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Abstract 

Background: Pyrosequencing Allele Quantification (AQ) is a cost‑effective DNA sequencing method that can be 
used for detecting somatic mutations in formalin‑fixed paraffin‑embedded (FFPE) samples. The method displays a low 
turnaround time and a high sensitivity. Pyrosequencing suffers however from two main drawbacks including (i) low 
specificity and (ii) difficult signal interpretation when multiple mutations are reported in a hotspot genomic region.

Results: Using a constraint‑based regression method, the new AdvISER‑PYRO‑SMQ algorithm was developed in the 
current study and implemented into an R package. As a proof‑of‑concept, AdvISER‑PYRO‑SMQ was used to identify a 
set of 9 distinct point mutations affecting codon 61 of the NRAS oncogene. In parallel, a pyrosequencing assay using 
the Qiagen software and its AQ module was used to assess selectively the presence of a single point mutation (NRAS 
c.182A > G ‑ Q61R‑1) among the set of codon 61 mutations, and to analyze related pyrosequencing signals. AdvISER‑
PYRO‑SMQ produced a lower limit of blank (0 %) than the AQ module of Qiagen software (5.1 %) and similar limit of 
detection were obtained for both software (5.6 vs 4.8 %). AdvISER‑PYRO‑SMQ was able to screen for the presence of 
9 distinct mutations with a single pyrosequencing reaction whereas the AQ module was limited to screen a single 
mutation per reaction.

Conclusion: Using a constraint‑based regression method enables to analyze pyrosequencing signal and to detect 
multiple mutations within a hotspot genomic region with an optimal compromise between sensitivity and specific‑
ity. The AdvISER‑PYRO‑SMQ R package provides a generic tool which can be applied on a wide range of somatic 
mutations. Its implementation in a Shiny web interactive application (available at https://ucl‑irec‑ctma.shinyapps.io/
Pyrosequencing‑NRAS‑61/) enables its use in research or clinical routine applications.
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Background
Pyrosequencing is a cost-effective DNA sequenc-
ing technique which is based on pyrophosphate 
release during nucleotide incorporation [1]. The four 

possible nucleotides are sequentially dispensed in a pre-
determined order. The first chemi-luminescent signal 
produced during nucleotide incorporation is detected 
by a charge-coupled device camera in the pyrosequencer 
and displayed in a pyrogramTM. Pyrosequencing has 
many applications, including short sequence analysis 
(SQA mode), SNP genotyping (SNP mode), quantifica-
tion of CpG methylation (CpG mode), and allele quan-
tification (AQ mode). Allele quantification is especially 
applied to detect and quantify somatic mutations within 
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tumor samples. Accordingly, a dispensation order has 
first to be defined, using the software developed by the 
pyrosequencer manufacturer (Qiagen, Hilden, Germany). 
Usually, the selected dispensation order produces, at a 
specific position, a peak height which is proportional to 
the ratio “targeted somatic mutations/wild-type alleles” 
from the sample. Consequently, this specific position 
shows no signal (i.e. a peak height near 0) with a wild-
type sample. When an unknown sample is processed, 
the AQ module of the Qiagen software divides the spe-
cific peak height intensity by a normalization factor 
which reflects the global pyro-signal intensity in order to 
estimate the ratio mutated/wild-type alleles within the 
sample.

Using the pyrosequencing for allele quantification is 
straightforward when a unique somatic mutation is tar-
geted (e.g. c.12A > C). When a hotspot genomic region 
has to be analyzed (i.e. a short genomic region where 
multiple somatic mutations are reported as is the case 
with the NRAS oncogene where as many as nine differ-
ent clinically significant point mutations are spread over 
codon 61), the standard AQ module cannot be used for 
analyzing the pyro-signal. Consequently, specific kits 
and plug-in software solutions were developed by the 
pyrosequencer manufacturer to enable the assessment of 
these multiple mutations through single pyrosequencing 
experiments. However, theses kits and plug-in software 
solutions are currently restricted to a limited number of 
well-defined genomic regions such as KRAS, BRAF and 
EGFR oncogenes. Moreover, these kits are expensive 
and are restricted to the pyrosequencing PyroMark Q24 
instrument and can not be used with a Pyromark Q96 
system.

