
Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20
DOI 10.1186/s13015-017-0111-2

RESEARCH

ASP‑based method for the enumeration
of attractors in non‑deterministic synchronous
and asynchronous multi‑valued networks
Emna Ben Abdallah1*  , Maxime Folschette2,3, Olivier Roux1 and Morgan Magnin1,4

Abstract 

Background:  This paper addresses the problem of finding attractors in biological regulatory networks. We focus here
on non-deterministic synchronous and asynchronous multi-valued networks, modeled using automata networks
(AN). AN is a general and well-suited formalism to study complex interactions between different components (genes,
proteins,...). An attractor is a minimal trap domain, that is, a part of the state-transition graph that cannot be escaped.
Such structures are terminal components of the dynamics and take the form of steady states (singleton) or complex
compositions of cycles (non-singleton). Studying the effect of a disease or a mutation on an organism requires finding
the attractors in the model to understand the long-term behaviors.

Results:  We present a computational logical method based on answer set programming (ASP) to identify all attrac-
tors. Performed without any network reduction, the method can be applied on any dynamical semantics. In this
paper, we present the two most widespread non-deterministic semantics: the asynchronous and the synchronous
updating modes. The logical approach goes through a complete enumeration of the states of the network in order to
find the attractors without the necessity to construct the whole state-transition graph. We realize extensive computa-
tional experiments which show good performance and fit the expected theoretical results in the literature.

Conclusion:  The originality of our approach lies on the exhaustive enumeration of all possible (sets of) states verify-
ing the properties of an attractor thanks to the use of ASP. Our method is applied to non-deterministic semantics in
two different schemes (asynchronous and synchronous). The merits of our methods are illustrated by applying them
to biological examples of various sizes and comparing the results with some existing approaches. It turns out that our
approach succeeds to exhaustively enumerate on a desktop computer, in a large model (100 components), all exist-
ing attractors up to a given size (20 states). This size is only limited by memory and computation time.

Keywords:  Biological regulatory network, Multiple-valued networks, Attractors, Steady states, Cycles, Answer set
programming

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In the last decades, the emergence of a wide range of new
technologies have made it possible to produce a massive
amount of biological data (genomics, proteomics...). This
leads to considerable developments in systems biology
which takes profit from this data. In order to understand
the nature of a cellular function or more broadly a living

biological system (healthy or diseased), it is indeed essen-
tial to study not only the individual properties of cellu-
lar components, but also their interactions. The behavior
and functionalities of the cells emerge from such net-
works of interactions.

Considering this paradigm, the long-term behavior
of regulatory networks dynamics is of specific inter-
est [1]. Indeed, at any moment, a system may fall into a
trap domain, which is a part of its dynamics that cannot
be escaped. While evolving, the system may eventually
fall into a new and smaller trap domain, which reduces

Open Access

Algorithms for
Molecular Biology

*Correspondence: Emna.BenAbdallah@ls2n.fr
1 École Centrale de Nantes, LS2N UMR CNRS 6004, 1 rue de la Noë,
44321 Nantes, France
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8207-2080
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0111-2&domain=pdf

Page 2 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

its possible future behaviors (making previous states no
longer reachable). This phenomenon depends on bio-
logical disruptions or other complex phenomena. Such
outline has been interpreted as distinct responses of the
organism, such as differentiating into distinct cell types in
multicellular organisms [2].

Moreover, when refining a model of a living system,
one way to remove inconsistencies or to predict miss-
ing information in biological models consists in compar-
ing the attractors of the model with the experimentally
observed long-term behavior. For instance, the model
of the cellular development of Drosophila melanogaster,
was described using Boolean networks and their attrac-
tors [3, 4].

Various kinds of mathematical models have been pro-
posed for the modeling of biological regulatory networks
(BRNs). These models include neural networks, differen-
tial equations, Petri nets, Boolean networks (BN) as pro-
posed by Kauffman [5], probabilistic Boolean networks,
and other multi-valued models such synchronous/asyn-
chronous automata networks (AN). In this paper, we use
the AN formalism [6, 7] to model BRNs. ANs especially
encompass the framework of René Thomas [8].

Qualitative frameworks have received substantial
attention, because of their capacity to capture the switch-
ing behavior of genetic or biological processes, and there-
fore, the study of their long-term behavior. This explains
our choice of a qualitative representation for the identifi-
cation of trap domains. In such a qualitative framework, a
minimal trap domain can take two different forms: it can
be either a steady state, which is one state from which the
system does not evolve anymore, called also a fixed point;
or an attractor, which is a minimal set of states that loops
indefinitely and cannot be escaped.

The computational problem of finding all attractors in
a BRN is difficult. Even the simpler problem of deciding
whether the system has a fixed point, which can be seen
as the smallest kind of attractor, is NP-hard [9]. Based on
this, many studies have proven that computing attractors
in BRNs is also a NP-hard problem [10, 11]. Although
some methods exist with a lesser complexity, consist-
ing for instance in randomly selecting an initial state and
following a long enough trajectory, hoping to eventually
finding an attractor, they are not exhaustive and may miss
some (hard to reach) attractors.

Therefore, in the absence of more efficient exhaustive
methods, it is still relevant to develop an approach to
resolve the original NP-hard problem of attractors identi-
fication. Such an approach consists in exhaustively exam-
ine all possible states of a network, along with all possible
paths from each of these states. Obviously, this brute
force method is very time and memory consuming: 2n
initial states have to be considered for a Boolean model

with n nodes; and multi-valued networks raise this value
even more. Furthermore, a sufficient number of compu-
tations have to be performed to ensure that all trajecto-
ries have been explored and all attractors are found. This
high complexity justifies the use of a tool able to tackle
such hard problems.

The simplest way to detect attractors is to enumerate all
the possible states and to run simulation from each one
until an attractor is reached [12]. This method ensures
that all attractors are detected but it has an exponen-
tial time complexity, therefore its applicability is highly
restricted by the network size.

Regarding BNs only, algorithms for detecting attrac-
tors have been extensively studied in the literature. Irons
[13] proposes to analyze partial states in order to dis-
card potential attractors more efficiently. This method
improves the efficiency from exponential time to polyno-
mial time for a subset of biological Boolean models that is
highly dependent on the topology (indegree, outdegree,
update functions) of the underlying network. Another
method, called GenYsis [14], starts from one (randomly
selected) initial state and detects attractors by computing
the successor and predecessor states of this initial state.
It works well for small BNs, but becomes inefficient for
large BNs.

More generally, the efficiency and scalability of attrac-
tor detection techniques are further improved with
the integration of two techniques. This first is based on
binary decision diagrams (BDD), a compact data struc-
ture for representing Boolean functions. In a recent work
[15], algorithms have been based on the reduced-order
BDD (ROBDD) data structure, which further speeds
up the computation time of attractor detection. These
BDD-based solutions only work for BRNs of a hundred
of nodes and also suffer from the infamous state explo-
sion problem, as the size of the BDD depends both on
the regulatory functions and the number of nodes in
the BRN. The other technique consists in represent-
ing the attractor enumeration problem as a satisfiability
(SAT) problem such as in [16]. The main idea is inspired
by SAT-based bounded model-checking: the transition
relation of the BRN is unfolded into a bounded number
of steps in order to construct a propositional formula
which encodes attractors and which is then solved by a
SAT solver. In every step, a new variable is required to
represent a state of a node in the BRN. It is clear that
the efficiency of these algorithms largely depends on the
number of unfolding steps and the number of nodes in
the BRN.

In [17], the authors separated the rules that describe
the network (the nodes and their interactions: activation
or inhibition) from the rules that define its dynamics (for
instance: a gene will be activated in the next state if all its

Page 3 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

activators are active or when at least one of its activators
is active at the current state). This allows to obtain more
flexible simulations, and the authors also chose to use the
declarative paradigm answer set programming (ASP) [18]
in order to have more liberty in the expression of evolu-
tion rules. They illustrated that specifying large networks
with rather complicated behaviors becomes cumber-
some and error prone in paradigms like SAT, whereas this
is much less the case in a declarative approach such as
theirs.

Our goal in this paper is to develop exhaustive meth-
ods to analyze a BRN modeled in AN. We address two
kinds of issues: finding all possible steady states of a
BRN and enumerating all attractors of a given size n ≥ 2 .
We focus on two widespread non-deterministic update
schemes (synchronous and asynchronous) and use ASP
to solve these aforementioned issues. Although this
approach is not new (see above), the use of ASP can still
be considered innovative in the field of dynamic proper-
ties analysis and our aim here is to assess its computa-
tional potential.

Nevertheless, the originality of our contribution is to
consider AN models: this formalism does not restrict
entities to have Boolean expression levels (active/inac-
tive) as they can have multi-valued ones. Complex inter-
actions are modeled in an AN as automata transitions
instead of generic influences. This expressiveness allows
to represent a wide range of dynamical models with the
AN framework, and the particular form of its local tran-
sitions can be well handled in ASP. Finally, this frame-
work allows to represent non-deterministic synchronous

models, contrary to previous works focusing on asyn-
chronous or deterministic synchronous models.

We previously introduced some rough ideas of this
approach in [19]. In the present paper, we have extended
this work by focusing on AN models, that are more
expressive than the previous process hitting framework
[20]. We give a more detailed state-of-the-art and a more
in-depth formalization of the problems tackled and show
the merits of our approach on a case study and various
benchmarks.

This paper is organized as follows. "Automata networks"
presents the main definitions related to the AN and the
particular constructs that we will seek: fixed points and
attractors. "Answer set programming" briefly presents the
ASP framework necessary to understand the encoding
part. Section "Fixed points enumeration" details the part
of our method that allows to present an AN model using
ASP rules and find all the fixed points in such a model.
Then, "Length n attractors enumeration" explains how
to enumerate all attractors in a model still using ASP. In
"Results" we give benchmarks of our methods on several
models of different sizes (up to 100 components). Finally,
“Conclusion and future direction” concludes and gives
some perspectives to this work.

Preliminary definitions
Automata networks
Definition 1 introduces the formalism of automata net-
works (AN) [6] (see Fig. 1) which allows to model a finite
number of discrete levels, called local states, into several
automata. A local state is denoted ai, where a is the name

a

0

1
b

0

1

2

c

0

1
d

0

1

2

c1 b2

d0

d1

b2 a1

a1, b0 d2

a1, c1 a0, b1c0 c0

Fig. 1  An example of an AN model with 4 automata: a, b, c and d. Each box represents an automaton (modeling a biological component), circles
represent their local states (corresponding to their discrete expression levels) and the local transitions are represented by arrows labeled by their
necessary conditions (consisting of a set of local states from other automata). The automata a and c are either at level 0 or 1, and b and d have 3
levels (0, 1 and 2). The grayed local states stand for the network state 〈a0, b1, c1, d0〉

Page 4 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

of the automaton, corresponding usually to a biological
component, and i is a level identifier within a. At any
time, exactly one local state of each automaton is active,
modeling the current level of activity or the internal state
of the automaton. The set of all active local states is called
the global state of the network.

