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Abstract 

We introduce a new dissimilarity measure between a pair of “clonal trees”, each representing the progression and 
mutational heterogeneity of a tumor sample, constructed by the use of single cell or bulk high throughput sequenc-
ing data. In a clonal tree, each vertex represents a specific tumor clone, and is labeled with one or more mutations in 
a way that each mutation is assigned to the oldest clone that harbors it. Given two clonal trees, our multi-labeled tree 
dissimilarity (MLTD) measure is defined as the minimum number of mutation/label deletions, (empty) leaf deletions, 
and vertex (clonal) expansions, applied in any order, to convert each of the two trees to the maximum common 
tree. We show that the MLTD measure can be computed efficiently in polynomial time and it captures the similarity 
between trees of different clonal granularity well.
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Introduction
According to the clonal theory of cancer evolution [1], 
cancer originates from a single cell which had acquired 
a set of mutations that provide it proliferative advantage 
compared to the neighboring healthy cells. As tumor 
grows, cancer cells acquire new mutations and some of 
them might accumulate a set of mutations conferring fur-
ther selective advantage or disadvantage compared to the 
other cells. This continues over a period of time and at 
the time of the clinical diagnosis, tumors are usually het-
erogeneous consisting of multiple cellular populations, 
harboring distinct sets of mutations, leading to different 
phenotypes. Each such cellular population is considered 
to be a clone.

The whole process of tumor initiation and growth is 
illustrated in Fig. 1 (left panel).

One of the most widely used ways of depicting muta-
tional heterogeneity and tumor progression over time 
is by the use of a clonal tree of tumor evolution. Here, 
each individual vertex represents a distinct clone and 
each mutation (i.e. its label) is placed as part of the 
label of clone where it occurs for the first time in evolu-
tionary history. In this work we focus on trees built by 
the use of single nucleotide variants (SNVs), which rep-
resent the most widely used type of mutations in recon-
structing trees of tumor evolution [2]. We also assume 
that each SNV occurs exactly once during the course 
of tumor evolution and never gets lost (infinite sites 
assumption, usually abbreviated as ISA). Some recently 
introduced methods (e.g. SiFit [3]) allow for the viola-
tions of ISA and, in such cases, we expect that labels 
corresponding to mutations violating ISA are removed 
from the trees prior to dissimilarity calculation. In 
order to simplify our figures, in each figure in this work 
we omit the vertex representing population of healthy 
cells. Namely, such vertex would be non-informative 
as it would always be label-free (since healthy cells are 
assumed to contain none of the mutations relevant to 
cancer progression) and attached as the parent of root 
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vertex in each of the figures presented in this work. See 
Fig.  1 for an illustration of tumor growth (left panel) 
and the corresponding clonal tree of tumor evolution 
(right panel). Note that the children of a vertex in a 
clonal tree are unordered.

A popular alternative to the clonal tree is the mutation 
tree, a special case of the clonal tree, where the label of 
each vertex consists of exactly one mutation [4, 5]—thus 
a mutation tree is a clonal tree with the highest possible 
granularity. As can be expected, any clonal tree can be 
easily converted to the mutation tree as follows. Con-
sider an arbitrary edge (u, v) and assume without loss of 
generality (WLOG) that a set of all mutations assigned 
to it is {M1,M2, . . . ,Mk} . Now replace edge (u,  v) by a 
path with vertices {w0 = u,w1,w2, . . . ,wk−1,wk = v} 
and edges {(w0,w1), (w1,w2), . . . , (wk−1,wk)} , such that 
exactly one mutation, WLOG Mi , is assigned to the edge 
(wi−1,wi) for each i ∈ {1, 2, . . . , k} . Note that from a given 
clonal tree which is not mutation tree (i.e. contains at 
least one vertex with two or more labels), multiple differ-
ent mutation trees can be obtained. More precisely, from 
the above, it is obvious that any vertex with k mutations 
assigned to it can be expanded to a chain of k vertices, 
each having exactly one mutation as its label, in k! dif-
ferent ways. Consequently, considering the numbers of 
mutations assigned to vertices of the clonal tree T and 
taking the product of factorials of these numbers gives 
a formula for computing the exact number of different 
mutation trees that can be obtained from T.

There are additional tree representations [5] for tumor 
evolution but in this work we focus on clonal trees only.

(Dis)similarity measures between tree representations 
of tumor evolution
In the past few years, we have witnessed rapid develop-
ments in computational methods for inferring trees of 
tumor evolution from both bulk and single cell high 
throughput sequencing (HTS) data [4–15].

In order to assess the accuracy of the proposed method, 
many of these studies use simulated HTS data extracted 
from synthetic tumor compositions. The inferred tree is 
then compared against the (synthetic) ground truth. We 
will call the ground truth tree the true tree. Other stud-
ies, such as the Pan Cancer Analysis of Whole Genomes 
Project (PCAWG) compare trees inferred by participat-
ing methods on real tumor samples to reach a consen-
sus tree. In order to compare clonal trees with varying 
granularity (granularity can be measured in terms of 
the average number of mutations assigned to a clone) 
the measure(s) used should be versatile enough to dis-
criminate real topological differences between trees from 
those differences due to the type and coverage of the HTS 
data used by a method; e.g. such a “dissimilarity” measure 
should be equal to 0 between any clonal tree and its cor-
responding mutation tree (obtained using the procedure 
described above).

Unfortunately, comparing trees of tumor evolution is a 
challenging problem and available measures fail to fully 

Fig. 1  Graphical overview of tumor initiation and growth (left) and the corresponding clonal tree of tumor evolution (right). Sets of mutations 
providing proliferative advantage and driving the emergence of new clones are denoted as stars in the left and as sets of corresponding mutations 
in the right panel (e.g. red star from the left panel represents the set of mutations {M1,M2,M3} .) Vertex corresponding to the healthy cells is omitted 
as it would be non-informative
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capture (dis)similarities between inferred and true trees. 
Many of existing measures only aim to compare the rela-
tive placement of pairs of mutations across two trees, 
e.g. whether the two mutations maintain an ancestor–
descendant relationship in both trees (we discuss several 
of the existing measures in more detail in  "The existing 
measures and their limitations" section). Such measures 
can not capture topological differences between distinct 
trees, e.g. a simple topology with two vertices, where 
all but one of the mutations is assigned to the non-root 
vertex, v.s. a star topology where each vertex is assigned 
a single mutation. Thus measures of tree similarity that 
not only consider the relative placement of mutations 
but also the topological structure of the trees are of high 
demand.

The standard measure to compare combinatorial 
objects—such as strings, especially in bioinformatics, is 
the edit distance. This measure has numerous applica-
tions and a large number of variants, not only for strings 
but also for labeled trees, have been considered in the 
past. The classical Levenstein edit distance between 
two strings is defined as the minimum number of single 
symbol deletions on the two strings so that what remain 
from the strings are identical (in fact the longest common 
subsequence of the two strings). As such, it has a well 
established dynamic programming algorithm (e.g.  [16]). 
The running time of this algorithm is proportional to the 
product of the lengths of the two input strings and the 
existence of a sub-quadratic algorithm is unlikely  [17]. 
In general, the complexity of computing an edit distance 
strictly depends on the set of allowed edit operations. E.g. 
if we consider a variant of the problem where only single 
character mismatches and block reversals are allowed, 
then the running time reduces to O(n log2 n)  [18]—here 
n is the total length of the strings; on the other hand, the 
variant where only mismatches, block deletion and move 
operations are allowed is NP-hard  [19].

