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Abstract 

Background:  Hi-C experiments capturing the 3D genome architecture have led to the discovery of topologically-
associated domains (TADs) that form an important part of the 3D genome organization and appear to play a role in 
gene regulation and other functions. Several histone modifications have been independently associated with TAD 
formation, but their combinatorial effects on domain formation remain poorly understood at a global scale.

Results:  We propose a convex semi-nonparametric approach called nTDP based on Bernstein polynomials to explore 
the joint effects of histone markers on TAD formation as well as predict TADs solely from the histone data. We find a 
small subset of modifications to be predictive of TADs across species. By inferring TADs using our trained model, we 
are able to predict TADs across different species and cell types, without the use of Hi-C data, suggesting their effect 
is conserved. This work provides the first comprehensive joint model of the effect of histone markers on domain 
formation.

Conclusions:  Our approach, nTDP, can form the basis of a unified, explanatory model of the relationship between 
epigenetic marks and topological domain structures. It can be used to predict domain boundaries for cell types, 
species, and conditions for which no Hi-C data is available. The model may also be of use for improving Hi-C-based 
domain finders.
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Background
The emerging evidence suggests that 3D nuclear archi-
tecture is important for the regulation of gene expression 
and it is tightly linked to the function of the genome. For 
instance, expression in the beta-globin locus is medi-
ated by folding to bring an enhancer and associated 
transcription factors within close proximity of a gene [1, 
2]. Similarly, loci of mutations that affect expression of 
genomically far-away genes (eQTLs) interact significantly 
more frequently within a contact range in 3D to their 
regulated genes [3], indicating that 3D genome structure 
plays a wide-spread role in gene regulation. Lastly, spatial 
regions that interact with nuclear lamina are generally 

inactive [4]. Measuring and modeling the 3D shape of 
a genome is thus essential to obtain a more complete 
understanding of how cells function.

Chromatin interactions obtained from a variety of 
recent chromosome conformation capture experimental 
techniques such as Hi-C [5] have resulted in significant 
advances in our understanding of the geometry of chro-
matin structure [6, 7]. These experiments yield matrices 
of counts that represent the frequency of cross-linking 
between restriction fragments of DNA at a certain reso-
lution. Analysis of the resulting matrix by Dixon et al. [8] 
led to the discovery of topologically-associated domains 
(TADs) which correspond to consecutive, highly-inter-
acting matrix regions typically a few megabases in size 
that are close in densely packed chromatin. TADs have 
been identified across different cell cycle phases and in 
prokaryotes [9]. Several lines of evidence suggest that 
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TADs are a building block of genomic regulatory archi-
tecture [10, 11]. Segmental packaging of genome via 
TADs likely have critical roles in cell dynamics such as 
long-range transcriptional regulation and cell differentia-
tion [12, 13].

The mechanism by which these TADs form and are 
demarcated is still largely unknown. A plethora of epi-
genetic modifications have been identified in metazoan 
genomes that are associated with 3D genome shape 
[14], and thus TADs. Several modifications have been 
found to be specifically correlated with TAD bounda-
ries [8]. For instance, histone modifications H3K4me3m 
H3K27ac and insulator proteins are enriched within TAD 
boundaries [15], although the causal direction of these 
associations is still unknown [12]. Despite these analy-
ses, the complete picture of how histone modifications 
are related to TAD formation is missing. This is partially 
because previous analyses relating histone marks to 
domain boundaries have often considered each histone 
mark independently, without accounting for their com-
bined affects. It is unknown to what extent relationships 
between the histone markers are important or whether 
there is a small set of markers that are of primary 
importance.

Here, we develop and train a joint model, which we 
call nTDP (Nonparameteric Topological Domain Par-
titioner), of how histone modifications are associated 
with domain boundaries and interiors. We show that 
we are able to train this model optimally in polynomial 
time because its likelihood function is convex. The model 
does not make any assumptions about the effect of each 
histone mark on domain formation, and instead fits the 
histone-domain relationship nonparametrically. Using 
this model, we systematically identify a small set of his-
tone markers that in combination appear to explain TAD 
boundaries. We find a small number of epigenetic ele-
ments account for a large proportion of the accuracy of 
TAD prediction. All of these identified marks fail to pre-
dict domain boundaries when considered independently. 
We show that these markers are conserved across spe-
cies and cell types in a very strong way: models trained 
on mouse continue to work well on human, and models 
trained on IMR90 cells continue to work on embryonic 
stem cells.

