfers are a type of asymmetric evolutionary events where genetic 
material is transferred from one species to another. In this paper we consider LGT networks, a general model of phylo-
genetic networks with lateral gene transfers which consist, roughly, of a principal rooted tree with its leaves labelled 
on a set of taxa, and a set of extra secondary arcs between nodes in this tree representing lateral gene transfers. An 
LGT network gives rise in a natural way to a principal phylogenetic subtree and a set of secondary phylogenetic subtrees, 
which, roughly, represent, respectively, the main line of evolution of most genes and the secondary lines of evolution 
through lateral gene transfers.

Results:  We introduce a set of simple conditions on an LGT network that guarantee that its principal and secondary 
phylogenetic subtrees are pairwise different and that these subtrees determine, up to isomorphism, the LGT network. 
We then give an algorithm that, given a set of pairwise different phylogenetic trees T0, T1, . . . , Tk on the same set of 
taxa, outputs, when it exists, the LGT network that satisfies these conditions and such that its principal phylogenetic 
tree is T0 and its secondary phylogenetic trees are T1, . . . , Tk.
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Background
In the traditional view of evolution, species evolve in a 
pattern ideally represented by a series of bifurcations in 
a tree. However, it is well known that many relevant evo-
lutionary processes cannot be properly represented in a 
tree [1, 2]. This has motivated the adoption, since as early 
as the second half of the XVIIIth century, of more general 
models to represent phylogenies [3]. One specific type of 
non tree-like events are the Lateral, or Horizontal, Gene 
Transfers: transfers of genetic material from one species 
to a different and, usually, taxonomically distant one [4]. 
Although these kinds of phenomena are known since 
the 1950s [5, 6], the current explosion of genomic and 
metagenomic data has revealed that they are much more 
frequent and important than previously thought, not 

only among unicellular species [7] but also, for instance, 
among plants [8] or from parasites to hosts [9].

Evolutionary histories including non-tree like events 
are usually modelled by means of (evolutionary) phylo-
genetic networks [10, 11]: rooted directed acyclic graphs 
with leaves bijectively labelled by a set of taxa. The study 
of phylogenetic networks has been an active field of 
research during recent years, as witnessed in [12], and 
many papers on the computational inference of phylo-
genetic networks with lateral gene transfer events from 
incongruent gene trees have been published: see, for 
instance [13–17].

Although lateral gene transfers are modeled in these 
papers as arcs added to a tree, and hence the resulting 
phylogenetic networks are tree-based in the sense of [18], 
in most cases the mathematical model under considera-
tion makes no reference to the base tree and all parents 
of a node are treated symmetrically. This is not accurate, 
because in lateral gene transfers, the resulting species 
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acquires its DNA mostly from one, and only one, of its 
parents, which should be understood as its “principal” 
parent, in contrast to the other parents which contrib-
ute in a much lesser way and should be considered as 
“secondary” parents. This asymmetry is usually empha-
sized in graphical representations of phylogenetic net-
works with lateral gene transfers, like for instance those 
depicted in [19, Fig.  3] (which, according to Morrison 
[20], are the first published in the literature), but again 
seldom in the mathematical model. Actually, and up to 
our knowledge, the only types of phylogenetic networks 
that explicitly distinguish between the primary, tree-like, 
line of evolution and the secondary lateral gene transfers 
that have been studied in the literature are those in [18] 
and those in [21, 22]. In [18] the primary line of evolution 
is given by choosing a base tree, but they are not inter-
ested in a reconstruction problem from a set of trees but 
in deciding whether this base tree exists or not for a given 
phylogenetic network. Also, Górecki’s introduces species 
graphs in [21, 22], although this author was not interested 
in the reconstruction of phylogenies but in modelling 
the evolution of genes in the context of the evolution of 
species.

In this paper we consider a general model of phyloge-
netic network with lateral gene transfers similar to the 
species graphs’ approach: LGT networks, which consist 
roughly of a principal rooted tree with its leaves labelled 
on a set of taxa (and possibly with elementary, that is, 
out-degree 1, nodes) and a set of secondary arcs between 
nodes in this tree, representing lateral gene transfers, 
such that the resulting directed graph turns out to be 
rooted, acyclic, with its leaves labelled and its internal 
nodes unlabelled. Any such LGT network gives rise to a 
principal phylogenetic subtree (by suppressing out-degree 
1 nodes in the principal subtree) and a set of second-
ary phylogenetic subtrees, each one of them obtained by 
replacing one arc in the principal subtree by one second-
ary arc with the same target node (and then recursively 
removing non-labelled leaves and out-degree 1 nodes). 
These phylogenetic subtrees can be understood, respec-
tively, as representing the primary line of evolution and 
the secondary histories, involving one lateral gene trans-
fer event.

We then introduce the subclass of restricted LGT net-
works, which are characterized by a set of conditions 
that guarantee that its principal and secondary phylo-
genetic subtrees are pairwise different and that these 
trees determine, up to isomorphism, the LGT network. 
We also give an algorithm that solves the corresponding 
reconstruction problem from incongruent trees: given a 
set of pairwise different phylogenetic trees T0,T1, . . . ,Tk 
on the same set of taxa, to find, when it exists, the 
unique restricted LGT network such that its principal 

phylogenetic tree is T0 and its secondary phylogenetic 
trees are T1, . . . ,Tk. In order to test the models and algo-
rithms introduced in this paper, we include a computa-
tional experiment on the database of phylogenetic trees 
given in [23].

Preliminaries
Let N = (V ,E) be a directed acyclic graph. A node u ∈ V  
is a tree node if indeg(u) ≤ 1, and it is a reticulation oth-
erwise. A node u is a root if indeg(u) = 0, and N is rooted 
(it is an rDAG, for short) if it has a single root. A node u 
is a leaf if outdeg(u) = 0, internal if it is not a leaf, and 
elementary if outdeg(u) = 1.

For every u, v ∈ V , if (u, v) ∈ E, we say that u is a par-
ent of v and that v is a child of u. Whenever there exists a 
(directed) path from u to v, in symbols u�v, we say that 
u is an ancestor of v and that v is a descendant of u: notice 
in particular that every node is both an ancestor and a 
descendant of itself. A path u�v is proper when u �= v 
(and then u is a proper ancestor of v and v is a proper 
descendant of u). A path u�v is elementary when all its 
nodes, except at most v (but including its origin u), are 
elementary.

A tree is an rDAG without reticulations. In particular, 
trees may contain elementary nodes. Given an elemen-
tary node u in a tree T, in order to suppress it we perform 
the following operation: if u is the root, we remove it 
together with its incident arc; if, otherwise, u has parent 
w and child v, we remove u together with the arcs (w, u) 
and (u, v), and we replace them by an arc (w, v).

