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Abstract 

Background:  Metagenomics enables the analysis of bacterial population composition and the study of emergent 
population features, such as shared metabolic pathways. Recently, we have shown that metagenomics datasets 
can be leveraged to characterize population-wide transcriptional regulatory networks, or meta-regulons, providing 
insights into how bacterial populations respond collectively to specific triggers. Here we formalize a Bayesian infer-
ence framework to analyze the composition of transcriptional regulatory networks in metagenomes by determining 
the probability of regulation of orthologous gene sequences. We assess the performance of this approach on syn-
thetic datasets and we validate it by analyzing the copper-homeostasis network of Firmicutes species in the human 
gut microbiome.

Results:  Assessment on synthetic datasets shows that our method provides a robust and interpretable metric for 
assessing putative regulation by a transcription factor on sets of promoter sequences mapping to an orthologous 
gene cluster. The inference framework integrates the regulatory contribution of secondary sites and can discern false 
positives arising from multiple instances of a clonal sequence. Posterior probabilities for orthologous gene clusters 
decline sharply when less than 20 % of mapped promoters have binding sites, but we introduce a sensitivity adjust-
ment procedure to speed up computation that enhances regulation assessment in heterogeneous ortholog clusters. 
Analysis of the copper-homeostasis regulon governed by CsoR in the human gut microbiome Firmicutes reveals that 
CsoR controls itself and copper-translocating P-type ATPases, but not CopZ-type copper chaperones. Our analysis also 
indicates that CsoR frequently targets promoters with dual CsoR-binding sites, suggesting that it exploits higher-order 
binding conformations to fine-tune its activity.

Conclusions:  We introduce and validate a method for the analysis of transcriptional regulatory networks from 
metagenomic data that enables inference of meta-regulons in a systematic and interpretable way. Validation of this 
method on the CsoR meta-regulon of gut microbiome Firmicutes illustrates the usefulness of the approach, revealing 
novel properties of the copper-homeostasis network in poorly characterized bacterial species and putting forward 
evidence of new mechanisms of DNA binding for this transcriptional regulator. Our approach will enable the compar-
ative analysis of regulatory networks across metagenomes, yielding novel insights into the evolution of transcriptional 
regulatory networks.
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Background
The advent of next-generation sequencing methodologies 
has enabled the study of bacterial populations through 
direct sampling of their genetic material [1]. Metagenom-
ics techniques allow the detailed investigation of bacterial 
communities, their shared metabolic pathways and their 
interaction with environment and hosts [2–7], but they 
also pose many challenges regarding data standardization, 
processing and analysis [8, 9]. To date, most analyses of 
metagenomics datasets have focused on the phylogenetic 
composition of metagenomes and the relative contribu-
tion of different bacterial clades to metabolic pathways 
[3, 9–12]. However, metagenomics data also constitute 
a powerful resource for the direct analysis of transcrip-
tional regulatory networks, or regulons, in natural envi-
ronments. Such analyses can be used to characterize the 
contribution of non-culturable bacteria and mobile genetic 
elements to global regulatory networks, to analyze the 
changes in a population’s regulatory program in response 
to interventions or habitat adaptation, and to quantify the 
relative importance of genetic elements in the makeup of 
known regulatory systems. Comparative research on mul-
tiple metagenomes has revealed that regulatory potential, 
measured as the local density of putative transcription fac-
tor (TF)-binding sites, correlates with processes involved 
in the response to stimuli present in specific environments 
[13, 14]. Recently, we provided proof of concept that TF-
binding motifs can be effectively leveraged to analyze the 
genetic makeup of known transcriptional regulatory net-
works using metagenomic data, providing insights into the 
function of such networks in specific microbiomes [15]. 
In this work we formalize an inference method to ana-
lyze transcriptional regulatory networks in metagenomics 
datasets. The Bayesian inference approach we put forward 
provides a consistent framework for the study of regula-
tory networks using metagenomics datasets, facilitating 
the interpretation of results, standardizing the outcome 
of analyses to facilitate comparison and allowing users to 
selectively adjust sensitivity. We validate the novel infer-
ence framework on the Integrated Reference Catalog of 
the Human Gut Microbiome [16], analyzing the regula-
tion of copper-homeostasis in gut microbiome Firmicutes 
through the recently characterized copper-responsive 
repressor CsoR [17]. Our results reveal an inferred cop-
per-homeostasis network congruent with that reported in 
studies on model organisms, outlining the core elements of 
this regulatory system and highlighting specific features of 
the human gut CsoR meta-regulon.