The possible local evolutions inside an automaton are
defined by local transitions. A local transition is a triple
noted ai

ℓ
→ aj and is responsible, inside a given automa-

ton a, for the change of the active local state (ai) to another
local state (aj), conditioned by the presence of a set ℓ of
local states belonging to other automata and that must be
active in the current global state. Such a local transition is
playable if and only if ai and all local states in the set ℓ are
active. Thus, it can be read as “all the local states in ℓ can
cooperate to change the active local state of a by making
it switch from ai to aj”. It is required that ai and aj are two
different local states in automaton a, and that ℓ contains no
local state of automaton a. We also note that ℓ should con-
tain at most one local state per automaton, otherwise the
local transition is unplayable; ℓ can also be empty.

Definition 1  (Automata network) An Automata net-
work is a triple (�,S , T) where:

• • � = {a, b, . . .} is the finite set of automata identifiers;
• • For each a ∈ �, Sa = {ai, . . . , aj} is the finite set of

local states of automaton a; S =
∏

a∈� Sa is the
finite set of global states; LS = ∪a∈�Sa denotes the
set of all the local states.

• • For each a ∈ �, Ta = {ai
ℓ
→ aj ∈ Sa × ℘(LS \ Sa)

×Sa | ai �= aj} is the set of local transitions on
automaton a; T =

⋃
a∈� Ta is the set of all local tran-

sitions in the model.

For a given local transition τ = ai
ℓ
→ aj, ai is called the

origin or τ, ℓ the condition and aj the destination, and
they are respectively noted ori(τ), cond(τ) and dest(τ).

Example 1  Figure 1 represents an AN (�,S , T) with 4
automata (among which two contain 2 local states and the
two others contain 3 local states) and 12 local transitions:

• • 	 � = {a, b, c, d},
• • 	 Sa = {a0, a1}, Sb = {b0, b1, b2}, Sc = {c0, c1},
Sd = {d0, d1, d2},

• • 	
T = { a0

{c1}
−→ a1, a1

{b2}
−→ a0,

b0
{d0}
−→ b1, b0

{a1,c1}
−→ b2, b1

{d1}
−→ b2, b2

{c0}
−→ b0,

c0
{a1,b0}
−→ c1, c1

{d2}
−→ c0,

d0
{b2}
−→ d1, d0

{a0,b1}
−→ d2,

d1
{a1}
−→ d0, d2

{c0}
−→ d0}.

The local transitions given in Definition 1 thus define
concurrent interactions between automata. They are
used to define the general dynamics of the network, that
is, the possible global transitions between global states,
according to a given update scheme. In the following, we
will only focus on the (purely) asynchronous and (purely)
synchronous update schemes, which are the most wide-
spread in the literature. The choice of such an update
scheme mainly depends on the considered biological
phenomena modeled and the mathematical abstractions
chosen by the modeler.

Update schemes and dynamics of automata networks
As explained in the previous section, a global state of an
AN is a set of local states of automata, containing exactly
one local state of each automaton. In the following, we
give some notations related to global states, then we
define the global dynamics of an AN.

The active local state of a given automaton a ∈ � in a
global state ζ ∈ S is noted ζ [a]. For any given local state
ai ∈ LS, we also note: ai ∈ ζ if and only if ζ [a] = ai, which
means that the biological component a is in the discrete
expression level labeled i within state ζ. For a given set of
local states X ⊆ LS, we extend this notation to X ⊆ ζ if
and only if ∀ai ∈ X , ai ∈ ζ, meaning that all local states of
X are active in ζ.

Furthermore, for any given local state ai ∈ LS, ζ ⋓ ai
represents the global state that is identical to ζ, except
for the local state of a which is substituted with ai:
(ζ ⋓ ai)[a] = ai ∧ ∀b ∈ �\{a}, (ζ ⋓ ai)[b] = ζ [b]. We
generalize this notation to a set of local states X ⊆ LS
containing at most one local state per automaton, that is,
∀a ∈ �, |X ∩ Sa| ≤ 1 where |S| is the number of elements
in set S; in this case, ζ ⋓ X is the global state ζ where the
local state of each automaton has been replaced by the
local state of the same automaton in X, if there exists:
∀a ∈ �, (X ∩ Sa = {ai} ⇒ (ζ ⋓ X)[a] = ai) ∧ (X ∩ Sa
 = ∅ ⇒ (ζ ⋓ X)[a] = ζ [a]) .

In Definition 2 we formalize the notion of playability of a
local transition which was informally presented in the pre-
vious section. Playable local transitions are not necessarily
used as such, but combined depending on the chosen update
scheme, which is the subject of the rest of the section.

Definition 2  (Playable local transitions) Let
AN = (�,S , T) be an automata network and ζ ∈ S a
global state. The set of playable local transitions in ζ is called
Pζ and defined by: Pζ = {ai

ℓ
→ aj ∈ T | ℓ ⊆ ζ ∧ ai ∈ ζ }.

The dynamics of the AN is a composition of global
transitions between global states, that consist in applying
a set of local transitions. Such sets are different depend-
ing on the chosen update scheme. In the following, we

Page 5 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

give the definition of the asynchronous and synchronous
update schemes by characterizing the sets of local transi-
tions that can be “played” as global transitions. The asyn-
chronous update sets (Definition 3) are made of exactly
one playable local transition; thus, a global asynchronous
transition changes the local state of exactly one automa-
ton. On the other hand, the synchronous update sets
(Definition 4) consist of exactly one playable local tran-
sition for each automaton (except the automata where
no local transition is playable); in other words, a global
synchronous transition changes the local state of all
automata that can evolve at a time. Empty update sets are
not allowed for both update schemes. In the definitions
below, we willingly mix the notions of “update scheme”
and “update set”, which are equivalent here.

Definition 3  (Asynchronous update scheme) Let
AN = (�,S , T) be an automata network and ζ ∈ S a
global state. The set of global transitions playable in ζ for
the asynchronous update scheme is given by:

Definition 4  (Synchronous update scheme) Let
AN = (�,S , T) be an automata network and ζ ∈ S a
global state. The set of global transitions playable in ζ for
the synchronous update scheme is given by:

Uasyn(ζ) = {{ai
ℓ
→ aj} | ai

ℓ
→ aj ∈ Pζ }.

Once an update scheme has been chosen, it is possible
to compute the corresponding dynamics of a given AN.
Thus, in the following, when it is not ambiguous and
when results apply to both of them, we will denote by U a
chosen update scheme among Uasyn and Usyn. Definition
5 formalizes the notion of a global transition depending
on a chosen update scheme U .

Definition 5  (Global transition) Let AN = (�,S , T)
be an automata network, ζ1, ζ2 ∈ S two states and U an
update scheme (i.e., U ∈ {Uasyn,Usyn}). The global tran-
sition relation between two states ζ1 and ζ2 for the update
scheme represented by U , noted ζ1 →U ζ2, is defined by:

The state ζ2 is called a successor of ζ1.
We note that in a deterministic dynamics, each state

has only one successor. However, in case of non-deter-
ministic dynamics, such as the asynchronous and syn-
chronous update schemes of this paper, each state may
have several possible successors.

U
syn(ζ) = {u ⊆ T | u �= ∅ ∧ ∀a ∈ �, (Pζ ∩ Ta

= ∅ ⇒ u ∩ Ta = ∅)

∧ (Pζ ∩ Ta �= ∅ ⇒ |u ∩ Ta| = 1)}.

ζ1 →U ζ2 ⇐⇒ ∃u ∈ U (ζ1),

ζ2 = ζ1 ⋓ {dest(τ) ∈ LS | τ ∈ u}.

a0, b2, c0, d1

a1, b2, c0, d1

a1, b0, c0, d1

a0, b0, c0, d1

a0, b1, c0, d2

a1, b0, c0, d0

a0, b0, c0, d0

a0, b2, c1, d1

a1, b2, c1, d1a1, b1, c0, d0

a0, b1, c0, d0

a0, b2, c0, d0

a1, b1, c1, d0

a1, b2, c0, d0

a1, b2, c1, d0

a0, b2, c1, d0

a1, b0, c1, d1

a1, b0, c1, d0

Fig. 2  A part of the state-transition graph of the AN given in Fig. 1 for the asynchronous update scheme, computed from the initial state:
〈a1, b2, c0, d1〉 until reaching attractors. We can observe three fixed points: 〈a1, b1, c1, d0〉, 〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉; an attractor of size 2:
{�a0, b1, c0, d0�, �a0, b1, c0, d2�} (in blue) and an attractor of size 4: {�a1, b2, c1, d1�, �a0, b2, c1, d1�, �a0, b2, c1, d0�, �a1, b2, c1, d0�} (in yellow)

Page 6 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

Example 2  Figures 2 and 3 illustrate respectively the
asynchronous and synchronous update schemes on the
model of Fig. 1. Each global transition is depicted by an
arrow between two global states. Only an interesting sub-
set of the whole dynamics is depicted in both figures.

At this point, it is important to remind that the empty
set never belongs to the update schemes defined above:
∀ζ ∈ S ,∅ /∈ Uasyn(ζ) ∧ ∅ /∈ Usyn(ζ). The consequence
on the dynamics is that a global state can never be its
own successor. In other words, even when no local tran-
sition can be played in a given global state (i.e., Pζ = ∅ ),
we do not add a “self-transition” on this state. Instead,
this state has no successors and is called a fixed point, as
defined later in this section.

Definition 6 explains what are in-conflict local transi-
tions, which are interesting in the scope of the synchro-
nous update scheme. Two local transitions are in-conflict
if they belong to the same automaton and produce some
non-determinism inside this automaton. Such phenom-
enon arises when both local transitions have the same
origin and compatible conditions, but their destinations
are different; or, in other words, there exists a global state
in which they are both playable. In such a case, they allow
the automaton to evolve in two different possible local
states from the same active local state, thus producing a
non-deterministic behavior. This definition will be used

in the discussion of the next section and in "Length n
attractors enumeration".

Definition 6  (In-conflict local transitions) Let
AN = (�,S , T) be an automata network, a ∈ � an
automaton and τ1, τ2 ∈ Ta two local transitions in this
automaton. τ1 and τ2 are said in-conflict if and only if:

Finally, Definition 7 introduces the notions of path and
trace which are used to characterize a set of successive
global states with respect to a global transition relation.
Paths are useful for the characterization of attractors that
are the topic of this work. The trace is the set of all global
states traversed by a given path (thus disregarding the
order in which they are visited). We note that a path is a
sequence and a trace is a set.