Our approach, nTDP, can form the basis of a unified, 
explanatory model of the relationship between epige-
netic marks and topological domain structures. It can be 
used to predict domain boundaries for cell types, spe-
cies, and conditions for which no Hi-C data is available. 
The model may also be of use for improving Hi-C-based 
domain finders. The rest of the paper is organized as fol-
lows: We start by formally defining nTDP model. Then, 
we present provably optimal methods to train our model 

from markers and TADs, as well as to predict TADs over 
trained model. Lastly, we present results on prediction of 
domains on the same species as well as across species and 
cell types.

Related work
Previous work mainly focused on analyzing epigenetic 
data in an unsupervised way. Segway [16] and Chrom-
HMM [17] take as input a collection of genomics datasets 
and learn chromatin states that exhibit similar epigenetic 
activity patterns which then have different interpretations 
such as transcriptionally active, Polycomb-repressed. Lib-
brecht et al. [18] improve Segway predictions by integrat-
ing Hi-C data which is not as abundant as histone data, 
whereas [19] jointly infers chromatin state maps in mul-
tiple genomes by a hierarchical model. However, none of 
these methods deal directly with TADs. Even though a 
subset of their chromatin states overlap with TADs, pre-
dicting TADs from them heuristically does not perform 
well. Additionally, they either ignore the histone densi-
ties, or make parametric distribution assumptions such 
as geometric or normal which are not always reflected in 
the true data. When modified to run in a supervised set-
ting, they cannot capture the most informative subset of 
epigenetic elements.

The recent approach [20] proposes a supervised learn-
ing method based on random forests to predict TAD 
boundaries from histone modifications and chromatin 
proteins. In general, this approach is reported to perform 
quite accurately in predicting boundaries. However, it 
does not model interior TAD segments and it treats each 
segment independently ignoring the fact that TADs form 
as a result of the joint effects of multiple segments.

The nTDP model
The likelihood function
Let V be the ordered set of genome restriction frag-
ments  (bins), where each bin v represents the interval 
[vr − r + 1,  vr], where r is the Hi-C resolution. Let M 
be the set of histone modifications (markers) over V. 
The marker data H = (hvm) is a |V | × |M|-matrix where 
its (v, m)’th entry hvm is the count of the occurrences of 
marker m inside segment v. Let d = [s, e] be a domain 
(interval) where s and e are its start and end boundaries 
respectively, {s + 1, . . . , e − 1} are the segments inside d, 
and let D = {[s1, e1], [s2, e2], . . . , [si, ei]} be a partition of 
V where none of the domains overlap.

We propose a supervised, semi-nonparametric, high-
dimensional model nTDP that uses H to model and 
predict D. Our model can be seen as a generalization of 
Conditional Random Field [21, 22] where we have con-
tinuous weights instead of binary features and where we 
model the marker effects semi-nonparametrically.
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Specifically, we assume there are 3 types of seg-
ments in V that are relevant for modeling: those that 
are at the domain boundaries ( Vb ), those that are in 
the interior of domains ( Vi ), and those that are not part 
of a domain ( Ve ), and we have V = Vb ∪ Vi ∪ Ve . For 
each marker type m, we have 3 types of effect functions, 
f bm(c,w

b
m), f im(c,w

i
m), f em(c,w

e
m) , that will describe the 

relationship between marker count c and the fragment 
type (b, i, e) for marker type m. Here, wb

m,wi
m,we

m are 
parameters that we will fit to determine the shape of the 
effect function. Thus, for example, f im(c,wi

m) will describe 
how a count of c for marker m influences whether the 
fragment is in the interior (i) of a domain.

We assume that these effect functions combine linearly. 
Therefore, let

be the total effect of all the markers on fragment v for 
boundary formation (b). Summations Ei

vq and Ee
vq are 

defined analogously for interior (i) and inter-domain 
fragments (e).