Extensions of edit distance measures for rooted trees 
have typically been defined for trees with ordered verti-
ces, each with a single label, where the goal is to trans-
form one tree to the other by the use of vertex deletions 
(or, equivalently, vertex insertions) and vertex label 
replacements  [20]. Based on such tree edit distance 
measures, a notion of tree alignment has also been intro-
duced, both for vertex ordered as well as unordered 
trees [21]. For many of the vertex ordered cases, there are 
polynomial time algorithms that can solve the distance/
alignment problem  [20–29], whereas for several unor-
dered cases, the both the alignment and the correspond-
ing tree edit distance problems are NP-hard  [30, 31] or 
MAX SNP-hard [21, 32].

Motivated by the Levenshtein edit distance between 
strings, edit distances for trees with unordered vertices 

are defined in relation to the largest common subtree [32] 
between the input trees: here the goal is to perform the 
minimum number of label deletions (and eliminate the 
resulting empty nodes) from the two input trees so that 
the remaining subtrees are identical. The notion of the 
largest common subtree of two trees and the implied edit 
distance can be generalized to clonal (multi-label) trees. 
Unfortunately, just like other edit distances for unordered 
trees [33], this distance would be NP-hard (in fact MAX 
SNP-hard) to compute. Moreover, none of the results 
in the literature deal with trees where vertices may have 
more than a single (mutational) label—as is the case for 
the clonal tree comparison problem.

In this paper we consider a restricted version of the 
above notion of tree edit distance by allowing label (and 
implied node) deletions for leaves. This notion of dis-
tance can naturally be generalized to multi-labeled trees 
and the resulting “dissimilarity” measure (multi-labeled 
tree dissimilarity, MLTD) can be computed in polyno-
mial time. More importantly, it successfully captures the 
differences between clonal trees: for example it satisfies a 
key condition that two clonal trees from which it is pos-
sible to produce two identical mutation trees have a dis-
similarity of 0.

Multi-labeled tree dissimilarity is the first polynomial 
time computable dissimilarity measure for vertex unor-
dered trees.1 We have devised and implemented an algo-
rithm to compute MLTD and applied it to a number of 
synthetic and real data sets to compare trees inferred by 
some of the available tumor history reconstruction meth-
ods with success.

Definitions
While this work is motivated and currently has the main 
application in the comparison of clonal trees of tumor 
evolution, possible novel applications may arise in the 
future. In order to minimize the background knowledge 
of cancer evolution and related terminology required to 
follow description of the presented algorithms, in this 
section we first provide formal definition of multi-labeled 
tree and use this term throughout the sections contain-
ing algorithms description ("Definitions", "Set align-
ment problem" and   "Computing a maximum common 
tree in2 the general case" sections). Second, we describe 
how the dissimilarity measure between two arbitrary 
multi-labeled trees is computed. Finally, for the readers 

1  Given two input trees, the size of their largest common tree (with the 
restriction that only leaf labels can be deleted) can be used as a similarity 
measure. This similarity measure is akin to set intersection and MLTD, as its 
dual, is akin to the symmetric difference between sets. As per symmetric dif-
ference between sets, MLTD does not satisfy the triangle inequality and thus 
does not form a “metric”.
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interested in the presented practical application, we also 
provide motivation for the introduced multi-labeled tree 
and edit operations.

Multi‑labeled tree
A rooted tree T = (V ,E) is a connected, acyclic, undi-
rected graph with set of vertices V (also denoted as V(T)) 
and edges E (also denoted as E(T)), with a particular ver-
tex r identified as the root. For each non-root vertex v, 
any vertex u that lies on the simple path between v and 
the root is considered to be its ancestor; in particular, 
the vertex u = p(v) on this path which has an edge to v is 
considered to be its parent. The depth of vertex v denoted 
d(v), is thus defined as the number of its ancestors. The 
lowest common ancestor of any pair of vertices u and 
v, denoted lca(u, v) , is defined as a common ancestor 
of both u and v whose depth is maximum possible. The 
structure of a tree induces partial order � on its vertices: 
u � v denotes that u is an ancestor of v.

Multi-labeled tree T is a rooted tree in which each 
vertex v other than root has a subset Lv of labels from 
a universe L and each label is unique to a vertex, i.e. 
Lu ∩ Lv = ∅ for each pair of distinct vertices u and v. We 
denote the set of all labels assigned to the vertices of T as 
L(T). In other words, L(T ) =

⋃

v∈V (T ) Lv.

MLTD measure between two multi‑labeled trees
Consider the following types of edit operations on multi-
labeled tree:

•	 deleting a label where one of the labels is removed 
from some set Lv,

•	 deleting an unlabeled leaf where a vertex is removed 
from the tree. This operation is allowed to be per-
formed only for unlabeled leaves, i.e. vertices with no 
labels and no children,

•	 expanding a vertex where vertex v is replaced by two 
vertices v1 and v2 such that all children of v after this 
operation are children of v2 , and the parent of v is the 
parent of v1 , and v1 is the parent of v2 . Each of the 
labels from Lv is assigned to exactly one of the Lv1 and 
Lv2.

A Common tree of arbitrary multi-labeled trees T1 and 
T2 is any multi-labeled tree which can be obtained from 
each of T1 and T2 by the use of edit operations defined 
above. A maximum common tree of T1 and T2 is a com-
mon tree of T1 and T2 having the largest number of labels 
among all common trees of T1 and T2 . We define MLTD 
measure between T1 and T2 as the difference between the 
total number of labels in T1 and T2 and twice the number 
of labels in their maximum common tree. In other words, 
MLTD is defined as the total number of labels required to 

be removed from the two trees in the process of obtain-
ing their maximum common tree.2 For two trees given as 
an input, finding their maximum common tree obviously 
suffices to compute MLTD and will therefore be the main 
focus of our algorithms described below.

As mentioned earlier MLTD defined above is not a 
metric since it is akin to the “inverse set intersection” and 
thus does not satisfy the triangle inequality. For example, 
given L = {A,B} and the following trees: (i) tree T1 con-
sisting of two vertices, labeled by A (root vertex) and B 
(non-root vertex) (ii) tree T2 consisting of two vertices, 
labeled by B (root vertex) and A (non-root vertex) and 
(iii) a single vertex tree T3 where vertex label consists of 
both, A and B, MLTD between T1 and T3 , as well as T2 and 
T3 , equals 0, whereas MLTD between T1 and T2 equals 2.

(Dis)similarity between multi‑labeled trees in the context 
of tumor evolution
Formal definition of multi-labeled tree presented above is 
motivated by the clonal tree of tumor evolution discussed 
in "Introduction" section. In a clonal tree, root vertex r 
represents population of healthy cells and each non-root 
vertex represents tumor clone. Universe L represents set 
of mutations detected in a given tumor and Lv denotes 
the set of mutations appearing for the first time at vertex 
(clone) v. The constraint Lu ∩ Lv = ∅ for each pair of dis-
tinct vertices u and v, ensures that each mutation appears 
at most once during the course of tumor evolution (this 
follows directly from the ISA).

The main difference between multi-labeled and clonal 
tree is that in the latter we have constraint that the set 
of labels assigned to the root vertex r is empty (since 
this vertex represents population of healthy cells which 
is assumed to be mutation-free) and Lv  = ∅ for each 
v ∈ V (T )\{r} . Namely, if v is non-root vertex such that 
Lv is empty then clone v would be, with respect to the 
set of mutations it harbors, identical to its parent which 
is atypical for clonal trees as it introduces unnecessary 
redundancy in representation of the process of tumor 
evolution. For the simplicity, in the figures of clonal 
trees presented in this work we do not show a root since 
its set of labels is empty hence such vertex would be 
non-informative.

