
Karpov et al. Algorithms Mol Biol (2019) 14:17
https://doi.org/10.1186/s13015-019-0152-9

RESEARCH

A multi‑labeled tree dissimilarity measure
for comparing “clonal trees” of tumor
progression
Nikolai Karpov1†, Salem Malikic2†  , Md. Khaledur Rahman1† and S. Cenk Sahinalp1*

Abstract 

We introduce a new dissimilarity measure between a pair of “clonal trees”, each representing the progression and
mutational heterogeneity of a tumor sample, constructed by the use of single cell or bulk high throughput sequenc-
ing data. In a clonal tree, each vertex represents a specific tumor clone, and is labeled with one or more mutations in
a way that each mutation is assigned to the oldest clone that harbors it. Given two clonal trees, our multi-labeled tree
dissimilarity (MLTD) measure is defined as the minimum number of mutation/label deletions, (empty) leaf deletions,
and vertex (clonal) expansions, applied in any order, to convert each of the two trees to the maximum common
tree. We show that the MLTD measure can be computed efficiently in polynomial time and it captures the similarity
between trees of different clonal granularity well.

Keywords:  Intra-tumor heterogeneity, Tumor evolution, Multi-labeled tree, Tree edit distance, Dynamic
programming

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
According to the clonal theory of cancer evolution [1],
cancer originates from a single cell which had acquired
a set of mutations that provide it proliferative advantage
compared to the neighboring healthy cells. As tumor
grows, cancer cells acquire new mutations and some of
them might accumulate a set of mutations conferring fur-
ther selective advantage or disadvantage compared to the
other cells. This continues over a period of time and at
the time of the clinical diagnosis, tumors are usually het-
erogeneous consisting of multiple cellular populations,
harboring distinct sets of mutations, leading to different
phenotypes. Each such cellular population is considered
to be a clone.

The whole process of tumor initiation and growth is
illustrated in Fig. 1 (left panel).

One of the most widely used ways of depicting muta-
tional heterogeneity and tumor progression over time
is by the use of a clonal tree of tumor evolution. Here,
each individual vertex represents a distinct clone and
each mutation (i.e. its label) is placed as part of the
label of clone where it occurs for the first time in evolu-
tionary history. In this work we focus on trees built by
the use of single nucleotide variants (SNVs), which rep-
resent the most widely used type of mutations in recon-
structing trees of tumor evolution [2]. We also assume
that each SNV occurs exactly once during the course
of tumor evolution and never gets lost (infinite sites
assumption, usually abbreviated as ISA). Some recently
introduced methods (e.g. SiFit [3]) allow for the viola-
tions of ISA and, in such cases, we expect that labels
corresponding to mutations violating ISA are removed
from the trees prior to dissimilarity calculation. In
order to simplify our figures, in each figure in this work
we omit the vertex representing population of healthy
cells. Namely, such vertex would be non-informative
as it would always be label-free (since healthy cells are
assumed to contain none of the mutations relevant to
cancer progression) and attached as the parent of root

Open Access

Algorithms for
Molecular Biology

*Correspondence: cenksahi@iu.edu
†Nikolai Karpov, Salem Malikic and Md. Khaledur Rahman contributed
equally and their names are listed in alphabetic order
1 Department of Computer Science, Indiana University, Bloomington, IN,
USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4962-3925
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0152-9&domain=pdf

Page 2 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

vertex in each of the figures presented in this work. See
Fig. 1 for an illustration of tumor growth (left panel)
and the corresponding clonal tree of tumor evolution
(right panel). Note that the children of a vertex in a
clonal tree are unordered.

A popular alternative to the clonal tree is the mutation
tree, a special case of the clonal tree, where the label of
each vertex consists of exactly one mutation [4, 5]—thus
a mutation tree is a clonal tree with the highest possible
granularity. As can be expected, any clonal tree can be
easily converted to the mutation tree as follows. Con-
sider an arbitrary edge (u, v) and assume without loss of
generality (WLOG) that a set of all mutations assigned
to it is {M1,M2, . . . ,Mk} . Now replace edge (u, v) by a
path with vertices {w0 = u,w1,w2, . . . ,wk−1,wk = v}
and edges {(w0,w1), (w1,w2), . . . , (wk−1,wk)} , such that
exactly one mutation, WLOG Mi , is assigned to the edge
(wi−1,wi) for each i ∈ {1, 2, . . . , k} . Note that from a given
clonal tree which is not mutation tree (i.e. contains at
least one vertex with two or more labels), multiple differ-
ent mutation trees can be obtained. More precisely, from
the above, it is obvious that any vertex with k mutations
assigned to it can be expanded to a chain of k vertices,
each having exactly one mutation as its label, in k! dif-
ferent ways. Consequently, considering the numbers of
mutations assigned to vertices of the clonal tree T and
taking the product of factorials of these numbers gives
a formula for computing the exact number of different
mutation trees that can be obtained from T.

There are additional tree representations [5] for tumor
evolution but in this work we focus on clonal trees only.

(Dis)similarity measures between tree representations
of tumor evolution
In the past few years, we have witnessed rapid develop-
ments in computational methods for inferring trees of
tumor evolution from both bulk and single cell high
throughput sequencing (HTS) data [4–15].