Let W be the union of model parameters wb
m,wi

m,we
m , 

and let Dtrain = {Dq : q = 1, . . . ,Q} be several domain 
decompositions (in different sequences or conditions) 
and let H train = {Hq : q = 1, . . . ,Q} be a set of corre-
sponding histone markers. Under the assumption that 
the training pairs are independent, the log-likelihood of 
parameters W given Dtrain is

We define the probability P(Dq ,W ,Hq) =
expF(D

q ,W ,Hq )

∑

F
′ expF

′  

where F(Dq ,W ,Hq) is the total quality of partition Dq 
and marker data Hq under model parameters W. Let Vq 
be the set of segments in pair q. Due to independence of 
segments:

where Zq
|Vq | =

∑

D′ P(D′,W ,Hq) is the partition func-
tion defined over all possible nonoverlapping partitions 
D′ , cb, ci, ce are relative weights of different types of frag-
ments to account for unbalanced training set, and Vq

e  is 
the set of fragments that do not belong to any domain in 
Dq.

(1)Eb
vq =

∑

m∈M

f bm(c
q
vm,w

b
m)

(2)
log

(

P(Dtrain|W ,H train)

)

=
∑

q

log(P(Dq|W ,Hq)).

(3)
log

�
P(Dq|W ,Hq)

�
=

log (P(Dq ,W ,Hq))=F(Dq ,W ,Hq)
� �� �

�

d=[s,e]∈Dq




�

v∈{s,e}

cbE
b
vq +

e−1�

v=s+1

ciE
i
vq



 +
�

v∈V
q
e

ceE
e
vq − log(Z

q
|Vq |)

Nonparametric form of the effect functions
Because the shape of the marker effect function is 
unknown, we choose the f functions from the nonpara-
metric family of Bernstein basis polynomials. Bernstein 
polynomials can approximate any effect function and 
additionally can handle imposed shape constraints such 
as monotonicity and concavity.

Let A be the chosen dimension of these polynomials; 
larger A results in a more expressive family, but more 
parameters to fit. Let mmax be the maximum possible 
density of marker m. This is is used to transform the input 
c
q
vm to the range [0, 1]; therefore define pqvm = c

q
vm/mmax . 

We model f bm(c
q
vm,w

b
m) for segment v by a Bernstein pol-

ynomial BA(p
q
vm,w

b
m) as in:

where bi,A(p
q
vm) are the base Bernstein kernels.

Optimal algorithms for training and inference
We must train the parameters W for the above model 
using data of the form Dtrain,H train . We will examine 
these trained parameters (and several good solutions for 
them) for insights into which markers are most informa-
tive for describing Dtrain and thus topological domains.

Problem 1  Training: Given a set of marker data H train , 
likely from several chromosomes and cell conditions, and 
corresponding set of TAD decompositions Dtrain , we esti-
mate the most likely parameters W according to Eq. 2.

Problem  2  Inference: Given marker data H model 
parameters W, we estimate the best domain partition D 
of the track.

Training
A nice feature of the objective  (3) is that it is convex in 
its arguments, {wb

m,wi
m, we

m}m∈M , which follows from 
linearity, composition rules for convexity, and convex-
ity of the negative logarithm. However, training involves 
several challenges: (a)  computing the partition function 

(4)

f bm(c
q
vm,w

b

m) = BA

(

p
q
vm,w

b

m

)

=

A∑

i=0

wb
m[i]

bi,A(p
q
vm)

︷ ︸︸ ︷
(
A

i

)
(
p
q
vm

)i(
1− p

q
vm

)A−i
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Z
q
|Vq | in (3), and (b) estimating W so that the weights are 

sparse. We solve each of these challenges next.

Estimating the partition function
We estimate Zq

|Vq | in  (3) recursively in polynomial time 
since each segment can belong to one of 4 states: domain 
start  (sb), inside a domain  (i), domain end  (eb), non-
domain  (e), and state of each segment depends only on 
the previous segment’s state. Let Y = {sb, i, eb, e} , and 
Z
q
|Vq | = Z

q
|Vq |,eb + Z

q
|Vq |,e which components can be esti-

mated by:

where Zq
v,sb , Z

q
v,i , Z

q
v,eb , Z

q
v,e represent the partition func-

tion up to segment v ending with sb,  i,  eb and non-
domain respectively. T is a 4 × 4 binary state transition 
matrix where Ty,x = 1 if a segment can be assigned 
to x given previous segment is assigned to state y 
such as (y, x) ∈ {(sb, i), (sb, eb), (i, i), (i, eb), (eb, sb) , 
(eb, e), (e, sb), (e, e)} , otherwise 0. Initial conditions are 
Z
q
0,sb = Z

q
0,i = Z

q
0,eb = 0 , Zq

0,e = 1 . To avoid overflow in 
estimating Zq

|Vq | and speed it up, we estimate log(Zq
|Vq |) 

by expressing it in terms of log of the sum of exponentials 
and forward and backward variables (α , β ) similar to Hid-
den Markov Model [21].