Two paths u�v1 and u�v2 in a tree T are bifurcating 
when they have the same origin and it is their only node 
in common. Given two nodes u, v in a tree T, their lowest 
common ancestor LCAT (u, v) is their common ancestor 
that is a descendant of every other common ancestor of 
them. If u, v are not connected by a directed path, then 
LCAT (u, v) is characterized by the fact that there exist 
bifurcating paths LCAT (u, v)�u and LCAT (u, v)�v.

Let S be henceforth a finite, non-empty set of labels; in 
order to avoid unnecessary discussions of trivial cases, 
we shall always assume that S has more than one ele-
ment. An S-rDAG is an rDAG endowed with a bijection 
between its set of leaves and S. We shall always identify, 
usually without further notice, each leaf in an S-rDAG 
with its label.

In this paper, by a phylogenetic network on S we mean 
an S-rDAG without elementary nodes. Notice, in par-
ticular, that we forbid in our phylogenetic networks the 
existence of reticulations with out-degree 1. The rea-
son is that, unlike other interpretations [10, 24, 25, 26], 
we understand that all nodes in a phylogenetic network 
represent species: each tree node represents a species 
produced by mutations from its immediate ancestor, 
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while reticulations represent species that have appeared 
through “reticulate” events involving the interaction of 
more than one species. Therefore, an elementary node 
would represent a species that has only one descendant, 
and it is impossible to distinguish this ancestor species 
from its unique descendant through evolutive informa-
tion only.

An S -tree is an S-rDAG without reticulations, that is, 
a tree endowed with a bijection between its set of leaves 
and S. A phylogenetic tree on S is a phylogenetic network 
on S without reticulations, or, equivalently, an S-tree 
without elementary nodes. Every S-tree gives rise to a 
phylogenetic tree on S by suppressing all its elementary 
nodes.

Given a phylogenetic tree T on S and a subset S0 ⊆ S, 
the restriction of T to S0 is the phylogenetic tree T |S0 on 
S0 obtained by first taking the subtree of T supported on 
all ancestors of the leafs in S0 and then suppressing ele-
mentary nodes.

Given an S-tree T = (V ,E), the cluster of a node u ∈ V  
is the set CT (u) ⊆ S of labels of leaves that are descend-
ants of u. Let C(T ) = {CT (u) | u ∈ V }.

A triple on three different labels x, y, z ∈ S is a phyloge-
netic tree on {x, y, z}. Figure 1 depicts the only four possi-
ble triples on x, y, z, together with their Newick notation.1 
The triple defined by a phylogenetic tree T on x, y, z ∈ S is 
the restriction of T to {x, y, z}; we shall denote it by Tx,y,z, 
and the set of all triples defined by T by Ŵ(T ).

Two S-rDAG on the same set S are isomorphic if there 
exists an isomorphism of directed graphs between them 
that preserves the leaves’ labels. Recall that two phy-
logenetic trees on S are isomorphic if, and only if, they 
have the same set of clusters, and also if, and only if, they 
define the same set of triples [27, Theorems 3.5.2 and 
6.4.1]. Actually, the descriptions of a phylogenetic tree T 
on S by means of C(T) and Ŵ(T ) are equivalent, through 
the following result (see, for instance, [28, Lemma 9.1]):

Lemma 1  Let T be a phylogenetic tree on S. For every 
∅ �= C ⊆ S, C ∈ C(T ) if, and only if, ((c, c′), x) ∈ Ŵ(T ), for 
every c, c′ ∈ C and x ∈ SP\C.

We shall often make the abuse of language of saying 
that two S-rDAG are equal to mean that they are actually 
isomorphic.

LGT networks
In [21, 22], Górecki defined a species graph on a set of 
labels S as an S-tree endowed with a set of extra arcs, 

1  We omit the ending semicolon in order not to unnecessarily overload the 
triples’ notation.

representing lateral gene transfers, that satisfies a set of 
restrictions motivated by their use in the representation 
of common evolutionary histories of species and genes. 
In this section we consider phylogenetic networks with 
lateral gene transfers more general than species graphs, 
by imposing only that the graph obtained by adding arcs 
to the tree is a phylogenetic network. In the next section 
we shall impose a new set of restrictions that will ensure 
the uniqueness of the solution of the reconstruction 
problem considered therein.

Definition 1  An LGT network on a set S is a phyloge-
netic network N = (V ,E) on S together with a partition 
E = Ep ⊔ Es of its set of arcs such that T0(N ) = (V ,Ep) is 
an S-tree. The arcs in Ep are called principal, and those in 
Es, secondary. We shall call T0(N ) the principal subtree of 
N.

Figure 2 depicts an LGT network and its principal sub-
tree T0(N ).2 It is easy to check that any species graph 
defines an LGT network. Using some other notations 
that appear in the literature, we also have that T0(N ) is a 
switching of N [29] (or T0(N ) is displayed by N [10]); also, 
N is tree-based and T0(N ) is a distinguished base tree 
[18].

Let N be an LGT network. Since T0(N ) = (V ,Ep) is an 
S-tree, every arc in N ending in a tree node is principal 
and the set of arcs ending in each reticulation h contains 
exactly one principal arc: we call its origin the principal 
parent of h, and its other parents, secondary parents. To 
ease the notations, we shall also say that the single par-
ent of a tree node is its principal parent. We also split the 
children of every node v into principal and secondary, 
depending on the type of the arcs going from v to them. 
These definitions can be illustrated in Fig. 2; for instance, 
the node a is the principal parent of h, and the nodes 
c and d are its secondary parents; also, the leaf 4 is the 
principal child of c and the nodes h and k are its second-
ary children.

The rationale behind these definitions is as follows. In 
an LGT network, nodes represent species. The principal 
subtree represents the main line of evolution of these 
species; that is, the genetic material of a species comes 
mainly from its principal parent, possibly including 
mutations, while its secondary parents have introduced 
some genes in the species through lateral gene transfers. 
In this way, a secondary arc models a lateral gene transfer 
from its source to the principal parent of its target.

2  Henceforth, in graphical representations of LGT networks, we shall use 
the following conventions: principal arcs are represented by continuous 
arrows, secondary arcs by dashed arrows, and principal paths by continuous 
snaked arrows.
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The fact that T0(N ) is an S-tree also implies that every 
internal node of N has some principal child. A node v is 
principally elementary when it has exactly one principal 
child, i.e., when it is elementary in T0(N ). Since N cannot 
contain elementary nodes, this implies that every prin-
cipally elementary node is the source of some secondary 
arc. A principally elementary path in N is an elementary 
path in T0(N ).

A path in an LGT network N is principal when it con-
sists only of principal arcs. The principal cluster of a node 
u is the set CT0(N )(u) of leaves that are principal descend-
ants of u; that is, that can be reached from u through 
principal paths.