In that context, Shen et  al. developed a pyrosequenc-
ing data analysis software [2] dedicated to hotspot 
regions in KRAS, BRAF and EGFR oncogenes. Unfor-
tunately, this software which was not distributed, was 
designed as a “working draft” still requiring a long and 
elaborated process of fine-tuning [2]. Skorokhod et  al. 
also developed an algorithm to analyze the BRAF muta-
tional status by constructing an elaborate decision tree 
based on successive ‘IF’ operators [3]. For additional hot-
spot genomic regions, new solutions should therefore be 
considered. A first would be to elaborate a home-made 
system requiring sophisticated manual process, but this 
does not prevent the risk of human errors [2]. A second 
solution would be to perform a pyrosequencing reaction 
for each somatic mutation of interest within the hotspot 
genomic region. However this second solution increases 
costs and turnaround time proportionally to the number 
of targeted somatic mutations. Moreover, given the lim-
ited amount of DNA that can be extracted from forma-
lin-fixed paraffin-embedded (FFPE) samples, multiplying 

pyrosequencing reactions on the same sample is often 
technically impossible.

Despite the difficulty of interpreting pyro-signals when 
hotspot genomic regions are analyzed, pyrosequencing 
remains a useful and widely accessible analytical method 
presenting several advantages among which speed and 
cost-effectiveness. Moreover, when compared to Sanger 
sequencing, pyrosequencing consistently discloses a 
higher sensitivity enabling the detection of a lower per-
centage of mutated alleles in the sample. While the detec-
tion of a somatic mutation using the Sanger sequencing 
requires 20 % mutated tumor cells, it can be achieved by 
pyrosequencing with as few as 5  % mutated cells [2, 4]. 
In a recent study where pyrosequencing technology was 
compared with four other molecular methods (i.e. high 
resolution melting analysis, next generation sequencing, 
immunohistochemistry, and Sanger Sequencing) for the 
detection of p.V600E and non-p.V600E BRAF mutations, 
pyrosequencing showed the highest sensitivity (down to 
5 % allele frequency) while showing the lowest specificity 
[5]. Lack of specificity observed with pyrosequencing is 
partially attributable to the presence of non-specific peak 
heights due to background noise and artifacts [2, 3].

In the present study, a constraint-based regression 
method was developed in order to tackle both major 
drawbacks of allele quantification using pyrosequenc-
ing: (i) a lack of specificity and (ii) difficult signal inter-
pretation in case of multiple mutations in a short and 
well-defined genomic region (i.e. a hotspot). This con-
straint-based regression method was implemented in 
the new AdvISER-PYRO-SMQ algorithm that enables to 
obtain a sparse representation of the pyro-signal. Sparse 
representation, constraint-based, and penalized regres-
sion methods have received a lot of attention in recent 
years [6]. These methods were applied, inter alia, on gene 
expression data to classify tumors [7], on miRNA and 
mRNA expression data for glioblastoma subtyping [8], 
and on single nucleotide polymorphisms (SNP) and func-
tional magnetic resonance imaging (fMRI) voxels to dis-
criminate between schizophrenia cases and controls [6]. 
Regarding pyrosequencing analysis, sparse representa-
tion via constraint-based regression method was recently 
used to develop three complementary software solutions: 
(i) the AdvISER-PYRO software for analyzing low and 
complex signals resulting from samples including several 
mycobacteria [9], (ii) the AdvISER-M-PYRO software for 
analyzing overlapping pyro-signals generated from mul-
tiplex reactions conducted on mono-allelic genes in bac-
teria [10], and (iii) the AdvISER-MH-PYRO software for 
analyzing overlapping pyro-signals generated from multi-
plex reactions to genotype bi-allelic human SNP [11].

As a proof-of-concept, the new AdvISER-PYRO-SMQ 
software was applied in the present study to detect 
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multiple mutations (N  =  9) in codon 61 of the NRAS 
oncogene. NRAS mutation status is known to impact sur-
vival time of patients with melanoma [12] and it is used 
as a prognostic and predictive marker in metastatic colo-
rectal cancer [13]. The specific somatic mutation NRAS 
c.182A > G (Q61R-1 variant) was analyzed in order to 
compare Limit of Blank (LoB) and Limit of Detection 
(LoD) obtained with the new software versus a pyrose-
quencing assay developed with the AQ module of Pyro-
Mark Q96 2.5.8 software.

Methods
Dilution series
In order to compare the LoB and LoD obtained both with 
AQ module of PyroMark Q96 2.5.8 software and the new 
AdvISER-PYRO-SMQ software, dilution series (N =  3) 
were carried out and calibration curves were computed 
from data recorded with each dilution series and with 
both software solutions.