Methods
Datasets
Human gut metagenomics data was obtained from 
the Integrated Reference Catalog of the Human Gut 

Microbiome service (http://meta.genomics.cn/) [16]. The 
dataset contains 1267 gut metagenomes, totaling 6.4 Tb. 
To ensure consistency, here we restricted the analysis to 
401 samples from healthy European individuals obtained 
in the MetaHIT project. This subset contains 5,133,816 
predicted genes, with roughly half of them (2,579,737) 
functionally annotated with eggNOG/COG identifi-
ers from the eggNOG v4.0 database [18]. The bacterial 
population in these 401 samples is dominated by two 
bacterial orders [Bacteroidales (58.51  %) and Clostridi-
ales (32.11  %)] belonging to two major bacterial phyla 
[Bacteroidetes (59.29  %) and Firmicutes (34.97%)]. A 
CsoR-binding motif was compiled by combining exper-
imentally-validated and computationally inferred Fir-
micutes CsoR-binding sites available in the CollecTF and 
RegPrecise databases [19, 20].

Data processing
For each sample and scafftig therein, predicted open-
reading frames (ORF) in the same strand and with a con-
servative intergenic distance (<50 bp) were considered to 
constitute an operon. Only operons with a complete lead 
ORF (containing a predicted translational start codon on 
their 5′ end) and at least 60 bp of sequence upstream of 
the translational start codon were considered for analy-
sis. We also excluded from analysis any operons with no 
gene product mapping to a Firmicutes reference genome 
[15]. Taxonomical and eggNOG information for all ORFs 
in the remaining 752,783 operons was re-annotated by 
searching the eggNOG v4.0 database with DIAMOND 
[21]. The available upstream region (up to 300  bp) for 
these operons was scored on both strands with the posi-
tion-specific scoring matrix (PSSM) derived from the 
compiled CsoR-binding motif using a Laplacian pseu-
docount and equiprobable background base frequencies 
[22]. For every sequence position, the scores from both 
strands were combined following the soft-max function 
(Additional file 1):

where PSSM(Si) denotes the combined PSSM score of a 
site at position i and PSSM(Si

f) and PSSM(Si
r) denote the 

score of the site at position i in the forward and reverse 
strands, respectively.

Inference method
For a given eggNOG/COG functional identifier, we con-
sider the set of promoters (D) from all operons contain-
ing at least one gene mapping to that eggNOG/COG. We 
define two theoretical distributions for the set of posi-
tional PSSM scores in promoters associated with a par-
ticular eggNOG/COG identifier. If the eggNOG/COG 

(1)PSSM(Si) = log2

(

2PSSM(S
f
i ) + 2PSSM(Sri )

)

http://meta.genomics.cn/
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is not regulated by the TF, we expect that the promoters 
mapping to it display a background distribution of scores 
(B), which we can approximate by a normal distribution 
parametrized by the statistics of the set of all promoters 
in the metagenome (G):

Conversely, for an eggNOG/COG regulated by the TF, 
the distribution of PSSM scores (R) in promoters should 
be a mixture of the background distribution and the dis-
tribution of scores in functional sites. Again, we can 
approximate the distribution of scores in functional sites 
with a normal distribution parametrized by the statistics 
of the known sites belonging to the TF-binding motif (M).

The mixing parameter α corresponds to the probability 
of observing a functional binding site in a regulated pro-
moter, which can be estimated from known instances of 
TF-binding sites in their genomic context. For CsoR, we 
expect on average one binding site in a regulated pro-
moter of length 300  bp, so α is defined to be 1/300 [23, 
24].

Given a promoter Di from the set of promoters (D) 
mapping to a particular eggNOG/COG identifier, we 
seek to obtain the probability that the eggNOG/COG is 
regulated by the TF. Formally, we seek to obtain the pos-
terior probability of the mixture distribution of scores (R) 
given the scores sj observed in the promoter mapping to 
the eggNOG/COG (Di):

After applying the law of total probability, we can 
express this more conveniently in a likelihood ratio form:

The likelihood functions P(Di|R) and P(Di|B) can be 
estimated for a given score sj using the density function 
of the R and B distributions defined above. If we assume 
approximate independence among the scores at different 
positions, we obtain:

and

(2)B ∼ N (µg , σ
2
g )

(3)R ∼ αN (µm, σ
2
m)+ (1− α)N (µg , σ

2
g )

(4)P(R|Di) =
P(Di|R)P(R)

P(Di)

(5)

P(R|Di) =
P(Di|R)P(R)

P(Di|R)P(R)+ P(Di|B)P(B)

=
1

1+
P(Di|B)P(B)
P(Di|R)P(R)

(6)

P(Di|R) =
∏

sj∈Di

L
(

sj|αN (µm, σ
2
m)+ (1− α)N (µg , σ

2
g )

)

The priors P(R) and P(B) can be inferred from genomic 
data. P(R) and P(B) can be approximated by the fraction 
of annotated operons in a genome that are known and 
not known, respectively, to be regulated by the TF. Using 
B. subtilis as a reference genome for CsoR, we obtain 
P(R) = 3/1811 and P(B) = 1 − P(R).

