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Abstract 

Background:  This paper addresses the problem of finding attractors in biological regulatory networks. We focus here 
on non-deterministic synchronous and asynchronous multi-valued networks, modeled using automata networks 
(AN). AN is a general and well-suited formalism to study complex interactions between different components (genes, 
proteins,...). An attractor is a minimal trap domain, that is, a part of the state-transition graph that cannot be escaped. 
Such structures are terminal components of the dynamics and take the form of steady states (singleton) or complex 
compositions of cycles (non-singleton). Studying the effect of a disease or a mutation on an organism requires finding 
the attractors in the model to understand the long-term behaviors.

Results:  We present a computational logical method based on answer set programming (ASP) to identify all attrac-
tors. Performed without any network reduction, the method can be applied on any dynamical semantics. In this 
paper, we present the two most widespread non-deterministic semantics: the asynchronous and the synchronous 
updating modes. The logical approach goes through a complete enumeration of the states of the network in order to 
find the attractors without the necessity to construct the whole state-transition graph. We realize extensive computa-
tional experiments which show good performance and fit the expected theoretical results in the literature.

Conclusion:  The originality of our approach lies on the exhaustive enumeration of all possible (sets of ) states verify-
ing the properties of an attractor thanks to the use of ASP. Our method is applied to non-deterministic semantics in 
two different schemes (asynchronous and synchronous). The merits of our methods are illustrated by applying them 
to biological examples of various sizes and comparing the results with some existing approaches. It turns out that our 
approach succeeds to exhaustively enumerate on a desktop computer, in a large model (100 components), all exist-
ing attractors up to a given size (20 states). This size is only limited by memory and computation time.

Keywords:  Biological regulatory network, Multiple-valued networks, Attractors, Steady states, Cycles, Answer set 
programming
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Background
In the last decades, the emergence of a wide range of new 
technologies have made it possible to produce a massive 
amount of biological data (genomics, proteomics...). This 
leads to considerable developments in systems biology 
which takes profit from this data. In order to understand 
the nature of a cellular function or more broadly a living 

biological system (healthy or diseased), it is indeed essen-
tial to study not only the individual properties of cellu-
lar components, but also their interactions. The behavior 
and functionalities of the cells emerge from such net-
works of interactions.

Considering this paradigm, the long-term behavior 
of regulatory networks dynamics is of specific inter-
est  [1]. Indeed, at any moment, a system may fall into a 
trap domain, which is a part of its dynamics that cannot 
be escaped. While evolving, the system may eventually 
fall into a new and smaller trap domain, which reduces 
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its possible future behaviors (making previous states no 
longer reachable). This phenomenon depends on bio-
logical disruptions or other complex phenomena. Such 
outline has been interpreted as distinct responses of the 
organism, such as differentiating into distinct cell types in 
multicellular organisms [2].

Moreover, when refining a model of a living system, 
one way to remove inconsistencies or to predict miss-
ing information in biological models consists in compar-
ing the attractors of the model with the experimentally 
observed long-term behavior. For instance, the model 
of the cellular development of Drosophila melanogaster, 
was described using Boolean networks and their attrac-
tors [3, 4].

Various kinds of mathematical models have been pro-
posed for the modeling of biological regulatory networks 
(BRNs). These models include neural networks, differen-
tial equations, Petri nets, Boolean networks (BN) as pro-
posed by Kauffman [5], probabilistic Boolean networks, 
and other multi-valued models such synchronous/asyn-
chronous automata networks (AN). In this paper, we use 
the AN formalism [6, 7] to model BRNs. ANs especially 
encompass the framework of René Thomas [8].

Qualitative frameworks have received substantial 
attention, because of their capacity to capture the switch-
ing behavior of genetic or biological processes, and there-
fore, the study of their long-term behavior. This explains 
our choice of a qualitative representation for the identifi-
cation of trap domains. In such a qualitative framework, a 
minimal trap domain can take two different forms: it can 
be either a steady state, which is one state from which the 
system does not evolve anymore, called also a fixed point; 
or an attractor, which is a minimal set of states that loops 
indefinitely and cannot be escaped.

The computational problem of finding all attractors in 
a BRN is difficult. Even the simpler problem of deciding 
whether the system has a fixed point, which can be seen 
as the smallest kind of attractor, is NP-hard [9]. Based on 
this, many studies have proven that computing attractors 
in BRNs is also a NP-hard problem [10, 11]. Although 
some methods exist with a lesser complexity, consist-
ing for instance in randomly selecting an initial state and 
following a long enough trajectory, hoping to eventually 
finding an attractor, they are not exhaustive and may miss 
some (hard to reach) attractors.

Therefore, in the absence of more efficient exhaustive 
methods, it is still relevant to develop an approach to 
resolve the original NP-hard problem of attractors identi-
fication. Such an approach consists in exhaustively exam-
ine all possible states of a network, along with all possible 
paths from each of these states. Obviously, this brute 
force method is very time and memory consuming: 2n 
initial states have to be considered for a Boolean model 

with n nodes; and multi-valued networks raise this value 
even more. Furthermore, a sufficient number of compu-
tations have to be performed to ensure that all trajecto-
ries have been explored and all attractors are found. This 
high complexity justifies the use of a tool able to tackle 
such hard problems.

The simplest way to detect attractors is to enumerate all 
the possible states and to run simulation from each one 
until an attractor is reached [12]. This method ensures 
that all attractors are detected but it has an exponen-
tial time complexity, therefore its applicability is highly 
restricted by the network size.

Regarding BNs only, algorithms for detecting attrac-
tors have been extensively studied in the literature. Irons 
[13] proposes to analyze partial states in order to dis-
card potential attractors more efficiently. This method 
improves the efficiency from exponential time to polyno-
mial time for a subset of biological Boolean models that is 
highly dependent on the topology (indegree, outdegree, 
update functions) of the underlying network. Another 
method, called GenYsis [14], starts from one (randomly 
selected) initial state and detects attractors by computing 
the successor and predecessor states of this initial state. 
It works well for small BNs, but becomes inefficient for 
large BNs.

More generally, the efficiency and scalability of attrac-
tor detection techniques are further improved with 
the integration of two techniques. This first is based on 
binary decision diagrams (BDD), a compact data struc-
ture for representing Boolean functions. In a recent work 
[15], algorithms have been based on the reduced-order 
BDD (ROBDD) data structure, which further speeds 
up the computation time of attractor detection. These 
BDD-based solutions only work for BRNs of a hundred 
of nodes and also suffer from the infamous state explo-
sion problem, as the size of the BDD depends both on 
the regulatory functions and the number of nodes in 
the BRN. The other technique consists in represent-
ing the attractor enumeration problem as a satisfiability 
(SAT) problem such as in [16]. The main idea is inspired 
by SAT-based bounded model-checking: the transition 
relation of the BRN is unfolded into a bounded number 
of steps in order to construct a propositional formula 
which encodes attractors and which is then solved by a 
SAT solver. In every step, a new variable is required to 
represent a state of a node in the BRN. It is clear that 
the efficiency of these algorithms largely depends on the 
number of unfolding steps and the number of nodes in 
the BRN.

In [17], the authors separated the rules that describe 
the network (the nodes and their interactions: activation 
or inhibition) from the rules that define its dynamics (for 
instance: a gene will be activated in the next state if all its 
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activators are active or when at least one of its activators 
is active at the current state). This allows to obtain more 
flexible simulations, and the authors also chose to use the 
declarative paradigm answer set programming (ASP) [18] 
in order to have more liberty in the expression of evolu-
tion rules. They illustrated that specifying large networks 
with rather complicated behaviors becomes cumber-
some and error prone in paradigms like SAT, whereas this 
is much less the case in a declarative approach such as 
theirs.

Our goal in this paper is to develop exhaustive meth-
ods to analyze a BRN modeled in AN. We address two 
kinds of issues: finding all possible steady states of a 
BRN and enumerating all attractors of a given size n ≥ 2 . 
We focus on two widespread non-deterministic update 
schemes (synchronous and asynchronous) and use ASP 
to solve these aforementioned issues. Although this 
approach is not new (see above), the use of ASP can still 
be considered innovative in the field of dynamic proper-
ties analysis and our aim here is to assess its computa-
tional potential.

Nevertheless, the originality of our contribution is to 
consider AN models: this formalism does not restrict 
entities to have Boolean expression levels (active/inac-
tive) as they can have multi-valued ones. Complex inter-
actions are modeled in an AN as automata transitions 
instead of generic influences. This expressiveness allows 
to represent a wide range of dynamical models with the 
AN framework, and the particular form of its local tran-
sitions can be well handled in ASP. Finally, this frame-
work allows to represent non-deterministic synchronous 

models, contrary to previous works focusing on asyn-
chronous or deterministic synchronous models.

We previously introduced some rough ideas of this 
approach in [19]. In the present paper, we have extended 
this work by focusing on AN models, that are more 
expressive than the previous process hitting framework 
[20]. We give a more detailed state-of-the-art and a more 
in-depth formalization of the problems tackled and show 
the merits of our approach on a case study and various 
benchmarks.

This paper is organized as follows. "Automata networks" 
presents the main definitions related to the AN and the 
particular constructs that we will seek: fixed points and 
attractors. "Answer set programming" briefly presents the 
ASP framework necessary to understand the encoding 
part. Section "Fixed points enumeration" details the part 
of our method that allows to present an AN model using 
ASP rules and find all the fixed points in such a model. 
Then,  "Length n attractors enumeration" explains how 
to enumerate all attractors in a model still using ASP. In 
"Results" we give benchmarks of our methods on several 
models of different sizes (up to 100 components). Finally, 
“Conclusion and future direction” concludes and gives 
some perspectives to this work.