For each secondary arc e = (u, h) in N, the secondary 
subtree Te(N ) of N associated to e is the tree obtained 
from T0(N ) by removing the principal arc ending in h and 
replacing it by e; cf. Fig. 3. Notice that the tree Te(N ) is 
also a switching of N, and this switching can be obtained 
from the one associated to T0(N ) by switching-off the 
principal arc ending in h and switching-on the arc e.

Although T0(N ) is always an S-tree, a secondary sub-
tree of N may have non-labelled leaves: we shall say that 
it is partially leaf-labelled in S. To obtain phylogenetic 
trees on S from the principal and secondary subtrees of 
N, we reduce them: we recursively remove (in secondary 
subtrees) all their non labelled leaves together with the 

arcs ending in them, and then we recursively suppress all 
their elementary nodes. We shall generically denote by T̃  
the reduced phylogenetic tree on S obtained by reducing 
a partially leaf-labelled tree T on S. Notice that T̃  is an 
homeomorphic subtree of T, in the sense that they have 
the same set of labels, the set of nodes of T̃  is contained in 
the set of nodes of T, this inclusion preserves the leaves’ 
labelling, and every arc in T̃  corresponds to a path in T. 
In particular, for every node v in T̃ , CT (v) = C

T̃
(v); we 

shall often use this equality without any further mention. 
The construction of the reduced principal and secondary 
subtrees of an LGT network is illustrated by Figs. 3 and 4.

The following result is a direct consequence of the fact 
that the set of triples defined by a phylogenetic tree char-
acterizes it, and that the triple defined on a set of three 
labels by a partially leaf-labelled tree with, possibly, ele-
mentary nodes, is the same as the triple defined by its 
reduction.

Proposition 1  Let T1,T2 be two partially leaf-labelled 
trees on a set S. Then, T̃1 = T̃2 if, and only if, T1 and T2 
define the same triple on each set of three different labels 
of S.

Intuitively, the difference between the reduced prin-
cipal subtree T̃0(N ) and any reduced secondary subtree 

x y z

((x, y), z)

y z x

((y, z), x)

x z y

((x, z), y)

x y z

(x, y, z)
Fig. 1  Triples on x, y, z
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c d

b

r

a

Fig. 2  An LGT network (left) and its principal subtree (right)
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T̃e(N ) is that some rooted subtree of the former is pruned 
(by removing the principal arc ending in the end of e) 
and regrafted (through the secondary arc e) in the latter. 
This fact motivates to consider rooted subtree prune and 
regraft (rSPR, for short) operations [30] to analyze the 
differences between the reduced principal subtree of an 
LGT network and its reduced secondary subtrees. How-
ever, since these trees need not be binary, we slightly gen-
eralize the rSPR operations defined in [30] to allow for 
the pruned subtree to be regrafted not only to an arc but 
also to a node.

More precisely, we define an rSPR operation of a tree T 
as the following procedure:

1.	 Choose an arc e = (u, v) of T.
2.	 Remove e from T.
3.	 Choose a node w that is not a descendant of v.
4.	 If w is an internal node other than u, then apply either 

(a) or (b) below. If w is a leaf or w = u, apply (b).
(a)	 Add an arc (w, v).
(b)	 Add a new node w̃ and new arcs (w̃, v) and (w̃,w) . 

If w was not the root of T and w′ was its parent, 
then remove the arc (w′,w) and add a new arc 

(w′, w̃). If w was the root, then w̃ becomes the 
root of the resulting tree.

5.	 Suppress u if it has become elementary.

We shall denote such an rSPR operation by v node
←−w 

(a node rSPR operation) if step (4a) is applied, and 
v

arc
←−w (an arc rSPR operation) if step (4b) is applied; 

cf. Fig. 5. When it is not necessary to specify whether 
it is a node or an arc rSPR operation, we shall denote 
it by v

spr
←−w.

Given any pair of phylogenetic trees on the same set 
of labels, their rSPR distance drSPR(T ,T ′) is the least 
number of rSPR operations that transform one into the 
other (cf.  [30] in the binary case). In particular, since 
a reduced secondary subtree T̃e(N ) of an LGT net-
work is obtained from its reduced principal subtree 
T̃0(N ) by means of an rSPR operation, we have that 
drSPR(T̃0(N ), T̃e(N )) ≤ 1 , and drSPR(T̃0(N ), T̃e(N )) = 1 
if, and only if, T̃0(N ) �= T̃e(N ).

An isomorphism of LGT networks is an isomorphism of 
S-rDAG that preserves and reflects the partitions of the 
sets of arcs into principal and secondary. More formally, 
given two LGT networks N = (V ,E) and N ′ = (V ′,E′), 

1 2 3 4

e1 e2

N

1 2 3 4

T0(N)

1 2 3 4

Te1(N)

1 2 3 4

Te2(N)

Fig. 3  An LGT network, its principal subtree and its secondary subtrees

1 2 3 4

T̃0(N)

1 2 3 4

T̃e1(N)

1 2 3 4

T̃e2(N)

Fig. 4  The reduced principal subtree and the reduced secondary subtrees of the LGT network N depicted in Fig. 3
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an isomorphism from N to N ′ is a bijection φ : V → V ′ 
such that:

• • (u, v) is a principal arc in N if, and only if, (φ(u),φ(v)) 
is a principal arc in N ′;

• • (u,  v) is a secondary arc in N if, and only if, 
(φ(u),φ(v)) is a secondary arc in N ′;

• • u ∈ V  is a leaf labelled with s ∈ S if, and only if, φ(u) 
is a leaf labelled with s.

The isomorphism of LGT networks can be easily checked 
in linear time in their sizes. Indeed, two LGT networks 
N and N ′ are isomorphic if, and only if, T0(N ) = T0(N

′)

—which can be checked in linear time in the number of 
principal arcs of the networks—and this isomorphism 
preserves and reflects the sets of secondary arcs.

As we do with S-rDAG in general, we shall usually say 
that two LGT networks are equal when they are actually 
isomorphic.

A reconstruction problem for a restricted class 
of LGT networks
Let us consider the problem of reconstructing an LGT 
network from its reduced principal subtree T0 and its set 
of reduced secondary subtrees T1, . . . ,Tk. We shall take 

into account only the case when T1, . . . ,Tk are pairwise 
different, because if Ti = Tj, they can be defined by the 
same secondary arc. Moreover, we shall restrict ourselves 
to the case when T0 �= Ti for every i = 1, . . . , k, because 
when a reduced secondary subtree is equal to the 
reduced principal subtree, it only means that we are not 
able to “distinguish” the secondary line of evolution from 
the principal one. This leads us to the following general 
problem:

Of course, this problem may have no solution for 
certain input trees. Consider, for instance, the trees 
T0,T1,T2 depicted in Fig.  6. A simple inspection shows 
that if there exists an LGT network N with reduced prin-
cipal subtree T0 and two secondary arcs e1, e2 such that 
T̃e1(N ) = T1 and T̃e2(N ) = T2, then e1 must go from an 
elementary node added in the arc ending in 4 to a (or to 
an elementary node added in the arc ending in a), and e2 
must go from an elementary node added in the arc end-
ing in 3 to c (or to an elementary node added in the arc 
ending in c). But then, the resulting directed graph con-
tains a cycle: see, for instance, the graph N in Fig. 6.    