The contributions of all promoters Di mapping to a par-
ticular eggNOG/COG can be assumed to be independ-
ent. Therefore, we obtain:

where we can naturally assign a likelihood ratio product 
of 1 to any eggNOG/COGs that presents no mapped pro-
moters in the samples under analysis.

Sensitivity adjustment and determination of putatively 
regulated eggNOG/COGs
The large size of metagenomics datasets poses challenges 
for the efficient computation of the posterior probabili-
ties outlined above. It is known that a large fraction of the 
eggNOG/COG identifiers will not be regulated by the TF. 
The computation may therefore be simplified by defin-
ing a score threshold to exclude operons with promoters 
that show no evidence of regulation [15]. This strategy 
has the added benefit of compensating for heterogeneity 
in eggNOG/COG clustering, which may assign distant 
orthologs to the same eggNOG/COG identifier, poten-
tially diluting the contribution of a regulated ortholog to 
the eggNOG/COG posterior probability.

Formally, we consider the subset of the promoters 
D*⊂ D mapping to a particular eggNOG/COG that have 
at least one score above a predefined threshold θ. That is, 
Di∈ D* if max(sj∈ Di) ≥ θ. It follows that we should adjust 
the score likelihoods of Eqs. 6 and 7 to take into account 
the fraction of probability mass assigned to the data that 
will not be observed in the reduced promoter set D*. The 
probability of observing a promoter Di with no positions 
pj scoring above the threshold θ under the background 
(B) and regulated (R) models is given by the cumulative 
distribution function (Φ) for each model:

(7)
P(Di|B) =

∏

sj∈D

L
(

sj|N (µg , σ
2
g )

)

(8)P(R|D) =
1

1+
(

∏

Di∈D
P(Di|B)
P(Di|R)

)

P(B)
P(R)

(9)
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Hence, the probability of observing a promoter with 
at least one score above the threshold θ under the back-
ground (B) and regulated (R) models is given by (1 − UB) 
and (1 − UR), respectively. We can use these probabilities 
to normalize the likelihoods as follows:

Similarly, the priors P(R) and P(B) must be renormal-
ized by multiplying the observed number of regulated 
and non-regulated operons in a reference genome by 
(1 − UB) and (1 − UR), respectively, in order to account 
for the fact that thresholding alters the base rate at which 
regulated promoters are observed.

The inference method outlined above assigns a poste-
rior probability value P(D|R) to all eggNOG/COG iden-
tifiers present in the metagenome. Ultimately, however, 
we wish to extract a set of putatively regulated eggNOG/
COG for further analysis. This requires discretization of 
the list of posterior probabilities. Formally, given a list of 
eggNOG/COGs S with posterior probabilities �p, we wish 
to find a sublist S* with posterior probabilities �p∗, so that 
the mean probability of regulation for a promoter chosen 
uniformly at random from S* is at least (1−φ). To define 
S*, let �p be sorted in reverse order and S be sorted simi-
larly. Then let n be the greatest integer such that:

and set S* = {S0,…,Sn}. S* is therefore the largest sublist of 
S having average posterior probability of at least (1−φ).

Permutation test
Several alternative methods can be proposed to deter-
mine putatively regulated eggNOG/COGs in a metagen-
omic dataset. To benchmark the Bayesian framework 
introduced above against a frequentist approach, we 
define a permutation test based on the likelihood func-
tion P(Di|R) of Eq. 6. Given the original TF-binding motif 
defined by the collection of TF-binding sites, we gener-
ate F random symmetrical permutations of the TF-bind-
ing motif and parametrize their score distribution under 
the background (Bf) and regulated (Rf) models following 
Eqs. 2 and 3. Hence, for each permuted model f, we can 
compute the likelihood of the score distribution observed 
in a given promoter (Di) as:

(11)

P(Di|R) =

∏

sj∈Di
L

(

sj|αN (µm, σ
2
m)+ (1− α)N (µg , σ

2
g )

)

(1−UR)

(12)P(Di|B) =

∏

sj∈Di
L
(

sj|N (µg , σ
2
g )

)

(1−UB)

(13)
1

n

n
∑

i=0

pi ≤ (1− φ)

Under the approximation of independence between 
promoter sequences used in Eq. 8, we can define P(D|R) 
for an eggNOG/COG as follows:

For each eggNOG/COG, we then can empirically 
approximate the p-value as the probability of obtaining 
a score distribution as extreme as the one observed in 
the promoters mapping to an eggNOG/COG given the 
null hypothesis that the distribution of scores is due to 
chance:

where I(·) is the indicator function.
The permutation test therefore defines an alternative 

statistic to assess putative regulation of an eggNOG/
COG based on the distribution of scores in the promot-
ers mapping to it.