Estimating a sparse set of good histone effect parameters
We would like to augment objective function (2) so that 
we select a sparse subset of markers from the data and 
avoid overfitting. If the coefficients wb

m = 0 , then there 
is no influence of marker m. For this purpose, we will 
impose grouped lasso type of regularization on the coef-
ficients wmk . Grouped lasso regularization has the ten-
dency to select a small number of groups of non-zero 
coefficients but push other groups of coefficients to be 
zero.

We introduce two types of regularization. First, we 
require that many of the weights be 0 using an L2-norm 
regularization term. Second, we want the effect functions 
{f } to be smooth. Let P = {b, i, e} . We modify our objec-
tive to trade off between these goals:

where �1 , �2 are the regularization parameters, and R(f pm) 
is the smoothing function for effect of marker m at p ∈ P:

(5)Z
q
v,x =

∑

y∈Y

Z
q
v−1,yTy,x exp

Ex
vq

(6)

argmin
W

−
∑

q

log
(
P(Dq|W ,Hq)

)

+

Regularization
︷ ︸︸ ︷

�1

∑

p∈P

(
∑

m∈M

∣
∣
∣
∣w

p

m

∣
∣
∣
∣

)2

+ �2

∑

p∈P

∑

m∈M

R(f pm)

Group lasso in  (6) uses the square of block l1-norm 
instead of l2-norm group lasso which does not change 
the regularization properties [23]. Objective function (6) 
is convex which follows from the convexity of R(f pm) as 
proven in Theorem 1.

Theorem 1  R(f
p
m) is a convex function of wp

m.

Proof  Second-order derivative in  (7) can be written 
more explicitly as in (8) according to [24]:

which turns R(f pm) into (9):

where ep = max(0, 2− A+ p) , Ti−q
j−r (x) is defined below 

and β(i + j − q − r + 1, 2A− 3− i − j + q + r) is the 
beta function:

R(f
p
m) is quadratic function of wp

m . Its convexity follows 
from semidefiniteness of the resulting polynomial. � �

We note that (6) is convex, but it is a nonsmooth optimi-
zation problem because of the regularizer. We solve it effi-
ciently by using an iterative algorithm from multiple kernel 
learning [23]. By Cauchy-Schwarz inequality:

(7)
R(f pm) =

∫

x

(

∂2f
p
m(x,w

p
m)

∂x2

)2

dx

(8)

∂2f
p
m(x,w

p
m)

∂x2
= A(A− 1)

A−2∑

i=0

(wp
m[i + 2] − 2wp

m[i + 1]

+ wp
m[i])

(
A− 2

i

)

xi(1− x)A−2−i

(9)

� 1

0

�

∂2f
p
m(x)

∂x2

�2

dx = A2(A− 1)2
A�

i=0

A�

j=i

(wp
m[i]w

p
m[j])





min(i,2)
�

q=ei

min(j,2)
�

r=ej

(−1)q+r

�
2

q

��
2

r

�

T
i−q
j−r (x)





(10)

T
i−q
j−r (x) =

(
A− 2

i − q

)(
A− 2

j − r

)

∫ 1

0

xi−q(1− x)A−2−i+qxj−r(1− x)A−2−j+rdx
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β(i+j−q−r+1,2A−3−i−j+q+r)
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p∈P
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where γmp ≥ 0 , 
∑

m∈M γmp = 1, p ∈ P , and the equality 
in (11) holds when

This modification turns the objective into the following 
which is jointly convex in both wp

m and γmp:

We solve this by alternating between the optimization 
of wp

m and γmp . When we fix γmp , we can find the opti-
mal wp

m by any quasi-newton solver such as L-BFGS [25] 
which runs faster than the other solvers such as iterative 
scaling or conjugate gradient. When we fixed wp

m , we 
can obtain the best γmp by the closed form equation (12). 
Both steps iterate until convergence.