Definition 7  (Path and trace) Let AN = (�,S , T)
be an automata network, U an update scheme and
n ∈ N \ {0} a strictly positive integer. A sequence
H = (Hi)i∈�0;n� ∈ Sn+1 of global states is a path of
length n if and only if: ∀i ∈ �0; n− 1�,Hi →U Hi+1.
H is said to start from a given global state ζ ∈ S if and
only if: H0 = ζ. Finally, the trace related to such a path

ori(τ1) = ori(τ2) ∧ dest(τ1) �= dest(τ2) ∧ ∃ζ ∈ S

such that τ1 ∈ Pζ ∧ τ2 ∈ Pζ .

a1, b2, c1, d1

a0, b2, c1, d0

a0, b1, c1, d1

a1, b0, c1, d1 a1, b2, c1, d0

a0, b2, c1, d1a0, b0, c1, d1

a0, b1, c0, d1a1, b0, c0, d1 a1, b2, c0, d1a0, b0, c0, d2

a0, b1, c0, d0

a0, b0, c0, d0 a1, b2, c0, d0

a0, b1, c0, d2 a0, b1, c1, d0

a0, b0, c0, d1

a1, b1, c0, d0

a1, b1, c1, d2

a1, b0, c0, d0a0, b0, c1, d0

a0, b0, c1, d2

a1, b0, c1, d0

a1, b1, c1, d0

a1, b0, c0, d2

a0, b2, c0, d1

Fig. 3  A part of the state-transition graph of the AN given in Fig. 1 for the synchronous update scheme, computed from several initial states, such
as 〈a1, b2, c0, d1〉, until reaching attractors. It features non-deterministic global transitions, depicted by the two red arrows. We can observe the same
three fixed points than for the asynchronous update scheme of Fig. 2, but instead two attractors of size 2: {�a0, b1, c0, d0�, �a0, b1, c0, d2�} (in blue) and
{�a1, b2, c1, d1�, �a0, b2, c1, d0�} (in gray)

Page 7 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

is the set of the global states that have been visited:
trace(H) = {Hj ∈ S | j ∈ �0; n�}.

In the following, when we define a path H of length n,
we use the notation Hi to denote the ith element in the
sequence H, with i ∈ �0; n�. We also use the notation
|H | = n to denote the length of a path H, allowing to
write: H|H | to refer to its last element. We also recall that
a path of length n models the succession of n global tran-
sitions, and thus features up to n + 1 states (some states
may be visited more than once).

Example 3  The following sequence is a path of length 6
for the asynchronous update scheme:

We have: trace(H) = {�a1, b2, c1, d1�, �a0, b2, c1, d1�,

�a1, b2, c1, d0�, �a0, b2, c1, d0�} and: |trace(H)| = 4. We
note that H0 = H2 = H6 and H1 = H5.

When there is one or several repetitions in a given path
of length n (i.e., if a state is visited more than once), its trace
is then of size strictly lesser than n + 1. More precisely,
one can compute the size of the trace corresponding to a
given path by subtracting the number of repetitions in that
path (Lemma 1). For this, we formalize in Definition 8 the
notion of repetitions in a path, that is, the global states that
are featured several times, designated by their indexes.

Definition 8  (Repetitions in a path) Let AN =
(�,S , T) be an automata network, n ∈ N\{0} a strictly
positive integer and H a path of length n. The set of rep-
etitions in H is given by:

Lemma 1  (Size of a trace) Let H be a path of length n.
The number of elements in its trace is given by:

Proof of Lemma 1  By definition of a set, and knowing
that |sr(H)| counts the number of states that exist else-
where in H with a lesser index. � �

We note that if there is no repetition in a path of length
n (sr(H) = ∅ ⇒ |sr(H)| = 0), then the number of visited
states is exactly: |trace(H)| = n+ 1.

Example 4  We can check Lemma 1 on the path H
given in Example 3. Indeed, 〈a1, b2, c1, d1〉 is featured 3
times at H0, H2 and H6. Then, according to the Definition

H = (�a1, b2, c1, d1�; �a0, b2, c1, d1�; �a1, b2, c1, d1�;

�a1, b2, c1, d0�; �a0, b2, c1, d0�; �a0, b2, c1, d1�;

�a1, b2, c1, d1�)

sr(H) = {i ∈ �1; n� | ∃j ∈ �0; i − 1�,Hj = Hi}.

|trace(H)| = n+ 1− |sr(H)|.

8, this state is repeated twice at H2 and H6 because the
first visit of this state is not computed in sr(H). In addi-
tion, the state 〈a0, b2, c1, d1〉 is featured twice in this
path, at H1 and H5, therefore it is considered as repeated
once at H5. Thus, sr(H) = {2, 6, 5}, |sr(H)| = 3 and
|trace(H)| = 6+ 1− 3 = 4.

Determinism and non‑determinism of the update schemes
In the general case, in multi-valued networks, both the
asynchronous and synchronous update schemes are non-
deterministic, which means that a global state can have
several successors.

In the case of the asynchronous update scheme, the
non-determinism may come from in-conflict local
transitions, but it actually mainly comes from the fact
that exactly one local transition is taken into account
for each global transition (see Definition 3). Thus, for
a given state ζ ∈ S, as soon as |Pζ | > 1, several suc-
cessors may exist. In the model of Fig. 1, for example,
the global state 〈a1, b2, c0, d1〉 (in green on Fig. 2) has
three successors: �a1, b2, c0, d1� →Uasyn �a0, b2, c0, d1� ,
�a1, b2, c0, d1� →Uasyn �a1, b0, c0, d1� and 〈a1, b2, c0, d1〉

→Uasyn �a1, b2, c0, d0�.
In the case of the synchronous update scheme (see Def-

inition 4), however, the non-determinism on the global
scale is only generated by in-conflict local transitions
(see Definition 6), that is, local transitions that create
non-determinism inside an automaton. For example, the

model of Fig. 1 features two local transitions b0
{d0}
−→ b1

and b0
{a1,c1}
−→ b2 that can produce the two following

global transitions from the same state (depicted by red
arrows on Fig. 3): �a1, b0, c1, d0� →Usyn �a1, b1, c1, d0� and
�a1, b0, c1, d0� →Usyn �a1, b2, c1, d0�. Note that for this
particular case, these transitions also exist for the asyn-
chronous scheme (also depicted by red arrows on Fig. 2).

Therefore, it is noteworthy that if every automaton
contains only two local states (such a network is often
called “Boolean”) then the synchronous update scheme
becomes completely deterministic. Indeed, it is not pos-
sible to find in-conflict local transitions anymore because
for each possible origin of a local transition, there can be
only one destination (due to the fact that the origin and
destination of a local transition must be different). This
observation can speed up the computations in this par-
ticular case.

Fixed points and attractors in automata networks
Studying the dynamics of biological networks was the
focus of many works, explaining the diversity of exist-
ing frameworks dedicated to modeling and the different
methods developed in order to identify some patterns,

Page 8 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

such as attractors [9, 11, 17, 21, 22]. In this paper we
focus on several sub-problems related to this: we seek
to identify the steady states and the attractors of a given
network. The steady states and the attractors are the two
long-term structures in which any dynamics eventually
falls into. Indeed, they consist in terminal (sets of) global
states that cannot be escaped, and in which the dynamics
always ends.

In the following, we consider a BRN modeled in AN
(�,S , T), and we formally define these dynamical prop-
erties. We note that since the AN formalism encompasses
Thomas modeling [8], all our results can be applied to the
models described by this formalism, as well as any other
framework that can be described in AN (such as Boolean
networks, Biocham [23]...).

A fixed point is a global state which has no successor,
as given in Definition 9. Such global states have a particu-
lar interest as they denote conditions in which the model
stays indefinitely. The existence of several of these states
denotes a multistability, and possible bifurcations in the
dynamics [1].

Definition 9  (Fixed point) Let AN = (�,S , T) be
an automata network, and U be an update scheme
(U ∈ {Uasyn,Usyn}). A global state ζ ∈ S is called a fixed
point (or equivalently steady state) if and only if no global
transition can be played in this state:

It is notable that the set of fixed points of a model (that
is, the set of states with no successor) is the same in both
update schemes asynchronous and synchronous update
[24, 25]: ∀ζ ∈ S ,Uasyn(ζ) = ∅ ⇐⇒ Usyn(ζ) = ∅.

Example 5  The state-transition graphs of Figs. 2 and
3 depict three fixed points colored in red: 〈a1, b1, c1, d0〉 ,
〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉. Visually, they can be
easily recognized because they have no outgoing arrow
(meaning that they have no successors). Although these
figures do not represent the whole dynamics, but they
allow to check that in both update schemes the fixed
points are the same, at least on this subset of the overall
behavior.

Another complementary dynamical pattern consists in
the notion of non-unitary trap domain (Definition 10),
which is a (non-singleton) set of states that the dynamics
cannot escape, and thus in which the system indefinitely
remains. In this work, we focus more precisely on (non-
singleton) attractors (Definition 11), that are cyclic and
minimal trap domains in terms of sets inclusion. In order
to characterize such attractors, we use the notion of cycle
(Definition 12), which is a looping path. Indeed, a cycle

U (ζ) = ∅.

is a strongly connected component (Lemma 2), allow-
ing us to give an alternative definition for an attractor
(Lemma 3). Formally speaking, fixed points can be con-
sidered as attractors of size 1. However, in the scope of
this paper and for the sake of clarity, we call “attractors”
only non-unitary attractors, that is, only sets containing
at least two states. This is justified by the very different
approaches developed for fixed points and attractors in
the next sections.

Definition 10  (Trap domain) Let AN = (�,S , T) be
an automata network and U an update scheme. A set
of global states T, with |T| ≥ 2, is called a trap domain
(regarding a scheme U) if and only if the successors of
each of its elements are also in T:

Definition 11  (Attractor) Let AN = (�,S , T) be
an automata network and U an update scheme. A set
of global states A, with |A| ≥ 2, is called an attractor
(regarding scheme U) if and only if it is a minimal trap
domain in terms of inclusion.

Definition 12  (Cycle) Let AN = (�,S , T) be an
automata network, U an update scheme and C a path
of length n for this update scheme. C is called a cycle of
length n (regarding a scheme U) if and only if it loops
back to its first state:

Example 6  The path H of length 6 given in Example 3 is
a cycle because H0 = H6.

Lemma 2 states that the set of (traces of) cycles in a
model is exactly the set of strongly connected compo-
nents. Indeed, a cycle allows to “loop” between all states
that it contains, and conversely, a cycle can be built from
the states of any strongly connected component. This
equivalence is used in the next lemma.

Lemma 2  (The traces of cycles are the SCCs) The
traces of the cycles are exactly the strongly connected
components (with respect to the global transition
relation).

Proof of Lemma 2  (⇒) From any state of a cycle, it is
possible to reach all the other states (by possibly cycling).
Therefore, the trace of this cycle is a strongly connected
component. (⇐) Let S = {ζi}i∈�0;n� be a strongly con-
nected component in which the elements are arbitrar-
ily labeled. Because it is a strongly connected com-
ponent, for all i ∈ �0; n�, there exists a path Hi made

∀ζ1 ∈ T ∧ ∀ζ2 ∈ S if ζ1 →U ζ2 then ζ2 ∈ T.