Results
Validation of the Bayesian inference pipeline on synthetic 
datasets
To assess the behavior of the proposed inference 
framework, we evaluated its performance on synthetic 
datasets consisting of randomly generated sequence 
backgrounds with inserted sites sampled from the CsoR 
motif. Figure  1a shows the posterior probability P(R|D) 
of individual sequences (Eq. 5) as a function of the score 
of the inserted CsoR sites. The observed upward devia-
tions from the baseline sigmoidal shape illustrate the 
ability of the inference method to integrate contributions 
from secondary sites, which occur at a low frequency in 
randomly generated sequences. Figure 1b compares the 
behavior of the posterior probability for an eggNOG/
COG (Eq.  8) between a simulated eggNOG/COG in 
which sequences contain sites randomly sampled from 
the CsoR motif distribution and an eggNOG/COG in 
which the sequences containing sites are clonal. Multiple 
instances of a clonal sequence containing a putative TF-
binding site are often found in metagenome samples. On 
average, the method assigns lower posterior probabilities 
to clonal sequences, hence decreasing the likelihood of 
designating the corresponding eggNOG/COG as puta-
tively regulated.

Figure  2a documents the behavior of the eggNOG/
COG posterior probability (Eq.  8) as a function of the 

(14)

P(Di|Rf ) =
∏

sj∈Di

L
(

sj|αN (µmf , σ
2
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2
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)

)

(15)
P(D|Rf ) =

∏

Di∈D

P(Di|Rf )

(16)

p = P
(

P(D|Rf ) ≥ P(D|R)
)

≈
1+

∑F
f=1

I
(

P(D|Rf ) ≥ P(D|R)
)

F + 1
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number of sequences with functional sites mapping to 
the eggNOG/COG. The results show that when the pro-
portion of sequences containing functional sites among 
those mapping to an eggNOG/COG falls below 20  %, 
the posterior probability decreases sharply. Figure  2b 
illustrates the effect of introducing the sensitivity adjust-
ment outlined in Eqs.  11 and 12. In addition to speed-
ing up the computation, the use of a score threshold θ to 
exclude sequences with no evidence of regulation makes 

it possible to obtain high posterior probability values 
for eggNOG/COGs with less than 20 % sequences con-
taining functional sites. This allows detecting putative 
regulation in heterogeneous eggNOG/COGs where the 
regulated ortholog is a minority contributor. In Fig. 3, the 
performance of the Bayesian framework is benchmarked 
against a permutation test with F =  100 on a synthetic 
dataset of 10,000 COGs. As it can be readily observed, 
the posterior probability generated by the Bayesian 
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Fig. 1  a Posterior probability of a 300 bp-long randomly generated sequence (40 % G + C) as a function of the score of a sampled CsoR site 
inserted at the first position of the sequence. The plot shows the results of 10,000 independent replicates. b Average posterior probability of a 
simulated eggNOG/COG. The eggNOG/COG contains 100 (300 bp-long, 40 % G + C) sequences, 30 of which contain inserted sites. Sites were either 
sampled randomly from the CsoR motif and inserted the first 30 sequences (multiple sites) or a single site was sampled from the motif and inserted 
in the first 30 sequences (single site). The plot shows the results of 10 independent experiments for each case. Vertical bars denote the standard 
deviation
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Fig. 2  a Posterior probability of simulated eggNOG/COGs containing 100 (300 bp-long, 40 % G + C) randomly generated sequences, with 6, 9, 
12, 15, 18 and 21 of them containing inserted sites sampled randomly from the CsoR motif. The plot shows the distribution of posterior probability 
for the eggNOG/COGs in 1000 simulated replicates as a function of the number of inserted sites. Vertical bars denote the standard deviation, with 
a horizontal bar indicating the median. b Sensitivity adjusted posterior probability of simulated eggNOG/COGs containing 100 (300 bp-long, 40 % 
G + C) randomly generated sequences, 12 of which contain inserted sites sampled randomly from the CsoR motif. The plot shows the distribu-
tion of posterior probability for the eggNOG/COGs adjusted for sensitivity in 1000 simulated replicates as a function of the sensitivity threshold 
θ, expressed as the number of standard deviations below the motif mean score. Vertical bars denote the standard deviation, with a horizontal bar 
indicating the median. The legends on top indicate the average number of sequences selected for analysis (S#) and the adjusted prior for regulation 
P(R) for each sensitivity threshold
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framework yields a significantly more robust predictor of 
eggNOG/COG regulation [Area under the curve (AUC): 
0.99] than a conventional permutation test p-value (AUC: 
0.88).