Preliminary definitions
Automata networks
Definition 1 introduces the formalism of automata net-
works (AN) [6] (see Fig. 1) which allows to model a finite 
number of discrete levels, called local states, into several 
automata. A local state is denoted ai, where a is the name 
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Fig. 1  An example of an AN model with 4 automata: a, b, c and d. Each box represents an automaton (modeling a biological component), circles 
represent their local states (corresponding to their discrete expression levels) and the local transitions are represented by arrows labeled by their 
necessary conditions (consisting of a set of local states from other automata). The automata a and c are either at level 0 or 1, and b and d have 3 
levels (0, 1 and 2). The grayed local states stand for the network state 〈a0, b1, c1, d0〉
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of the automaton, corresponding usually to a biological 
component, and i is a level identifier within a. At any 
time, exactly one local state of each automaton is active, 
modeling the current level of activity or the internal state 
of the automaton. The set of all active local states is called 
the global state of the network.

The possible local evolutions inside an automaton are 
defined by local transitions. A local transition is a triple 
noted ai

ℓ
→ aj and is responsible, inside a given automa-

ton a, for the change of the active local state (ai) to another 
local state (aj), conditioned by the presence of a set ℓ of 
local states belonging to other automata and that must be 
active in the current global state. Such a local transition is 
playable if and only if ai and all local states in the set ℓ are 
active. Thus, it can be read as “all the local states in ℓ can 
cooperate to change the active local state of a by making 
it switch from ai to aj”. It is required that ai and aj are two 
different local states in automaton a, and that ℓ contains no 
local state of automaton a. We also note that ℓ should con-
tain at most one local state per automaton, otherwise the 
local transition is unplayable; ℓ can also be empty.

Definition 1  (Automata network) An Automata net-
work is a triple (�,S , T ) where:

• • � = {a, b, . . .} is the finite set of automata identifiers;
• • For each a ∈ �, Sa = {ai, . . . , aj} is the finite set of 

local states of automaton a; S =
∏

a∈� Sa is the 
finite set of global states; LS = ∪a∈�Sa denotes the 
set of all the local states.

• • For each a ∈ �, Ta = {ai
ℓ
→ aj ∈ Sa × ℘(LS \ Sa)

×Sa | ai �= aj} is the set of local transitions on 
automaton a; T =

⋃
a∈� Ta is the set of all local tran-

sitions in the model.

For a given local transition τ = ai
ℓ
→ aj, ai is called the 

origin or τ, ℓ the condition and aj the destination, and 
they are respectively noted ori(τ ), cond(τ ) and dest(τ ).

Example 1  Figure 1 represents an AN (�,S , T ) with 4 
automata (among which two contain 2 local states and the 
two others contain 3 local states) and 12 local transitions:

• • 	 � = {a, b, c, d},
• • 	 Sa = {a0, a1}, Sb = {b0, b1, b2}, Sc = {c0, c1}, 
Sd = {d0, d1, d2},

• • 	
T = { a0

{c1}
−→ a1, a1

{b2}
−→ a0,

b0
{d0}
−→ b1, b0

{a1,c1}
−→ b2, b1

{d1}
−→ b2, b2

{c0}
−→ b0,

c0
{a1,b0}
−→ c1, c1

{d2}
−→ c0,

d0
{b2}
−→ d1, d0

{a0,b1}
−→ d2,

d1
{a1}
−→ d0, d2

{c0}
−→ d0}.

The local transitions given in Definition 1 thus define 
concurrent interactions between automata. They are 
used to define the general dynamics of the network, that 
is, the possible global transitions between global states, 
according to a given update scheme. In the following, we 
will only focus on the (purely) asynchronous and (purely) 
synchronous update schemes, which are the most wide-
spread in the literature. The choice of such an update 
scheme mainly depends on the considered biological 
phenomena modeled and the mathematical abstractions 
chosen by the modeler.

Update schemes and dynamics of automata networks
As explained in the previous section, a global state of an 
AN is a set of local states of automata, containing exactly 
one local state of each automaton. In the following, we 
give some notations related to global states, then we 
define the global dynamics of an AN.

The active local state of a given automaton a ∈ � in a 
global state ζ ∈ S is noted ζ [a]. For any given local state 
ai ∈ LS, we also note: ai ∈ ζ if and only if ζ [a] = ai, which 
means that the biological component a is in the discrete 
expression level labeled i within state ζ. For a given set of 
local states X ⊆ LS, we extend this notation to X ⊆ ζ if 
and only if ∀ai ∈ X , ai ∈ ζ, meaning that all local states of 
X are active in ζ.

Furthermore, for any given local state ai ∈ LS, ζ ⋓ ai 
represents the global state that is identical to ζ, except 
for the local state of a which is substituted with ai: 
(ζ ⋓ ai)[a] = ai ∧ ∀b ∈ �\{a}, (ζ ⋓ ai)[b] = ζ [b]. We 
generalize this notation to a set of local states X ⊆ LS 
containing at most one local state per automaton, that is, 
∀a ∈ �, |X ∩ Sa| ≤ 1 where |S| is the number of elements 
in set S; in this case, ζ ⋓ X is the global state ζ where the 
local state of each automaton has been replaced by the 
local state of the same automaton in X, if there exists: 
∀a ∈ �, (X ∩ Sa = {ai} ⇒ (ζ ⋓ X)[a] = ai) ∧ (X ∩ Sa 
 = ∅ ⇒ (ζ ⋓ X)[a] = ζ [a]) .

In Definition 2 we formalize the notion of playability of a 
local transition which was informally presented in the pre-
vious section. Playable local transitions are not necessarily 
used as such, but combined depending on the chosen update 
scheme, which is the subject of the rest of the section.

Definition 2  (Playable local transitions) Let 
AN = (�,S , T ) be an automata network and ζ ∈ S a 
global state. The set of playable local transitions in ζ is called 
Pζ and defined by: Pζ = {ai

ℓ
→ aj ∈ T | ℓ ⊆ ζ ∧ ai ∈ ζ }.

The dynamics of the AN is a composition of global 
transitions between global states, that consist in applying 
a set of local transitions. Such sets are different depend-
ing on the chosen update scheme. In the following, we 
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give the definition of the asynchronous and synchronous 
update schemes by characterizing the sets of local transi-
tions that can be “played” as global transitions. The asyn-
chronous update sets (Definition 3) are made of exactly 
one playable local transition; thus, a global asynchronous 
transition changes the local state of exactly one automa-
ton. On the other hand, the synchronous update sets 
(Definition 4) consist of exactly one playable local tran-
sition for each automaton (except the automata where 
no local transition is playable); in other words, a global 
synchronous transition changes the local state of all 
automata that can evolve at a time. Empty update sets are 
not allowed for both update schemes. In the definitions 
below, we willingly mix the notions of “update scheme” 
and “update set”, which are equivalent here.

Definition 3  (Asynchronous update scheme) Let 
AN = (�,S , T ) be an automata network and ζ ∈ S a 
global state. The set of global transitions playable in ζ for 
the asynchronous update scheme is given by:

Definition 4  (Synchronous update scheme) Let 
AN = (�,S , T ) be an automata network and ζ ∈ S a 
global state. The set of global transitions playable in ζ for 
the synchronous update scheme is given by:

Uasyn(ζ ) = {{ai
ℓ
→ aj} | ai

ℓ
→ aj ∈ Pζ }.

Once an update scheme has been chosen, it is possible 
to compute the corresponding dynamics of a given AN. 
Thus, in the following, when it is not ambiguous and 
when results apply to both of them, we will denote by U a 
chosen update scheme among Uasyn and Usyn. Definition 
5 formalizes the notion of a global transition depending 
on a chosen update scheme U .

Definition 5  (Global transition) Let AN = (�,S , T ) 
be an automata network, ζ1, ζ2 ∈ S two states and U an 
update scheme (i.e., U ∈ {Uasyn,Usyn}). The global tran-
sition relation between two states ζ1 and ζ2 for the update 
scheme represented by U , noted ζ1 →U ζ2, is defined by:

The state ζ2 is called a successor of ζ1.
We note that in a deterministic dynamics, each state 

has only one successor. However, in case of non-deter-
ministic dynamics, such as the asynchronous and syn-
chronous update schemes of this paper, each state may 
have several possible successors.

U
syn(ζ ) = {u ⊆ T | u �= ∅ ∧ ∀a ∈ �, (Pζ ∩ Ta

= ∅ ⇒ u ∩ Ta = ∅)

∧ (Pζ ∩ Ta �= ∅ ⇒ |u ∩ Ta| = 1)}.

ζ1 →U ζ2 ⇐⇒ ∃u ∈ U (ζ1),

ζ2 = ζ1 ⋓ {dest(τ ) ∈ LS | τ ∈ u}.

a0, b2, c0, d1

a1, b2, c0, d1

a1, b0, c0, d1

a0, b0, c0, d1

a0, b1, c0, d2

a1, b0, c0, d0

a0, b0, c0, d0

a0, b2, c1, d1

a1, b2, c1, d1a1, b1, c0, d0

a0, b1, c0, d0

a0, b2, c0, d0

a1, b1, c1, d0

a1, b2, c0, d0

a1, b2, c1, d0

a0, b2, c1, d0

a1, b0, c1, d1

a1, b0, c1, d0

Fig. 2  A part of the state-transition graph of the AN given in Fig. 1 for the asynchronous update scheme, computed from the initial state: 
〈a1, b2, c0, d1〉 until reaching attractors. We can observe three fixed points: 〈a1, b1, c1, d0〉, 〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉; an attractor of size 2: 
{�a0, b1, c0, d0�, �a0, b1, c0, d2�} (in blue) and an attractor of size 4: {�a1, b2, c1, d1�, �a0, b2, c1, d1�, �a0, b2, c1, d0�, �a1, b2, c1, d0�} (in yellow)
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Example 2  Figures  2 and 3 illustrate respectively the 
asynchronous and synchronous update schemes on the 
model of Fig. 1. Each global transition is depicted by an 
arrow between two global states. Only an interesting sub-
set of the whole dynamics is depicted in both figures.