In a first step, two 131-bp nucleotide sequences 
[gBlockTM1 and gBlockTM2 Gene Fragments (Integrated 
DNA Technologies, Leuven, Belgium)] were synthe-
sized. Both gBlocks included the codon 61 of the NRAS 
gene with the first gBlock (gBlock1) matching the wild-
type sequence while the second gBlock (gBlock2) match-
ing a selected NRAS mutant variant (NRAS c.182A > G

- Q61R-1). Both synthetic olignonucleotide sequences 
included the pyrosequencing primer (TCATGGCAC 
TGTACTCTT), the forward PCR primer (TGAAACCTG 
TTTGTTGGACATACT), and the reverse PCR primer 
(CCGCAAATGACTTGCTATTATTG). Samples with 
gBlock2 were serially diluted with gBlock1 to reach the 
following proportions of gBlock2: 50, 10, 5, 2.5, 1.25 and 
0  %. Three dilution series and six replicate samples per 
concentration were prepared. Three of the 6 replicate 
samples were pyrosequenced with the dispensation order 
defined by PyroMark Q96 2.5.8 software and analyzed 
with the AQ module of the same software whereas the 
three remaining samples were pyrosequenced with a dis-
pensation order defined by SENATOR [10] and analyzed 
with the new AdvISER-PYRO-SMQ algorithm.

Pyrosequencing
Except for the dispensation order which was modi-
fied for half of the samples, pyrosequencing was carried 
out according to manufacturer’s protocol. Briefly, PCR 
was carried out in a 50 μL reaction mixture containing 
5 μL of the extracted DNA (0.06 ng/μL), 5 μL of a PCR 
buffer (100 mM Tris-hydrochloride, and 500 mM potas-
sium chloride, pH 8.3), 4.5 μL of MgCl2 25 mM, 0.2 μL 
of AmpliTaq Gold®DNA Polymerase 5U/μL (Ampli-
Taq Gold DNA Polymerase kit from Applied Biosys-
tems, Austin, USA), 4 μL of dNTPs 2.5 mM (dNTPs: 

dATP, dCTP, dGTP, dTTP Li-salts from Roche Diagnos-
tics GmbH, Mannheim, Germany) and 2 μL of forward 
and reverse PCR primers 10pm/μL (Eurogentec, Liege, 
Belgium).

Amplification was performed in a 2720 Thermal Cycler 
(Applied Biosystems) using the following conditions: 95 
°C for 5 min, followed by 40 cycles with denaturation 
at 95 °C for 40 s, annealing at 59 °C for 40 s, and exten-
sion at 72 °C for 80 s, with a final elongation step at 72 
°C for 7 min. Pyrosequencing was then carried out with 
a PyroMark Q 96 ID Sequencer from Qiagen (Hilden, 
Germany) on PCR products, using the pyrosequencing 
primer, enzymes and substrate (PyroMark Gold®Q96 
Reagents kit, Qiagen) according to the manufactur-
er’s protocol. Each PCR and pyrosequencing reaction 
included negative and positive controls.

Pyro‑signal analysis using Allele Quantification module 
of Qiagen
For each dilution series (N  =  3), and each proportion 
(N =  6), three replicates were pyrosequenced with the 
dispensation order generated with the PyroMark Q96 
2.5.8 software. This dispensation order was designed in 
order to target the NRAS c.182A > G (Q61R-1) mutated 
variant. Pyro-signals were all analyzed using the Allele 
quantification (AQ) module of the same software. Per-
centages of NRAS c.182A > G (Q61R-1) mutated alleles 
were recorded and used to compute a single calibration 
curve for each dilution series. The LoB and LoD were 
then deduced from each calibration curve. The LoB was 
computed as the highest percentage of somatic mutation 
expected to be computed by the software when replicates 
of blank samples (i.e. 100 % WT-0 % Q61R-1) are tested 
[14]. Conversely, the LoD was computed as the lowest 
percentage of somatic mutation likely to be reliably dis-
tinguished from the LoB and at which detection was fea-
sible [14]. The LoD was therefore set at the intersection 
between the LoB and the prediction interval of the cali-
bration curve.