On the other hand, as it was already hinted in the dis-
cussion above, if the LGT network reconstruction prob-
lem has a solution for a specific input, it need not be 
unique: see, for instance, Fig. 7. And, as we mentioned at 
the beginning of this section, there may be repetitions in 
the family of reduced principal and secondary subtrees 
of a general LGT network, and therefore not every LGT 
network can be obtained as an output of this problem.

This motivates us to restrict ourselves to a class of LGT 
networks satisfying a set of conditions that guarantee, on 
the one hand, that their reduced principal and secondary 
subtrees are pairwise different and, on the other hand, 

u w′

v w

e

u w′

v w

u w′

w̃

v w

Fig. 5  The original tree (left), the tree obtained by means of the node 
rSPR operation v

node
←−w (middle), and the tree obtained by means of 

the arc rSPR operation v
arc
←−w (right)

1 2 3 4 5

a

b

c

r T0

1 5 4 3 2

T1

1 2 3 4 5

T2

1 2 3 4 5

N

Fig. 6  Any “LGT network” with reduced principal subtree T0 and reduced secondary subtrees T1, T2 would contain a cycle
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the uniqueness of the restricted LGT network with given 
reduced principal and secondary subtrees, if some exists.

Definition 2  An LGT network is restricted when it sat-
isfies the following properties:

(a)	 No principal child of a principally elementary node 
is principally elementary.

(b)	 The target of a secondary arc is never principally 
elementary.

(c)	 If (u, h) is a secondary arc, then there exists no prin-
cipal path u�h.

(d)	 If (u, h) is a secondary arc and z = LCAT0(N )(u, h) , 
then the principal path z�h contains some non 
principally elementary intermediate node.

Conditions (a) and (b) are necessary to guarantee the 
uniqueness of the solutions:

• • Let N be an LGT network with a principal arc (u,u′) 
with both u,u′ principally elementary: then (since N 
cannot contain elementary nodes) both u,u′ must 
be sources of secondary arcs, say e = (u, h) and 
e′ = (u′, h′). If h = h′, these arcs define the same 
reduced secondary subtree. If h �= h′, then, if we 
replace e and e′ by ē = (u, h′) and ē′ = (u′, h), we 
obtain a new LGT network with the same reduced 
principal and secondary subtrees as N.

• • Let N be an LGT network with a secondary arc 
e = (u, h) with h principally elementary, and let h′ be 
the principal child of h. We shall assume that N does 
not contain the secondary arc e′ = (u, h′), because 
otherwise T̃e(N ) = T̃e′(N ). Then, if we replace the 
secondary arc (u,  h) by a secondary arc (u, h′), we 
obtain a new LGT network with the same reduced 
principal and secondary subtrees as N.

As far as the other two conditions go, (c) prevents 
the existence of a lateral gene transfer from a species to 
a principal descendant of it, and condition (d) prevents 
the existence of a lateral gene transfer from a species to 

a species represented by an ancestor of it in the reduced 
principal subtree.

Except for (c), which is shared by both definitions, the 
conditions that define our restricted LGT networks are 
transversal to those defining species graphs.

We shall prove now that the reduced principal and sec-
ondary subtrees of a restricted LGT network form a fam-
ily of pairwise different phylogenetic trees.

Proposition 2  If N is a restricted LGT network and e is 
a secondary arc in it, then T̃0(N ) �= T̃e(N ).

Proof  Let e = (u, h) ∈ Es; to simplify the notations, we 
shall denote T0(N ) and Te(N ) by T0 and Te, respectively. 
We shall prove that these trees define different sets of tri-
ples; by Proposition 1, this will imply that T̃0 �= T̃e.

By condition (c) in Definition 2, there exists no 
principal path connecting u and h, and therefore 
CT0(h) ∩ CT0(u) = ∅. Let x1 ∈ CT0(u) and x2 ∈ CT0(h) . 
On the other hand, if z = LCAT0(u, h), condition (d) in 
Definition 2 implies that the principal path z�h con-
tains some intermediate node w with a principal child 
w1 outside this path; let x3 ∈ CT0(w1) (see Fig.  8). It is 
straightforward to check now that T0 defines the triple 
((x2, x3), x1) and Te defines the triple ((x1, x2), x3). There-
fore, Ŵ(T0) �= Ŵ(Te), as we claimed.� �

Proposition 3  If N is a restricted LGT network 
and e, e′ are two different secondary arcs in it, then 
T̃e(N ) �= T̃e′(N ).

1 2 3 1 2 3 1 2 3

Fig. 7  Three LGT networks with the same reduced principal and secondary subtrees

z

w

h

u

x1

x2

x3

Fig. 8  The structure of N involving e in the proof of Proposition 2
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The proof of this proposition is similar to that of Prop-
osition 2, but much longer because we must distinguish 
many cases, depending on the relative positions of the 
source and the target nodes of e and e′ in T0(N ). There-
fore, and in order not to lose the thread of the paper, we 
postpone it until the Additional file 1: Appendix.

The problem we are actually going to solve in this sec-
tion is, then, the following special case of the LGT Net-
work Reconstruction Problem:

Our next goal is now to establish a set of necessary and 
sufficient conditions for the existence of a restricted LGT 
network N with a given principal subtree T and a given 
secondary subtree T ′. First, we give these conditions in 
terms of rSPR operations. Next, we translate the resulting 
conditions in terms of triples and clusters.

Proposition 4  Let T ,T ′ be two phylogenetic trees on 
the same set of labels. There exists a restricted LGT net-
work N with a secondary arc e such that T = T̃0(N ) and 
T ′ = T̃e(N ) if, and only if:

1.	 drSPR(T ,T ′) = 1, and
2.	 If h

spr
←−w is an rSPR operation that produces T ′ 

from T, then, in T, w is neither an ancestor of h nor a 
descendant of the parent of h.

Proof  As far as the necessity of conditions (1) and (2) goes, 
recall from § that, if N is an LGT network and e = (u, h) a 
secondary arc in it, then T̃e(N ) is obtained from T̃0(N ) by 
means of either a node rSPR operation h node

←−u, when u is 
not principally elementary in N, or an arc rSPR operation 
h

arc
←−u∗, with u∗ the only principal child of u in N, when it 

is principally elementary. Since, moreover, T̃e(N ) �= T̃0(N ) 
by Proposition 2, this entails that drSPR(T ,T ′) = 1. On the 
other hand, u (or u∗, in the second case) can be neither a 
principal ancestor of h, because of condition (c) in Defini-
tion 2, nor a proper principal descendant of the parent v of 
h in T̃0(N ), because this would imply that v = LCAT0(u, h), 
against condition (d) in Definition 2.