At this point, it is important to remind that the empty 
set never belongs to the update schemes defined above: 
∀ζ ∈ S ,∅ /∈ Uasyn(ζ ) ∧ ∅ /∈ Usyn(ζ ). The consequence 
on the dynamics is that a global state can never be its 
own successor. In other words, even when no local tran-
sition can be played in a given global state (i.e., Pζ = ∅ ), 
we do not add a “self-transition” on this state. Instead, 
this state has no successors and is called a fixed point, as 
defined later in this section.

Definition 6 explains what are in-conflict local transi-
tions, which are interesting in the scope of the synchro-
nous update scheme. Two local transitions are in-conflict 
if they belong to the same automaton and produce some 
non-determinism inside this automaton. Such phenom-
enon arises when both local transitions have the same 
origin and compatible conditions, but their destinations 
are different; or, in other words, there exists a global state 
in which they are both playable. In such a case, they allow 
the automaton to evolve in two different possible local 
states from the same active local state, thus producing a 
non-deterministic behavior. This definition will be used 

in the discussion of the next section and in "Length n 
attractors enumeration".

Definition 6  (In-conflict local transitions) Let 
AN = (�,S , T ) be an automata network, a ∈ � an 
automaton and τ1, τ2 ∈ Ta two local transitions in this 
automaton. τ1 and τ2 are said in-conflict if and only if:

Finally, Definition 7 introduces the notions of path and 
trace which are used to characterize a set of successive 
global states with respect to a global transition relation. 
Paths are useful for the characterization of attractors that 
are the topic of this work. The trace is the set of all global 
states traversed by a given path (thus disregarding the 
order in which they are visited). We note that a path is a 
sequence and a trace is a set.

Definition 7  (Path and trace) Let AN = (�,S , T ) 
be an automata network, U an update scheme and 
n ∈ N \ {0} a strictly positive integer. A sequence 
H = (Hi)i∈�0;n� ∈ Sn+1 of global states is a path of 
length n if and only if: ∀i ∈ �0; n− 1�,Hi →U Hi+1. 
H is said to start from a given global state ζ ∈ S if and 
only if: H0 = ζ. Finally, the trace related to such a path 

ori(τ1) = ori(τ2) ∧ dest(τ1) �= dest(τ2) ∧ ∃ζ ∈ S

such that τ1 ∈ Pζ ∧ τ2 ∈ Pζ .

a1, b2, c1, d1

a0, b2, c1, d0

a0, b1, c1, d1

a1, b0, c1, d1 a1, b2, c1, d0

a0, b2, c1, d1a0, b0, c1, d1

a0, b1, c0, d1a1, b0, c0, d1 a1, b2, c0, d1a0, b0, c0, d2

a0, b1, c0, d0

a0, b0, c0, d0 a1, b2, c0, d0

a0, b1, c0, d2 a0, b1, c1, d0

a0, b0, c0, d1

a1, b1, c0, d0

a1, b1, c1, d2

a1, b0, c0, d0a0, b0, c1, d0

a0, b0, c1, d2

a1, b0, c1, d0

a1, b1, c1, d0

a1, b0, c0, d2

a0, b2, c0, d1

Fig. 3  A part of the state-transition graph of the AN given in Fig. 1 for the synchronous update scheme, computed from several initial states, such 
as 〈a1, b2, c0, d1〉, until reaching attractors. It features non-deterministic global transitions, depicted by the two red arrows. We can observe the same 
three fixed points than for the asynchronous update scheme of Fig. 2, but instead two attractors of size 2: {�a0, b1, c0, d0�, �a0, b1, c0, d2�} (in blue) and 
{�a1, b2, c1, d1�, �a0, b2, c1, d0�} (in gray)
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is the set of the global states that have been visited: 
trace(H) = {Hj ∈ S | j ∈ �0; n�}.

In the following, when we define a path H of length n, 
we use the notation Hi to denote the ith element in the 
sequence H, with i ∈ �0; n�. We also use the notation 
|H | = n to denote the length of a path H, allowing to 
write: H|H | to refer to its last element. We also recall that 
a path of length n models the succession of n global tran-
sitions, and thus features up to n + 1 states (some states 
may be visited more than once).

Example 3  The following sequence is a path of length 6 
for the asynchronous update scheme:

We have: trace(H) = {�a1, b2, c1, d1�, �a0, b2, c1, d1�,

�a1, b2, c1, d0�, �a0, b2, c1, d0�} and: |trace(H)| = 4. We 
note that H0 = H2 = H6 and H1 = H5.

When there is one or several repetitions in a given path 
of length n (i.e., if a state is visited more than once), its trace 
is then of size strictly lesser than n +  1. More precisely, 
one can compute the size of the trace corresponding to a 
given path by subtracting the number of repetitions in that 
path (Lemma 1). For this, we formalize in Definition 8 the 
notion of repetitions in a path, that is, the global states that 
are featured several times, designated by their indexes.

Definition 8  (Repetitions in a path) Let AN = 
(�,S , T ) be an automata network, n ∈ N\{0} a strictly 
positive integer and H a path of length n. The set of rep-
etitions in H is given by:

Lemma 1  (Size of a trace) Let H be a path of length n. 
The number of elements in its trace is given by:

Proof of Lemma 1  By definition of a set, and knowing 
that |sr(H)| counts the number of states that exist else-
where in H with a lesser index. � �

We note that if there is no repetition in a path of length 
n (sr(H) = ∅ ⇒ |sr(H)| = 0), then the number of visited 
states is exactly: |trace(H)| = n+ 1.

Example 4  We can check Lemma 1 on the path H 
given in Example 3. Indeed, 〈a1, b2, c1, d1〉 is featured 3 
times at H0, H2 and H6. Then, according to the Definition 

H = (�a1, b2, c1, d1�; �a0, b2, c1, d1�; �a1, b2, c1, d1�;

�a1, b2, c1, d0�; �a0, b2, c1, d0�; �a0, b2, c1, d1�;

�a1, b2, c1, d1�)

sr(H) = {i ∈ �1; n� | ∃j ∈ �0; i − 1�,Hj = Hi}.

|trace(H)| = n+ 1− |sr(H)|.

8, this state is repeated twice at H2 and H6 because the 
first visit of this state is not computed in sr(H). In addi-
tion, the state 〈a0, b2, c1, d1〉 is featured twice in this 
path, at H1 and H5, therefore it is considered as repeated 
once at H5. Thus, sr(H) = {2, 6, 5}, |sr(H)| = 3 and 
|trace(H)| = 6+ 1− 3 = 4.

Determinism and non‑determinism of the update schemes
In the general case, in multi-valued networks, both the 
asynchronous and synchronous update schemes are non-
deterministic, which means that a global state can have 
several successors.

In the case of the asynchronous update scheme, the 
non-determinism may come from in-conflict local 
transitions, but it actually mainly comes from the fact 
that exactly one local transition is taken into account 
for each global transition (see Definition 3). Thus, for 
a given state ζ ∈ S, as soon as |Pζ | > 1, several suc-
cessors may exist. In the model of Fig.  1, for example, 
the global state 〈a1, b2, c0, d1〉 (in green on Fig.  2) has 
three successors: �a1, b2, c0, d1� →Uasyn �a0, b2, c0, d1� , 
�a1, b2, c0, d1� →Uasyn �a1, b0, c0, d1� and 〈a1, b2, c0, d1〉

→Uasyn �a1, b2, c0, d0�.
In the case of the synchronous update scheme (see Def-

inition 4), however, the non-determinism on the global 
scale is only generated by in-conflict local transitions 
(see Definition 6), that is, local transitions that create 
non-determinism inside an automaton. For example, the 

model of Fig.  1 features two local transitions b0
{d0}
−→ b1 

and b0
{a1,c1}
−→ b2 that can produce the two following 

global transitions from the same state (depicted by red 
arrows on Fig. 3): �a1, b0, c1, d0� →Usyn �a1, b1, c1, d0� and 
�a1, b0, c1, d0� →Usyn �a1, b2, c1, d0�. Note that for this 
particular case, these transitions also exist for the asyn-
chronous scheme (also depicted by red arrows on Fig. 2).

Therefore, it is noteworthy that if every automaton 
contains only two local states (such a network is often 
called “Boolean”) then the synchronous update scheme 
becomes completely deterministic. Indeed, it is not pos-
sible to find in-conflict local transitions anymore because 
for each possible origin of a local transition, there can be 
only one destination (due to the fact that the origin and 
destination of a local transition must be different). This 
observation can speed up the computations in this par-
ticular case.

Fixed points and attractors in automata networks
Studying the dynamics of biological networks was the 
focus of many works, explaining the diversity of exist-
ing frameworks dedicated to modeling and the different 
methods developed in order to identify some patterns, 
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such as attractors   [9, 11, 17, 21, 22]. In this paper we 
focus on several sub-problems related to this: we seek 
to identify the steady states and the attractors of a given 
network. The steady states and the attractors are the two 
long-term structures in which any dynamics eventually 
falls into. Indeed, they consist in terminal (sets of ) global 
states that cannot be escaped, and in which the dynamics 
always ends.

In the following, we consider a BRN modeled in AN 
(�,S , T ), and we formally define these dynamical prop-
erties. We note that since the AN formalism encompasses 
Thomas modeling [8], all our results can be applied to the 
models described by this formalism, as well as any other 
framework that can be described in AN (such as Boolean 
networks, Biocham [23]...).