Note that any multi-labeled tree can be converted to a 
unique clonal tree using the following steps: (i) merging 

2  Note that typically edit distance measures are based on symmetric edit 
operations, in a way that each operation is complemented by a reverse opera-
tion (e.g. deleting a label is the reverse of inserting the same label). In such 
cases, the edit distance is defined as the minimum number of operations 
required to transform one combinatorial object into another. Although it is 
possible to define our dissimilarity measure similarly (with label insertions 
complementing label deletions), we chose to present our dissimilarity measure 
by specifying deletions only for keeping the description compact.
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each of non-root vertices having empty set of labels with 
its parent and repeating this until each non-root vertex 
has non-empty set of labels and (ii) in the case that root 
of the tree obtained after the first step has non-empty set 
of labels, add a new vertex without any mutational labels 
and connect it to the root of the modified tree (so that it 
becomes new root). In the applications, we first consider 
each clonal tree as a mutation tree and, once a common 
tree is obtained, it is converted to a clonal tree using the 
two of these steps.

While the notion for the edit operation of label dele-
tion is intuitively clear as in general case one would be 
unable to obtain a common tree without allowing this 
or any similar operation which removes some labels, the 
edit operation of expanding a vertex at no cost is directly 
motivated by the existing different ways of representing 
clonal trees of tumor evolution. More precisely, we intro-
duce it in order to be able to capture differences between 
two clonal trees which are due to different levels of gran-
ularity in tree representation. An example of such trees is 
shown in Fig. 6 where tree of tumor evolution is shown 
in (a) and its more refined versions are shown in (c) and 
(d) (more detailed discussion of Fig. 6 is provided in "The 
existing measures and their limitations" section). Finally, 
the operation of deleting an unlabelled leaf is intro-
duced in order to allow obtaining common tree of trees 
having certain topological differences, mostly in terms 
of branching. For example, if we are given a linear and 
non-linear clonal tree as two input trees, they can not be 
reduced to a common tree using solely the label deletion 
and vertex expansion operations. Also, note that deletion 
of unlabeled leaf requires deletion of all of its labels prior 
to applying this edit operation which is usually costly. 
However, this is desired when computing a “dissimilarity” 
between clonal trees of tumor evolution since the place-
ment of mutations on vertices from different branches 
(i.e. to the clones from different lineages) in one clonal 
tree and to the vertices that in the ancestor–descendant 
relation (i.e. to the clones from the same lineage) in the 
second clonal tree represents fundamental dissimilarity 
between the two trees and needs to have an appropriate 
contribution to their “dissimilarity”.

Set alignment problem
We first demonstrate how maximum common tree is 
computed for a pair of trees where each tree is a path. 
Obviously in this case any common tree between the 
input trees is also a path. Let the ordered sequence 
of vertices of the first tree/path be v1, v2, . . . , vn with 
respective label sets S1, S2, . . . , Sn , and the ordered 
sequence of vertices of the second tree/path be 
w1,w2, . . . ,wm with respective label sets P1,P2, . . . ,Pm . 
(Assume that Si,Pj are subsets of L and that any label 

u ∈ L occurs exactly in one of S1, S2, . . . , Sn and exactly 
in one of P1,P2, . . . ,Pm .) Let f : L → {1, 2, . . . , n} and 
g : L → {1, 2, . . . ,m} be the functions that map labels to 
vertex indices, respectively in the first and the second 
tree such that vf (a) denotes the vertex of label a in the 
first tree and wg(a) denotes the vertex of the label a in 
the second tree.

It is easy to see that computing a maximum common 
tree in this special case is equivalent to the following 
generalized version of the string edit distance problem 
for a pair of ordered sets.

Set Alignment Problem
Instance: Two ordered set of labels: (S1, S2, . . . , Si)
and (P1, P2, . . . , Pj) where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Task: Find set A(i, j) ⊆ (
i
⋃

p=1
Sp)

⋂

(
j
⋃

q=1
Pq) of maxi-

mum size such that, for each pair (a, b) of labels from
A(i, j), the following holds: f(a) ≤ f(b) ⇐⇒ g(a) ≤
g(b).

The following lemma offers an efficient algorithm for 
solving the Set Alignment Problem. Our approach 
for computing dissimilarity between two arbitrary trees 
(presented in "Computing a maximum common tree 
in the general case" section) uses this algorithm as a 
subroutine.

Lemma 1  Let D(i, j) be the size of the set which 
is answer of the Set Alignment Problem for the 
instance where input sequences are (S1, . . . , Si) and 
(P1, . . . ,Pj) (i.e. according to the notation from the above 
D(i, j) =

∣

∣A(i, j)
∣

∣ ). Then the following hold:

•	 D(i, 0) = D(0, j) = 0 , for all non-negative integers i 
and j.

•	 D(i, j) = max
(

D(i, j − 1), D(i − 1, j)
)

+ |Si ∩ Pj| , for 
all positive integers i and j.

Proof  The first equation easily follows from the fact that 
A(i, 0) ⊆ ∅ and A(0, j) ⊆ ∅.

For the second equation, we first prove that 
D(i, j) ≥ max(D(i, j − 1), D(i − 1, j))+ |Si ∩ Pj| . In order 
to prove this, observe that each of A(i, j − 1) ∪ (Si ∩ Pj) 
and A(i − 1, j) ∪ (Si ∩ Pj) represent a valid candidate 
solution for the instance of Set Alignment Problem 
with the input sequences (S1, . . . , Si) and (P1, . . . ,Pj) . 
Namely, in the case of set A(i, j − 1) ∪ (Si ∩ Pj) (analo-
gous applies to the set A(i − 1, j) ∪ (Si ∩ Pj) ), if we con-
sider two arbitrary labels a and b of this set, then:
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•	 If a ∈ A(i, j − 1) and b ∈ A(i, j − 1) then 
f (a) ≤ f (b) ⇐⇒ g(a) ≤ g(b) holds by the defini-
tion of A(i, j − 1).

•	 If a ∈ A(i, j − 1) and b ∈ Si ∩ Pj then f (a) ≤ i and 
g(a) ≤ j − 1 . On the other hand, f (b) = i and 
g(b) = j hence f (a) ≤ f (b) ⇐⇒ g(a) ≤ g(b) is 
obviously satisfied.

•	 Case where a ∈ Si ∩ Pj and b ∈ A(i, j − 1) is analo-
gous to the previous case.

•	 Case where both a and b are from Si ∩ Pj is trivial since 
in this case f (a) = f (b) = i and g(a) = g(b) = j 
implying that f (a) ≤ f (b) ⇐⇒ g(a) ≤ g(b) holds 
in this case as well.

Now it suffices to prove that D(i, j) ≤ max(D(i, j − 1),

D(i − 1, j))+ |Si ∩ Pj| . In order to prove this, con-
sider the partition of A(i,  j) into A(i, j)\(Si ∩ Pj) and 
Si ∩ Pj . We claim that at most one of the sets Si and Pj 
has non-empty intersection with the set A(i, j)\(Si ∩ Pj) . 
To prove this, assume on contrary that there exists 
a ∈ Si ∩

(

A(i, j)\(Si ∩ Pj)
)

 and b ∈ Pj ∩
(

A(i, j)\(Si ∩ Pj)
)

 . 
Since a ∈ Si we have f (a) = i . For b we have that 
b ∈ A(i, j) and b /∈ Si implying that f (b) ≤ i − 1 . Simi-
larly, g(a) ≤ j − 1 and g(b) = j . By the above assump-
tion, both a and b belong to A(i,  j) but obviously they 
violate constraint f (a) ≤ f (b) ⇐⇒ g(a) ≤ g(b) 
which is, by definition of A(i,  j) satisfied for all of 
its labels. This contradiction directly implies our 
latest claim. To finalize the proof of inequality  
D(i, j) ≤ max(D(i, j − 1), D(i − 1, j))+ |Si ∩ Pj| assume 
WLOG that the intersection of Si and A(i, j)\(Si ∩ Pj) is 
the empty set. This implies that A(i, j) does not contain any  
label from Si\(Si ∩ Pj) . Therefore D(i, j) ≤ D(i − 1, j)+
∣

∣Si ∩ Pj
∣

∣ ≤ max(D(i, j − 1), D(i − 1, j))+ |Si ∩ Pj| which 
completes our proof. � �

Lemma  1 provides a dynamic programming formu-
lation for calculating “dissimilarity” D(n,  m) between 
trees T1 and T2.