Let us prove now the sufficiency of conditions (1) and 
(2). If T ′ is obtained from T by means of a node rSPR 
operation h node

←−w, let N be the LGT network obtained by 
adding to T the secondary arc (w, h). If T ′ is obtained by 
means of an arc rSPR operation h arc

←−w, then, since h is 
not a descendant of w in T, the latter cannot be the root; 

in this case, if v is its parent in T, split the arc (v, w) by 
adding an intermediate node u in it, and add a secondary 
arc e = (u, h); let N be the resulting LGT network.

In both cases, it is clear by construction that T̃0(N ) = T  
and T̃e(N ) = T ′. Moreover, N clearly satisfies condition 
(a) (because N has at most one principally elementary 
node), (b) (because h is not elementary in T), (c) (because 
h is not a descendant of w in T), and (d) (because, since 
w is not a descendant in T of the parent h0 of h, the path 
LCAT (w, h)�h in T0(N ) contains h0 as intermediate 
node, and it is not elementary in T) in the definition of 
restricted LGT network.� �

We rewrite now the characterization provided by the 
previous proposition in terms of triples (Proposition 5) 
and clusters (Proposition 6).

We say that two trees T ,T ′ on the same set of labels S and 
given by their respective set of triples {Tx,y,z | {x, y, z} ⊆ S} 
and {T ′

x,y,z | {x, y, z} ⊆ S} satisfy the principal-secondary 
condition on triples if there exist k , l,m ≥ 1 and a family of 
non-empty, pairwise disjoint subsets of S

(and to ease notations, let Cl =
⋃m

i=1 Cl,i) such that for 
every x, y, z ∈ S:

1.	 If x ∈
⋃k

i=1 Ai, y ∈ B, and z ∈
⋃l

i=1 Ci, then 
Tx,y,z = ((x, y), z) and T ′

x,y,z = ((y, z), x).
2.	 If x ∈ B, y ∈ Aj and z ∈ Ai, for some 1 ≤ i < j ≤ k, 

then Tx,y,z = ((x, y), z) and T ′
x,y,z = ((y, z), x).

3.	 If x ∈ Ci, y ∈ Cj and z ∈ B, for some 1 ≤ i < j ≤ l, 
then Tx,y,z = ((x, y), z) and T ′

x,y,z = ((y, z), x).
4.	 If x ∈ Cl,i, y ∈ Cl,j and z ∈ B, for some 1 ≤ i < j ≤ m, 

then Tx,y,z = ((x, y), z) and T ′
x,y,z = (x, y, z).

5.	 If x, y, z do not satisfy any of the previous conditions, 
then Tx,y,z = T ′

x,y,z.

Proposition 5  Let T ,T ′ be two phylogenetic trees on 
the same set of labels. There exists a restricted LGT net-
work N with a secondary arc e such that T = T̃0(N ) and 
T ′ = T̃e(N ) if, and only if, they satisfy the principal-sec-
ondary condition on triples.

Proof  As far as the “only if ” implication goes, 
assume that e = (w, h) and let v = LCAT0(N )

(w, h) =

LCA
T̃0(N )

(w, h). Let w̃ ∈ T̃0(N ) be the first non prin-
cipally elementary principal descendant of w: that is, 
w̃ = w if w is not principally elementary, and its principal 
child otherwise. Now:

• • Let v → u1 → · · · → uk → h be the path v�h in 
T̃0(N ) [where k ≥ 1 by condition (d) in Definition 2];

A1, . . . ,Ak ,B,C1, . . . ,Cl−1,Cl,1, . . . ,Cl,m
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• • Let v → w1 → · · · → wl−1 → wl = w̃ be the path 
v� w̃ in T̃0(N ) [where l ≥ 1 because condition (c) in 
Definition 2 implies that w �= v];

• • For every i = 1, . . . , k − 1, let Ai = CT0(N )

(ui)\

CT0(N )

(ui+1);
• • Let Ak = CT0(N )(uk)\CT0(N )(h);
• • Let B = CT0(N )(h);
• • For every i = 1, . . . , l − 1, let Ci = CT0(N )

(wi)\

CT0(N )

(wi+1);
• • If w̃ = w, let x1, . . . , xm be its children in T̃0(N ) , and 

let Cl,i = CT0(N )(xi), for i = 1, . . . ,m ; if w is princi-
pally elementary in N, let Cl = Cl,1 = C

T̃0(N )

(w̃) =

CT0(N )

(w).

(Cf. Fig. 9). It is straightforward to check that the tri-
ples defined by T0(N ) and Te(N ) are the same except for 
those in the statement.

Let us consider now the “if” implication. In order not 
to overload the text, we shall outline here the proof, and 
fill in the details in a series of Claims proved in the Addi-
tional file 1: Appendix.

Assuming that the symmetric difference Ŵ(T )△ Ŵ(T ′) 
consists of those triples described in the statement, we 

have that B is a cluster of both T and T ′ (this is Claim 1 
in the Appendix, where it is proved). Since every triple 
in Ŵ(T )△ Ŵ(T ′) involves one, and only one, leaf in B, it 
is clear that Ŵ(T |B) = Ŵ(T ′|B) and Ŵ(T |S\B) = Ŵ(T ′|S\B) 
and hence T |B = T ′|B and T |S\B = T ′|S\B. So, T |B and 
T |S\B form a maximum-agreement forest for T and T ′ in 
the sense of [31], which implies that drSPR(T ,T ′) = 1 [30, 
Theorem 2.1]. Then, the rSPR operation that transforms 
T into T ′ must have the form h

spr
←− x, with h the root of 

T |B, that is, the node in T with CT (h) = B. In order to 
prove that this rSPR operation satisfies condition (2) in 
Proposition 4, we must identify the node x and the type 
of rSPR operation. To do that, we use that each Cl,i is a 
cluster in T and T ′ (cf. Claim 2 in the Appendix) and that 
B ∪ Cl is a cluster in T ′ but not in T (cf. Claim 3). Then:

• • If m = 1, so that Cl = Cl,1 ∈ C(T ) ∩ C(T ′), this 
entails that the nodes with clusters B and Cl are sib-
ling in T ′ but not in T, and therefore that x is the 
node in T with cluster Cl and that the rSPR operation 
is of type arc.

• • If m > 1, since Cl is a cluster in T but not 
in T ′ (this is Claim 4 in the Appendix) and 

T̃0(N)
v

u1
A1 ...
uk

Ak

h

B

w1
C1. . .

w̃

Cl,m

Cl,1

.. .

Cl

v

u1
A1 ...
uk

Ak

h

B

w1
C1. . .

w̃

Cl,m

Cl,1

.. .