Cn = C0.

Page 9 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

of elements of S so that Hi
0 = ζi and Hi

|Hi|
= ζi+1 (or

Hn
|Hn| = ζ0 for i = n). We create a path C by concatena-

tion of all paths H0,H1, . . . ,Hn by merging the first and
last element of each successive path, which is identi-
cal: ∀i ∈ �0; n− 1�,Hi

|Hi|
= ζi+1 = Hi+1

0 . C is a cycle,
because C0 = H0

0 = ζ0 = Hn
|Hn| = C|C|. Furthermore,

∀i ∈ �0; n�, ζi = Hi
0 ∈ trace(C), thus S ⊆ trace(C).

Finally, only states from S have been used to build C, thus
trace(C) ⊆ S. Therefore, trace(C) = S. � �

In Definition 11, attractors are characterized in the
classical way, that is, as minimal trap domains. How-
ever, we use an alternative characterization of attrac-
tors in this paper, due to the specifics of ASP: Lemma 3
states that an attractor can alternatively be defined as a
trap domain that is also a cycle, and conversely. In other
words, the minimality requirement is replaced by a cycli-
cal requirement.

Lemma 3  (The attractors are the trap cycles) The
attractors are exactly the traces of cycles which are trap
domains.

Proof of Lemma 3  (⇒) By definition, an attractor is a trap
domain. It is also a strongly connected component, and
thus, from Lemma 2, it is the trace of a cycle. (⇐) Let C be
both a cycle and a trap domain. From Lemma 2, C is also
a strongly connected component. Let us prove by contra-
diction that C is a minimal trap domain, by assuming that
it is not minimal. This means that there exists a smaller
trap domain D � C. Let us consider x ∈ D and y ∈ C \D.
Because D is a trap domain, it exists no path between x
and y; this is in contradiction with C being a strongly con-
nected component (as both x and y belong to C). There-
fore, C is a minimal trap domain, and thus an attractor. � �

As explained before, Lemma 3 will beused in "Length
n attractors enumeration". Indeed, directly searching
for minimal trap domains would be too cumbersome;
instead, we enumerate cycles of length n in the dynam-
ics of the model and filter out those that are not trap
domains. The remaining results are the attractors formed
of cycles of length n. The previous lemma ensures the
soundness and completeness of this search for a given
value of n.

Lemma 4  (Characterization of non-attractors) Let
A ⊂ S be a set of states. If ∃ζ1 ∈ A and ∃ζ2 ∈ S \ A such
that ζ1 →U ζ2 then A is not an attractor.

Proof of Lemma 4  By definition, A is not a trap domain
(Definition 10) and thus it is not an attractor (Definition
11). � �

Example 7  The state-transition graphs of Figs. 2 and 3
feature different attractors:

• • {�a0, b1, c0, d0�, �a0, b1, c0, d2�} is depicted in blue
and appears in both figures. It is a cyclic attractor,
because it contains exactly one cycle.

• • {�a0, b2, c1, d0�, �a0, b2, c1, d1�, �a1, b2, c1, d1�, �a1, b2, c1, d0�}
is only present for the asynchronous update scheme
and is depicted in yellow on Fig. 2. It is a complex
attractor, that is, a composition of several cycles.

• • {�a1, b2, c1, d1�, �a0, b2, c1, d0�} is, on the contrary,
only present for the synchronous update scheme and
is depicted in gray on Fig. 3. It is also a cyclic attrac-
tor.

For each of these attractors, the reader can check that
they can be characterized as cycles that are trap domains.
For instance, the second attractor can be found by con-
sidering the following cycle:

and checking that its trace is a trap domain (which is
visually confirmed in Fig. 2 by the absence of outgoing
arrows from any of the yellow states).

On the other hand, the following cycle is not an
attractor:

Indeed, although it is a cycle, it features outgo-
ing transitions (such as, for instance, transition
�a1, b2, c0, d0� →Uasyn �a0, b2, c0, d0�) and thus is not a
trap domain.

The aim of the rest of this paper is to tackle the enu-
meration of fixed points ("Fixed points enumeration")
and attractors ("Length n attractors enumeration") in an
AN. For this, we use ASP ("Answer set programming")
which is a declarative paradigm dedicated to the resolu-
tion of complex problems.

Answer set programming
In this section, we briefly recapitulate the basic elements
of ASP [18], a declarative language that proved efficient
to address highly computational problems. An answer set
program is a finite set of rules of the form:

where n ≥ m ≥ 0, a0 is an atom or ⊥, all a1, . . . , an are
atoms, and the symbol “not” denotes negation as fail-
ure. The intuitive reading of such a rule is that whenever
a1, . . . , am are known to be true and there is no evidence

A = (�a0, b2, c1, d0�; �a0, b2, c1, d1�; �a1, b2, c1, d1�;

�a1, b2, c1, d0�; �a0, b2, c1, d0�)

C = (�a1, b2, c0, d1�; �a1, b2, c0, d0�; �a1, b2, c0, d1�).

(1)a0 ← a1, . . . , am, not am+1, . . . , not an.

Page 10 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

for any of the negated atoms am+1, . . . , an to be true, then
a0 has to be true as well. An atom or a negated atom is
also called a literal.

Some special rules are noteworthy. A rule where
m = n = 0 is called a fact and is useful to represent data
because the left-hand atom a0 is thus always true. It is
often written without the central arrow [see rule (2)]. On
the other hand, a rule where n > 0 and a0 = ⊥ is called a
constraint. As ⊥ can never become true, if the right-hand
side of a constraint is true, this invalidates the whole solu-
tion. Constraints are thus useful to filter out unwanted
solutions. The symbol ⊥ is usually omitted in a constraint
[see rule (3)].

In the ASP paradigm, the search of solutions consists
in computing the answer sets of a given program. An
answer set for a program is defined by Gelfond and Lif-
schitz [26] as follows. An interpretation I is a finite set
of propositional atoms. A rule r as given in (1) is true
under I if and only if:

An interpretation I is a model of a program P if each rule
r ∈ P is true under I. Finally, I is an answer set of P if I is
a minimal (in terms of inclusion) model of PI, where PI is
defined as the program that results from P by deleting all
rules that contain a negated atom that appears in I, and
deleting all negated atoms from the remaining rules.

Programs can yield no answer set, one answer set, or
several answer sets. For example, the following program:

produces two answer sets: {b} and {c}. Indeed, the absence
of c makes b true, and conversely absence of b makes c
true. Cardinality constructs are another way to obtain
multiple answer sets. The most usual way of using a car-
dinality is in place of a0:

where k ≥ 0, l is an integer and u is an integer or the
infinity (∞). Such a cardinality means that, under the
condition that the body is satisfied, the answer set X
must contain at least l and at most u atoms from the set
{q1, . . . , qm}, or, in other words: l ≤ |{q1, . . . , qm} ∩ X | ≤ u
where ∩ is the symbol of sets intersection and |A| denotes
the cardinality of set A. We note that several answer
sets may match this definition, as there may be numer-
ous solutions X to this equation. Using cardinalities, the

(2)a0.

(3)← a1, . . . , am, not am+1, . . . , not an.

{a1, . . . , am} ⊆ I ∧ {am+1, . . . , an} ∩ I = ∅ ⇒ a0 ∈ I

(4)b ← not c.

(5)c ← not b.

l {q1, . . . , qk} u ← a1, . . . , am, not am+1, . . . , not an.

program example of (4) and (5) can be summed up into
the following program containing one only fact:

If they are not explicitly given, l defaults to 0 and u
defaults to ∞. Furthermore, if such a cardinality is found
in the body of a rule, then it is true if the above condition
is satisfied.

Atoms in ASP are expressed as predicates with an arity,
that is, they can apply to terms (also called arguments).
For instance, let us take the following program:

The intuitive meaning of this program is that if fish do not
fly (which is the case) and that something is a fish, then
this thing lives in water. Here, fishesCannotFly is a predi-
cate with arity zero (no terms), fish has arity one (one
term, defining something that is a fish), and livesIn has
arity two (the first term lives in the second term). On the
other hand, the terms shark and water are constants while
X is a variable, which can stand for any atom. By conven-
tion, constant names start with a low letter or are written
in quotes, and variable names start with a capital letter.

However, solving an ASP program as explained above
requires that it contains no variable; for this, a grounding step
is first required, consisting in the removal of all free variables
by replacing them by possible constants while preserving the
meaning of the program. In the example above, the ground-
ing step produces the following variable-free program, where
X is replaced by the only suitable constant shark:

After solving, the only answer set corresponding to this
program is:

For the present work, we used Clingo1 [27] which is a
combination of a grounder and a solver. In the rest of this
paper, we use ASP to tackle the problems of enumerating
all fixed points and attractors of a given AN model.

Fixed points enumeration
The first aspect of our work is the enumeration of a spe-
cial type of trap domains: fixed points (also called sta-
ble states or steady states) which are composed of only
one global state (see Definition 9). They can be studied

1 {b, c} 1.

fishesCannotFly.

fish(shark).

livesIn(X ,water) ← fish(X), fishesCannotFly.

fishesCannotFly.

fish(shark).

livesIn(shark ,water) ← fish(shark), fishesCannotFly.

1  We used Clingo version 5.0: http://potassco.sourceforge.net/.

http://potassco.sourceforge.net/

Page 11 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

separately from attractors because their enumeration
follows a different pattern which is more specific to
this problem. A previous version of this work using
another framework (process hitting) is presented in [19].
Although the main idea is preserved, the work we pre-
sent here is different because we are interested in the
more expressive AN framework in which the transitions
have a different form.

Translating automata networks into answer set programs
Before any analysis of an AN, we first need to express it with
ASP rules. We developed a dedicated converter named
AN2ASP2 and we detail its principle in the following.

First, the predicate automatonLevel(A,I) is used
to define each automaton A along with its local state
I. The local transitions are then represented with two
predicates: condition which defines each element of
the condition along with the origin, and target which
defines the target of the local transition. Each local tran-
sition is labeled by an identifier that is the same in its
condition and target predicates. Example 8 shows
how an AN model is defined with these predicates.

Example 8  (Representation of AN model in ASP) Here
is the representation of the AN model of Fig. 1 in ASP:

2  All programs and benchmarks are available as additional files and at
http://www.irccyn.ec-nantes.fr/~benabdal/attractors.zip.

Besides, all the local transitions of the network are defined
in lines 7–21; for instance, all the predicates in line 7 declare
the transition τ1 = a0

{c1}
−→ a1, which is labeled 1. We

declare as many predicates condition as necessary in
order to fully define a local transition τ that has potentially
several elements in its condition cond(τ) . For instance,
transition b0

{a1,c1}
−→ b2 is defined in line 11 with label 4 and

requires three of these predicates for b0 , a1 and c1. Finally, in
lines 4–5, predicate automaton gathers all existing autom-
ata names in the model, and predicate localTrans gath-
ers all transition labels. The underscore symbol (_) in the
parameters of a predicate is a placeholder for any value.