Training extensions
We can model a variety of shape-restricted effect func-
tions by Bernstein polynomials that cannot be easily 
achieved by other nonparametric approaches such as 
smoothing splines [24]. We add the following constraints 
to ensure monotonicity:

which is a realistic assumption since increasing the 
marker density should not decrease its effect. We can 
also ensure concavity of the effect function by:

which has a natural diminishing returns property: the 
increase in the value of the effect function generated by 
an increase in the marker density is smaller when output 
is large than when it is small. Our problem is different 
than smoothing splines since our loss function is more 
complicated than traditional spline loss functions due to 
partition function estimation in (5) which makes it hard 
to directly apply the smoothing spline methods [26]. In 
addition, these nonnegativity and other shape constraints 
can be naturally enforced in our method.

We can also extend the problem to modeling multi-
ple domain subclasses instead of a single class where 

(12)γmp =

∣
∣
∣
∣w

p
m

∣
∣
∣
∣

∑

m∈M

∣
∣
∣
∣w

p
m

∣
∣
∣
∣
, p ∈ P

(13)

argmin
W

−
∑

q

log
(
P(Dq|W ,Hq)

)

+
∑

p∈P

∑

m∈M

(

�1

∣
∣
∣
∣w

p
m

∣
∣
∣
∣
2

γmp
+ �2R(f

p
m)

)

(14)s.t.
∑

m∈M

γmp = 1.0, p ∈ P

(15)γmp ≥ 0, m ∈ M, p ∈ P

(16)wb
m[i] ≤ wb

m[i + 1], i = 0, . . . ,A− 1

(17)
wb
m[i − 1] − 2wb

m[i] + wb
m[i + 1] ≤ 0, i = 1, . . . ,A− 1

domains are categorized into subclasses according to 
their gene-expression profiles such as TADs with highly-
active genes, TADs with repressive genes, etc.

Inferring domains using the trained model
Given marker data H over a single track and W, the infer-
ence log-likelihood is:

where D = {[s, e] | s, e ∈ V , e − s ≥ 1} is the set 
of all potential domains of length at least 2 and 
rse = Eb

s + Eb
e +

∑e−1
v=s+1 E

i
v . The intuition is that vari-

able xse = 1 when the solution contains interval [s,  e], 
and variable yv = 1 if v is not assigned to any domain. 
The log(Z|V |) term is removed during inference since it is 
same for all D. We solve (19)–(20) to find the best parti-
tion D:

where M[v] is the set of intervals that span fragment v. 
We replace yv in  (18) with 1−

∑

[s,e]∈M[v] xse since each 
segment can be assigned to at most a single domain. (20) 
ensures that inferred domains do not overlap. Problem 
(19)–(20) is Maximum Weight Independent Set in inter-
val graph defined over domains which can be solved opti-
mally by dynamic programming in O(|V |2) time.

Results
Experimental setup
We binned ChIP-Seq histone modification and DNase-
seq data at 40 kb resolution, estimate RPKM (Reads Per 
Kilobase per Million) measure for each bin, and trans-
form values x in each bin by log(x + 1) , which reduces 
the distorting effects of high values. In the case of 2 or 
more replicates, the RPKM-level for each bin is aver-
aged to get a single histone modification file, in order to 
minimize batch-related differences. We convert any data 
mapped to hg19 (mm8) to hg18 (mm9) using UCSC lift-
Over tool. We define TADs over human IMR90, human 
embryonic stem (ES), and mouse ES cells Hi-C data [8] at 
40 kb resolution after normalization by [27]. We use con-
sensus domains from Armatus [28] as the true TAD par-
tition by selecting threshold γ where maximum Armatus 
domain size is closest to the maximum Dixon et  al. [8] 

(18)

argmax
D

log (P(D|W ,H)) =
∑

d=[s,e]∈D

rsexse +
∑

v∈V

Ee
vyv

(19)

argmax
D

�

d=[s,e]∈D

rsexse +
�

v∈V

Ee
v



1−
�

[s,e]∈M[v]

xse





(20)
s.t. xse + xs′e′ ≤ 1 ∀ domains [s, e], [s′, e′] that overlap
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domain size ( γ = 0.5 for IMR90, γ = 0.6 for human ES, 
and γ = 0.2 for mouse ES cells).

We solved the training optimization problem by 
L-BFGS [25]. We use the public implementation of 
Armatus [28], and obtain histone modifications from 
NIH Roadmap Epigenomics [29] and UCSC Encode [30]. 
Code and datasets can be found at http://www.cs.cmu.
edu/~cking​sf/resea​rch/ntdp. nTDP is reasonably fast: we 
train on all human IMR90 chromosomes in less than 3 h 
on a MacBook Pro with 2.5Ghz processor and 8Gb Ram. 
The iterative procedure in general converges in fewer 
than 10 iterations.