T̃e(N)

a

v

u1
A1 ...
uk

Ak

h

B

w1
C1. . .
w

w̃

Cl

T̃e(N)

b
Fig. 9  The local structure of T̃0(N) and T̃e(N) around a secondary arc e = (w , h), when w is not principally elementary (a) and when it is principally 
elementary (b)
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B ∪ Cl,i1 ∪ · · · ∪ Cl,ik /∈ C(T ′) for every 
∅ �= {i1, . . . , ik} � {1, . . . ,m} (cf. Claim 5), we have 
that the nodes with clusters B,Cl,1, . . . ,Cl,m are sib-
ling in T ′ but not in T, and therefore that x is the 
node in T with cluster Cl and that the rSPR operation 
is of type node.

In both cases, it is easy to see that x is not connected in 
T with h (because B ∩ Cl = ∅) and that LCAT (x, h) is not 
the parent of h (because if a ∈ A1, b ∈ B and c ∈ Cl, then 
((a, b), c) ∈ Ŵ(T )).� �

Corollary 1  Let N andN ′ be two restricted LGT net-
works on the same set of labels S, each with a single sec-
ondary arc: say, e and e′, respectively. If T̃0(N ) = T̃0(N

′) 
and T̃e(N ) = T̃e′(N

′), then N = N ′.

Proof  Let us denote T̃0(N ) = T̃0(N
′) simply by T. Since 

N and N ′ are restricted LGT networks, the proof of the 
last proposition shows that if T̃e(N ) = T̃e′(N

′), then e and 
e′ must have the same source and target nodes: with the 
notations therein, their target node is the node in T with 
cluster B, and their source node is either a principally ele-
mentary node added in the arc ending in the node in T 
with cluster Cl (if m = 1) or the node in T with cluster Cl 
(if m > 1). Therefore, N = N ′.� �

Notice that the naïve implementation of the proce-
dure given by Proposition 5, that computes and writes 
all the O(n3) triples defined by T and T ′ and then checks 
whether the symmetric difference of the correspond-
ing sets of triples has the form described therein, takes 
at least O(n4) time. Although this cost can possibly be 
reduced by using the strategy in [32], we found it sim-
pler to translate this condition on triples into an equiva-
lent condition on clusters that is faster to check. To this 
end we first give a set of conditions written in terms of 
clusters of trees and its structure as a partial ordered set, 
where we consider the natural ordering given by inclu-
sion of sets. In the context of posets, a segment is a chain 
such that every element in the poset lying between the 
ends of the chain also belongs to the chain.

We say that two trees T ,T ′ on the same set of labels S 
and given by their respective set of clusters C(T) and C(T ′) 
satisfy the pricipal-secondary condition on clusters if:

(a)	The symmetric difference of the clusters of T and T ′ 
can be written as follows: There exist k , l ≥ 1 such that:
•	 C(T )\C(T ′) consists (at most) of two maximal 

disjoint segments in C(T) 

 with l − 1 ≤ l0 ≤ l.
•	 C(T ′)\C(T ) consists (at most) of two maximal 

disjoint segments in C(T ′)

Uk � · · · � U1, Wl0 � · · · � W1,

 with k − 1 ≤ k0 ≤ k.
•	 If l = 1 and l0 = l − 1, (respectively, if k = 1 and 

k0 = k − 1), the chain Wl0 � · · · � W1 (respec-
tively, Uk0

′ � · · · � U ′
1) does not exist, and then 

C(T )\C(T ′) (respectively, C(T ′)\C(T )) consists 
only of the other segment.

•	 If C(T )\C(T ′) (respectively, C(T ′)\C(T )) con-
sists of two maximal disjoint segments of clusters, 
then U1 ∩W1 = ∅ (respectively, U1

′ ∩W1
′ = ∅).

(b)	The minimal elements in the chains above satisfy that 
Uk ∩Wl

′ ∈ C(T ) ∩ C(T ′). Let B denote this cluster.
(c)	The difference between the first element in the first 

segment and the common cluster B, say Ak = Uk\B 
satisfies:
•	 Ak ∈ C(T ′);
•	 if k0 = k − 1, then Ak ∈ C(T );
•	 if k0 = k, then U ′

k = Ak /∈ C(T ).
(d)	Analogously, the difference between the first element 

in the last segment and the common cluster B, say 
Cl = W ′

l\B satisfies:
•	 Cl ∈ C(T );
•	 if l0 = l − 1, then Cl ∈ C(T ′);
•	 if l0 = l, then Wl = Cl /∈ C(T ′).

(e)	If k > 1, the differences between consecutive sets in 
the segments above satisfy:
•	 Ak � Uk−1

′;
•	 Setting (even when k0 = k − 1) Uk

′ = Ak,  
we have that Ui\Ui+1 = Ui

′\Ui+1
′ for every 

i = 1, . . . , k − 1.
(f )	And analogously, if l > 1, then:

•	 Cl � Wl−1;
•	 Setting (even when l0 = l − 1) Wl = Cl, we 

have that Wi\Wi+1 = Wi
′\Wi+1

′ for every 
i = 1, . . . , l − 1.

Proposition 6  Let T ,T ′ be two different phylogenetic 
trees on the same set of labels. There exists a restricted 
LGT network N with a secondary arc e such that 
T = T̃0(N ) and T ′ = T̃e(N ) if, and only if they satisfy the 
principal-secondary condition on clusters.

The principal-secondary condition on clusters can be 
checked in O(n2) time. Indeed, conditions (b) to (f ) can 
be checked in linear time, since they only involve test-
ing if certain sets are clusters of the trees or subsets of 
some specific sets of leaves. As for condition (a), one only 
needs to compute all the clusters of both trees, which can 
be done in O(n2) time, and then computing the symmet-
ric difference of those sets and arranging this symmetric 
difference in chains, which can be done in linear time in 
the size of the clusters.

Uk0
′ � · · · � U ′

1, W ′
l � · · · � W ′

1,



Page 11 of 15Cardona et al. Algorithms Mol Biol  (2015) 10:28 

Proposition 6 allows us to detect easily the secondary 
arc that must be added to T in order to obtain a network 
that has T ′ as the corresponding reduced secondary tree, 
when it exists, by means of the following algorithm:

It turns out that N (T ,T ′) is contained in every 
restricted LGT network with reduced principal subtree T 
and having T ′ as a reduced secondary subtree.

Proposition 7  Let N be a restricted LGT network such 
that T̃0(N ) = T  and T̃e(N ) = T ′, for some secondary arc 
e. Let N ′ be the LGT network obtained by removing from 
N all secondary arcs except e and then suppressing ele-
mentary nodes. Then, N ′ = N (T ,T ′).