Since the names of the biological components may start
with a capital letter, it is preferable to use the double quotes
(“”) around the automata names in the parameters of all
predicates to ensure that the automata names are under-
stood as constants by the ASP grounder and not as variables.

Fixed points search
The enumeration of fixed points requires to encode the
definition of a fixed point (given in Definition 9) as an

In lines 2–3 we define all the model automata
with their local states. For example, the automaton
“a” has two levels numbered 0 and 1; indeed, rule
automatonLevel(“a”, 0..1). of line 2, for
instance, will in fact expand into the two following rules:

ASP program through logic rules. The first step of this
process is to browse all the possible states of the network;
in other words, all possible combinations of automata
local states are generated by choosing exactly one local
level for each automaton. However, before computing
these combinations, we need to pre-process the list of the
selected local states in order to exclude each local state
ai such that there exists a local transition ai

∅
→ aj ∈ T .

http://www.irccyn.ec-nantes.fr/%7ebenabdal/attractors.zip

Page 12 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

and 〈a0, b0, c0, d1〉. All of them are represented in both
Figs. 2 and 3. In this model, no other state verifies this
property. We recall that the fixed points are identical for
the synchronous and asynchronous update schemes [24].

If we execute the ASP program detailed above (lines
23–33) alongside with the the AN model given in Exam-
ple 8 (lines 1–21), we obtain 3 answer sets that match the
expected result. The output of Clingo is the following:

Length n attractors enumeration
In the previous section we gave a method to enumerate
all fixed points of a given model. In a sense, a fixed point
can be considered as an attractor: it cannot be escaped
and its size (n = 1) makes it trivially minimal. However,
attractors in the general case are made of several states.
In the rest of this paper, we exclude one-state attractors
(tackled in the last section "Fixed points enumeration").
We focus on attractors composed with several-states
(following Definition 11) and we describe how to obtain
some or all the attractors of a given length in a model.
Obtaining all attractors of any length can be theoretically
tackled by gradually increasing the considered length.

The computational method to enumerate all attractors
of length n in AN models consists in three steps:

1.	 Enumerate all paths of length n,
2.	 Remove all paths that are not cycles,
3.	 Remove all cycles that are not trap domains (i.e., keep

only attractors).

Line 29 constitutes a cardinality rule (as defined in
"Answer set programming") whose consequence is the
enumeration of all global states of the model in distinct
answer sets. Each global state is defined by considering
exactly one local state for each existing automaton
from the shown ones defined in shownAutomaton-
Level. Each global state is described using predicates
fix(A,I), named in anticipation of the final fixed point
results, where I is the active local state of automaton A.

The last step consists in filtering out any global state ζ , that
is not a fixed point, among all generated states. In this case,
it consists in eliminating all candidate answer sets in which
at least one local transition can be played, that is, where
Pζ �= ∅. Such a filtering part is ideally realized with the use
of one or several constraints. As explained in "Answer set
programming", a constraint removes all answer sets that sat-
isfy its right-hand part. Regarding our problem, an answer
set representing a given global state must be filtered out if
there exists at least one playable local transition in this state
(line 33). A transition T is considered as unplayable in a
state, that is, T /∈ Pζ, if at least one of its conditions is not
satisfied. For this, predicate unPlayable(T) defined in
line 31, flags a local transition as unplayable when one of its
condition contains a local state that is different from the
local state of the same automaton. This is used in the final
constraint (line 33) which states that if there exists a local
transition which is playable in the considered global state
(i.e., ∃T ∈ T ,T ∈ Pζ) then this global state should be elimi-
nated from the result answer sets (because it is not a fixed
point). In the end, the fixed points of a considered model
are exactly the global states represented in each remaining
answer sets, described by the set of the atoms fix(A,I)
which define each automaton local state.

Example 9  (Fixed point enumeration) The AN model
of Fig. 1 contains 4 automata: a and c have 2 local states

Such local states cannot be stable, because the local tran-
sition given above, called self-transition, is always play-
able: ∀ζ ∈ S , ai ∈ ζ ⇒ ai

∅
→ aj ∈ Pζ. This process is done

through lines 23–27.

while b and d have 3; therefore, the whole model has
2 ∗ 2 ∗ 3 ∗ 3 = 36 states (whether they can be reached or
not from a given initial state). We can check that this model
contains exactly 3 fixed points: 〈a1, b1, c0, d0〉 , 〈a1, b1, c1, d0〉

Page 13 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

Once all steps are passed, each trace of the remaining
n-length paths is an attractor (following Lemma 3).

Cycles enumeration
The approach presented here first enumerates all the
paths of length n in the AN model (Definition 7).

In an ASP program, it is possible to instantiate con-
stants whose values are defined by the user at each execu-
tion: this is the role of the lowercase n in step(0..n)
(line 26), that represents the number of considered
steps. For example, knowing the initial global state,
step(0..5) will compute all paths of length 5 (thus
containing 6 successive global states).

In order to enumerate all the possible paths, step 0
should take the value of all the possible initial global
states (line 28), in a similar way to the fixed point enu-
meration. Then, identifying the successors of a given
global state requires to identify the set of its playable local
transitions. We recall that a local transition is playable in
a global state when its origin and all its conditions are
active in that global state (see Definition 2). Therefore, we
define an ASP predicate unPlayable(T,S) in line 30
stating that a transition T is not playable at a step S. More
precisely, T cannot be played in the corresponding global
state of the system at step S, which is the case when at
least one of its conditions is not satisfied. Obviously, each
local transition that is not unplayable, is a playable. From
this, we will be able to flag the actually played local tran-
sitions with played(T,S) (see later in lines 33 and 39).

following how to compute the evolution of the model
through the asynchronous and the synchronous update
schemes, as presented in "Update schemes and dynam-
ics of automata networks". The piece of program that
computes the attractors, given afterwards, is common to
whatever update schemes.

All possible evolutions of the network (that is, the
resulting paths after playing a set of global transi-
tions) can be enumerated with a cardinality rule
(explained in "Answer set programming") such as the
ones in line 33 for the asynchronous update scheme,
and line 39 for the synchronous update scheme. Such
rules reproduce all possible paths in the dynamics of
the model by representing each possible successor of
a considered state as an answer set. This enumeration
encompasses the non-deterministic behavior (in both
update schemes).

To enforce the strictly asynchronous dynamics which
requires that exactly one automaton changes during
a global transition, we use the constraint of line 35 to
remove all paths where no local transition has been
played, and the constraint of line 36 to remove all paths
where two or more local transitions have been played
simultaneously. Thus, all the remaining paths contained
in the answer sets strictly follow the asynchronous
dynamics given in Definition 3. The underscore sym-
bol (_) in the parameters of a predicate is a placeholder
for any value. Here, it is used in place of the transition

In our approach, we tackle separately the computa-
tion of the dynamics and the resolution of our prob-
lem (namely, attractors enumeration). We show in the

label, meaning that these rules are applicable to any
transition.

Page 14 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

The second update scheme corresponds to synchro-
nous dynamics in which all playable transitions that are
not in-conflict have to be played (see Definition 4). Fur-
thermore, “empty” global transition are not allowed, even
when when no transition is playable (line 41).

because the dynamics has to “choose” which local transi-
tion to take into account. This property is verified by the
constraint in line 45, that states that at most one change
can occur (i.e., one transition can be played) in the same
automaton. Finally, it is necessary to compute the content

In a nutshell, one should choose one of both pieces
of program presented above, that is, either lines 39–41
for the asynchronous update scheme, or lines 39–41 for
the synchronous one. The overall result of both of these
pieces of programs is a collection of answer sets, where

of the new global state after each played global transition:
if a change is witnessed, then the related automaton has
to change its level into the local state of the local tran-
sition destination (lines 47–48) otherwise it remains the
same (line 49).

each answer is a possible path of length n (that is, com-
puted in n steps) and starting from any initial state (at
step 0).

Between two consecutive steps S and S+1, we witness
that the active level of a given automaton B has changed
with the predicate change in line 43, which stores the
chosen local transition.

In-conflict local transitions (see Definition 6) cannot
be played at the same step. They are the only source of
non-determinism in the synchronous update scheme,

After the construction of a path of length n, it is
required to check whether it is a cycle or not. If it is a
cycle, then consequently it is a strongly connected com-
ponent (see Lemma 2). To do so, we need a predicate
different(S1,S2) (lines 52–54) which is true when
an automaton has different active levels in two global
states visited at steps S1 and S2. On the contrary, if
different(S1,S2) is not true, this means that all
active levels of all automata are the same in both states.
Thus, there is a cycle between S1 and S2 (line 56). We

Page 15 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

finally eliminate all the paths that are not cycles of size n
with the constraint of line 59, that checks if the states at
steps 0 and n are identical.

is part of a cycle of length 2 which is not an attractor, and
which trace is: {�a1, b2, c0, d1�, �a1, b2, c0, d0�}.

As given in Lemma 2, all remaining paths are strongly
connected components. We finally need to verify if they
are trap domains (Lemma 3) in order to discriminate
attractors.

Attractors enumeration
Due to the non-deterministic behavior in the dynam-
ics, each state in the state-transition graph of a given
AN may have several successors. Therefore a cyclic path
is not necessarily an attractor. The only certain excep-
tion is the case of the deterministic synchronous update
scheme (such as in Boolean models, as explained in Sec-
tion "Determinism and non-determinism of the update
schemes"). In this case, the computation may be stopped
here because a cycle is necessarily an attractor. This result
is used in [28–30].

In the rest of this section, we will tackle the more gen-
eral and challenging case of non-determinism. Indeed,
in the general case, some local transitions may allow
the dynamics to escape the cycle; in such case, the cycle
would not even be a trap domain (see Lemma 4). For
instance, in the partial state-transition graph of Fig. 2,
we can spot many cycles of various lengths but not all of
them are attractors. In particular, the initial global state

That is why another check is required to filter out all the
remaining cycles that can be escaped (and are therefore
not attractors). Once again, this filtering is performed
with constraints, which are the most suitable solution.
In order to define such constraints, we need to describe
the behavior that we do not wish to observe: escaping the
computed cycle. For this, it is necessary to differentiate
between the effectively played local transitions (played)
and the ”also playable” local transitions which were not
played (alsoPlayable in line 61). Then, we verify at
each step S, comprised between 0 and n, if these also
playable local transitions make the system evolve or not
to a new global state that is not a part of the cycle trace.

For the asynchronous update scheme, any also playable
local transition can potentially make the dynamics leave
the cycle. Regarding the synchronous update scheme,
an also playable local transition must necessarily be in-
conflict (see Definition 6) with a local transition used to
find the studied cycle. Nevertheless, both cases are tack-
led jointly. The predicate alsoPlayable(T,S) states
that a local transition T is also playable at step S in the
considered cycle, but was not used to specifically build
the said cycle. This predicate is similar to the predicate
playable used previously in lines 30, 33 and 39.