Analysis of the copper‑homeostasis CsoR regulon in the 
human gut microbiome
To evaluate the proposed inference method in a real 
life setting, we analyzed the copper-homeostasis regu-
lon controlled by CsoR in the human gut microbiome. 
Together with CopY and CueR, CsoR-family members 
are well-characterized copper-responsive regulators that 
detect and modulate the abundance of copper ions in 
the cell [25]. CsoR provides a suitable target for analysis, 
because it is presumed to be the sole regulator of cop-
per homeostasis in Clostridiales, the second most abun-
dant bacterial order in the IGC MetaHIT project dataset, 
while being noticeably absent in the most abundant order 
(Bacteroidales) [17, 26]. We analyzed the CsoR regulon 
by running the Bayesian inference pipeline on operons 
containing genes mapping to the Firmicutes. Computa-
tion was sped up by adjusting sensitivity with θ = 6.65 (6 
standard deviations below the CsoR motif mean). This 
substantially decreased the number of processed promot-
ers while increasing the prior for regulation P(R) only to 
0.01 (Fig. 2). We established a mean probability of regu-
lation of 0.9 for the set of putatively regulated eggNOG/

COGs and required that they had at least 5 promoters 
mapping to them at the established θ value.

The results shown in Table 1 provide an outline of the 
Firmicutes CsoR meta-regulon of the human gut micro-
biome. The inferred CsoR meta-regulon is in broad agree-
ment with the reported CsoR regulons in Firmicutes [23, 
24, 27, 28], but displays also several characteristic features 
that have not been previously reported. The inferred 
human gut Firmicutes CsoR meta-regulon comprises six 
distinct eggNOG/COG identifiers with annotated func-
tion, but is primarily defined by two COG identifiers 
that encompass 96  % of the putatively CsoR-regulated 
promoters (Additional files 2, 3). COG1937 maps to the 
CsoR repressor, and all the putatively regulated com-
plete gene sequences mapping to this COG contain the 
conserved C-H-C motif (Additional file 4). This indicates 
that these COG1937 instances are functional copper-
responsive regulators and suggests that the reported 
self-regulation of CsoR is a common trait of human gut 
Firmicutes species [17, 23]. COG2217 maps to the cop-
per-translocating P-type ATPases (CopA). These pro-
teins harbor heavy metal-associated (HMA; IPR006121), 
haloacid dehydrogenase-like (HAD-like; IPR023214) and 
P-type ATPase A (IPR008250) domains and are canoni-
cal members of the Firmicutes CsoR regulon [25]. The 
remaining eggNOG/COGs map to proteins containing a 
HMA (IPR006121) domain [NOG218972, NOG81268], 
an unknown function (DUF2318; IPR018758) membrane 
domain [NOG72602] or HMA (IPR006121), DsbD_2 
(IPR003834) and DUF2318 (IPR018758) transmembrane 
domains [COG2836]. Proteins mapping to NOG218972 
and NOG81268 are often annotated as copper chaper-
ones, whereas those mapping to COG2836 are mainly 
annotated as heavy metal transport/detoxification pro-
teins, and those mapping to NOG72602 are simply 
annotated as membrane proteins. Analysis of site score 
distribution for the eggNOG/COGs reported in Table 1 
indicates the presence of a single putative false positive. 
The sequences mapping to NOG109008 belong to clonal 
instances of a glycoside hydrolase family 18 protein-cod-
ing sequence harboring an average (19.42 score) putative 
CsoR-binding site in its promoter region.