Proof  In this situation, N ′ is also a restricted LGT net-
work with T̃0(N

′) = T  and T̃e(N
′) = T ′, and then Corol-

lary 1 applies.� �

Now we are able to solve the Restricted LGT Net-
work Reconstruction problem:

Proposition 8  Let T ,T ′
1, . . . ,Tk

′ be a family of pair-
wise different phylogenetic trees on S such that each pair 
(T ,Ti

′), i = 1, . . . , k, satisfies conditions (a) to (f ) in Prop-
osition 6. If there exists some restricted LGT network N̄  
with reduced principal subtree T and reduced secondary 
subtrees T1

′, . . . ,Tk
′, then the graph N defined in step 4 of 

Algorithm 2 applied to T ,T ′
1, . . . ,Tk

′ is equal to N̄  (up to 
isomorphisms of LGT networks).

Proof  Let N̄  be a restricted LGT network with 
T̃0(N̄ ) = T  and reduced secondary subtrees T ′

1, . . . ,Tk
′. 

Without any loss of generality, we rename these reduced 
secondary subtrees as T ′

1,1, . . . ,T
′
1,k1 ,T

′
2,1, . . . ,Tl,kl

′ 
(k1 + · · · + kl = k) in such a way that, for every 
i = 1, . . . , l, the secondary arcs ēi,1, . . . , ēi,ki producing the 
reduced secondary subtrees T ′

i,1, . . . ,T
′
i,ki have the same 

origin ui, and ui �= uj if i �= j. For every i = 1, . . . , l, let u∗i  
be equal to ui if this node is not principally elementary, 
and to the principal child of ui in N̄  if it is principally 
elementary; in both cases, u∗i  is a node in T. Finally, for 
every i = 1, . . . , l and j = 1, . . . , ki, let hi,j be the target of 
ēi,j, which is also a node in T.

We know from Proposition  6 (and its proof) that the 
clusters of each u∗i  and each hi,j and the equality, or not, 
between ui and u∗i  are uniquely determined by the pair 
(T ,Ti

′). Indeed, in each case the clusters of the aforemen-
tioned nodes are found in the proof of Proposition 8, and 
the statement of this proposition shows how these clusters 
are determined by T and T ′

i. Then, we can understand 
that Algorithm 2 first splits the arc in T ending in each 
u∗i  for which ui �= u∗i  into two arcs connected by a new 
elementary node ūi and next, for every i = 1, . . . , l and 
j = 1, . . . , ki, adds to the resulting S-tree a secondary arc 
from ūi or from u∗i  to hi,j. It is clear then that the resulting 
graph N is isomorphic to N̄  by means of an isomorphism 
that preserves labels, principal arcs and secondary arcs.� �

This proposition entails, on the one hand, that if there exists 
some restricted LGT network with reduced principal sub-
tree T and reduced secondary subtrees T1

′, . . . ,Tk
′, then it 

is unique (up to isomorphisms), and, on the other hand, that 
Algorithm 2 is correct (and also independent of the ordering 
of the trees T1

′, . . . ,Tk
′), in the sense that such a restricted 

LGT network exists if, and only if, the algorithm finds it: 
notice that if the algorithm detects a cycle in step 5, then this 
proposition implies that no restricted LGT network can have 
T and T ′

1, . . . ,Tk
′ as reduced principal and reduced second-

ary subtrees. Another consequence is the stability of the net-
work reconstructed: If some new tree is added to the input 
of the algorithm, then a new secondary arc is added to the 
network, without altering the other secondary arcs (notice, 
however, that this last secondary arc could create a cycle in 
the network and hence the problem would have no solution).
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The following examples show two simple applications 
of Algorithm 2.

Example 1  Consider the trees depicted in Fig. 10.

• • C(T )\C(T1
′) =

{
{1, 2}

}
 and C(T1

′
)\C(T ) ={

{2, 3, 4, 5}
}
. Then, with the notations of Algorithm 2, 

k = l = 1, k0 = l0 = 0, Uk = {1, 2}, Wl
′ = {2, 3, 4, 5},  

B = {2}, Cl = {3, 4, 5} , u∗1 = b, and h1 = 2. So, we 
add a new principally elementary node in the middle 
of the arc (r, b) and a secondary arc e1 from it to 2.

• • C(T )\C(T2
′) =

{
{1, 2}, {3, 4}, {3, 4, 5}

}
 and C(T2

′
)\

C(T ) =

{
{2, 3}, {1, 2, 3}, {4, 5}

}
. Then, k = l = 2,  

k0 = l0 = 1, Uk = {3, 4}, Wl
′ = {2, 3} , B = {3}, 

Cl = {2}, u∗2 = 2 and h = 3. So, we add a new princi-
pally elementary node in the middle of the arc (a, 2) 
and a secondary arc e2 from it to 3.

• • C(T )\C(T3
′) =

{
{3, 4, 5}

}
 and C(T3

′
)\C(T ) ={

{1, 2, 3, 4}
}
. Then, k = l = 1 , k0 = l0 = 0, 

Uk = {3, 4, 5}, Wl
′ = {1, 2, 3, 4}, B = {3, 4}, Cl = {1, 2},  

u∗3 = a and h3 = c. So, we add a new principally 
elementary node in the middle of the arc (r, a) and a 
secondary arc e3 from it to c.

We obtain the directed graph depicted in Fig. 11, which 
is acyclic and therefore a restricted LGT network with 
reduced principal subtree T and reduced secondary sub-
trees T1

′,T2
′,T3

′.

Example 2  Consider the trees depicted in Fig. 12.

• • C(T )\C(T1
′) =

{
{1, 2}, {1, 2, 3}, {4, 5, 6}

}
 and 

C(T1
′)\C(T ) =

{
{1, 5, 6}, {1, 2, 5, 6}, {1, 2, 3, 5, 6}

}
 . 

Then, k = 1, l = 3, k0 = 0, l0 = 2, Uk = {4, 5, 6} , 
Wl

′ = {1, 5, 6}, B = {5, 6}, Cl = {1}, u∗1 = 1 and 
h1 = d. So, we add a new principally elementary 
node in the middle of the arc (c, 1) and a secondary 
arc e1 from it to d.

• • C(T )\C(T2
′) =

{
{1, 2, 3}, {5, 6}, {4, 5, 6}

}
 and 

C(T2
′)\C(T ) =

{
{1, 2, 6}, {1, 2, 5, 6}, {1, 2, 4, 5, 6}

}
 . 

Then, k = 1, l = 3, k0 = 0, l0 = 2, Uk = {1, 2, 3} , 
Wl

′ = {1, 2, 6}, B = {1, 2}, Cl = {6}, u∗2 = 6 and 
h2 = c. So, we add a new principally elementary node 
in the middle of the arc (d, 6) and a secondary arc e2 
from it to c.

We obtain the directed graph depicted in Fig. 13, which 
contains a directed cycle. Therefore, there does not exist 
any restricted LGT network with T as reduced principal 
subtree and T1

′,T2
′ as reduced secondary subtrees.