Observation 1  Total time and total space 
required for calculating number of labels in each of 
the sets Si ∩ Pj , where i ∈ [n] and j ∈ [m] are both 
O(

∑n
i=1 |Si| +

∑m
j=1 |Pj| + nm).

Proof  For each label from u ∈ L we can store two indi-
ces f(u) and g(u). This can be implemented in the above 
time and space by using a hash table. If we know these 
indices, we can fill the table Iij , where Iij = |Si ∩ Pj| , by 
iterating through elements of L and increasing the value 
of If (x)g(x) by one for each x ∈ L . � �

Lemma 2  The Set Alignment Problem  is solvable in 
O
(

∑n
i=1 |Si| +

∑m
j=1 |Pj| + nm

)

 time and space.

Proof  Follows straightforwardly from Lemma  1 and 
Observation 1. � �

Computing a maximum common tree 
in the general case
We now describe an efficient algorithm for computing a 
maximum common tree. Note that in the remainder of 
the paper we call all vertices in a tree with exactly one 
child as non-crucial vertices and all other vertices, i.e. 
leaves, and vertices with two or more children, as cru-
cial vertices. Now consider the sequence of edit opera-
tions applied to a tree T1 in the process to reaching a 
common tree T with another tree T2.

Observation 2  Each edit operation applied to any ver-
tex creates at most one (new) crucial vertex; no edit opera-
tion can increase the total number of crucial vertices.

Proof  The proof is based on analyzing the effect that 
application of a given edit operation might have on the 
set of crucial vertices.

•	 The edit operation of deleting a label does not 
change the topology of the tree or the set of crucial 
vertices in the tree.

•	 The edit operation of deleting a leaf u does change 
the topology of a tree, but with respect to the set 
of crucial vertices, the only update is that u is 
lost, and, (i) provided that u was the only child of 
p(u), p(u) becomes crucial, or (ii) provided that u 
was one of the two children of p(u), p(u) becomes 
non-crucial, or (iii) provided that u was one of 
more than two children of p(u), p(u) stays crucial. 
All other vertices remain unaltered. See Fig. 2a for 
detailed examples.

•	 Finally, the edit operation of expanding, i.e., splitting 
a vertex v into v1 and v2 does change the topology of 
the tree (i) but it does not create a new crucial vertex 
if v is non-crucial; however, (ii) if a vertex v is crucial, 
then v2 becomes crucial after the edit operation, but 
v1 stays non-crucial. See Fig. 2b for examples.

In summary, after an arbitrary edit operation, at most 
one new vertex is added to the set of crucial vertices. 
However, in the case that new crucial vertex is added, 
at least one of such vertices is deleted implying that the 
total number of crucial vertices never increases. � �

The observation above indicates that an edit opera-
tion applied to a crucial vertex u may create a new 
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crucial vertex v. In that case, we say that the crucial ver-
tex u in T1 corresponds to a crucial vertex v in T ′

1 (if lat-
ter was created). In case of an expansion of vertex u in 
T1 to two vertices u1 and u2 , we say that u corresponds 
to u2 in T ′

1 . In case of a deletion of a leaf u, if p(u) which 
was originally non-crucial, became crucial, then we say 
that u in T1 corresponds to p(u) in T ′

1 . For any vertex v 
which remains unedited and crucial in T ′

1 , we say that v 
in tree T1 corresponds to v in the tree T ′

1.
Finally, we say that v in T1 corresponds to v′ in T if for 

the sequence of trees T1 = T 0
1 ,T

1
1 , . . . ,T

l
1 = T  (where 

Ti+1
1  is obtained from Ti

1 by an edit operation) there 
exists the sequence of vertices v = v0, v1, . . . , vl = v 
(where vl ∈ V (Tl

1) ) such that vi corresponds to vi+1 for 
all i. We extend the notion of correspondence to T2 in a 
similar manner.

Thus we notice the following fact.

Observation 3  We can construct the correspondence 
between a subset of crucial vertices in T1 and T2 and cru-
cial vertices in the common tree. Such that each crucial 

vertex in the common tree corresponds to some vertex in 
T1 and T2.

Given trees T1 and T2 , their common tree T and the 
vertices in T1 and T2 that correspond to every crucial 
vertex in T, it is straightforward to establish the edit 
operations to transform T1 and T2 to T. The algorithm 
to compute T makes use of this observation.

Observation 4  Given two sets of crucial vertices 
u1, . . . ,ul and v1, . . . , vl in T1 and T2 respectively such that 
ui and vi correspond to same crucial vertex in the com-
mon tree T for each i, we can reconstruct a common tree 
T ′ such that the number of labels in T ′ is at least that in T.

Proof  Here we describe the procedure of reconstructing 
the tree T ′ in two steps (see Figs. 3 and 4 as illustrations).

In the first step we delete each label which cannot 
belong to T in a trivial manner: let S1 ( S2 ) be the set of 
vertices which do not lie on a path from the root of T1 
( T2 ) to some ui ( vi ). Then we delete all vertices from S1 

i)

ii)

iii)

p(u)

ua

p(u)

a

p(u)

ua b

p(u)

a b

p(u)

u

p(u)

ii)

v

a b

p

v1

v2

a b

p

i)

v

a

p

v1

v2

a

p

a b

Fig. 2  a It shows how the set crucial vertices from Observation 2 changes after deleting a leaf u. We use dashed lines to denote correspondence 
among u and a vertex in a tree obtained by an edit operation. Only in the case (i), when a u was an unique child of p(u), u corresponds to p(u) in a 
tree after deletion of u. In other cases u does not correspond to any vertex in a new tree. In the case (ii) a vertex p(u) lost the status of a crucial in 
a tree after deletion and also does not correspond to the copy of himself in a new tree. In the case (iii) the vertex p(u) keep the status of a crucial 
and vertex and corresponds to the copy of himself. It is easy to see that the status of other vertices still unchanged and all vertices except p(u) 
corresponds to copies of himself in a new tree. b The figure illustrate changing a tree after expanding a vertex v into v1 and v2 . We use dashed lines 
to denote correspondence between u in a tree before operation and a vertex in a new tree. In the case (i) v is non-crucial and both copies of v stays 
non-crucial. In the case (ii) a crucial vertex v corresponds to a crucial vertex v2
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(and S2 ) together with their labels. Note that no label 
which is present in tree T will be deleted: if a vertex v 
does not belong to a path from the root to some crucial 
vertex in T, then any label from Lv cannot be present in 
T. However, if any label in T that is in Lv for some vertex 
v which lies on a path from the root to a leaf w (which is 
necessarily crucial) then there must exist a pair of verti-
ces ui, vi which correspond to the leaf w.

Thus, starting from the leaf level, we can delete all ver-
tices which do not belong to a path from the root to any 
ui (and vi ). It is easy to see that this first step transforms 
T1 and T2 into isomorphic trees. Let ri denote the root of 
tree Ti ; the isomorphism φ on r1,u1, . . . ,ul which trans-
forms T1 into T2 is φ(r1) = r2,φ(u1) = v1, . . . ,φ(ul) = vl.

Let T ′
1 and T ′

2 denote the trees respectively produced 
from T1 and T2 after applying the first step. Notice that, T ′

1 
and T ′

2 are also topologically isomorphic to T and T ′.

In the second step, for each pair of vertices vi and ui we 
consider the pair of “maximum” paths from vi and ui to 
the associated root, which do not contain other vertices 
from v1, . . . , vl and u1, . . . ,ul . For this pair of paths we 
apply a sequence of edit operations that expand vertices 
and delete labels, such that the resulting paths will be 
identical with the maximum possible number of labels.
T ′ is the tree produced as a result of the second step. 