Analysis of the dominating eggNOG/COG identi-
fiers in the human gut Firmicutes CsoR meta-regulon 
(COG1937 and COG2217) indicates that the copper-
responsive regulator and copper-translocating P-type 
ATPase genes mapping to these regulated COGs are 
found in an operon configuration in a relatively small 
fraction of instances (Table 1; Additional file 5). Protein-
coding genes mapping to COG2217 are in some cases 
associated with those coding for chaperone-like proteins 
(NOG218972, COG2836 and NOG81268), but there is 

Fig. 3  Receiver-operating characteristic (ROC) curve using the Bayes-
ian posterior probability (Eq. 8) and the permutation test p-value 
(Eq. 15) as predictors of eggNOG/COG regulation. The ROC was 
generated on a synthetic dataset of 10,000 eggNOG/COGs, each with 
100 promoter sequences mapping to it. To compute p-values, 100 
permuted models were generated. The synthetic dataset contained 
100 “regulated” eggNOG/COGs. To simulate real conditions, promoters 
mapping to “regulated” eggNOG/COGs were assigned sites following 
the CsoR motif based on a geometric distribution with an expecta-
tion of 0.33 sites per promoter
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only one instance of a three-gene operon mimicking the 
CsoR-CopA-CopZ organization described in Listeria 
monocytogenes [27]. The promoter region of protein-
coding sequences mapping to COG1937 and COG2217 
reveals that around half of them contain high-confidence 
CsoR-binding sites (sites with score larger than two 
standard deviations below the mean for the CsoR motif ). 
On both sequence sets, the distribution of high-confi-
dence CsoR-binding sites peaks around 90 and 65  bp 
upstream of the predicted translation start site (TLS) 
(Fig.  4). Interestingly, almost half of these promoter 
sequences contain two high-confidence sites separated by 
26, 36–38 or 51 bp (Additional file 6).

Discussion
A Bayesian inference pipeline for metagenomics analysis 
of regulatory networks
The increasing availability of large metagenomics data-
sets prompts and enables the development of algorithms 
to interrogate novel aspects of these heterogeneous 
sequence repositories. Here we formalize and validate a 
Bayesian inference framework to analyze the composi-
tion of transcriptional regulatory networks in metage-
nomes. Comparative genomics analyses have long 
established that the study of bacterial regulons ben-
efits significantly from the availability of genomic data. 
Enrichment in TF-binding sites upstream of orthologous 
genes provides the means to curb the false positive rate 
of in silico methods for detecting these regulatory sig-
nals and to identify the key components of a regulatory 

network [29–32]. Leveraging the clusters of orthologous 
groups defined in the eggNOG database, here we define 
a conceptually similar approach to analyze bacterial regu-
lons in metagenomic samples. We apply Bayesian infer-
ence to compute the probability that an eggNOG/COG is 
regulated by a TF with a known binding motif. To facili-
tate computation, the method assumes independence 
among the scores over a sequence and a normal distribu-
tion for site scores, which may be replaced by the exact 
distribution [33]. Beyond these assumptions, the method 
relies only on the availability of priors for site density (α) 
and operon regulation P(R), which can be estimated from 

Table 1  Inferred human gut Firmicutes CsoR meta-regulon

Operons for analysis denotes the total number of operons mapping to each eggNOG/COG after sensitivity adjustment. P(R|D) designates the posterior probability 
of regulation for the eggNOG/COG. The Operon with COG1937 and Operon with COG2217 columns indicate the number of genes mapping to an eggNOG/COG that 
were assigned to an operon containing also COG1937 or COG2217, respectively. Dual sites denotes the number of sequences mapping to an eggNOG/COG harboring 
two high-confidence sites, out of the total number of sequences mapping to that eggNOG/COG with high-confidence sites

eggNOG / COG eggNOG 4.0 
annotation

Domains Mapped  
operons

Operons 
for analysis

P(R|D) Operon 
with COG1937

Operon 
with COG2217

Dual sites

COG1937 Transcriptional 
repressor

IPR003735 530 332 1 332 94 93/221

COG2217 p-type ATPase IPR006121, 
IPR023214, 
IPR008250

1580 422 1 84 422 94/204

NOG218972 Heavy-metal-
associated 
domain

IPR006121 16 7 1 1 2 3/7

NOG72602 Predicted mem-
brane protein

IPR018758 16 5 1 0 0 1/4

NOG109008 N/A IPR018242 18 5 1 0 0 0/5

COG2836 Membrane 
protein

IPR006121, 
IPR003834, 
IPR018758

36 8 1 0 1 1/3

NOG81268 Heavy-metal-
associated 
domain

IPR006121 34 6 1 0 1 1/5
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reference genomes. The method also provides the means 
to speed up computation by restricting the set of pro-
moter sequences to be analyzed in a principled manner.