Pyro‑signal analysis using AdvISER‑PYRO‑SMQ
For each dilution series (N = 3), and each concentration 
(N = 6), three replicates were pyrosequenced with a dis-
pensation order generated by SENATOR, as previously 
recommended [10]. The analysis of all pyro-signals was 
then carried out with AdvISER-PYRO-SMQ. It is worth 
noting that in this paper, a pyro-signal is defined as the 
global pattern integrating all successive peak heights 
and corresponds therefore to a vector whose length 
n equals the number of dispensed nucleotides (n =  12 
in the current application, see "Results’’ section). The 
development of this algorithm included the three fol-
lowing steps.
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Firstly, a standardized learning dictionary was cre-
ated including a uniplex theoretical pyro-signal for each 
of the 10 possible Unique Nucleotide Sequence (UNS) 
of the current application [WT, NRAS c.181C > G 
(Q61E), NRAS c.181C > A (Q61K), NRAS c.182A > T  
(Q61L-1), NRAS c.182A > C (Q61P), NRAS c.182A > G 
(Q61R-1), NRAS c.182183AA > TG (Q61L-2), NRAS 
c.182183AA > GG (Q61R-2), NRAS c.183A > C (Q61H-
1), NRAS c.183A > T  (Q61H-2)]. Aside of the 10 theo-
retical pyro-signals, 6 experimental signals of the WT 
variants were generated by pyrosequencing gBlock1. 
These experimental signals were standardized by divid-
ing all peak heights by the corresponding unitary peak 
height, as previously recommended [9], and compiled 
with theoretical pyro-signals within the dictionary. The 
dictionary consisted therefore in a matrix with 16 col-
umns (i.e. 1 column for each pyro-signal) and 12 rows 
(i.e. 1 row for each dispensed nucleotide).

In a second step, each pyro-signal (vector y) of length 
n (n = 12) was analyzed with AdvISER-PYRO-SMQ soft-
ware. With this software, the pyro-signal y is modelled 
as a sparse linear combination of the p (p =  16) pyro-
signals of length n (n = 12) from the dictionary using a 
constraint-based regression method. The least absolute 
shrinkage and selection operator (lasso) method [15] uses 
a L1-norm constraint on the coefficient vector β and the 
issue is therefore to find a vector β of length p (p = 16) 
minimizing the following function:

with the following constraint on the sum of the absolute 
value of each element within the β coefficient vector (i.e. 
a L1-norm constraint on β) :

Solving this constraint-based minimization problem is 
equivalent to minimizing the following penalized regres-
sion equation.

where yi is the ith element of the y pyro-signal, xij is ith 
element of the jth pyro-signal from the dictionary, 

∣
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standard least square solution. Increasing the value of �, 
or equivalently a decreasing the value of s, increases the 
sparsity of the solution [16].

While a unique � parameter was applied for all signals 
from the dictionary in previous applications of AdvISER-
PYRO [9], AdvISER-M-PYRO [10], and AdvISER-MH-
PYRO [11], low shrinkage parameters (i.e � = 0) and 
higher shrinkage parameters (i.e. � = 50) were applied on 
pyro-signals corresponding to the WT sequence and to 
the other variants, respectively, in the current AdvISER-
PYRO-SMQ application. It is worth noting that the 
shrinkage value which is selected for somatic mutation 
can be tuned to improve specificity (with higher values 
i.e. � = 100) or sensitivity (with lower values i.e. � = 5 ). 
Because the signal contribution of each UNS should 
have a positive value, an additional constraint was imple-
mented through the ‘positive’ parameter of the penalized 
function the corresponding R package [17]. In this pack-
age, the elements of the β coefficient vector are estimated 
through an algorithm based on a combination of gradi-
ent ascent optimization with the Newton–Raphson algo-
rithm [18]. After model estimation, the sum of regression 
coefficients corresponding to each UNS was computed 
and recorded as the UNS contribution to the signal.

While not implemented with the previous AdvISER-
PYRO and AdvISER-M-PYRO versions [9, 10], the third 
step of the new AdvISER-PYRO-SMQ algorithm involved 
to select the most likely somatic mutation and to quan-
tify the percentage of mutated allele. Accordingly, the 
selection of the two main contributing UNS (i.e. WT 
and one selected mutation) was carried out by iteratively 
removing from the dictionary the signals associated with 
the lowest UNS contribution. The quantification of the 
selected somatic mutation was computed as the relative 
contribution of the selected somatic to the global signal. 
The relative quantification was computed for each sam-
ple and was recorded in order to compute one calibration 
curve for each dilution series. The LoB and LoD were 
then deduced from each calibration curve.