A fixed point is a global state which has no successor, 
as given in Definition 9. Such global states have a particu-
lar interest as they denote conditions in which the model 
stays indefinitely. The existence of several of these states 
denotes a multistability, and possible bifurcations in the 
dynamics [1].

Definition 9  (Fixed point) Let AN = (�,S , T ) be 
an automata network, and U be an update scheme 
(U ∈ {Uasyn,Usyn}). A global state ζ ∈ S is called a fixed 
point (or equivalently steady state) if and only if no global 
transition can be played in this state:

It is notable that the set of fixed points of a model (that 
is, the set of states with no successor) is the same in both 
update schemes asynchronous and synchronous update 
[24, 25]: ∀ζ ∈ S ,Uasyn(ζ ) = ∅ ⇐⇒ Usyn(ζ ) = ∅.

Example 5  The state-transition graphs of Figs.  2 and 
3 depict three fixed points colored in red: 〈a1, b1, c1, d0〉 , 
〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉. Visually, they can be 
easily recognized because they have no outgoing arrow 
(meaning that they have no successors). Although these 
figures do not represent the whole dynamics, but they 
allow to check that in both update schemes the fixed 
points are the same, at least on this subset of the overall 
behavior.

Another complementary dynamical pattern consists in 
the notion of non-unitary trap domain (Definition 10), 
which is a (non-singleton) set of states that the dynamics 
cannot escape, and thus in which the system indefinitely 
remains. In this work, we focus more precisely on (non-
singleton) attractors (Definition 11), that are cyclic and 
minimal trap domains in terms of sets inclusion. In order 
to characterize such attractors, we use the notion of cycle 
(Definition 12), which is a looping path. Indeed, a cycle 

U (ζ ) = ∅.

is a strongly connected component (Lemma 2), allow-
ing us to give an alternative definition for an attractor 
(Lemma 3). Formally speaking, fixed points can be con-
sidered as attractors of size 1. However, in the scope of 
this paper and for the sake of clarity, we call “attractors” 
only non-unitary attractors, that is, only sets containing 
at least two states. This is justified by the very different 
approaches developed for fixed points and attractors in 
the next sections.

Definition 10  (Trap domain) Let AN = (�,S , T ) be 
an automata network and U an update scheme. A set 
of global states T, with |T| ≥ 2, is called a trap domain 
(regarding a scheme U) if and only if the successors of 
each of its elements are also in T:

Definition 11  (Attractor) Let AN = (�,S , T ) be 
an automata network and U an update scheme. A set 
of global states A, with |A| ≥ 2, is called an attractor 
(regarding scheme U) if and only if it is a minimal trap 
domain in terms of inclusion.

Definition 12  (Cycle) Let AN = (�,S , T ) be an 
automata network, U an update scheme and C a path 
of length n for this update scheme. C is called a cycle of 
length n (regarding a scheme U) if and only if it loops 
back to its first state:

Example 6  The path H of length 6 given in Example 3 is 
a cycle because H0 = H6.

Lemma 2 states that the set of (traces of ) cycles in a 
model is exactly the set of strongly connected compo-
nents. Indeed, a cycle allows to “loop” between all states 
that it contains, and conversely, a cycle can be built from 
the states of any strongly connected component. This 
equivalence is used in the next lemma.

Lemma 2  (The traces of cycles are the SCCs) The 
traces of the cycles are exactly the strongly connected 
components (with respect to the global transition 
relation).

Proof of Lemma 2  (⇒) From any state of a cycle, it is 
possible to reach all the other states (by possibly cycling). 
Therefore, the trace of this cycle is a strongly connected 
component. (⇐) Let S = {ζi}i∈�0;n� be a strongly con-
nected component in which the elements are arbitrar-
ily labeled. Because it is a strongly connected com-
ponent, for all i ∈ �0; n�, there exists a path Hi made 

∀ζ1 ∈ T ∧ ∀ζ2 ∈ S if ζ1 →U ζ2 then ζ2 ∈ T.

Cn = C0.
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of elements of S so that Hi
0 = ζi and Hi

|Hi|
= ζi+1 (or 

Hn
|Hn| = ζ0 for i = n). We create a path C by concatena-

tion of all paths H0,H1, . . . ,Hn by merging the first and 
last element of each successive path, which is identi-
cal: ∀i ∈ �0; n− 1�,Hi

|Hi|
= ζi+1 = Hi+1

0 . C is a cycle, 
because C0 = H0

0 = ζ0 = Hn
|Hn| = C|C|. Furthermore, 

∀i ∈ �0; n�, ζi = Hi
0 ∈ trace(C), thus S ⊆ trace(C). 

Finally, only states from S have been used to build C, thus 
trace(C) ⊆ S. Therefore, trace(C) = S. � �

In Definition 11, attractors are characterized in the 
classical way, that is, as minimal trap domains. How-
ever, we use an alternative characterization of attrac-
tors in this paper, due to the specifics of ASP: Lemma 3 
states that an attractor can alternatively be defined as a 
trap domain that is also a cycle, and conversely. In other 
words, the minimality requirement is replaced by a cycli-
cal requirement.

Lemma 3  (The attractors are the trap cycles) The 
attractors are exactly the traces of cycles which are trap 
domains.

Proof of Lemma 3  (⇒) By definition, an attractor is a trap 
domain. It is also a strongly connected component, and 
thus, from Lemma 2, it is the trace of a cycle. (⇐) Let C be 
both a cycle and a trap domain. From Lemma 2, C is also 
a strongly connected component. Let us prove by contra-
diction that C is a minimal trap domain, by assuming that 
it is not minimal. This means that there exists a smaller 
trap domain D � C. Let us consider x ∈ D and y ∈ C \D.  
Because D is a trap domain, it exists no path between x 
and y; this is in contradiction with C being a strongly con-
nected component (as both x and y belong to C). There-
fore, C is a minimal trap domain, and thus an attractor. � �

As explained before, Lemma 3 will beused in "Length 
n attractors enumeration". Indeed, directly searching 
for minimal trap domains would be too cumbersome; 
instead, we enumerate cycles of length n in the dynam-
ics of the model and filter out those that are not trap 
domains. The remaining results are the attractors formed 
of cycles of length n. The previous lemma ensures the 
soundness and completeness of this search for a given 
value of n.

Lemma 4  (Characterization of non-attractors) Let 
A ⊂ S be a set of states. If ∃ζ1 ∈ A and ∃ζ2 ∈ S \ A such 
that ζ1 →U ζ2 then A is not an attractor.

Proof of Lemma 4  By definition, A is not a trap domain 
(Definition 10) and thus it is not an attractor (Definition 
11). � �

Example 7  The state-transition graphs of Figs. 2 and 3 
feature different attractors:

• • {�a0, b1, c0, d0�, �a0, b1, c0, d2�} is depicted in blue 
and appears in both figures. It is a cyclic attractor, 
because it contains exactly one cycle.

• • {�a0, b2, c1, d0�, �a0, b2, c1, d1�, �a1, b2, c1, d1�, �a1, b2, c1, d0�} 
is only present for the asynchronous update scheme 
and is depicted in yellow on Fig.  2. It is a complex 
attractor, that is, a composition of several cycles.

• • {�a1, b2, c1, d1�, �a0, b2, c1, d0�} is, on the contrary, 
only present for the synchronous update scheme and 
is depicted in gray on Fig. 3. It is also a cyclic attrac-
tor.

For each of these attractors, the reader can check that 
they can be characterized as cycles that are trap domains. 
For instance, the second attractor can be found by con-
sidering the following cycle:

and checking that its trace is a trap domain (which is 
visually confirmed in Fig.  2 by the absence of outgoing 
arrows from any of the yellow states).

On the other hand, the following cycle is not an 
attractor:

Indeed, although it is a cycle, it features outgo-
ing transitions (such as, for instance, transition 
�a1, b2, c0, d0� →Uasyn �a0, b2, c0, d0�) and thus is not a 
trap domain.

The aim of the rest of this paper is to tackle the enu-
meration of fixed points ("Fixed points enumeration") 
and attractors ("Length n attractors enumeration") in an 
AN. For this, we use ASP ("Answer set programming") 
which is a declarative paradigm dedicated to the resolu-
tion of complex problems.

Answer set programming
In this section, we briefly recapitulate the basic elements 
of ASP [18], a declarative language that proved efficient 
to address highly computational problems. An answer set 
program is a finite set of rules of the form:

where n ≥ m ≥ 0, a0 is an atom or ⊥, all a1, . . . , an are 
atoms, and the symbol “not” denotes negation as fail-
ure. The intuitive reading of such a rule is that whenever 
a1, . . . , am are known to be true and there is no evidence 

A = (�a0, b2, c1, d0�; �a0, b2, c1, d1�; �a1, b2, c1, d1�;

�a1, b2, c1, d0�; �a0, b2, c1, d0�)

C = (�a1, b2, c0, d1�; �a1, b2, c0, d0�; �a1, b2, c0, d1�).

(1)a0 ← a1, . . . , am, not am+1, . . . , not an.
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for any of the negated atoms am+1, . . . , an to be true, then 
a0 has to be true as well. An atom or a negated atom is 
also called a literal.

Some special rules are noteworthy. A rule where 
m = n = 0 is called a fact and is useful to represent data 
because the left-hand atom a0 is thus always true. It is 
often written without the central arrow [see rule (2)]. On 
the other hand, a rule where n > 0 and a0 = ⊥ is called a 
constraint. As ⊥ can never become true, if the right-hand 
side of a constraint is true, this invalidates the whole solu-
tion. Constraints are thus useful to filter out unwanted 
solutions. The symbol ⊥ is usually omitted in a constraint 
[see rule (3)].