Note that on any pair of paths from the vertex pair ui and 
vi to the respective root, the set of labels observed will 
be identical. This implies that T ′ is a common tree with 
number of labels necessarily lower bounded by that of T. 
� �

The above observation implies that we can reduce 
the problem of computing a maximum common tree 
between two multi-labeled trees to the problem of find-
ing an optimal pair of sequences of vertices u1, . . . ,ul 
and v1, . . . , vl corresponding to the maximum common 
tree.

Our general algorithm for computing the “dissimilar-
ity” between two multi-labeled trees requires constant 
time access to the solutions to many instances of the Set 
Alignment Problem, which we compute in a preproc-
essing step.

Solving Set Alignment Problem   for all pairs of 
sequences u1, . . . ,ul and v1, . . . , vl is impractical. Fortu-
nately, special conditions with respect to the structure of 
these sequences help us develop an efficient algorithm for 
finding an optimal pair of sequences as explained below.

The algorithm for computing an optimal pair of 
sequences will need the solutions to Set Alignment 
Problem   for all possible downward paths; we call this 
auxiliary problem Pairwise Alignments on a Tree.

Given a pair of vertices u, v such that u � v , let the fol-
lowing sequence of sets of vertex labels be denoted as 
P(u, v) = (Lw1 , . . . , Lwk

) where w1(= u),w2, . . . ,wk(= v) 
is called the downward path between u and v. Then we 
can define Pairwise Alignments on a Tree   problem 
formally as follows.

Pairwise Alignments on a Tree
Instance: Two rooted unordered multi-labeled trees
T1 = (V1, E1) and T2 = (V2, T2) with associated sets
of labels for each vertex.
Task: For each 4-tuple (a, b, c, d) such that a, b ∈ V1,
c, d ∈ V2, a � b and c � d, compute and store the
answer for Set Alignment Problem on P(a, b),
P(c, d).

In the next lemma, we introduce equations for com-
puting Pairwise Alignments on a Tree  which forms 
the basis of our dynamic programming algorithm.

T1 T2

a

b c

ed

f

a′

b′c′

e′ d′

g′

k′

h′

i′ j′

T ′
1 T ′

2

a

b c

ed

a′

b′c′

e′ d′

g′

T̃1 T̃2
a

b

c

g

l

ed

a′

b′

c′

l′

e′ d′

g′

Fig. 3  Illustrates how to obtain a maximum common tree of trees 
T1 and T2 . We used dashed lines to denote pairs of vertices ui , vi from 
the proof of Observation 4. After the first step of proof we delete all 
vertices which do not belong to paths from roots to some crucial 
vertex and obtain from trees T1 and T2 trees T ′1 and T ′2 which are 
topologically isomorphic to each other. After applying the step two 
from proof we obtain by applying sequence of optimal operations to 
pairs of paths ((a), (a′)), ((c, g), (c′ , g′)), ((b), (b′)), ((d), (d′)), ((e), (e′)) 
from T ′1 and T ′2 trees T̃1 and T̃2 which are equal to each other and 
contain a maximum number of labels
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Lemma 3  Given a, b ∈ V (T1) ; c, d ∈ V (T2) ; a � b ; 
c � d , let D(a, c, b, d) be the solution for the instance 
P(a, b) , P(c, d) of Set Alignment Problem. Then

1.	 If a = b and c = d then D(a, c, b, d) = |Lb ∩ Ld |.
2.	 If a = b and c  = d then D(a, c, b, d) = D(a, c, b, p(d))

+|Lb ∩ Ld |.
3.	 If a  = b and c = d then D(a, c, b, d) = D(a, c, p(b), d)

+|Lb ∩ Ld |.
4.	 Otherwise D(a, c, b, d) = max(D(a, c, p(b), d), D(a, c,

b, p(d)))+ |Lb ∩ Ld |.

Proof  Each of the cases above holds true as a direct con-
sequence of Lemma 1. � �

Through a straightforward application of the above 
lemma, we obtain the following.

Lemma 4  If I1 and I2 denote the heights of T1 and T2 , 
respectively, Pairwise Alignments on a Tree is solva-
ble in O(|V1||V2|I1I2 + |L(T1)| + |L(T2)|) time and space.

Proof  The algorithm is a straightforward implemen-
tation of Observation  1 and Lemma  3. Namely, from 
Observation  1 it follows that the values of |La ∩ Lb| , 
for all a ∈ V1 and b ∈ V2 , can be computed by the 
use of algorithm having time and space complexity 
O(|V1||V2| + |L(T1)| + |L(T2)|) . After computing these 
values, all entries in D can be computed in the time and 
space that are proportional to the number of all pos-
sible combinations of a,  b,  c,  d, which is bounded by 
|V1||V2|I1I2 . Now, combining the above with the obvious 
inequality |V1||V2|I1I2 ≥ |V1||V2| , we have that the over-
all time and space complexity of the proposed algorithm 
is O(|V1||V2|I1I2 + |L(T1)| + |L(T2)|) . � �

T1 ∅

A, B

C D

G E, F

T2 ∅

B

A

C, D, E G F

T ′
1 ∅

A, B

C D

G E, F

T ′
2 ∅

B

A

C, D, E G

T̃1 = T̃2 ∅

B

A

∅

G

D

E

a b

c

Fig. 4  a T1 and T2 before applying the first step from Observation 4, b T ′1 and T ′2 obtained from T1 and T2 from  a after first step of deleting vertices 
which do not belong to paths between root and crucial vertices, c the resulting tree T̃1 = T̃2 after applying second step
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Given a common tree T for T1 and T2 , let 
M : V (T1) ∪ V (T2) → V (T1) ∪ V (T2) be the (partial) 
bijective mapping between those vertices v in T1 and w 
in T2 , which correspond to crucial vertices in T, such that 
M(v) = w and M(w) = v only if v and w have the same 
crucial vertex in T.

Observation 5  For any pair of vertices a, b ∈ V1 
(or V2 ) which correspond to a vertex in the common 
tree the lowest common ancestor of a and b, namely 
lca(a, b) , has a mapping, M(lca(a, b)) which is equal to 
lca(M(a),M(b)) . For any triplet of vertices a, b, c ∈ V1 
(or V2 ), the lowest common ancestor of a,  b is equal 
to the lowest common ancestor of b,  c if and only if 
lca(M(a),M(b)) = lca(M(b),M(c)).

Proof  The observation follows straightforwardly from 
the construction of correspondence. For that notice that 
the least common ancestor of vertices can correspond 
only the least common ancestor in the common tree 
because we may apply only operations of expanding for 
internal vertices. � �

We now present our algorithm for computing the size 
of a maximum common tree, which is a combination of 
dynamic programming and an algorithm for finding a 
maximum cost matching.

Theorem  1  The mapping which corresponds to a 
maximum common tree can be computed in time 
O(|V1||V2|(|V1| + |V2|) log(|V1| + |V2|)+ |V1||V2|I1I2+

|L(T1)| + |L(T2|).

Proof  For i ∈ {1, 2} and x ∈ Vi , let Ti(x) be the subtree 
of Ti rooted at vertex x and let T ′

i (x) be the multi-labeled 
tree that is identical to Ti(x) except that no labels are 
assigned to its root x. Let G(a, b) be the size of the max-
imum common tree of T1(a) and T2(b) . We now define 
for those vertices a ∈ V1, b ∈ V2 , such that M(a) = b , 
the function G′ : V1 × V2 → N as the size of the maxi-
mum common tree between subtrees T ′

1(a) and T ′
2(b) 

(more specifically the number of common labels between 
T ′
1(a) and T ′

2(b)—by definition excluding the labels of a 
and b themselves). Notice that G(a, b) is not necessarily 
equal to G′(a, b) , since (i) if a and b do not correspond 
to each other G′(a, b) is undefined, and (ii) La or Lb are 
not necessarily empty. Rather, as will be shown below, 
G(a, b) = max(x,y)∈V1(a)×V2(b)[G

′(x, y)+ D(a, b, x, y)] . The  
choice of vertices x and y corresponds to the choice of 

vertices which are mapped to each other and has the 
minimal depth among all such vertices in T1 and T2.