Of course, it is possible that, on a given input, the LGT 
network Reconstruction Problem has a solution 
and the Restricted LGT network Reconstruction 
Problem does not, as the following example shows.

Example 3  Consider the trees T ,T ′
1 depicted in Fig. 14.

Then, C(T )\C(T ′
1) =

{
{3, 4, 5}, {2, 3, 4, 5}

}
 and 

C(T ′
1)\C(T ) =

{
{2, 3}, {2, 3, 6}

}
, and therefore these 

trees do not satisfy conditions (a) to (f ) in Proposi-
tion 6: from C(T )\C(T ′

1) we have that k = 2, and from 
C(T ′

1)\C(T ) that l = 2, but then both differences should 
consist of a pair of segments, instead of a single segment. 
This means that there does not exist any restricted LGT 
network with reduced principal subtree T and reduced 
secondary subtree T ′

1. But there actually exists an LGT 
network with reduced principal subtree T and reduced 
secondary subtree T ′

1: the network N depicted in the 
same figure, which is not restricted.

1 2 3 4 5

c

b

r

a

T

1 2 3 4 5

T ′
1

1 2 3 4 5

T ′
2

1 2 3 4 5

T ′
3

Fig. 10  The phylogenetic trees used as input in Example 1

1 2 3 4 5

Fig. 11  The graph obtained as output when applying Algorithm 2 to 
the trees T , T1 ′ , T2 ′ , T3 ′ in Fig. 10
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An application
In order to test the models and algorithms introduced in 
this paper, we have performed a computational experi-
ment. Our goal was to find an example of trees in a data-
base of phylogenetic trees obtained from biological data 
where our algorithms can be applied.

The general strategy for this search was as follows: 
We first chose a database with many phylogenetic 
trees; among these trees we exhaustively searched for 

a “central” tree sharing many leaves with a large set of 
“companion” trees in the database.

Then, we exhaustively looked for pairs formed by a sub-
tree of this central tree and a companion tree such that 
their topological restrictions to their common set of leaves 
satisfy the principal-secondary condition on clusters.

With all pairs satisfying this condition we looked for a 
maximal example: with as many leaves as possible and as 
many secondary trees as possible.

Finally, this maximal set of trees is used as an input to 
Algorithm 2.

We have taken as our datasource the database of phy-
logenetic trees in [23]. That database contains 159,905 
phylogenetic trees, but in order to make the computa-
tions feasible we have restricted our experiment to a ran-
dom sample of 15,000 trees. Within this sample, we have 
found a “central” tree T with 100 leaves and 200 other 
“companion” trees sharing at least 30 labels with T. We 
have then kept these 201 trees and discarded the others. 
Following the strategy described above, we have found 
the subtree T0 of T described by the Newick string

(((((9, 8), 7), 6), 5), ((4, 3), (1, 2)));

1 2 3 4 5 6

c

a

r

b

d

T

4 3 2 1 5 6

T ′
1

3 4 5 6 2 1

T ′
2

Fig. 12  The phylogenetic trees used as input in Example 2

1 2 3 4 5 6

Fig. 13  The graph obtained as output when applying Algorithm 2 to 
the trees T , T1 ′ , T2 ′ in Fig. 12

1 5 4 3 2 6

T

1 5 4 3 2 6

T ′

1 5 4 3 2 6

N

Fig. 14  The phylogenetic trees used as input in Example 3, and an LGT network that has them as reduced principal and secondary subtrees, 
respectively
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where the numbers correspond to the organisms given in
Table 1, and the following three subtrees of some of the 

remaining set of 200 trees:

such that each pair of trees (T0,Ti
′), i = 1, 2, 3, satisfies 

the conditions in Proposition 6. Applying Algorithm 2 
to T0,T1

′,T2
′,T3

′, we obtain the restricted LGT network 
depicted in Fig. 15, that contains T0 as reduced principal 
subtree and T1

′,T2
′,T3

′ as reduced secondary subtrees. 
This network suggests the existence of three lateral gene 
transfer events that explain the differences between T0 
and T1

′,T2
′,T3

′. Although there is no reference in the lit-
erature to these specific events, several lateral gene trans-
fer events involving Rhodobacter sp., Ruegeria pom. and 
Ruegeria sp. have been reported in the literature [33–35].

Conclusions
In this paper we have considered LGT networks: a gen-
eral model of phylogenetic networks with lateral gene 

T1
′ : (((((9, 8), 7), 6), 5), (((2, 3), 1), 4));

T2
′ : (((((9, 8), 7), 6), 5), (((1, 3), 2), 4));

T3
′ : ((((((9, 8), 7), 6), 5), 4), ((3, (1, 2))));

transfers that capture the asymmetry of these evolu-
tionary events. An LGT network allows to distinguish 
between the principal line of evolution of the species 
under study and the secondary lines determined by the 
lateral gene transfers, by defining, in a natural way, a 
principal phylogenetic subtree and a family of secondary 
phylogenetic subtrees.

We have defined a subclass of “restricted” LGT networks 
such that (a) the principal and secondary phylogenetic sub-
trees of a restricted LGT network are pairwise different; 
and (b) the principal and secondary phylogenetic subtrees 
of a restricted LGT network single it out, up to isomor-
phisms. Then, we have given an algorithm that solves the 
problem of reconstructing a restricted LGT network from 
a given principal phylogenetic subtree and a given family 
of secondary phylogenetic subtrees, when it exists.

We have implemented the algorithms in this paper 
using Python. The program can be downloaded from the 
url http://bioinfo.uib.es/~recerca/LGTnetworks/recon-
struction.zip, and the only requirements are the libraries 
networkx and pyparsing, which are included in most 
of the standard distributions of python for scientific com-
putation (e.g. anaconda). The zip file contains a README 
file with specific instructions on how to use the program.

As a future work, we plan to relax the conditions on 
the restricted LGT networks in order to be able to recon-
struct a broader class of networks and discover new 
algorithms for reconstructing such networks from bio-
logically significant data.

Availability
The Python program implementing our algorithms is 
available at http://bioinfo.uib.es/~recerca/LGTnetworks/
reconstruction.zip
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Additional file 1. Appendix: Some proofs

Table 1  The organisms involved in the phylogenetic trees 
T0, T1

′, T2
′, T3

′ given in §5

Identifier Organism

1 Roseobacter_denitrificans_OCh_114

2 Ruegeria_pomeroyi_DSS-3

3 Ruegeria_sp._TM1040

4 Dinoroseobacter_shibae_DFL_12

5 Paracoccus_denitrificans_PD1222

6 Rhodobacter_sphaeroides_ATCC_17025

7 Rhodobacter_sphaeroides_KD131

8 Rhodobacter_sphaeroides_ATCC_17029

9 Rhodobacter_sphaeroides_2.4.1

1 2 3 4 5 6 7 8 9

Fig. 15  Restricted LGT network obtained in the experiment in §
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