Our results on synthetic datasets show that the method 
performs as expected, assigning higher posterior values 
to sequences containing better-scoring sites (Fig. 1a) and 
to eggNOG/COGs with a larger number of sequences 
containing putative sites mapping to them (Fig.  2a). 
These results also illustrate some interesting properties 
of the approach. The assumption of positional independ-
ency provides a simple yet effective method to integrate 
the contribution of multiple sites in a promoter sequence. 
This is an important component for the analysis of bacte-
rial regulons, since many bacterial transcriptional regu-
lators exploit cooperative binding between multiple sites 
to modulate their activity at specific promoters [34–37]. 
Another element to take into account in metagenom-
ics analysis is the presence of multiple instances of a 
clonal sequence mapping to an eggNOG/COG. These 
sequences occur frequently in metagenomic datasets and 
may carry multiple instances of a putative TF-binding 
site. The explicit modeling of regulated promoters with 
a mixture distribution results in lower posterior prob-
abilities for such sequence sets (Fig.  1b), minimizing 
their assessment as false positives. Sequence sets car-
rying instances of a site with average score, such as the 
sequences mapping to NOG109008 (Table  1), may still 
be assigned high posterior probabilities. Given enough 
sample size, such false positives can be addressed by the 
introduction of heuristics based on the variance of scores 
for high-confidence sites in sequences mapping to an 
eggNOG/COG.

The proposed approach also provides a method to 
adjust the sensitivity and speed of the analysis by remov-
ing sequences with no evidence of regulation. This 
method is formally integrated within the Bayesian infer-
ence framework by the introduction of a score thresh-
old (θ) and the corresponding normalization of priors 
and likelihoods. In combination with taxonomic filter-
ing (i.e. preserving only sequences mapping to the clade 
of interest), sensitivity adjustment allows users to focus 
their analysis on those sequences most likely to contrib-
ute relevant information on the regulatory system under 
analysis. Sensitivity adjustment may hence allow detect-
ing evidence of regulation in eggNOG/COGs with a rela-
tively small percentage of putatively regulated sequences 
(Fig. 2b). This may be advantageous when assessing regu-
lation in large heterogeneous COGs, where only a small 
subset of the mapping genes are regulated orthologs, 
but the progressive refinement of orthologous groups in 
the eggNOG database will soon address such concerns. 
Moreover, sensitivity adjustment should be used with 
caution, since it alters the prior for regulation P(R) and 

can therefore complicate the interpretation of results 
(Fig.  2b). There is no well-established method to deter-
mine what constitutes an acceptable prior when report-
ing posterior probabilities. As a conservative rule of 
thumb, one may require that the magnitude of the prior 
(φ′) be of the same order as the complement of the aver-
age posterior probability to be reported (1 − φ). None-
theless, the adjusted prior should always be clearly 
stated when reporting adjusted posterior probabilities 
to facilitate their assessment. As shown in Fig.  3, the 
Bayesian framework also performs better as a predictor 
of eggNOG/COG regulation than a more conventional 
approach based on permutation tests. This is primarily 
due to the influence of the Bayesian priors on the poste-
rior probability computation, which greatly reduces the 
chances of generating false positives in non-regulated 
eggNOG/COGs. Furthermore, the ability to infer regu-
lation without the need for permuted models decreases 
run-time and provides consistency across multiple runs.

Analysis of the human gut Firmicutes CsoR meta‑regulon
The analysis of the human gut Firmicutes CsoR meta-
regulon reported here provides a first glimpse at the 
genetic organization of this copper homeostasis regulon 
in its natural setting. The Firmicutes CsoR meta-regu-
lon is dominated by two putatively regulated COGs that 
map to two major components of the canonical CsoR 
regulon (csoR and copA). These two COGs comprise 
more than 90  % of the putatively CsoR-regulated pro-
moters, suggesting that these two elements are the sole 
defining features of the CsoR regulon in the Firmicutes 
species that populate the human gut. The absence of egg-
NOG/COG identifiers mapping to the third canonical 
CsoR regulon member (copZ) is noteworthy, since the 
copZ gene codes for a copper chaperone that binds cop-
per ions and transfers them to copper ATPases [26, 38]. 
Members of several putatively regulated eggNOG/COGs 
harboring a HMA domain (COG2836, NOG218972 and 
NOG81268; Table  1) appear to be distant orthologs of 
B. subtilis CopZ, and some might therefore function as 
copper chaperones. However, the COG associated to B. 
subtilis CopZ (COG2608) obtains a very low posterior 
probability of regulation in our analysis (9.76 · 10−15; 
Additional file  7). BLAST analysis with B. subtilis and 
Staphylococcus aureus CopZ against complete genomes 
reveals that only one (Clostridium) of the ten most 
abundant Clostridiales genera in the human gut micro-
biome encodes a CopZ homolog (Additional file 8). Fur-
thermore, in reference genomes the Clostridium copZ 
homolog is not in the vicinity of copA, does not display a 
putative CsoR-binding site and appears to be associated 
with an ArsR-family transcriptional regulator, which may 
be capable of sensing copper [39]. Together, these data 
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convincingly identify CsoR as a transcriptional regulator 
of copper homeostasis through a canonical CsoR-binding 
motif in the gut microbiome Firmicutes. Furthermore, 
they indicate that the CsoR meta-regulon comprises 
CsoR and a P-type ATPase (CopA), but not a CopZ-type 
chaperone, and that the contribution of other heavy-
metal-associated domain proteins to CsoR-directed cop-
per homeostasis is comparatively small [25]. The absence 
of copZ from bacterial genomes has been noted before 
[26, 38], and it has been suggested that the short length 
of this gene may hinder its detection [26]. Our analysis, 
however, indicates that, even when present, copZ is not 
regulated by CsoR in the gut microbiome Firmicutes.