The key observation of our algorithm is that the com-
putation of G′(a, b) can be reduced to finding a maximum 
“cost” matching for an auxiliary graph. Let a1, . . . , an be 
the children of a, and b1, . . . , bm be the children of b. The 
structure conditions on mapping provide the guaran-
tee that all vertices which are leaves of downward paths 
from a without internal crucial vertices, lie in distinct 
subtrees. Using the Observation 5 this implies that each 
such vertex lies in distinct subtrees with roots a1, . . . , an 
and b1, . . . , bm .  We know inductively that G(ai, bj) =

maxc∈V (T1(ai)),d∈V (T2(bj))(G
′(c, d)+ D(ai, bj , c, d)).

Consider now all possible bijections N between equal 
sized subsets of {a1, . . . , an} and {b1, . . . , bm} . Then 
G′(a, b) = maxN

∑

(x,y)∈N G(x, y) . The problem of 
choosing an optimal N thus trivially reduces to the well 
known maximum weighted bipartite matching problem, 
which can be solved in a polynomial time [34]. For that 
we can construct a bipartite graph on the set of vertices 
a1, . . . , an and b1, . . . , bm with the cost of an edge (ai, bj) 
equal to G(ai, bj) and return the score of an optimal 
assignment in this graph (with n+m vertices and nm 
edges) as G′(a, b) . Note that if one or both of a or b are 
leaves then G′(a, b) = 0 . See Fig.  5 as an illustration of 
constructing graph Q. We provide an example of how our 
algorithm works in Appendix 2.

The time to construct auxiliary graphs is bounded 
by O(|V1||V2|I1I2) . The computational bottleneck of 
this algorithm is however the bipartite matching pro-
cedure: for a graph with n vertices and m edges it 
takes O(nm log n) time. Let na be the number of chil-
dren of any vertex a in T1 and nb the number of chil-
dren of any vertex b in T2 ; then the total time of our 
algorithm is O(

∑

a,b(na + nb)nanb log(na + nb)) 
which is O(|V1||V2|(|V1| + |V2|) log(|V1| + |V2|)) or 
O((|V1|

∑

b n
2
b + |V2|

∑

a n
2
a) log(|V1| + |V2|)) . The sec-

ond bound is significantly better if the maximum degree 
of a vertex is bounded by a small value. � �

Discussion and an application
The existing measures and their limitations
There are number of measures in the literature that are 
being used to compare clonal trees. Two of the most 
widely used measures include: (1) Ancestor–Descendant 
Accuracy (ADA), measure which considers only muta-
tions originating at vertices (clones) which are in ances-
tor–descendant relationship in the true tree and returns 
the fraction of pairs of such mutations for which the 
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relationship is preserved in the inferred tree. (2) Differ-
ent-Lineage Accuracy (DLA), defined analogously as 
ADA, where only pairs of mutations originating from 
different clones which are in neither ancestor–descend-
ant nor descendant–ancestor relationship are considered. 
In addition to these two measures, used in [10–12, 35] 
and elsewhere, (3) Clustering Accuracy (CA) [10] and 
(4) Co-Clustering Accuracy (CCA) [35] were also intro-
duced in order to measure the accuracy in the place-
ment of mutations originating from the same clone in 
true tree. CA measures the fraction of label pairs that are 
both co-located in the same vertex in both trees, whereas 
CCA measures the proximity in the inferred tree of pairs 
of mutations originating from the same clone in true 
tree (see [10] and [35] for definitions of CA and CCA). 
Finally, (5) Pair-wise Marker Shortest Path “dissimilarity” 
(PMSPD) [13] is (symmetric) “dissimilarity” measure cal-
culated as the sum, over all label pairs, of the absolute dif-
ference of path length between the two labels in true tree 
with the equivalent length calculated in the inferred tree.

All of the above mentioned are designed to compare 
inferred tree against the given true tree and no single 
measure can capture the overall similarity/difference 
between two arbitrary trees. Furthermore, for each of the 

measures there exist cases where it returns high similar-
ity for topologically very different true and inferred trees. 
We will illustrate this below by presenting several exam-
ples using trees from Fig. 6 where true tree and four trees 
inferred by (hypothetical) methods are shown. Each ver-
tex in any one of these trees have one or more labels (cor-
responding to mutations in clonal trees) represented by 
A,B,C , . . . , J .

For ADA measure, one needs to consider all pairs 
of labels in the true tree: {(A,B), (A,C), (A,D), (A,E),
(A, F), (A,G), (A,H), (A, I), (A, J )} . We see that ‘Inferred  
tree 1’ has the maximum score despite being topologi-
cally very different from ‘True tree’. The same tree can be 
used as an illustration for the limitations of DLA measure 
where the following set of label pairs need to be considered 
in true tree {(B,G), (B,H), (B, I), (B, J ), (C ,G), (C ,H),

(C , I), (C , J ), (D,G), (D,H), (D, I), (D, J ), (E,G), (E,H),

(E, I), (E, J ), (F ,G), (F ,H), (F , I), (F , J )} . Clustering of 
mutations in ‘Inferred tree 4’ is in the perfect agreement 
with the clustering in the ‘True tree’ hence both CA and 
CCA measures will return maximum score for this tree, 
even though it is also topologically very different from 
‘True tree’. Finally, the calculation of the PMSPD meas-
ure between the ‘True tree’ and ‘Inferred tree 1’, as well as 
‘Inferred tree 2’, is shown in Fig. 7. This measure assigns 
the same score to these two inferred trees, despite the 
fact that ‘Inferred tree 2’ is, from the perspective of inter-
preting tumor evolution, much closer to ‘True tree’.

Applications of MLTD
In order to facilitate the interpretation of results, 
for two arbitrary trees T1 and T2 , in addition to the 
MLTD similarity measure which returns the num-
ber of mutations in common tree of T1 and T2 and is 
denoted here as MLTD(T1,T2) , we also introduce 
MLTD-normalized(T1,T2) defined as MLTD(T1,T2)

max(a,b)  , where 
a and b denote number of mutations in T1 and T2 . MLTD-
normalized can be interpreted as similarity measure 
which takes values from [0, 1], with higher values denot-
ing higher similarity among trees. In the discussion of 
results below, all presented scores represent MLTD-
normalized similarity measure, although it is obviously 
equivalent to MLTD (assuming that the sets of vertex 
labels are known for both trees, which is true in all of our 
comparisons).

a

a1 a2

F1

T1(a)

F2

b

b1
b2

b3

T2(b)

H1 H2 H3

a1

a2

b1

b2

b3

c(F1, H1) = max
c∈F1,d∈H1

(D(a1, b1, c, d) +G(c, d))Q

Fig. 5  Trees T1(a) , T2(b) and a graph Q constructed for a subproblem 
G′(a, b) from Theorem 1
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Application to the synthetic examples with the available 
ground truth
In this section we discuss similarity between true and 
inferred trees shown in Fig. 6.