In the ASP paradigm, the search of solutions consists 
in computing the answer sets of a given program. An 
answer set for a program is defined by Gelfond and Lif-
schitz [26] as follows. An interpretation I is a finite set 
of propositional atoms. A rule r as given in (1) is true 
under I if and only if:

An interpretation I is a model of a program P if each rule 
r ∈ P is true under I. Finally, I is an answer set of P if I is 
a minimal (in terms of inclusion) model of PI, where PI is 
defined as the program that results from P by deleting all 
rules that contain a negated atom that appears in I, and 
deleting all negated atoms from the remaining rules.

Programs can yield no answer set, one answer set, or 
several answer sets. For example, the following program:

produces two answer sets: {b} and {c}. Indeed, the absence 
of c makes b true, and conversely absence of b makes c 
true. Cardinality constructs are another way to obtain 
multiple answer sets. The most usual way of using a car-
dinality is in place of a0:

where k ≥ 0, l is an integer and u is an integer or the 
infinity (∞). Such a cardinality means that, under the 
condition that the body is satisfied, the answer set X 
must contain at least l and at most u atoms from the set 
{q1, . . . , qm}, or, in other words: l ≤ |{q1, . . . , qm} ∩ X | ≤ u 
where ∩ is the symbol of sets intersection and |A| denotes 
the cardinality of set A. We note that several answer 
sets may match this definition, as there may be numer-
ous solutions X to this equation. Using cardinalities, the 

(2)a0.

(3)← a1, . . . , am, not am+1, . . . , not an.

{a1, . . . , am} ⊆ I ∧ {am+1, . . . , an} ∩ I = ∅ ⇒ a0 ∈ I

(4)b ← not c.

(5)c ← not b.

l {q1, . . . , qk} u ← a1, . . . , am, not am+1, . . . , not an.

program example of (4) and (5) can be summed up into 
the following program containing one only fact:

If they are not explicitly given, l defaults to 0 and u 
defaults to ∞. Furthermore, if such a cardinality is found 
in the body of a rule, then it is true if the above condition 
is satisfied.

Atoms in ASP are expressed as predicates with an arity, 
that is, they can apply to terms (also called arguments). 
For instance, let us take the following program:

The intuitive meaning of this program is that if fish do not 
fly (which is the case) and that something is a fish, then 
this thing lives in water. Here, fishesCannotFly is a predi-
cate with arity zero (no terms), fish has arity one (one 
term, defining something that is a fish), and livesIn has 
arity two (the first term lives in the second term). On the 
other hand, the terms shark and water are constants while 
X is a variable, which can stand for any atom. By conven-
tion, constant names start with a low letter or are written 
in quotes, and variable names start with a capital letter.

However, solving an ASP program as explained above 
requires that it contains no variable; for this, a grounding step 
is first required, consisting in the removal of all free variables 
by replacing them by possible constants while preserving the 
meaning of the program. In the example above, the ground-
ing step produces the following variable-free program, where 
X is replaced by the only suitable constant shark:

After solving, the only answer set corresponding to this 
program is:

For the present work, we used Clingo1 [27] which is a 
combination of a grounder and a solver. In the rest of this 
paper, we use ASP to tackle the problems of enumerating 
all fixed points and attractors of a given AN model.

Fixed points enumeration
The first aspect of our work is the enumeration of a spe-
cial type of trap domains: fixed points (also called sta-
ble states or steady states) which are composed of only 
one global state (see Definition 9). They can be studied 

1 {b, c} 1.

fishesCannotFly.

fish(shark).

livesIn(X ,water) ← fish(X), fishesCannotFly.

fishesCannotFly.

fish(shark).

livesIn(shark ,water) ← fish(shark), fishesCannotFly.

1  We used Clingo version 5.0: http://potassco.sourceforge.net/.

http://potassco.sourceforge.net/
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separately from attractors because their enumeration 
follows a different pattern which is more specific to 
this problem. A previous version of this work using 
another framework (process hitting) is presented in [19]. 
Although the main idea is preserved, the work we pre-
sent here is different because we are interested in the 
more expressive AN framework in which the transitions 
have a different form.

Translating automata networks into answer set programs
Before any analysis of an AN, we first need to express it with 
ASP rules. We developed a dedicated converter named 
AN2ASP2 and we detail its principle in the following.

First, the predicate automatonLevel(A,I) is used 
to define each automaton A along with its local state 
I. The local transitions are then represented with two 
predicates: condition which defines each element of 
the condition along with the origin, and target which 
defines the target of the local transition. Each local tran-
sition is labeled by an identifier that is the same in its 
condition and target predicates. Example 8 shows 
how an AN model is defined with these predicates.

Example 8  (Representation of AN model in ASP) Here 
is the representation of the AN model of Fig. 1 in ASP: 

2  All programs and benchmarks are available as additional files and at 
http://www.irccyn.ec-nantes.fr/~benabdal/attractors.zip.

Besides, all the local transitions of the network are defined 
in lines 7–21; for instance, all the predicates in line 7 declare 
the transition τ1 = a0

{c1}
−→ a1, which is labeled 1. We 

declare as many predicates condition as necessary in 
order to fully define a local transition τ that has potentially 
several elements in its condition cond(τ ) . For instance, 
transition b0

{a1,c1}
−→ b2 is defined in line 11 with label 4 and 

requires three of these predicates for b0 , a1 and c1. Finally, in 
lines 4–5, predicate automaton gathers all existing autom-
ata names in the model, and predicate localTrans gath-
ers all transition labels. The underscore symbol (_) in the 
parameters of a predicate is a placeholder for any value.

Since the names of the biological components may start 
with a capital letter, it is preferable to use the double quotes 
(“”) around the automata names in the parameters of all 
predicates to ensure that the automata names are under-
stood as constants by the ASP grounder and not as variables.

Fixed points search
The enumeration of fixed points requires to encode the 
definition of a fixed point (given in Definition 9) as an 

In lines 2–3 we define all the model automata 
with their local states. For example, the automaton 
“a” has two levels numbered 0 and 1; indeed, rule 
automatonLevel(“a”, 0..1). of line  2, for 
instance, will in fact expand into the two following rules:

ASP program through logic rules. The first step of this 
process is to browse all the possible states of the network; 
in other words, all possible combinations of automata 
local states are generated by choosing exactly one local 
level for each automaton. However, before computing 
these combinations, we need to pre-process the list of the 
selected local states in order to exclude each local state 
ai such that there exists a local transition ai

∅
→ aj ∈ T . 

http://www.irccyn.ec-nantes.fr/%7ebenabdal/attractors.zip
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and 〈a0, b0, c0, d1〉. All of them are represented in both 
Figs.  2 and 3. In this model, no other state verifies this 
property. We recall that the fixed points are identical for 
the synchronous and asynchronous update schemes [24].

If we execute the ASP program detailed above (lines 
23–33) alongside with the the AN model given in Exam-
ple 8 (lines 1–21), we obtain 3 answer sets that match the 
expected result. The output of Clingo is the following:

Length n attractors enumeration
In the previous section we gave a method to enumerate 
all fixed points of a given model. In a sense, a fixed point 
can be considered as an attractor: it cannot be escaped 
and its size (n = 1) makes it trivially minimal. However, 
attractors in the general case are made of several states. 
In the rest of this paper, we exclude one-state attractors 
(tackled in the last section "Fixed points enumeration"). 
We focus on attractors composed with several-states 
(following Definition 11) and we describe how to obtain 
some or all the attractors of a given length in a model. 
Obtaining all attractors of any length can be theoretically 
tackled by gradually increasing the considered length.

The computational method to enumerate all attractors 
of length n in AN models consists in three steps:

1.	 Enumerate all paths of length n,
2.	 Remove all paths that are not cycles,
3.	 Remove all cycles that are not trap domains (i.e., keep 

only attractors).

Line  29 constitutes a cardinality rule (as defined in 
"Answer set programming") whose consequence is the 
enumeration of all global states of the model in distinct 
answer sets. Each global state is defined by considering 
exactly one local state for each existing automaton 
from the shown ones defined in shownAutomaton-
Level. Each global state is described using predicates 
fix(A,I), named in anticipation of the final fixed point 
results, where I is the active local state of automaton A.

The last step consists in filtering out any global state ζ , that 
is not a fixed point, among all generated states. In this case, 
it consists in eliminating all candidate answer sets in which 
at least one local transition can be played, that is, where 
Pζ �= ∅. Such a filtering part is ideally realized with the use 
of one or several constraints. As explained in "Answer set 
programming", a constraint removes all answer sets that sat-
isfy its right-hand part. Regarding our problem, an answer 
set representing a given global state must be filtered out if 
there exists at least one playable local transition in this state 
(line  33). A transition T is considered as unplayable in a 
state, that is, T /∈ Pζ, if at least one of its conditions is not 
satisfied. For this, predicate unPlayable(T) defined in 
line 31, flags a local transition as unplayable when one of its 
condition contains a local state that is different from the 
local state of the same automaton. This is used in the final 
constraint (line 33) which states that if there exists a local 
transition which is playable in the considered global state 
(i.e., ∃T ∈ T ,T ∈ Pζ) then this global state should be elimi-
nated from the result answer sets (because it is not a fixed 
point). In the end, the fixed points of a considered model 
are exactly the global states represented in each remaining 
answer sets, described by the set of the atoms fix(A,I) 
which define each automaton local state.