Beyond identifying and quantifying the components 
of a transcriptional regulatory network, our results show 
that metagenomics analysis of bacterial regulons can also 
shed light into the wiring of the network and the regu-
latory mode of the transcription factor. In the species 
where it has been experimentally described, the CsoR 
regulon displays a notable variety of genetic arrange-
ments, ranging from single csoR-copA-copZ and copZ-
csoR-copA operons in L. monocytogenes and Thermus 
thermophilus, to independent regulation of csoR and 
copZA operons in B. subtilis, S. aureus or Streptomy-
ces lividans [23, 24, 27, 28]. Our analysis indicates that 
CsoR regulation in human gut Firmicutes follows this 
broad pattern, with independent regulation of csoR and 
copA being the norm and a relatively small fraction of 
COG1937 and COG2217 instances associated in putative 
operons. Similarly, experimental reports of CsoR regu-
lated promoters have documented to date CsoR binding 
to individual binding sites located at distances ranging 
from −20 to −180  bp upstream of the predicted trans-
lational start site of regulated genes [17, 23, 24, 27]. In 
contrast, our analysis reveals that 44 % of the sequences 
mapping to regulated COG1937 and COG2217 instances 
possess two high-scoring sites separated by three well-
defined spacing classes (26, 36–38 and 56  bp; Table  1; 
Additional file  6). There are currently three available 
structures for CsoR [17, 28, 40], showing CsoR to form 
either homodimers (M. tuberculosis) or tetramers (S. 
lividans and T. thermophilus), based on a three α-helix 
bundle. However, in the absence of co-crystals and of a 
canonical DNA-binding fold, the exact mechanism by 
which CsoR recognizes DNA remains elusive [25, 28]. It 
has been proposed that CsoR tetramers bind each dyad 
of the CsoR-binding motif through extensive exposure of 
DNA to the α1–α2 face of the bundle [28]. In this model 
the α3 helices of each tetramer may interact and contrib-
ute to enhance DNA binding by stabilizing an octameric 
conformation of CsoR on DNA [41]. Crucially, the abil-
ity of α3 helices to interact could be restricted by copper 

binding, triggering de-repression. Such a model is com-
patible with the adoption of hexadecameric conforma-
tions through extended α3 contacts. In this light, the 
location of CsoR-binding site relative to the TLS and the 
spacing distances observed for site pairs in our analysis 
are reminiscent of promoter architectures that leverage 
multiple sites to induce DNA bending [34, 35]. This sug-
gests that higher-order conformations of DNA-bound 
CsoR may be exploited by gut microbiome Firmicutes 
and other species to fine-tune the cellular response to 
excess copper ions.

Conclusions
In this work we introduce and validate a method for the 
analysis of transcriptional regulatory networks from 
metagenomic data. By adopting a Bayesian inference 
framework, our method provides the means to infer reg-
ulatory networks from metagenomic data in a systematic 
and reproducible way, generating posterior probability 
values that facilitate the interpretation of results. The 
availability of robust methods for metagenomic regulon 
inference paves the way for the comparative analysis of 
regulatory networks across metagenomes, which has 
the potential to address fundamental questions about 
the evolution of bacterial regulatory networks. Valida-
tion of the method on the CsoR meta-regulon of gut 
microbiome Firmicutes provides convincing evidence 
that CsoR is a functional copper-responsive regulator of 
copper homeostasis in human gut. By virtue of the taxo-
nomic composition of the human gut microbiome, our 
analysis also constitutes the first description of the CsoR-
governed copper homeostasis regulon of a broad taxo-
nomic group, the Clostridiales, encompassing several 
poorly characterized species of increasing clinical inter-
est. Notable aspects of this putative regulatory network 
include the absence of CopZ-type copper chaperones and 
the likely use of dual CsoR-binding sites to fine-tune gene 
regulation.
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