When a pyro-signal is analyzed by the software, a cor-
relation coefficient (r) is computed between predicted val-
ues of the penalized regression model and peak heights of 
the observed pyro-signal (i.e. the elements of the y vector). 
Considering that a low correlation coefficient is indicative 
of a discrepancy between the observed pyro-signal y and 
the selected combination of pyro-signals from the dic-
tionary, this coefficient was used to assess the global con-
fidence of the predicted UNS combination.

Results
Selection of the nucleotide dispensation order
As this pyrosequencing experiment was carried out using 
reverse primers, the reverse complementary sequence was 
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computed for each UNS (Table  1). SENATOR was then 
used to select a dispensation that enables to differentiate 
all UNSs of interest for the current application (Table 1).

A nucleotide dispensation order with 12 nucleotides 
(CTGACTCGTAGC) was selected. This dispensation 
order generated theoretical uniplex pyro-signals with low 
pairwise correlation coefficients (Fig.  1), avoiding col-
linearity between signals which are contained in the dic-
tionary. These pyrosignals were used as predictors in the 
penalized regression models within the AdvISER-PYRO-
SMQ algorithm. It is worth noting that the selected dis-
pensation order covers three NRAS codons (59, 60 and 61).

Pyro‑signal processing using AQ module of PyroMark Q96 
2.5.8 software
Pyro-signals from each dilution series (N  =  3) were 
analyzed with AQ module of the PyroMark Q96 2.5.8 

software and the resulting quantifications were used to 
compute one calibration curve for each dilution series 
(Fig.  2). LoB and LoD corresponding to the each dilu-
tion series are given in Table 2. Blank samples (i.e. 100 % 
WT-0 % Q61R-1) produced non-specific peaks which led 
to false-positive detection of Q61R1 allele ranging from 
3 to 5 %. When a standard decision threshold of 5 % was 
considered [2, 5], 22 % (2/9) of these blank samples still 
produced false positive results. Samples with a predicted 
proportion of about 8 % were reliably distinguished from 
the LoB, corresponding to a Q61R1 allele proportion of 
about 5 % (i.e. LoD ≈ 5%).

Pyro‑signal processing using Adviser‑PYRO‑SMQ
Calibration curves obtained from the interpretation of 
AdvISER-PYRO-SMQ on pyro-signals from each dilution 
series are displayed in Fig. 3.

Table 1 List of all unique nucleotide sequence (UNS) of interest in the current application

Nucleotides of codon 61 are in bold characters

Variant name Unique nucleotide sequence Reverse complementary

WT AGCTGGACAAG CTTGTCCAGCT

NRAS c.181C > G (Q61E) AGCTGGAGAAG CTTCTCCAGCT

NRAS c.181C > A (Q61K) AGCTGGAAAAG CTTTTCCAGCT

NRAS c.182A > T  (Q61L‑1) AGCTGGACTAG CTAGTCCAGCT

NRAS c.182A > C (Q61P) AGCTGGACCAG CTGGTCCAGCT

NRAS c.182A > G (Q61R‑1) AGCTGGACGAG CTCGTCCAGCT

NRAS c.182_183AA > TG (Q61L‑2) AGCTGGACTGG CCAGTCCAGCT

NRAS c.182_183AA > GG (Q61R‑2) AGCTGGACGGG CCCGTCCAGCT

NRAS c.183A > C (Q61H‑1) AGCTGGACATG CATGTCCAGCT

NRAS c.183A > T  (Q61H‑2) AGCTGGACACG CGTGTCCAGCT

NRAS WT

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

C T G A C T C G T A G C

NRAS Q61E : 181 C>G

C T G A C T C G T A G C

NRAS Q61H1 : 183 A>T

C T G A C T C G T A G C

NRAS Q61H2 : 183 A>C

C T G A C T C G T A G C

NRAS Q61K : 181 C>A

C T G A C T C G T A G C

NRAS Q61L1 : 182 A>T

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

C T G A C T C G T A G C

NRAS Q61L2 : 182−183 AA>TG

C T G A C T C G T A G C

NRAS Q61P : 182 A>C

C T G A C T C G T A G C

NRAS Q61R1 : 182 A>G

C T G A C T C G T A G C

NRAS Q61R2 : 182−183 AA>GG

C T G A C T C G T A G C

Fig. 1 Pyro‑signals corresponding to each unique nucleotide sequence (UNS) of interest in the current application and according to the selected 
dispensation order as defined by the SENATOR algorithm
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The LoB and LoD corresponding to the three calibra-
tion curves are given in Table  3. For all pure WT sam-
ples, a predicted proportion of Q61R1 allele of 0 % was 
systematically obtained, resulting into a LoB of 0 %. Irre-
spectively of the dilution series, the LoD obtained with 
Adviser-Pyro-SMQ was similar to the results obtained 
with PyroMark Q96 2.5.8 software.