We prevent overfitting by following a two-step nested 
cross-validation which has inner and outer steps. The 
outer K-fold cross-validation, for example, trains on all 
autosomal human chromosomes except the one to be 
predicted. Within each loop of outer cross-validation, we 
perform (K − 1)-fold inner cross-validation to estimate 
the regularization parameters.

nTDP finds a small subset of modifications predictive 
of TADs
We identified a minimal set of histone marks that can 
model TADs as follows: we run nTDP independently on 
each chromosome of human IMR90 to obtain 21 sets of 
marks. These sets overlap significantly across all chromo-
some pairs (hypergeometric p < 0.05 for all pair-wise 
comparisons), and a total of 16 modifications cover all 
chromosomes. Despite the regularization, the weights 
of several of these marks are still very close to 0, so we 
identify a non-redundant subset of the modifications by 
Bayesian information criterion (BIC) [21] which penal-
izes model complexity more strongly.

As we increase the number of included modifications 
from 1 to 16, the BIC decrease nearly stops after 4 modi-
fications, with some additional small reduction up to 6 
modifications. The sets of 4 and 6 modifications that were 
most informative are: {H3K36me3, H3K4me1, H3K4me3, 
H3K9me3} and {H3K4me3, H3K79me2, H3K27ac, 
H3K9me3, H3K36me3, H4K20me1}. These non-redun-
dant set of elements are preserved when we repeat this 
procedure between species. We find that only these 4–6 
modifications are needed to accurately predict TADs.

These marks are common in good models
The 4 modifications {H3K36me3, H3K4me1, 
H3K4me3, H3K9me3} are also enriched among a col-
lection of high quality training solutions. We measure 
the agreement between estimated and true partitions 
by normalized variation of information NVI = VI

log |V |
 

[31] where VI measures the similarity between two 
partitions and lower score means better performance. 
We analyze the fraction of models with 4 histone 

modifications for which NVI score is at least 95% of 
optimum NVI score obtained by running nTDP over 
all modifications as in Fig.  1. We find 161, 139 solu-
tions satisfying this criteria among 1820 candidates for 
human IMR90 and human ES histone modifications 
respectively. We find the 4 histone modifications above 
to be significantly overrepresented in the set of models 
for both human IMR90 and ES cells (hypergeometric 
p < 0.0001 ). As a boundary case, restricting the effect 
function to be a linear function of model parameters in 
human IMR90 cells does not significantly change the 
results as in Fig. 2. In another species, mouse ES cells, 
these 4 histone modifications are also the most 
informative predictors of TADs as in Fig. 3. These sig-
nificance values combined with the results above sug-
gest the importance of the identified modifications in 
TADs.

These marks have nearly optimal coherence score
We assess the performance of various subset of modifica-
tions by the coherence score which is the exponential of 
the negative mean log-likelihood of each chromosome on 
the test set, and it is normalized by the best model coher-
ence score as in Table 1. As such it is a relative measure 
of the quality of various models. The coherence score 
using only the set {H3K36me3, H3K4me1, H3K4me3, 
H3K9me3} is almost as high as the score for all 28 histone 
modifications in human IMR90. Restricting the effect 
function shape to be nonnegative and concave slightly 
improves the score. Similar ordering of models according 
to coherence scores is also observed in human ES cells 
as in Table  2. Our analysis indicates that the remaining 
modifications carry either redundant information or are 
less important for TADs.

Predicting TADs from histone marks in human
nTDP is able to predict domain boundaries accurately 
using 4 histone marks alone in both human IMR90 and 
human ES cells. We compare TAD prediction perfor-
mance of nTDP with the chromatin state partition pre-
dicted by Segway [16] in terms of NVI. Even though 
Segway does not predict TADs directly, its chroma-
tin state partition can still be used as a baseline. Train-
ing with all 28 histone modifications instead of with 
the identified 4 modifications does not lead to a major 
performance increase as shown in Fig.  4a even though 
it increases the training time approximately 4 times for 
human IMR90 cells. Restricting the effect function to be 
monotonic and concave only slightly increases the per-
formance. Chromatin states inferred by Segway do not 
directly correspond to TADs which leads to a lower TAD 
prediction performance even though they have other 
meaningful interpretations.