Page 16 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

After finding these also playable local transitions in
each state of the cycle, we have to verify if all its global
states, found by applying these also playable local tran-
sitions, are as well part of the cycle. Indeed, it is possi-
ble to have an also playable local transition that makes
the dynamics evolve inside the cycle; this is witnessed
by the predicate evolveInCycle (lines 64–65). Such
transitions are simply “shortcuts” to other states in the
same cycle. This is the case in complex attractors, that
do not simply consist in a single cycle but are made of
a composition of cycles. Such global transitions are dis-
regarded in the current case as we are only interested
in finding global transitions that would allow the model
dynamic to escape from the cycle. Instead, we are inter-
ested in filtering out cases where a transition allows to
exit the cycle (that is, leads to a state not featured in the
trace of the cycle) using the constraint of line 68.

Example 10  In the dynamics of the net-
works presented in Fig. 1 with the asynchro-
nous update scheme, let us consider the follow-
ing cycle of length 2, which can be seen in Fig. 2:
�a1, b2, c0, d1� →Uasyn �a1, b2, c0, d0� →Uasyn �a1, b2, c0, d1�   .
Following the pieces of program given in this section, one
of the answer sets could allow to find this cycle, among
others, by returning in particular the following predicates:

The three states in the cycle are labeled 0, 1 and 2, and
the active local states they contain are described by the
predicate active. We note that states 0 and 2 are iden-
tical, which is witnessed by the atom cycle(0,2).
Furthermore, predicate played give the two transi-
tions (labeled 9 and 11, see lines 18 and 20) allowing to
run through all the states of the cycle, while predicate

alsoPlayable give the local transitions that are
“also playable” in the cycle; indeed, in both states, the
transitions labeled 1 and 6 are playable. Finally, no
evolveInCycle predicate is inferred for this example
(the only also playable transition is 1 which makes the
dynamics evolve outside the cycle). Thus, this answer set
is discarded thanks to the constraint of line 68 and is not
featured among the results.

Complex attractors
Up to this point, we managed to propose an ASP program
that enumerates all the attractors in a given AN. Each
attractor is the trace of a path of length n. In many cases,
except for some complex attractors, this length n (which
corresponds to the number of played global transitions in
the path) is also equal to the number of visited states (i.e.,

the size of the trace). This is a trivial case of a minimal path
covering a given attractor, that is, no path of lesser length
can cover it. Indeed, as in the examples of attractors in
Figs. 2 and 3, enumerating the paths of length 2 is enough
to obtain all the attractors having two global states, and the
same goes for the attractors of length 4. But without the
constraint that we develop below (given in lines 70–93),
when the program is asked to display the attractors cov-
ered by a path of length n, it will also return various paths
of size lower than n by considering non-minimal paths,
that is, containing unwanted repetitions inside the cycle,
or even repetitions of the entire cycle. In the example of
Fig. 3, for instance, with n = 6, the program returns the
two attractors, although they both are of size 2. Indeed,
each of them can be covered by a cycle of length 6: it con-
sists of a cycle of size 2 repeated three times.

Therefore, the objective of this section is to exclude
most cases where a cycle is non-minimal, such as the
obvious one where it is entirely repeated, because such a
case is useless with respect to the computation of attrac-
tors. Moreover, we would prefer that our method yields
no answer set when no attractor traversed by a cycle
of length n is found (even if non-minimal attractors on
cycles of lesser length are found). We don’t formally
claim here that our method eliminates all of these cases,
but we aim at tackling most of these cases in order to

Page 17 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

sanitize the answer set as much as possible. For instance,
an attractor ζ0 → ζ1 → ζ0 of length n = 2 could be listed
among the attractors of length n = 4 if it is repeated
twice as the following path: ζ0 → ζ1 → ζ0 → ζ1 → ζ0.
Although all general assumptions regarding attractors
are verified (it consists in a cycle and all the global transi-
tions produce global states that are still cycle), we aim at
willingly excluding it from the answers because it is not
minimal in terms of length.

However, in the case of some complex attractors,
the problem is opposite. Indeed, it happens that the
dynamics has to visit the same global states more
than once. It is for example the case for the com-
plex attractor which could be called “star attrac-
tor”, which is featured in the model comprising the
following global transitions, also depicted in Fig. 4:
{ζ0 → ζ1, ζ1 → ζ0, ζ1 → ζ2, ζ1 → ζ3, ζ2 → ζ1, ζ3 → ζ1}   .
The only attractor of this model consists in the whole
set S = {ζ0, ζ1, ζ2, ζ3} of all its global states. We notice
that it is not possible to cover this entire attractor with-
out visiting the state ζ1 at least 3 times (even when dis-
regarding the inevitably repeated final step of the
cycle). Indeed, a possible path to cover it entirely is:
ζ0 → ζ1 → ζ2 → ζ1 → ζ3 → ζ1 → ζ0 which is of length
6, and no path of lesser length exist to cover this attractor
although its trace is of size 4.

The challenge here is to handle both cases in the same
program: excluding answer sets featuring non-minimal
paths while still returning complex attractors for which
the path is strictly bigger than the trace. For this, we make

direct use of the result of Lemma 1 which links the length
n of a path to the size X of its trace; in our case: X = n
+ 1 - k, where k is the number of global states that are
successively repeated in the path of length n (see Defini-
tion 8). This formula is implemented in lines 70–76. It is
also used to prompt the user with the size of the attractor
which may be strictly inferior to the value of n.

s 1

s 3

s 2

s 4

Fig. 4  Simple example featuring a “star attractor”, that is, an attractor
that cannot be traveled without visiting at least twice one of its states

Page 18 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

Our objective in the following is to propose a pro-
gram that returns, as far as possible, all attractors of the
model that actually correspond to a path of length n
which is minimal. We propose the following rules to ver-
ify this property; each of them concludes with the atom
isNotMinimal(n), which means that the considered
cycle is not minimal. In the end, isNotMinimal(n)
is used in the constraint of line 93 which eliminates all
these unwanted cases together.

We first verify if there exists a path of length X < n
without repetitions from the state of step 0 to step X,
where X is the trace size of the cycle, that is, the number of
different states in the path. Then we also verify if there is a
transition from the state of step X to the state of step 0. If
both properties are true, then there exists a path of size X
< n that covers all the states of the attractor, and thus n is
not the minimal path length of that attractor (lines 81–84).

Another non-minimal case, detailed in lines 86–87,
occurs when there exists “shortcuts” between some states
of a cycle, making it not minimal. Besides, a path of mini-
mal length does not permit repetitions between succes-
sive states inside a cycle (line 89). Finally, when an entire
cycle is repeated several times, then the number of rep-
etitions is obviously superior to the maximum expected
that is equal to n (line 91). As stated before, in any of the
previous cases, the considered cycle is not minimal, and
therefore discarded (line 93).

Indeed, for one given attractor, it is possible to find sev-
eral minimal covering cycles by changing the initial state,
or the traversal (in the case of complex attractors). For
instance, the hypothetical attractor {ζ0; ζ1} is captured
by the two cycles: ζ0 → ζ1 → ζ0 and ζ1 → ζ0 → ζ1. This
leads to repetitions which are not removed from the
answers of our method.

The final result presented by each answer set is
described by the collection of atoms active(ALs,S),
where S denotes the label of one of the steps in the cycle,
and ALs corresponds to one of the active local states.

The problem of finding attractors in a discrete net-
work is NP-hard, therefore the implementation that we
gave in this section also faces such a complexity. How-
ever, ASP solvers (namely, Clingo in our case) are
specialized in tackling such complex problems. Next
section will be dedicated to the results of several com-
putational experiments that we performed on biological
networks. We show that our ASP implementation can
return results in only a few seconds attractors of small
size even on models with 100 components, which is
considered large.

Results
In this section, we exhibit several experiments con-
ducted on biological networks. We first detail the results
of our programs on the AN model of Fig. 1. Then, we

We note that these constraints are relevant to the non-
deterministic dynamics, whether it is asynchronous or
synchronous.

Nevertheless, there is still a case of duplicate results
that cannot be tackled by the previous constraint: the
existence of several minimal cycles for the same attractor.

sum up the results of benchmarks performed on other
models up to 100 components. In general, the time per-
formances are good and the overall results confirm the
applicability ASP for the verification of formal properties
or the enumeration of special constructs on biological
systems.

Page 19 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

All experiments were run on a desktop PC with a Pen-
tium VII 3 GHz processor and 16 GB memory.

Case study
We first conducted detailed experiments on the 4-compo-
nents model of Fig. 1. As detailed in "Automata networks",
this network contains 4 automata and 12 local transitions.
Its state-transition graph comprises 36 different global
states and some of them are detailed in the partial state-
transition graphs in Fig. 2 (for the asynchronous update
scheme) and Fig. 3 (for the synchronous update scheme).

The analytic study of the minimal trap domains on this
small network allows to find the following attractors and
fixed points depending on the update scheme, where
we assimilate steady states to attractors of length n = 0
because they have a trace of size 1:

• • Asynchronous update scheme:

•	 n = 0: 〈a1, b1, c1, d0〉,〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉;
• 	 n = 2: {�a0, b1, c0, d0�, �a0, b1, c0, d2�};
• 	 n = 4: {�a1, b2, c1, d1�, �a0, b2, c1, d1�, �a0, b2, c1, d0�, 

�a1, b2, c1, d0�} .

• • Synchronous update scheme:

•	 n = 0: 〈a1, b1, c1, d0〉,〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉;
• 	 n = 2: {�a0, b1, c0, d0�, �a0, b1, c0, d2�} and {�a1, b2,

c1, d1�, �a0, b2, c1, d0�}.

The steady states returned by the method of "Fixed points
enumeration" (n = 0) and the attractors (n > 1) given
by the method of "Length n attractors enumeration" are
consistent with what is theoretically expected. We note
that, as stated in [24], the fixed points are the same for
the asynchronous and synchronous update schemes.

When given to a solver, the ASP programs given in the
previous sections directly outputs the expected solutions.
The output for the fixed point enumeration was given in
Example 9. The output for the attractor enumeration is
given below for both update schemes. We note that each
global that state belongs to an attractor is labeled with
a number (for instance, 0 and 1 for the cases n = 2) so
that each active local state is featured in an independent
atom. We removed some uninteresting atoms from the
results to improve readability.

Page 20 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

Moreover, executing the programs with n �= 2 and
n �= 4 returns no results, which means that the solver
correctly terminates having found no answer set. This is
expected because there is no attractor of length different
than 2 and 4 for this model, and we excluded repeated
cycles from the results (therefore, the attractors already
found for lengths 2 and 4 are not found for n = 6 or
n = 8, for instance). For this small network, all the results
are computed in less than 0.05 second.