Example 9  (Fixed point enumeration) The AN model 
of Fig.  1 contains 4 automata: a and c have 2 local states 

Such local states cannot be stable, because the local tran-
sition given above, called self-transition, is always play-
able: ∀ζ ∈ S , ai ∈ ζ ⇒ ai

∅
→ aj ∈ Pζ. This process is done 

through lines 23–27.

while b and d have 3; therefore, the whole model has 
2 ∗ 2 ∗ 3 ∗ 3 = 36 states (whether they can be reached or 
not from a given initial state). We can check that this model 
contains exactly 3 fixed points: 〈a1, b1, c0, d0〉 , 〈a1, b1, c1, d0〉 
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Once all steps are passed, each trace of the remaining 
n-length paths is an attractor (following Lemma 3).

Cycles enumeration
The approach presented here first enumerates all the 
paths of length n in the AN model (Definition 7).

In an ASP program, it is possible to instantiate con-
stants whose values are defined by the user at each execu-
tion: this is the role of the lowercase n in step(0..n) 
(line  26), that represents the number of considered 
steps. For example, knowing the initial global state, 
step(0..5) will compute all paths of length 5 (thus 
containing 6 successive global states).

In order to enumerate all the possible paths, step 0 
should take the value of all the possible initial global 
states (line  28), in a similar way to the fixed point enu-
meration. Then, identifying the successors of a given 
global state requires to identify the set of its playable local 
transitions. We recall that a local transition is playable in 
a global state when its origin and all its conditions are 
active in that global state (see Definition 2). Therefore, we 
define an ASP predicate unPlayable(T,S) in line 30 
stating that a transition T is not playable at a step S. More 
precisely, T cannot be played in the corresponding global 
state of the system at step S, which is the case when at 
least one of its conditions is not satisfied. Obviously, each 
local transition that is not unplayable, is a playable. From 
this, we will be able to flag the actually played local tran-
sitions with played(T,S) (see later in lines 33 and 39).

following how to compute the evolution of the model 
through the asynchronous and the synchronous update 
schemes, as presented in "Update schemes and dynam-
ics of automata networks". The piece of program that 
computes the attractors, given afterwards, is common to 
whatever update schemes.

All possible evolutions of the network (that is, the 
resulting paths after playing a set of global transi-
tions) can be enumerated with a cardinality rule 
(explained in "Answer set programming") such as the 
ones in line  33 for the asynchronous update scheme, 
and line 39 for the synchronous update scheme. Such 
rules reproduce all possible paths in the dynamics of 
the model by representing each possible successor of 
a considered state as an answer set. This enumeration 
encompasses the non-deterministic behavior (in both 
update schemes).

To enforce the strictly asynchronous dynamics which 
requires that exactly one automaton changes during 
a global transition, we use the constraint of line  35 to 
remove all paths where no local transition has been 
played, and the constraint of line 36 to remove all paths 
where two or more local transitions have been played 
simultaneously. Thus, all the remaining paths contained 
in the answer sets strictly follow the asynchronous 
dynamics given in Definition 3. The underscore sym-
bol (_) in the parameters of a predicate is a placeholder 
for any value. Here, it is used in place of the transition 

In our approach, we tackle separately the computa-
tion of the dynamics and the resolution of our prob-
lem (namely, attractors enumeration). We show in the 

label, meaning that these rules are applicable to any 
transition. 
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The second update scheme corresponds to synchro-
nous dynamics in which all playable transitions that are 
not in-conflict have to be played (see Definition 4). Fur-
thermore, “empty” global transition are not allowed, even 
when when no transition is playable (line 41).

because the dynamics has to “choose” which local transi-
tion to take into account. This property is verified by the 
constraint in line 45, that states that at most one change 
can occur (i.e., one transition can be played) in the same 
automaton. Finally, it is necessary to compute the content 

In a nutshell, one should choose one of both pieces 
of program presented above, that is, either lines 39–41 
for the asynchronous update scheme, or lines 39–41 for 
the synchronous one. The overall result of both of these 
pieces of programs is a collection of answer sets, where 

of the new global state after each played global transition: 
if a change is witnessed, then the related automaton has 
to change its level into the local state of the local tran-
sition destination (lines 47–48) otherwise it remains the 
same (line 49).

each answer is a possible path of length n (that is, com-
puted in n steps) and starting from any initial state (at 
step 0).

Between two consecutive steps S and S+1, we witness 
that the active level of a given automaton B has changed 
with the predicate change in line  43, which stores the 
chosen local transition.

In-conflict local transitions (see Definition 6) cannot 
be played at the same step. They are the only source of 
non-determinism in the synchronous update scheme, 

After the construction of a path of length n, it is 
required to check whether it is a cycle or not. If it is a 
cycle, then consequently it is a strongly connected com-
ponent (see Lemma 2). To do so, we need a predicate 
different(S1,S2) (lines 52–54) which is true when 
an automaton has different active levels in two global 
states visited at steps S1 and S2. On the contrary, if 
different(S1,S2) is not true, this means that all 
active levels of all automata are the same in both states. 
Thus, there is a cycle between S1 and S2 (line  56). We 
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finally eliminate all the paths that are not cycles of size n 
with the constraint of line 59, that checks if the states at 
steps 0 and n are identical.

is part of a cycle of length 2 which is not an attractor, and 
which trace is: {�a1, b2, c0, d1�, �a1, b2, c0, d0�}.

As given in Lemma 2, all remaining paths are strongly 
connected components. We finally need to verify if they 
are trap domains (Lemma 3) in order to discriminate 
attractors.

Attractors enumeration
Due to the non-deterministic behavior in the dynam-
ics, each state in the state-transition graph of a given 
AN may have several successors. Therefore a cyclic path 
is not necessarily an attractor. The only certain excep-
tion is the case of the deterministic synchronous update 
scheme (such as in Boolean models, as explained in Sec-
tion "Determinism and non-determinism of the update 
schemes"). In this case, the computation may be stopped 
here because a cycle is necessarily an attractor. This result 
is used in [28–30].

In the rest of this section, we will tackle the more gen-
eral and challenging case of non-determinism. Indeed, 
in the general case, some local transitions may allow 
the dynamics to escape the cycle; in such case, the cycle 
would not even be a trap domain (see Lemma 4). For 
instance, in the partial state-transition graph of Fig.  2, 
we can spot many cycles of various lengths but not all of 
them are attractors. In particular, the initial global state 

That is why another check is required to filter out all the 
remaining cycles that can be escaped (and are therefore 
not attractors). Once again, this filtering is performed 
with constraints, which are the most suitable solution. 
In order to define such constraints, we need to describe 
the behavior that we do not wish to observe: escaping the 
computed cycle. For this, it is necessary to differentiate 
between the effectively played local transitions (played) 
and the ”also playable” local transitions which were not 
played (alsoPlayable in line  61). Then, we verify at 
each step S, comprised between 0 and n, if these also 
playable local transitions make the system evolve or not 
to a new global state that is not a part of the cycle trace.

For the asynchronous update scheme, any also playable 
local transition can potentially make the dynamics leave 
the cycle. Regarding the synchronous update scheme, 
an also playable local transition must necessarily be in-
conflict (see Definition 6) with a local transition used to 
find the studied cycle. Nevertheless, both cases are tack-
led jointly. The predicate alsoPlayable(T,S) states 
that a local transition T is also playable at step S in the 
considered cycle, but was not used to specifically build 
the said cycle. This predicate is similar to the predicate 
playable used previously in lines 30, 33 and 39.
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After finding these also playable local transitions in 
each state of the cycle, we have to verify if all its global 
states, found by applying these also playable local tran-
sitions, are as well part of the cycle. Indeed, it is possi-
ble to have an also playable local transition that makes 
the dynamics evolve inside the cycle; this is witnessed 
by the predicate evolveInCycle (lines 64–65). Such 
transitions are simply “shortcuts” to other states in the 
same cycle. This is the case in complex attractors, that 
do not simply consist in a single cycle but are made of 
a composition of cycles. Such global transitions are dis-
regarded in the current case as we are only interested 
in finding global transitions that would allow the model 
dynamic to escape from the cycle. Instead, we are inter-
ested in filtering out cases where a transition allows to 
exit the cycle (that is, leads to a state not featured in the 
trace of the cycle) using the constraint of line 68.

Example 10  In the dynamics of the net-
works presented in Fig.  1 with the asynchro-
nous update scheme, let us consider the follow-
ing cycle of length 2, which can be seen in Fig.  2: 
�a1, b2, c0, d1� →Uasyn �a1, b2, c0, d0� →Uasyn �a1, b2, c0, d1�   . 
Following the pieces of program given in this section, one 
of the answer sets could allow to find this cycle, among 
others, by returning in particular the following predicates:

 

The three states in the cycle are labeled 0, 1 and 2, and 
the active local states they contain are described by the 
predicate active. We note that states 0 and 2 are iden-
tical, which is witnessed by the atom cycle(0,2). 
Furthermore, predicate played give the two transi-
tions (labeled 9 and 11, see lines 18 and 20) allowing to 
run through all the states of the cycle, while predicate 

alsoPlayable give the local transitions that are 
“also playable” in the cycle; indeed, in both states, the 
transitions labeled 1 and 6 are playable. Finally, no 
evolveInCycle predicate is inferred for this example 
(the only also playable transition is 1 which makes the 
dynamics evolve outside the cycle). Thus, this answer set 
is discarded thanks to the constraint of line 68 and is not 
featured among the results.