Impact of shrinkage parameter on specificity 
and sensitivity
Results presented in the previous section were obtained 
with a low shrinkage parameter (� = 0) which was 
applied on WT pyro-signals from the dictionary and 
with a single shrinkage parameter (i.e. � = 50) which 
was applied to all type of mutations. As explained before, 
the latter shrinkage parameter can be modified for each 
element of the standardized learning dictionary. As 
demonstrated in this section, this specific feature of the 
new Adviser-Pyro-SMQ algorithm (compared to previ-
ous AdvISER-PYRO, AdvISER-M-PYRO, and AdvISER-
MH-PYRO applications) is highly relevant for somatic 
mutation quantification because it impacts the trade-off 
between sensitivity and specificity.

In this context, all pyro-signals from the first dilu-
tion series were analyzed with three different shrinkage 
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Fig. 2 Calibration curves generated from the predictions of the AQ module of the PyroMark Q96 2.5.8 software

Table 2 Limit of  blank and  limit of  detection obtained 
from  the three calibration curves produced with  the AQ 
module of the PyroMark Q96

Dilution series 
1 (%)

Dilution series 
2 (%)

Dilution series 
3 (%)

Average (%)

LoB 4.6 5.3 5.3 5.1

LoD 2.7 5.8 5.8 4.8
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Fig. 3 Calibration curves generated from the predictions of the AdvISER‑PYRO‑MSQ software
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parameters (� = 5, 50 and 100) applied on the Q61R-1 
mutation. Shrinkage parameters applied on the WT 
(� = 0) and other mutations (� = 50) were kept con-
stant. As shown in Fig.  4, a lower shrinkage parameter 
(� = 5) decreased the risk of false-negative result (i.e. 
improved sensitivity) for samples with a small propor-
tion of Q61R-1 alleles. But consequently, this low shrink-
age parameter increased the risk of false-positive result 
(i.e. decreased specificity). Conversely, a higher shrink-
age parameter (� = 100) improved the specificity while 
affecting the sensitivity. Indeed, all samples with a low 
number of mutated cells (Q61R < 10 %) were identified as 
containing only wild-type alleles when a higher shrinkage 
parameter (� = 100) was used.

Use and illustration of AdvISER‑PYRO‑ SMQ
AdvISER-PYRO-SMQ was implemented in an R pack-
age (Additional file  1) which can be applied to analyze 
pyro-signals generated for the detection and quantifica-
tion of a broad range of somatic mutations. As it is not 
always feasible for all laboratories to use R commands in 
order to analyze pyro-signals from clinical routine appli-
cations, we also developed a Shiny application (shown in 
Fig.  5 and available at https://ucl-irec-ctma.shinyapps.io/
Pyrosequencing-NRAS-61/) to demonstrate that the avail-
able R package can be converted into a web interactive 

application, facilitating its use in research or clinical rou-
tine applications.

In this Shiny application, the user must upload the 
raw peak dataset extracted from the Pyrosequencing 
machine. A raw peak dataset including 4 different pyro-
signals obtained from pyrosequencing analysis of FFPE 
samples is available (Additional file  2). In this dataset, 
each line corresponds to one sample and each column 
corresponds to a nucleotide dispensation. The user 
must then select the line to be analyzed and the penalty/
shrinkage paramater before pushing on the submit but-
ton to obtain the result. Figure  6 illustrates the results 
obtained with AdvISER-PYRO-SMQ when applied on 
the 4 pyro-signals from the available dataset. While no 
somatic mutation was detected in sample A1, 31.9 % of 
Q61R1, 48.6  % of Q61K, and 20.6  % of Q61L1 somatic 
mutations were detected in A2, A3, and A4 samples, 
respectively. For each pyro-signal, peak heights of >20 
relative fluorescence units (RLU) were observed and the 
correlation coefficient (r) between predicted values of 
the penalized regression model and the 12 values of the 
pyrosequencing signal was >0.995. Both factors have to 
be considered to assess the validity of signal interpreta-
tion. It is of note that a low correlation coefficient would 
be obtained with a sample presenting a new mutation not 
yet included within the dictionary. A tumor sample with 
a new mutation of exon 59 of NRAS oncogene (as present 
in exon 59 of KRAS oncogene) would therefore produce 
a low correlation coefficient, allowing the operator to 
detect this unusual sample.