http://www.cs.cmu.edu/%7eckingsf/research/ntdp
http://www.cs.cmu.edu/%7eckingsf/research/ntdp
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Fig. 1  Fraction of histone modifications appearing in a best scoring four-modification model in a human IMR90, b human ES. Best scoring is 
defined as reaching at least 95% of NVI score of the model with all modifications
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Fig. 2  Fraction of histone modifications appearing in a best scoring four-modification parametric model in human IMR90. Best scoring is defined 
similar to Fig. 1

Fig. 3  Fraction of histone modifications appearing in a best scoring four-modification model in mouse ES. Best scoring is defined similar to Fig. 1
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We find combinatorial effects of histone modifications 
to be important for accurate domain prediction since 
none of the modifications can achieve NVI score better 
than 0.2 when considered independently. To verify that 
there are not inherent structures in the data that can lead 
to an easy prediction, we randomly shuffle domains in 
the training set by preserving their lengths without shuf-
fling modifications, which NVI score is never better than 
0.3 in all chromosomes showing the importance of his-
tone modification distributions in TADs.

nTDP also predicts TADs accurately across different 
species as well as across different cell types as in Fig. 4b–
d. For example, if we train on human IMR90 data, the 
model we obtain is still able to recover domains in human 
ES cells (Fig. 4b). Using the identified 4 histone modifi-
cations achieves NVI score of 0.13 in human ES whereas 
using all modifications achieves slightly lower 0.11 on 
average. This performance difference is not significant 
except chromosomes 7 and 21 in human ES. This holds 
true across species as well: training on human ES data, 
for example, produces a model that can work well on 
mouse ES data. Accurate prediction of TADs by train-
ing with the identified 4 histone modifications across 

different species and cell types suggests the consistency 
of the identified modifications across species and cell 
types.

Multiscale analysis of the predicted TADs
We find that our predicted TADs match true TADs more 
accurately at different scales defined by different Armatus 
γ ’s as in Fig. 5. We observe a slight performance improve-
ment if we define true TAD partition at lower Armatus 
γ values in human IMR90 which correspond to longer 
TADs. This figure suggests that some of our wrong TAD 
predictions may actually correspond to longer TAD 
blocks which we erroneously interpret as incorrect due to 
a scale mismatch.

Conclusion
We formulate semi-nonparametric modeling of TADs 
in terms of histone modifications, and propose an effi-
cient provably optimal solution nTDP for training and 
inference. Experimental results on human and mouse 
cells show that a common subset of histone modifica-
tions can accurately predict TADs across cell types 
and species. Via our trained model, we also accurately 

Table 1  Normalized coherence scores of various marker subsets in human IMR90 cells

Allowed modifications (human IMR90 to IMR90) Coherence score
(Normalized)

28 histone modifications + Concave + Nonnegative 1.00

28 histone modifications + Concave 0.99

28 histone modifications 0.97

H3K4me3, H3K79me2, H3K27ac, H3K9me3, H3K36me3, H4K20me1 0.94

H3K36me3, H3K4me1, H3K4me3, H3K9me3 + Concave + Nonnegative 0.94

H3K36me3, H3K4me1, H3K4me3, H3K9me3 + Concave 0.93

H3K36me3, H3K4me1, H3K4me3, H3K9me3 0.92

Table 2  Normalized coherence scores of various marker subsets in human ES cells

Allowed modifications (human ES to ES) Coherence score
(Normalized)

28 histone modifications + Concave + Nonnegative 1.00

28 histone modifications + Concave 0.96

28 histone modifications 0.97

H3K4me3, H3K79me2, H3K27ac, H3K9me3, H3K36me3, H4K20me1 0.91

H3K36me3, H3K4me1, H3K4me3, H3K9me3 + Concave + Nonnegative 0.90

H3K36me3, H3K4me1, H3K4me3, H3K9me3 + Concave 0.88

H3K36me3, H3K4me1, H3K4me3, H3K9me3 0.91
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predict TADs without using any Hi-C data which is 
especially useful for understanding the 3D genome con-
formation on species with limited Hi-C data. We expect 

our method to become increasingly useful with faster 
accumulation of epigenomic datasets than Hi-C inter-
action data. Additionally, some of our mispredictions 
may actually correspond to TADs at different scales 
suggesting a possibility of better inference performance 
than presented here.
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