Complex attractors
Up to this point, we managed to propose an ASP program 
that enumerates all the attractors in a given AN. Each 
attractor is the trace of a path of length n. In many cases, 
except for some complex attractors, this length n (which 
corresponds to the number of played global transitions in 
the path) is also equal to the number of visited states (i.e., 

the size of the trace). This is a trivial case of a minimal path 
covering a given attractor, that is, no path of lesser length 
can cover it. Indeed, as in the examples of attractors in 
Figs. 2 and 3, enumerating the paths of length 2 is enough 
to obtain all the attractors having two global states, and the 
same goes for the attractors of length 4. But without the 
constraint that we develop below (given in lines 70–93), 
when the program is asked to display the attractors cov-
ered by a path of length n, it will also return various paths 
of size lower than n by considering non-minimal paths, 
that is, containing unwanted repetitions inside the cycle, 
or even repetitions of the entire cycle. In the example of 
Fig.  3, for instance, with n = 6, the program returns the 
two attractors, although they both are of size 2. Indeed, 
each of them can be covered by a cycle of length 6: it con-
sists of a cycle of size 2 repeated three times.

Therefore, the objective of this section is to exclude 
most cases where a cycle is non-minimal, such as the 
obvious one where it is entirely repeated, because such a 
case is useless with respect to the computation of attrac-
tors. Moreover, we would prefer that our method yields 
no answer set when no attractor traversed by a cycle 
of length n is found (even if non-minimal attractors on 
cycles of lesser length are found). We don’t formally 
claim here that our method eliminates all of these cases, 
but we aim at tackling most of these cases in order to 
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sanitize the answer set as much as possible. For instance, 
an attractor ζ0 → ζ1 → ζ0 of length n = 2 could be listed 
among the attractors of length n = 4 if it is repeated 
twice as the following path: ζ0 → ζ1 → ζ0 → ζ1 → ζ0.  
Although all general assumptions regarding attractors 
are verified (it consists in a cycle and all the global transi-
tions produce global states that are still cycle), we aim at 
willingly excluding it from the answers because it is not 
minimal in terms of length.

However, in the case of some complex attractors, 
the problem is opposite. Indeed, it happens that the 
dynamics has to visit the same global states more 
than once. It is for example the case for the com-
plex attractor which could be called “star attrac-
tor”, which is featured in the model comprising the 
following global transitions, also depicted in Fig.  4: 
{ζ0 → ζ1, ζ1 → ζ0, ζ1 → ζ2, ζ1 → ζ3, ζ2 → ζ1, ζ3 → ζ1}   . 
The only attractor of this model consists in the whole 
set S = {ζ0, ζ1, ζ2, ζ3} of all its global states. We notice 
that it is not possible to cover this entire attractor with-
out visiting the state ζ1 at least 3 times (even when dis-
regarding the inevitably repeated final step of the 
cycle). Indeed, a possible path to cover it entirely is: 
ζ0 → ζ1 → ζ2 → ζ1 → ζ3 → ζ1 → ζ0 which is of length 
6, and no path of lesser length exist to cover this attractor 
although its trace is of size 4.

The challenge here is to handle both cases in the same 
program: excluding answer sets featuring non-minimal 
paths while still returning complex attractors for which 
the path is strictly bigger than the trace. For this, we make 

direct use of the result of Lemma 1 which links the length 
n of a path to the size X of its trace; in our case: X = n 
+ 1 - k, where k is the number of global states that are 
successively repeated in the path of length n (see Defini-
tion 8). This formula is implemented in lines 70–76. It is 
also used to prompt the user with the size of the attractor 
which may be strictly inferior to the value of n.

s 1

s 3

s 2

s 4

Fig. 4  Simple example featuring a “star attractor”, that is, an attractor 
that cannot be traveled without visiting at least twice one of its states
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Our objective in the following is to propose a pro-
gram that returns, as far as possible, all attractors of the 
model that actually correspond to a path of length n 
which is minimal. We propose the following rules to ver-
ify this property; each of them concludes with the atom 
isNotMinimal(n), which means that the considered 
cycle is not minimal. In the end, isNotMinimal(n) 
is used in the constraint of line  93 which eliminates all 
these unwanted cases together.

We first verify if there exists a path of length X < n 
without repetitions from the state of step 0 to step X, 
where X is the trace size of the cycle, that is, the number of 
different states in the path. Then we also verify if there is a 
transition from the state of step X to the state of step 0. If 
both properties are true, then there exists a path of size X 
< n that covers all the states of the attractor, and thus n is 
not the minimal path length of that attractor (lines 81–84).

Another non-minimal case, detailed in lines 86–87, 
occurs when there exists “shortcuts” between some states 
of a cycle, making it not minimal. Besides, a path of mini-
mal length does not permit repetitions between succes-
sive states inside a cycle (line 89). Finally, when an entire 
cycle is repeated several times, then the number of rep-
etitions is obviously superior to the maximum expected 
that is equal to n (line 91). As stated before, in any of the 
previous cases, the considered cycle is not minimal, and 
therefore discarded (line 93).

Indeed, for one given attractor, it is possible to find sev-
eral minimal covering cycles by changing the initial state, 
or the traversal (in the case of complex attractors). For 
instance, the hypothetical attractor {ζ0; ζ1} is captured 
by the two cycles: ζ0 → ζ1 → ζ0 and ζ1 → ζ0 → ζ1. This 
leads to repetitions which are not removed from the 
answers of our method.

The final result presented by each answer set is 
described by the collection of atoms active(ALs,S), 
where S denotes the label of one of the steps in the cycle, 
and ALs corresponds to one of the active local states.

The problem of finding attractors in a discrete net-
work is NP-hard, therefore the implementation that we 
gave in this section also faces such a complexity. How-
ever, ASP solvers (namely, Clingo in our case) are 
specialized in tackling such complex problems. Next 
section will be dedicated to the results of several com-
putational experiments that we performed on biological 
networks. We show that our ASP implementation can 
return results in only a few seconds attractors of small 
size even on models with 100 components, which is 
considered large.

Results
In this section, we exhibit several experiments con-
ducted on biological networks. We first detail the results 
of our programs on the AN model of Fig.  1. Then, we 

 

We note that these constraints are relevant to the non-
deterministic dynamics, whether it is asynchronous or 
synchronous.

Nevertheless, there is still a case of duplicate results 
that cannot be tackled by the previous constraint: the 
existence of several minimal cycles for the same attractor. 

sum up the results of benchmarks performed on other 
models up to 100 components. In general, the time per-
formances are good and the overall results confirm the 
applicability ASP for the verification of formal properties 
or the enumeration of special constructs on biological 
systems.
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All experiments were run on a desktop PC with a Pen-
tium VII 3 GHz processor and 16 GB memory.

Case study
We first conducted detailed experiments on the 4-compo-
nents model of Fig. 1. As detailed in "Automata networks", 
this network contains 4 automata and 12 local transitions. 
Its state-transition graph comprises 36 different global 
states and some of them are detailed in the partial state-
transition graphs in Fig.  2 (for the asynchronous update 
scheme) and Fig. 3 (for the synchronous update scheme).

The analytic study of the minimal trap domains on this 
small network allows to find the following attractors and 
fixed points depending on the update scheme, where 
we assimilate steady states to attractors of length n = 0 
because they have a trace of size 1:

• • Asynchronous update scheme:

•	 n = 0: 〈a1, b1, c1, d0〉,〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉;
• 	 n = 2: {�a0, b1, c0, d0�, �a0, b1, c0, d2�};
• 	 n = 4: {�a1, b2, c1, d1�, �a0, b2, c1, d1�, �a0, b2, c1, d0�,  

�a1, b2, c1, d0�} .

• • Synchronous update scheme:

•	 n = 0: 〈a1, b1, c1, d0〉,〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉;
• 	 n = 2: {�a0, b1, c0, d0�, �a0, b1, c0, d2�} and {�a1, b2,

c1, d1�, �a0, b2, c1, d0�}.

The steady states returned by the method of "Fixed points 
enumeration" (n = 0) and the attractors (n > 1) given 
by the method of "Length n attractors enumeration" are 
consistent with what is theoretically expected. We note 
that, as stated in [24], the fixed points are the same for 
the asynchronous and synchronous update schemes.

When given to a solver, the ASP programs given in the 
previous sections directly outputs the expected solutions. 
The output for the fixed point enumeration was given in 
Example 9. The output for the attractor enumeration is 
given below for both update schemes. We note that each 
global that state belongs to an attractor is labeled with 
a number (for instance, 0 and 1 for the cases n = 2) so 
that each active local state is featured in an independent 
atom. We removed some uninteresting atoms from the 
results to improve readability.
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Moreover, executing the programs with n �= 2 and 
n �= 4 returns no results, which means that the solver 
correctly terminates having found no answer set. This is 
expected because there is no attractor of length different 
than 2 and 4 for this model, and we excluded repeated 
cycles from the results (therefore, the attractors already 
found for lengths 2 and 4 are not found for n = 6 or 
n = 8, for instance). For this small network, all the results 
are computed in less than 0.05 second.

Benchmarks
In the following, we propose some additional bench-
marks to demonstrate the capabilities of our implemen-
tation. We do not give the details of the results of these 
experiments but rather focus on the computation times 
and the conclusion: if an attractor has been found (satisfi-
able) or not (unsatisfiable). We used several preexisting 
Boolean and multi-valued networks inspired from real 
organisms and found in the literature:

• • Lambda phage: a regulatory network featuring 
some viral genes crucial in the decision between 
lysis and lysogenization in temperate bacteriophage 
lambda [31];

• • Trp-reg: a qualitative model of regulated metabolic 
pathways of the tryptophan biosynthesis in E. coli [32];

• • Fission-yeast: a cell cycle model of Schizosaccharo-
myces pombe [33];

• • Mamm: a mammalian cell cycle model [34];
• • Tcrsig: a signaling and regulatory network of the 

TCR signaling pathway in the mammalian differen-
tiation [35];

• • FGF: a drosophila FGF signaling pathway [36];
• • T-helper: a model of the T-helper cells differentia-

tion and plasticity, which accounts for novel cellular 
subtypes [37].