‘Inferred tree 1’ has relatively low score equal to 0.3 
which rewards the proper placement of mutation A and 

correctly inferred phylogenetic relations for pairs of 
mutations originating from different clones, but penal-
izes for extensive branching which leads to the inaccurate 
placement to different branches of mutations originating 
from the same clone, as well as to significant topological 
differences between this and true tree. In contrast, and 

 a True tree

b Inferred tree 1

c Inferred tree 2 d Inferred tree 3 e Inferred tree 4
Fig. 6  a True clonal tree depicting the evolution of hypothetical tumor. b–e Hypothetical trees inferred by methods for reconstructing history of 
tumor evolution (input data to these methods is assumed to be obtained from the hypothetical tumor mentioned in the description of ‘True tree’). 
These trees are used as examples which demonstrate limitations of the existing measures for calculating similarity/“dissimilarity” between true and 
each of the four inferred trees (details provided in "The existing measures and their limitations" section). In "Application to the synthetic examples 
with the 56available ground truth" section  we discuss the application of MLTD in calculating similarities between these pairs of trees
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a b c
Fig. 7  “Dissimilarities" between pairs of labels required for calculating Pair-wise Marker Shortest Path “dissimilarity” (PMSPD) for trees from Fig. 6. 
Entries in each matrix represent length of path between labels (note that labels are shown in the first row and the first column of each matrix). 
“Dissimilarity” is calculated as the sum of absolute values of differences between pairs of entries which are at the same position in both matrices. 
Red colored entries in labels pairwise “dissimilarity” matrix shown in b, c differ from the corresponding entries in matrix for true tree shown in a and 
therefore contribute to the overall “dissimilarity”. PMSPD assigns the same score to ‘Inferred tree 1’ and ‘Inferred tree 2’, despite the fact that ‘Inferred 
tree 2’ is, from the perspective of interpreting tumor evolution, much closer to ‘True tree’

a b

Fig. 8  Clonal trees of tumor evolution, inferred by SiFit and PhISCS, for triple-negative breast cancer (TNBC) dataset originally published in [37] 
and consisting of the binary presence/absence profile of 22 mutations across 16 single cells. Names of the clones are assumed not to be included 
as part of the vertex label. Trees are very similar to each other in placement of the vast majority of mutations: (i) Clone 1 in the SiFit tree is almost 
identical (with respect to the set of mutations assigned to its label) to Clone 1 in PhISCS tree (ii) Clone 2 in SiFit tree is split into two adjacent clones, 
namely Clone 2 and Clone 3, in PhISCS tree. Analogous applies to Clone 7. (iii) The order of mutations in genes CHRM5 and TGFB2, as well as in most 
other pairs of mutations (including the pairs where both mutations are at the same vertex), is same among the trees. Notable exceptions leading to 
some dissimilarities between the trees include mutations in genes MAP3K4 and ECM1. In addition, mutations in genes CBX4 and TNC are absent in 
tree reported by SiFit. Removing these four mutations and their corresponding vertices from each tree (if present) and assigning each of the Clone 
4 and Clone 7 in SiFit tree as child of Clone 2, and Clone 7 as child of Clone 3 in PhISCS tree, we obtain trees which are same up to the existence of 
splits of single into two adjacent clones belonging to the same lineage (see (ii) from above). MLTD-normalized score for the two trees equals 0.82, 
which well reflects the overall high topological similarity and concordance in ordering pairs of mutations



Page 14 of 18Karpov et al. Algorithms Mol Biol           (2019) 14:17 

as expected based on our discussion from the introduc-
tion, ‘Inferred tree 2’ (which represents slightly refined 
version of ‘True tree’ where green and yellow clones 
are each split into two adjacent clones belonging to the 
same branch) and ‘Inferred tree 3’ (which represents fully 
resolved mutation tree that can be obtained from ‘True 
tree’) both have score 1. ‘Inferred tree 4’, having score 0.6, 
is rewarded for the proper placement of mutation A and 
large cluster of mutations appearing for the first time at 
green clone, but is penalized for inaccurate placement of 
yellow clone from where 4 out of 10 mutations originate.

Application to real data
In order to demonstrate the application of measure 
developed in this work in real settings where true tree is 
usually not available, we analyzed two datasets obtained 
by sequencing real samples of triple-negative breast can-
cer (TNBC) and acute lymphoblastic leukemia (ALL). For 
each sample, we inferred trees of tumor evolution by the 
use of SCITE [5], SiFit [3] and PhISCS [36]. We provide 
more details about these methods and parameters used 
in running them, as well as details of obtaining real data, 
in Appendix 1. Inferred trees and very detailed discus-
sion of the calculated MLTD-normalized scores for pairs 
of inferred trees are shown in Figs.  8, 9 (for the TNBC 
sample) and Fig. 10 (for the ALL sample). We show that 
MLTD-normalized score recognizes high similarity in 
the placement of vast majority of mutations between two 
trees (as demonstrated for trees inferred by PhISCS and 
SiFit for TNBC sample where score equals 0.82), but also 
penalizes for topological differences and different sort-
ing of mutations along linear chains (as demonstrated for 
trees inferred by SCITE and SiFit for ALL sample where 
the score equals 0.69).

Fig. 9  Mutation tree for TNBC dataset (see Fig. 8 for details) inferred 
by SCITE. This tree can be obtained from PhISCS tree by expanding 
vertices having more than one label, hence MLTD-normalized 
score between the two trees is maximum possible (i.e. equals 1). 
Compared with tree inferred by SiFit, SCITE tree has analogous 
topological similarities and differences as tree inferred by PhISCS, and 
MLTD-normalized score for these two trees is also equal to 0.82

◂
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Appendix 1: Details of obtaining trees of tumor 
evolution for the real data sets
Summary of methods used for inferring trees of tumor 
evolution
In this work, we inferred trees of tumor evolution by the 
use of SCITE [5], SiFit [3] and PhISCS.3 Each of the meth-
ods takes as the input single-cell sequencing (SCS) data 
matrix and estimated noise rates of SCS experiment. The 

a b
Fig. 10  Trees inferred by SCITE and SiFit for acute lymphoblastic leukemia (ALL) patient dataset from [38] consisting of 115 single cells and 16 
mutations. Unsurprisingly, due to large number of single-cells in this dataset, sequencing noise and similarities in the scoring schemes used in 
PhISCS and SCITE (see Appendix 1: Details of obtaining trees of tumor evolution for the real data sets) both methods report the same mutation 
tree so we only focus on SCITE in this discussion. The most notable difference among the two trees is in the placement and ordering of mutations 
in genes ZC3H3, XPO7 and BRD7P3 as well as in the ordering of mutations in genes FGD, RRP8, FAM105A, BDNF-AS and PCDH7. Furthermore, the 
relative order also differs for mutations in genes TRRAP and ATRNL1. However, in contrast to these important differences, the trees still share most 
of the major branching events in tumor evolution and have consistent ancestor–descendant order for most of the pairs of mutations. All these are 
reflected in MLTD-normalized score of 0.69 assigned to this pair of trees

3  Available at https​://githu​b.com/haghs​henas​/PhISC​S.

https://github.com/khaled-rahman/MLTED
https://github.com/haghshenas/PhISCS
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underlying scoring used in PhISCS is analogous to that 
in SCITE and the major difference among the two meth-
ods is in the type of tree returned in the output. While 
SCITE searches for the maximum likelihood mutation 
tree, PhISCS reports the maximum likelihood clonal tree. 
Due to the equivalence in tree scoring, assuming that both 
methods find the optimal solution, clonal tree reported 
by PhISCS is expected to represent compressed version 
of mutation tree reported by SCITE (i.e. we expect that 
tree reported by SCITE belongs to the set of mutation 
trees which can be obtained from clonal tree reported 
by PhISCS). Similarly as PhISCS, SiFit also returns clonal 
tree of tumor evolution but uses different tree search 
methodology and does not necessarily yield the same out-
put as PhISCS nor SCITE (as demonstrated in [3]).

Details of obtaining input data and running SCITE, SiFit 
and PhISCS
We obtained binary SCS data mutation matrix for TNBC 
patient sample from [39] and for ALL patient sample from 
[38]. For each sample, false positive and false negative rates 
of sequencing experiment were estimated in the original 
studies [37, 38] and provided as the input to the methods 
used in the analysis. In order to obtain better convergence, 
we run MCMC based methods SiFit and SCITE for very 
large number of iterations. For SiFit, we set number of 
iterations to 5,000,000. For SCITE we set number of repeti-
tions of the MCMC to 3 and chain length of each MCMC 
repetition to 1,000,000. PhISCS is combinatorial optimiza-
tion based method which provided guarantee of the opti-
mality for each solution.