Discussion
Pyrosequencing Allele Quantification is a cost-effective 
DNA sequencing method that can be used for detect-
ing somatic mutations in FFPE samples. This method 

Table 3 Limit of  blank and  limit of  detection obtained 
from  the three calibration curves produced with  the new 
AdvISER-PYRO-MSQ software

Dilution series 
1 (%)

Dilution series 
2 (%)

Dilution series 
3 (%)

Average (%)

LoB 0.0 0.0 0.0 0.0

LoD 3.9 7.2 5.6 5.6
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Fig. 4 Calibration curves obtained with the dilution series n°1 and with three distinct shrinkage lambda parameters (3, 30, 100) applied on pyro‑
signals corresponding to the NRAS‑61 mutations
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displays a low turnaround time and a high sensitivity. 
Pyrosequencing suffers from drawbacks related to the 
analysis and interpretation of the pyro-signals.

The first disadvantage is the low specificity character-
izing the Allele Quantification (AQ) module of the Qia-
gen software. Indeed, when the usual decision threshold 
of ≥5 mutated alleles for a “mutation-positive” sample is 
chosen [2, 5], a low specificity affects the current NRAS 
application. In that respect, analyzing blank samples with 
the AQ module produced false-positive (2/9, 22 %) pre-
dictions, resulting into a lack of specificity. While Gblock 
samples produced pyro-signals with high signal-to-noise 
ratio in the current study, pyro-signals generated from 
FFPE clinical samples could produce noisy pyro-signals 
which would further alter the specificity of the analysis. 
While the specificity of the AQ module can theoreti-
cally be improved by increasing the decision threshold 
(i.e. from 5 to >5), this would imply to compute a specific 
threshold for each type of somatic mutation by comput-
ing the corresponding calibration curve. Determining 
the mutational status would therefore require comparing 
each predicted percentage to a specific threshold.

In the current study, a constraint-based regression 
method was used to quantify somatic mutation from 
pyro-signals. This method was implemented in the new 
AdvISER-PYRO-SMQ algorithm which predicted the 
absence of mutated alleles in all blank samples. Even with 
a low decision threshold (e.g. 1 %), analyzing pyro-signals 

with AdvISER-PYRO-SMQ produced highly specific 
result. Moreover, shrinkage parameters can be adjusted 
in this new algorithm, a useful feature enabling the users 
to improve either the specificity or the sensitivity.

A second disadvantage of pyrosequencing is related to 
the interpretation of the pyro-signal when several differ-
ent mutations can affect the same short genomic region 
(i.e. a hotspot). Analyzing such hotspot regions requires 
either to multiply the number of pyrosequencing reac-
tions to analyze with the standard AQ module of Qiagen, 
or to develop home-made system requiring sophisticated 
manual process which do not prevent the occurence of 
human errors.

In the current study, it was demonstrated how 
AdvISER-PYRO-SMQ can target multiple somatic muta-
tions in the codon 61 of NRAS. The pyro-signals were 
automatically interpreted by the software which pro-
duces a simple output that can directly be transmitted to 
the physician in charge of the patient.

Conclusion
AdvISER-PYRO-SMQ is a generic software which allows 
the detection of a wide range of somatic mutations 
including standard point mutations but also multiple 
mutations within a single genomic region. As demon-
strated here, this new algorithm can also be implemented 
in an interactive web application, facilitating its use in 
research or clinical routine applications.

Fig. 5 The AdvISER‑PYRO‑SMQ software is implemented in a Shiny application available at https://ucl‑irec‑ctma.shinyapps.io/Pyrosequencing‑
NRAS‑61/

https://ucl-irec-ctma.shinyapps.io/Pyrosequencing-NRAS-61/
https://ucl-irec-ctma.shinyapps.io/Pyrosequencing-NRAS-61/
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