To obtain the models that we have studied in this section, 
we first extracted them from the GINsim model reposi-
tory3 [38], in GINML format. These models correspond 
to the discrete asynchronous networks given in the cor-
responding papers. Then, the conversion step towards an 
ASP program is automated using the following tools:

• • The existing GINsim tool allows to export its models 
into the SBML qual formalism;

• • The existing LogicalModel library [39, 40] can 
convert SBML qual models into AN models;

• • Finally, our script AN2ASP converts AN models into 
ASP programs, following the principles detailed in 

3  http://ginsim.org/models_repository.

"Translating automata networks into answer set pro-
grams".

It is noteworthy that each step fully preserves the dynam-
ics between models regarding the asynchronous update 
scheme [41]; thus, the final (asynchronous) ASP program 
is bisimilar to the original GINML model. The character-
istics of each model once translated in AN are given in 
Table  1. The results of our benchmarks4 are given in 
Tables 2 and 3.

We note that all the results for the fixed points search 
have been compared and confirmed using GINsim [38] 
and Pint [39]. Regarding the attractor enumeration, 
we compared our results with Boolean network sys-
tem (BNS) [16] for the synchronous update scheme on 
the Fission-yeast, Mamm., and Tcrsig models; and with 
GINsim [38] for the asynchronous update scheme on the 
Lambda phage, Trp-reg, Fission-yeast and Mamm. mod-
els. In all cases, we found the same results. It is interest-
ing to note that our method allows to return a response 
regarding attractors of small size even on big models. In 
contrast, other tools may take a very long time or even 
fail to answer. For instance, that happens with GINsim 
for the Tcrsig, FGF and T-helper models. Indeed, they 
are based on the computation of the complete transition 
graph even for the study of small attractors.

Our results could not be compared with, for exam-
ple, the existing ASP-G method [17]. Indeed, with this 
tool, the user has to choose an update rule on which 
the dynamic evolution will be based on. For instance, 
one rule consists in activating a gene when at least one 
of its activators is active while no inhibitor is; another 
one activates a gene when it has more expressed activa-
tors than inhibitors. Because the chosen activation rule 
is applied for all the components of the model, while the 
evolution rules in our AN semantics are specific to each 
component, the results of both tools cannot be strictly 
compared.

We recall that among the results output, some attrac-
tors may be listed several times in the answers, despite 
any filtering, as explained at the end of "Complex attrac-
tors". Indeed, the solver returns different answer sets for 
different paths that cover the same trace but differ in 
terms of initial global state. Therefore, in the results of 
Table 3, we focused on the conclusion and computation 
times of the search of any first found attractor of length 
n.

In case the user may need the exhaustive list of all 
attractors, our method can also list all the answers, 
including these repetitions. For instance, our method 

4  All programs and benchmarks are available as additional files and at 
http://www.irccyn.ec-nantes.fr/~benabdal/attractors.zip.

http://ginsim.org/models%5frepository
http://www.irccyn.ec-nantes.fr/%7ebenabdal/attractors.zip
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yields 4 answers for the Trp-reg model and a cycle length 
of n = 4 with the asynchronous update scheme, and 
the computation takes 47 ms; this typically represents 
an attractor of size 4 where each answer set represents 
a cycle starting from a different initial state. Regarding 
the T-helper model (the largest studied model with 101 
automata), the search for all attractors of size n = 2 with 
the synchronous update scheme takes about 275 s (∼5 
min) and returns 2,058,272 answers, while it takes only 57 
s to return all the attractors of size n=12, (6144 answers). 
However, as explained before, these results mean that 
this model features strictly less than, for instance, 6144 

attractors covered by a cycle of length 12, because each 
one is repeated several times.

In order to filter out the remaining repetitions, it 
should be possible to use a script or a text editor in order 
to extract only the states of each answer set and thus 

Table 1  Brief description of the models used in our bench-
marks

The successive lines sum up the information regarding the models of, 
respectively, the toy example of Fig. 1, the bacteriophage lambda [31], the 
tryptophan biosynthesis in E.coli regression [32], the fission yeast [33], the 
mammilian cell cycle [34], the TCR signalling pathway in the mammalian 
differentiation [35], the drosophila FGF signalling pathway [36] and the 
T-helper cell differentiation [37]. For each of them, the table gives the number 
of automata (|�|), the maximal local level in the automata (maxa∈�{|Sa|}), the 
number of local transitions (|T |) and the number of states in the corresponding 
state-transition graph (|S|)

Models Model description

|�| maxa∈�{|Sa|} |T | |S|

Example 4 3 12 36

 [31] Lambda phage 4 4 46 48

 [32] Trp-reg 4 3 14 36

 [33] Fission-yeast 9 3 43 3 × 29 = 1536

 [34] Mamm. 10 2 34 210 = 1024

 [35] Tcrsig 40 2 85 240 ≃ 1012

 [36] FGF 59 3 102 231 ≃ 1.2 × 1010

 [37] T-helper 101 3 316 2102 ≃ 5.7 × 1031

Table 2  Results of  our fixed points enumeration imple-
mentation

The successive lines sum up the information regarding models detailed 
in Table 1. For each model, the table shows the computation time for the 
enumeration of all results and the total number of returned answer sets

Models Fixed points enumeration for both 
update schemes

�
all
t (ms) #allF

Example 2 3

Lambda phage 4 1

Trp-reg 6 2

Fission-yeast 5 1

Mamm. 3 1

Tcrsig 5 8

FGF 25 1536

T-helper 170,642 5,875,504

Table 3  Results of  our attractors enumeration implemen-
tation

The successive lines sum up the information regarding models detailed in 
Table 1. For each model and for both update schemes (asynchronous and 
synchronous), the table shows, depending on the given path length n, the 
computation time for the first attractor found by the solver (�t), and the 
conclusion regarding the existence or not of at least one attractor (∃?A)

Models n Attractors enumeration

Asynchronous scheme Synchronous 
scheme

�t (ms) ∃?A �t (ms) ∃?A

Example 2 7 Yes 7 Yes

4 16 Yes 14 No

8 98 No 75 No

Lambda phage 2 14 Yes 14 Yes

10 1352 No 842 No

20 15,656 No 14,452 No

Trp-reg 2 8 No 7 No

4 14 Yes 15 No

20 3908 No 3808 No

Fission- yeast 2 16 No 16 Yes

10 1011 No 807 No

20 17,302 No 16,313 No

Mamm. 2 12 No 12 No

7 177 No 147 Yes

10 720 No 605 No

20 58,133 No 9253 No

Tcrsig 2 26 No 25 No

6 353 No 288 Yes

10 2420 No 1841 No

20 85,599 No 27,078 No

FGF 2 38 No 36 No

10 2080 No 1953 No

20 30,861 No 29,838 No

T-helper 2 180 No 125 Yes

3 391 No 301 Yes

4 782 No 1064 No

6 4271 No 2372 Yes

7 7909 No 3522 Yes

9 26,443 No 7042 Yes

10 44,924 No 12,208 Yes

12 107,358 No 28,520 Yes

20 4,230,836 ∼ 1h17 No 187,105 ∼ 3min No
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discard the answers featuring exactly the same attrac-
tor. Such pruning is not trivial in ASP and is the target of 
future works.

Conclusion and future direction
In this paper, we presented a new logical approach to 
efficiently compute the list of all fixed points and attrac-
tors in biological regulatory networks. We formalized our 
approach using the AN framework, which is bisimilar to 
many logical networks [41]. All results given here can 
thus be applied to the widespread Thomas’ modeling [42] 
in the asynchronous scheme and to the Kauffman mod-
eling in the synchronous scheme  [43]. In addition, this 
framework can encompass any update rules, such as the 
ones represented in [44, 45].

We designed a dedicated method for computing steady 
states and other programs for non-unitary attractors of a 
given length and a chosen update scheme (synchronous 
or asynchronous). The originality of our work consists 
in the exhaustive enumeration of all attractors thanks 
to the use of ASP, a powerful declarative programming 
paradigm. The computational framework is based on the 
AN formalism presuming non-deterministic dynamics. 
Thanks to the encoding we introduced, and the power-
ful heuristics developed in modern solvers, we are able to 
tackle the enumeration of fixed points, cycles and attrac-
tors of large models. The major benefit of a such method 
is to get an exhaustive enumeration of all potential states 
while still being tractable for models with a hundred of 
interacting components. As the identification of attrac-
tors can give an insight to the long-term behavior of bio-
logical systems, tackling this issue is a challenge to which 
we cared to contribute to. Besides, we hope our work 
helps open new ways and tools to explore this field.

We plan to extend this work by considering adapta-
tions and optimizations of the approach to address larger 
models. First, the “projection” feature of Clingo which 
displays only one answer set when several answer sets 
contain common predicates, is currently studied in order 
to filter out repeated attractors, that currently appear 
multiple times because they are covered by several pos-
sible cycles. Another trail consists in returning approxi-
mations of the results, that is, sometimes “missing” 
some answers, but with the benefit of a highly improved 
performance. Once again, applying various filters to 
the generated results may avoid redundancy and guide 
the solving process. Conversely, it may be possible to 
reduce the incremental aspect of the analysis process, for 
instance by searching for cycles of size lower than (and 
not only equal to) a given value, so that the user could 
directly start with higher values.

Of course, other extensions allowing to tackle other 
close problems would be of interest. For instance, the 

attractor inverse problem consists in building or enumer-
ating networks possessing a given set of attractor proper-
ties, in order to answer to network inference matters. We 
would also like to extend these ASP-based methods to 
study other interesting properties of dynamical patterns 
such as the enumeration of basins of attraction, gardens 
of Eden or bifurcations [46].
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