Benchmarks
In the following, we propose some additional bench-
marks to demonstrate the capabilities of our implemen-
tation. We do not give the details of the results of these
experiments but rather focus on the computation times
and the conclusion: if an attractor has been found (satisfi-
able) or not (unsatisfiable). We used several preexisting
Boolean and multi-valued networks inspired from real
organisms and found in the literature:

• • Lambda phage: a regulatory network featuring
some viral genes crucial in the decision between
lysis and lysogenization in temperate bacteriophage
lambda [31];

• • Trp-reg: a qualitative model of regulated metabolic
pathways of the tryptophan biosynthesis in E. coli [32];

• • Fission-yeast: a cell cycle model of Schizosaccharo-
myces pombe [33];

• • Mamm: a mammalian cell cycle model [34];
• • Tcrsig: a signaling and regulatory network of the

TCR signaling pathway in the mammalian differen-
tiation [35];

• • FGF: a drosophila FGF signaling pathway [36];
• • T-helper: a model of the T-helper cells differentia-

tion and plasticity, which accounts for novel cellular
subtypes [37].

To obtain the models that we have studied in this section,
we first extracted them from the GINsim model reposi-
tory3 [38], in GINML format. These models correspond
to the discrete asynchronous networks given in the cor-
responding papers. Then, the conversion step towards an
ASP program is automated using the following tools:

• • The existing GINsim tool allows to export its models
into the SBML qual formalism;

• • The existing LogicalModel library [39, 40] can
convert SBML qual models into AN models;

• • Finally, our script AN2ASP converts AN models into
ASP programs, following the principles detailed in

3  http://ginsim.org/models_repository.

"Translating automata networks into answer set pro-
grams".

It is noteworthy that each step fully preserves the dynam-
ics between models regarding the asynchronous update
scheme [41]; thus, the final (asynchronous) ASP program
is bisimilar to the original GINML model. The character-
istics of each model once translated in AN are given in
Table 1. The results of our benchmarks4 are given in
Tables 2 and 3.

We note that all the results for the fixed points search
have been compared and confirmed using GINsim [38]
and Pint [39]. Regarding the attractor enumeration,
we compared our results with Boolean network sys-
tem (BNS) [16] for the synchronous update scheme on
the Fission-yeast, Mamm., and Tcrsig models; and with
GINsim [38] for the asynchronous update scheme on the
Lambda phage, Trp-reg, Fission-yeast and Mamm. mod-
els. In all cases, we found the same results. It is interest-
ing to note that our method allows to return a response
regarding attractors of small size even on big models. In
contrast, other tools may take a very long time or even
fail to answer. For instance, that happens with GINsim
for the Tcrsig, FGF and T-helper models. Indeed, they
are based on the computation of the complete transition
graph even for the study of small attractors.

Our results could not be compared with, for exam-
ple, the existing ASP-G method [17]. Indeed, with this
tool, the user has to choose an update rule on which
the dynamic evolution will be based on. For instance,
one rule consists in activating a gene when at least one
of its activators is active while no inhibitor is; another
one activates a gene when it has more expressed activa-
tors than inhibitors. Because the chosen activation rule
is applied for all the components of the model, while the
evolution rules in our AN semantics are specific to each
component, the results of both tools cannot be strictly
compared.

We recall that among the results output, some attrac-
tors may be listed several times in the answers, despite
any filtering, as explained at the end of "Complex attrac-
tors". Indeed, the solver returns different answer sets for
different paths that cover the same trace but differ in
terms of initial global state. Therefore, in the results of
Table 3, we focused on the conclusion and computation
times of the search of any first found attractor of length
n.

In case the user may need the exhaustive list of all
attractors, our method can also list all the answers,
including these repetitions. For instance, our method

4  All programs and benchmarks are available as additional files and at
http://www.irccyn.ec-nantes.fr/~benabdal/attractors.zip.

http://ginsim.org/models%5frepository
http://www.irccyn.ec-nantes.fr/%7ebenabdal/attractors.zip

Page 21 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

yields 4 answers for the Trp-reg model and a cycle length
of n = 4 with the asynchronous update scheme, and
the computation takes 47 ms; this typically represents
an attractor of size 4 where each answer set represents
a cycle starting from a different initial state. Regarding
the T-helper model (the largest studied model with 101
automata), the search for all attractors of size n = 2 with
the synchronous update scheme takes about 275 s (∼5
min) and returns 2,058,272 answers, while it takes only 57
s to return all the attractors of size n=12, (6144 answers).
However, as explained before, these results mean that
this model features strictly less than, for instance, 6144

attractors covered by a cycle of length 12, because each
one is repeated several times.

In order to filter out the remaining repetitions, it
should be possible to use a script or a text editor in order
to extract only the states of each answer set and thus

Table 1  Brief description of the models used in our bench-
marks

The successive lines sum up the information regarding the models of,
respectively, the toy example of Fig. 1, the bacteriophage lambda [31], the
tryptophan biosynthesis in E.coli regression [32], the fission yeast [33], the
mammilian cell cycle [34], the TCR signalling pathway in the mammalian
differentiation [35], the drosophila FGF signalling pathway [36] and the
T-helper cell differentiation [37]. For each of them, the table gives the number
of automata (|�|), the maximal local level in the automata (maxa∈�{|Sa|}), the
number of local transitions (|T |) and the number of states in the corresponding
state-transition graph (|S|)

Models Model description

|�| maxa∈�{|Sa|} |T | |S|

Example 4 3 12 36

 [31] Lambda phage 4 4 46 48

 [32] Trp-reg 4 3 14 36

 [33] Fission-yeast 9 3 43 3 × 29 = 1536

 [34] Mamm. 10 2 34 210 = 1024

 [35] Tcrsig 40 2 85 240 ≃ 1012

 [36] FGF 59 3 102 231 ≃ 1.2 × 1010

 [37] T-helper 101 3 316 2102 ≃ 5.7 × 1031

Table 2  Results of our fixed points enumeration imple-
mentation

The successive lines sum up the information regarding models detailed
in Table 1. For each model, the table shows the computation time for the
enumeration of all results and the total number of returned answer sets

Models Fixed points enumeration for both
update schemes

�
all
t (ms) #allF

Example 2 3

Lambda phage 4 1

Trp-reg 6 2

Fission-yeast 5 1

Mamm. 3 1

Tcrsig 5 8

FGF 25 1536

T-helper 170,642 5,875,504

Table 3  Results of our attractors enumeration implemen-
tation

The successive lines sum up the information regarding models detailed in
Table 1. For each model and for both update schemes (asynchronous and
synchronous), the table shows, depending on the given path length n, the
computation time for the first attractor found by the solver (�t), and the
conclusion regarding the existence or not of at least one attractor (∃?A)

Models n Attractors enumeration

Asynchronous scheme Synchronous
scheme

�t (ms) ∃?A �t (ms) ∃?A

Example 2 7 Yes 7 Yes

4 16 Yes 14 No

8 98 No 75 No

Lambda phage 2 14 Yes 14 Yes

10 1352 No 842 No

20 15,656 No 14,452 No

Trp-reg 2 8 No 7 No

4 14 Yes 15 No

20 3908 No 3808 No

Fission- yeast 2 16 No 16 Yes

10 1011 No 807 No

20 17,302 No 16,313 No

Mamm. 2 12 No 12 No

7 177 No 147 Yes

10 720 No 605 No

20 58,133 No 9253 No

Tcrsig 2 26 No 25 No

6 353 No 288 Yes

10 2420 No 1841 No

20 85,599 No 27,078 No

FGF 2 38 No 36 No

10 2080 No 1953 No

20 30,861 No 29,838 No

T-helper 2 180 No 125 Yes

3 391 No 301 Yes

4 782 No 1064 No

6 4271 No 2372 Yes

7 7909 No 3522 Yes

9 26,443 No 7042 Yes

10 44,924 No 12,208 Yes

12 107,358 No 28,520 Yes

20 4,230,836 ∼ 1h17 No 187,105 ∼ 3min No

Page 22 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

discard the answers featuring exactly the same attrac-
tor. Such pruning is not trivial in ASP and is the target of
future works.

Conclusion and future direction
In this paper, we presented a new logical approach to
efficiently compute the list of all fixed points and attrac-
tors in biological regulatory networks. We formalized our
approach using the AN framework, which is bisimilar to
many logical networks [41]. All results given here can
thus be applied to the widespread Thomas’ modeling [42]
in the asynchronous scheme and to the Kauffman mod-
eling in the synchronous scheme [43]. In addition, this
framework can encompass any update rules, such as the
ones represented in [44, 45].

We designed a dedicated method for computing steady
states and other programs for non-unitary attractors of a
given length and a chosen update scheme (synchronous
or asynchronous). The originality of our work consists
in the exhaustive enumeration of all attractors thanks
to the use of ASP, a powerful declarative programming
paradigm. The computational framework is based on the
AN formalism presuming non-deterministic dynamics.
Thanks to the encoding we introduced, and the power-
ful heuristics developed in modern solvers, we are able to
tackle the enumeration of fixed points, cycles and attrac-
tors of large models. The major benefit of a such method
is to get an exhaustive enumeration of all potential states
while still being tractable for models with a hundred of
interacting components. As the identification of attrac-
tors can give an insight to the long-term behavior of bio-
logical systems, tackling this issue is a challenge to which
we cared to contribute to. Besides, we hope our work
helps open new ways and tools to explore this field.

We plan to extend this work by considering adapta-
tions and optimizations of the approach to address larger
models. First, the “projection” feature of Clingo which
displays only one answer set when several answer sets
contain common predicates, is currently studied in order
to filter out repeated attractors, that currently appear
multiple times because they are covered by several pos-
sible cycles. Another trail consists in returning approxi-
mations of the results, that is, sometimes “missing”
some answers, but with the benefit of a highly improved
performance. Once again, applying various filters to
the generated results may avoid redundancy and guide
the solving process. Conversely, it may be possible to
reduce the incremental aspect of the analysis process, for
instance by searching for cycles of size lower than (and
not only equal to) a given value, so that the user could
directly start with higher values.

Of course, other extensions allowing to tackle other
close problems would be of interest. For instance, the

attractor inverse problem consists in building or enumer-
ating networks possessing a given set of attractor proper-
ties, in order to answer to network inference matters. We
would also like to extend these ASP-based methods to
study other interesting properties of dynamical patterns
such as the enumeration of basins of attraction, gardens
of Eden or bifurcations [46].

Authors’ contributions
EBA designed and implemented the ASP programs. EBA and MF did the
formalization. EBA performed the experiments. EBA and MF wrote the paper.
MM and OR supervised the work. All authors read and approved the final
manuscript.