Appendix 2: Demonstration of algorithm 
with an example
In this section, we will illustrate how the maximum 
common tree of trees from Fig.  11 is found using our 
algorithm. For the convenience of notation, since each 

label appears at exactly one vertex, we will use a string 
of concatenated labels as a unique identifier of a vertex. 
For example, vertex having labels c, d, e (blue vertex in 
the second tree) will be denoted as cde.

The first part of our algorithm consists of computing 
4-dimensional table D (see Lemma 3 for a definition). As 
computation of D is a straightforward application of the 
dynamic programming, here we will skip details of this 
step and proceed directly to demonstrating how table G′ 
is computed. As defined earlier, for any pair of vertices 
x ∈ V1, y ∈ V2 , such that M(x) = y , G′(x, y) represents 
the size of the maximum common tree between sub-
trees rooted at x and y, namely T ′

1(x) and T ′
2(y)—exclud-

ing the root labels. Since our algorithm for computing 
G′ is recursive, we present how G′ is computed in several 
steps, starting from the leaves of the two trees and then 
propagating towards the roots.

The first step for computing G′ is shown in Table 1. In 
this step, all entries G′(u, v) of G′ , where either u is a leaf 
in T1 or v is a leaf in T2 , are computed (as 0 by definition).

Next, we compute G′ for a pair of vertices each with a 
single child (specifically, vertices {h} , {g} in tree T1 , and 
{g} , {hi} in T2 ) easily—since the optimal matching con-
tains only one edge (see Table 2).

a,b

c,d,e f g

h,i

j

a,b

c h

d,e f g

i,j

Fig. 11  Two multi-labeled trees, T1 (on the left) and T2 (on the right) 
to be compared

Table 1  The table G′ with  entries computed for  the  cases 
when vertex from the first tree is a  leaf (such vertices are 
de, f and  ij) or  vertex from  the  second tree is  a  leaf (such 
vertices are cde, f, and j)

Rows and columns of the table respectively correspond to the vertices from the 
first and the second tree

G
′ {ab} {cde} {f} {g} {hi} {j}

{ab} – 0 0 – – 0

{c} – 0 0 – – 0

{h} – 0 0 – – 0

{de} 0 0 0 0 0 0

{f } 0 0 0 0 0 0

{g} – 0 0 – – 0

{ij} 0 0 0 0 0 0

Table 2  The table G′ updated for  entries corresponding 
to vertices from T1 and T2 each with a single child

G
′ {ab} {cde} {f} {g} {hi} {j}

{ab} – 0 0 – – 0

{c} – 0 0 – – 0

{h} – 0 0 2 1 0

{de} 0 0 0 0 0 0

{f } 0 0 0 0 0 0

{g} – 0 0 2 1 0

{ij} 0 0 0 0 0 0
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Every other entry in the table correspond to a non-
trivial subproblem which involves the computation of a 
maximum matching. First we consider the cases where 
one of the vertices has a single child. In this case comput-
ing the cost of maximum cost matching is relatively sim-
ple as one needs to compare the single child of the root of 
one tree to every child of the root on the other tree (see 
Table 3).

At this point in the example, the only entries that 
remain to be computed are G′(ab, ab) and G′(c, ab) . 
For these entries we need to solve non-trivial instances 
of maximum cost matching. Recall that the construc-
tion of an auxiliary graph requires information about 
the values of some entries in the table G, where entry 
G(u,  v) is defined as the size of maximal common tree 
between subtrees T1(u) and T2(v) . Also recall that 
G(a, b) = maxc∈V (T1(a)),d∈V (T2(b))(G

′(c, d)+ D(a, b, c, d)) 
and for computing entries of G we just need to pick 
the maximum value among a few values which were 

computed before. Finally recall the connection between 
G and costs in the auxiliary graph for computing G′(u, v) : 
the auxiliary graph is a complete bipartite graph with the 
children of u on one side and children of v on the other 
side such that the cost of any given edge (a, b) is G(a, b).

The entries G(u, v) are given in Tables 4, 5. [We skip the 
details on how these entries are computed since they fol-
low from the values G′(u, v) .] Let’s first focus on comput-
ing G′(c, ab) . For this case, the relevant auxiliary (bipartite) 
graph edge costs G(u, v) are provided in Table 4. We can 
now compute the value of G′(c, ab) : as the maximum cost 
matching between the children of c in T1 and the children 
of ab in T2 is between (1) de in T1 and cde in T2 as well 
as (2) f in T1 and f in T2 , the total cost of the matching is 
2+ 1 = 3—implying that G′(c, ab) is also equal to 3.

For G′(ab, ab) , the relevant edge costs of the auxiliary 
graph can be found in Table  5. Again, it is easy to see 
that the cost of the maximum cost matching and thus the 
value of G′(ab, ab) is equal to 6. This completes the com-
putation of the table G′ as presented in Table 6.

There is one last step to obtain the final answer, 
i.e. the value of G(ab,  ab). For that recall that 
G(a, b) = maxc∈V (T1(a)),d∈V (T2(b))(G

′(c, d)+ D(a, b, c, d)). 
Thus if we want to compute the value G(ab, ab) we should 
use the values from the array D which contains answers 
on the corresponding instances of the set alignment 
problem. In the following table, we present these values 
(answers on instances of the set alignment problem). 

Table 3  The table G′(u, v) with  entries (u,  v) updated 
for the cases when either u or v (but not both) has only one 
child

G
′ {ab} {cde} {f} {g} {hi} {j}

{ab} – 0 0 3 1 0

{c} – 0 0 0 0 0

{h} 3 0 0 2 1 0

{de} 0 0 0 0 0 0

{f } 0 0 0 0 0 0

{g} 2 0 0 2 1 0

{ij} 0 0 0 0 0 0

Table 4  The costs of relevant edges in the auxiliary graph 
for  computing the  value of  G′(c,ab) : note that  the  cost 
for  the  edge (u,  v) is  exactly value of  G(u,  v), the  size 
of the maximum common subtree between T1(u) and T2(v)

For computing G′(c, ab) we only need the values G between each child of vertex 
c in T1 (i.e. de and f) and that of vertex ab in T2 (i.e. cde, f, g)

G {cde} {f} {g}

{de} 2 0 0

{f } 0 1 0

Table 5  The costs of relevant edges in the auxiliary graph 
for  computing the  value of  G′(ab,ab) : we only  provide 
those values for  edges between  each child of  vertex ab 
in T1 (i.e. c and h) that of vertex ab in T2 (i.e. cde, f, and g)

G {cde} {f} {g}

{c} 3 1 0

{h} 0 0 3

Table 6  The table G′ after filling all entries

G
′ {ab} {cde} {f} {g} {hi} {j}

{ab} 6 0 0 3 1 0

{c} 3 0 0 0 0 0

{h} 3 0 0 2 1 0

{de} 0 0 0 0 0 0

{f } 0 0 0 0 0 0

{g} 2 0 0 2 1 0

{ij} 0 0 0 0 0 0

Table 7  The slice of  the  4-dimensional array D(x,  y,  u,  v) 
if we fix the first two index values as x = ab and y = ab

Here the entry in the u-th row and v-th column represents D(ab, ab, u, v)

D(ab, ab) {ab} {cde} {f} {g} {hi} {j}

{ab} 2 2 2 2 2 2

{c} 2 3 2 2 2 2

{h} 2 2 2 2 2 2

{de} 2 5 2 2 2 2

{f } 2 3 3 2 2 2

{g} 2 2 2 3 4 4

{ij} 2 2 2 3 4 5
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