Author details
1 École Centrale de Nantes, LS2N UMR CNRS 6004, 1 rue de la Noë,
44321 Nantes, France. 2 Université de Nantes, LS2N UMR CNRS 6004, 1 rue de
la Noë, 44321 Nantes, France. 3 Université Nice Sophia Antipolis, I3S UMR CNRS
7271, 2000, route des Lucioles, 06900 Nice, France. 4 National Institute of Infor-
matics, 2‑1‑2, Hitotsubashi, Chiyoda‑ku, Tokyo 101‑8430, Japan.

Acknowledgements
The authors would like to thank the reviewers for their careful reading of the
paper and their many insightful comments and suggestions. The authors are
grateful to Laurent Trilling for his fruitful comments regarding the use of ASP
for dynamic verification.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets analyzed during the current study are available in the GinSim
repository, http://ginsim.org/models_repository. All analyzed data during this
study are included in this published article, its supplementary information files
and at http://www.irccyn.ec-nantes.fr/~benabdal/attractors.zip.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
Our work is funded by the ANR HyClock project in France.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 1 April 2016 Accepted: 26 July 2017

References
	1.	 Wuensche A. Genomic regulation modeled as a network with basins of

attraction. Pac Symp Biocomput. 1998;3:89–102.
	2.	 Huang S, Eichler G, Bar-Yam Y, Ingber DE. Cell fates as high-dimensional

attractor states of a complex gene regulatory network. Phys Rev Lett.
2005;94(12):128701.

	3.	 González A, Chaouiya C, Thieffry D. Logical modelling of the role of the
hh pathway in the patterning of the drosophila wing disc. Bioinformatics.
2008;24(16):234–40.

	4.	 Albert R, Othmer HG. The topology of the regulatory interactions predicts
the expression pattern of the segment polarity genes in Drosophila
melanogaster. J Theor Biol. 2003;223(1):1–18.

http://ginsim.org/models%5frepository
http://www.irccyn.ec-nantes.fr/%7ebenabdal/attractors.zip

Page 23 of 23Ben Abdallah et al. Algorithms Mol Biol (2017) 12:20

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	5.	 Stuart A. Kaufmann. The origins of order: self-organization and selection
in evolution. Oxford: Oxford University Press; 1993. p. 354.

	6.	 Folschette M, Paulevé L, Magnin M, Roux O. Sufficient conditions for
reachability in automata networks with priorities. Theor Comput Sci.
2015;608:66–83.

	7.	 Paulevé L. Goal-oriented reduction of automata networks. In: Inter-
national Conference on computational methods in systems biology.
Lecture notes in bioinformatics, vol. 9859. Springer; 2016. p. 252–72.

	8.	 Thomas R. Regulatory networks seen as asynchronous automata: a logi-
cal description. J Theor Biol. 1991;153(1):1–23.

	9.	 Zhang S-Q, Hayashida M, Akutsu T, Ching W-K, Ng MK. Algorithms for
finding small attractors in Boolean networks. EURASIP J Bioinform Syst
Biol. 2007;2007(1):1–13.

	10.	 Klemm K, Bornholdt S. Stable and unstable attractors in Boolean net-
works. Phys Rev E. 2005;72(5):055101.

	11.	 Akutsu T, Kosub S, Melkman AA, Tamura T. Finding a periodic attrac-
tor of a Boolean network. IEEE/ACM Trans Comput Biol Bioinform.
2012;9(5):1410–21.

	12.	 Somogyi R, Greller LD. The dynamics of molecular networks: applications
to therapeutic discovery. Drug Discov Today. 2001;6(24):1267–77.

	13.	 Irons DJ. Improving the efficiency of attractor cycle identification in
Boolean networks. Phys D: Nonlinear Phenom. 2006;217(1):7–21.

	14.	 Garg A, Mendoza L, Xenarios I, DeMicheli G. Modeling of multiple valued
gene regulatory networks. In: 2007 29th Annual International Conference
of the IEEE engineering in medicine and biology society. IEEE; 2007. p.
1398–404.

	15.	 Zhao Z, Liu CW, Wang CY, Qian W. Bdd-based synthesis of reconfigurable
single-electron transistor arrays. In: Proceedings of the 2014 IEEE/ACM
International Conference on computer-aided design. IEEE Press; 2014. p.
47–54.

	16.	 Dubrova E, Teslenko M. A SAT-based algorithm for finding attractors in
synchronous Boolean networks. IEEE/ACM Trans Comput Biol Bioinform.
2011;8(5):1393–9.

	17.	 Mushthofa M, Torres G, Van de Peer Y, Marchal K, De Cock M. ASP-G: an
ASP-based method for finding attractors in genetic regulatory networks.
Bioinformatics. 2041;481.

	18.	 Baral C. Knowledge representation, reasoning and declarative problem
solving. Cambridge: Cambridge University Press; 2003.

	19.	 Ben Abdallah E, Folschette M, Roux O, Magnin M. Exhaustive analysis of
dynamical properties of biological regulatory networks with answer set
programming. In: 2015 IEEE International Conference on bioinformatics
and biomedicine (BIBM). IEEE; 2015. p. 281–85.

	20.	 Paulevé L, Chancellor C, Folschette M, Magnin M, Roux O. Analyzing
large network dynamics with process hitting. Log Model Biol Syst.
2014:125–66.

	21.	 Skodawessely T, Klemm K. Finding attractors in asynchronous Boolean
dynamics. Adv Complex Syst. 2011;14(03):439–49.

	22.	 Berntenis N, Ebeling M. Detection of attractors of large Boolean networks
via exhaustive enumeration of appropriate subspaces of the state space.
BMC Bioinform. 2013;14(1):1.

	23.	 Calzone L, Fages F, Soliman S. Biocham: an environment for modeling
biological systems and formalizing experimental knowledge. Bioinfor-
matics. 2006;22(14):1805–7.

	24.	 Klarner H, Bockmayr A, Siebert H. Computing maximal and minimal trap
spaces of Boolean networks. Nat Comput. 2015;14(4):535–44.

	25.	 de Espanés PM, Osses A, Rapaport I. Fixed-points in random Boolean net-
works: the impact of parallelism in the barabási-albert scale-free topology
case. Biosystems. 2016;150:167–76.

	26.	 Gelfond M, Lifschitz V. The stable model semantics for logic program-
ming. In: ICLP/SLP; 1988. p. 1070–080.

	27.	 Gebser M, Kaminski R, Kaufmann B, Ostrowski M, Schaub T, Wanko P.
Theory solving made easy with Clingo 5. Wadern: Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik; 2016.

	28.	 Dubrova E, Teslenko M. A SAT-based algorithm for computing attractors
in synchronous Boolean networks; 2009. arXiv preprint arXiv:0901.4448.

	29.	 Qu H, Yuan Q, Pang J, Mizera A. Improving bdd-based attractor detection
for synchronous Boolean networks. In: Proceedings of the 7th Asia-Pacific
Symposium on Internetware. ACM; 2015.

	30.	 Hayashida M, Tamura T, Akutsu T, Zhang S-Q, Ching W-K. Algorithms
and complexity analyses for control of singleton attractors in Boolean
networks. EURASIP J Bioinform Syst Biol. 2008;2008(1):1.

	31.	 Thieffry D, Thomas R. Dynamical behaviour of biological regulatory
networks—ii. Immunity control in bacteriophage lambda. Bull Math Biol.
1995;57(2):277–97.

	32.	 Simao E, Remy E, Thieffry D, Chaouiya C. Qualitative modelling of regu-
lated metabolic pathways: application to the tryptophan biosynthesis in
E. coli. Bioinformatics. 2005;21(suppl 2):190–6.

	33.	 Davidich MI, Bornholdt S. Boolean network model predicts cell cycle
sequence of fission yeast. PloS ONE. 2008;3(2):1672.

	34.	 Fauré A, Naldi A, Chaouiya C, Thieffry D. Dynamical analysis of a generic
Boolean model for the control of the mammalian cell cycle. Bioinformat-
ics. 2006;22(14):124–31.

	35.	 Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED. A methodol-
ogy for the structural and functional analysis of signaling and regulatory
networks. BMC Bioinform. 2006;7(1):1.

	36.	 Mbodj A, Junion G, Brun C, Furlong EE, Thieffry D. Logical modelling of
drosophila signalling pathways. Molecular BioSyst. 2013;9(9):2248–58.

	37.	 Abou-Jaoudé W, Monteiro PT, Naldi A, Grandclaudon M, Soumelis V,
Chaouiya C, Thieffry D. Model checking to assess t-helper cell plasticity.
Front Bioeng Biotechnol. 2014;2.

	38.	 Chaouiya C, Naldi A, Thieffry D. Logical modelling of gene regulatory
networks with GINsim. Bact Mol Netw: Methods Protoc. 2012:463–79.

	39.	 Paulevé L. Pint, a static analyzer for dynamics of automata networks. In:
14th International Conference on computational methods in systems
biology (CMSB 2016); 2016.

	40.	 Naldi A, Monteiro PT, Müssel C, Kestler HA, Thieffry D, Xenarios I, Saez-
Rodriguez J, Helikar T, Chaouiya C, et al. Cooperative development of
logical modelling standards and tools with colomoto. Bioinformatics.
2015;013.

	41.	 Chatain T, Haar S, Jezequel L, Paulevé L, Schwoon S. Characterization of
reachable attractors using petri net unfoldings. In: International Confer-
ence on computational methods in systems biology. Springer. p. 129–42.

	42.	 Thomas R. Boolean formalization of genetic control circuits. J Theor Biol.
1973;42(3):563–85.

	43.	 Kauffman SA. Metabolic stability and epigenesis in randomly constructed
genetic nets. J Theor Biol. 1969;22(3):437–67.

	44.	 Gershenson C. Updating schemes in random Boolean networks: do they
really matter. In: Artificial life IX Proceedings of the Ninth International
Conference on the simulation and synthesis of living systems. MIT Press;
2004. p. 238–43.

	45.	 Noual M, Sené S. Synchronism versus asynchronism in mono-
tonic Boolean automata networks. Nat Comput. 2017. doi:10.1007/
s11047-016-9608-8.

	46.	 Fippo-Fittime L, Roux O, Guziolowski C, Paulevé L. Identification of bifur-
cations in biological regulatory networks using answer-set programming.
In: Constraint-based methods for bioinformatics Workshop; 2016.

http://arxiv.org/abs/0901.4448
http://dx.doi.org/10.1007/s11047-016-9608-8
http://dx.doi.org/10.1007/s11047-016-9608-8

	ASP-based method for the enumeration of attractors in non-deterministic synchronous and asynchronous multi-valued networks
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Preliminary definitions
	Automata networks
	Update schemes and dynamics of automata networks
	Determinism and non-determinism of the update schemes
	Fixed points and attractors in automata networks

	Answer set programming
	Fixed points enumeration
	Translating automata networks into answer set programs
	Fixed points search

	Length n attractors enumeration
	Cycles enumeration
	Attractors enumeration
	Complex attractors

	Results
	Case study
	Benchmarks

	Conclusion and future direction
	Authors’ contributions
	Acknowledgements
	References