In order to assess the accuracy of the proposed method,
many of these studies use simulated HTS data extracted
from synthetic tumor compositions. The inferred tree is
then compared against the (synthetic) ground truth. We
will call the ground truth tree the true tree. Other stud-
ies, such as the Pan Cancer Analysis of Whole Genomes
Project (PCAWG) compare trees inferred by participat-
ing methods on real tumor samples to reach a consen-
sus tree. In order to compare clonal trees with varying
granularity (granularity can be measured in terms of
the average number of mutations assigned to a clone)
the measure(s) used should be versatile enough to dis-
criminate real topological differences between trees from
those differences due to the type and coverage of the HTS
data used by a method; e.g. such a “dissimilarity” measure
should be equal to 0 between any clonal tree and its cor-
responding mutation tree (obtained using the procedure
described above).

Unfortunately, comparing trees of tumor evolution is a
challenging problem and available measures fail to fully

Fig. 1  Graphical overview of tumor initiation and growth (left) and the corresponding clonal tree of tumor evolution (right). Sets of mutations
providing proliferative advantage and driving the emergence of new clones are denoted as stars in the left and as sets of corresponding mutations
in the right panel (e.g. red star from the left panel represents the set of mutations {M1,M2,M3} .) Vertex corresponding to the healthy cells is omitted
as it would be non-informative

Page 3 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

capture (dis)similarities between inferred and true trees.
Many of existing measures only aim to compare the rela-
tive placement of pairs of mutations across two trees,
e.g. whether the two mutations maintain an ancestor–
descendant relationship in both trees (we discuss several
of the existing measures in more detail in "The existing
measures and their limitations" section). Such measures
can not capture topological differences between distinct
trees, e.g. a simple topology with two vertices, where
all but one of the mutations is assigned to the non-root
vertex, v.s. a star topology where each vertex is assigned
a single mutation. Thus measures of tree similarity that
not only consider the relative placement of mutations
but also the topological structure of the trees are of high
demand.

The standard measure to compare combinatorial
objects—such as strings, especially in bioinformatics, is
the edit distance. This measure has numerous applica-
tions and a large number of variants, not only for strings
but also for labeled trees, have been considered in the
past. The classical Levenstein edit distance between
two strings is defined as the minimum number of single
symbol deletions on the two strings so that what remain
from the strings are identical (in fact the longest common
subsequence of the two strings). As such, it has a well
established dynamic programming algorithm (e.g. [16]).
The running time of this algorithm is proportional to the
product of the lengths of the two input strings and the
existence of a sub-quadratic algorithm is unlikely [17].
In general, the complexity of computing an edit distance
strictly depends on the set of allowed edit operations. E.g.
if we consider a variant of the problem where only single
character mismatches and block reversals are allowed,
then the running time reduces to O(n log2 n) [18]—here
n is the total length of the strings; on the other hand, the
variant where only mismatches, block deletion and move
operations are allowed is NP-hard [19].

Extensions of edit distance measures for rooted trees
have typically been defined for trees with ordered verti-
ces, each with a single label, where the goal is to trans-
form one tree to the other by the use of vertex deletions
(or, equivalently, vertex insertions) and vertex label
replacements [20]. Based on such tree edit distance
measures, a notion of tree alignment has also been intro-
duced, both for vertex ordered as well as unordered
trees [21]. For many of the vertex ordered cases, there are
polynomial time algorithms that can solve the distance/
alignment problem [20–29], whereas for several unor-
dered cases, the both the alignment and the correspond-
ing tree edit distance problems are NP-hard [30, 31] or
MAX SNP-hard [21, 32].

Motivated by the Levenshtein edit distance between
strings, edit distances for trees with unordered vertices

are defined in relation to the largest common subtree [32]
between the input trees: here the goal is to perform the
minimum number of label deletions (and eliminate the
resulting empty nodes) from the two input trees so that
the remaining subtrees are identical. The notion of the
largest common subtree of two trees and the implied edit
distance can be generalized to clonal (multi-label) trees.
Unfortunately, just like other edit distances for unordered
trees [33], this distance would be NP-hard (in fact MAX
SNP-hard) to compute. Moreover, none of the results
in the literature deal with trees where vertices may have
more than a single (mutational) label—as is the case for
the clonal tree comparison problem.

In this paper we consider a restricted version of the
above notion of tree edit distance by allowing label (and
implied node) deletions for leaves. This notion of dis-
tance can naturally be generalized to multi-labeled trees
and the resulting “dissimilarity” measure (multi-labeled
tree dissimilarity, MLTD) can be computed in polyno-
mial time. More importantly, it successfully captures the
differences between clonal trees: for example it satisfies a
key condition that two clonal trees from which it is pos-
sible to produce two identical mutation trees have a dis-
similarity of 0.

Multi-labeled tree dissimilarity is the first polynomial
time computable dissimilarity measure for vertex unor-
dered trees.1 We have devised and implemented an algo-
rithm to compute MLTD and applied it to a number of
synthetic and real data sets to compare trees inferred by
some of the available tumor history reconstruction meth-
ods with success.

Definitions
While this work is motivated and currently has the main
application in the comparison of clonal trees of tumor
evolution, possible novel applications may arise in the
future. In order to minimize the background knowledge
of cancer evolution and related terminology required to
follow description of the presented algorithms, in this
section we first provide formal definition of multi-labeled
tree and use this term throughout the sections contain-
ing algorithms description ("Definitions", "Set align-
ment problem" and "Computing a maximum common
tree in2 the general case" sections). Second, we describe
how the dissimilarity measure between two arbitrary
multi-labeled trees is computed. Finally, for the readers

1  Given two input trees, the size of their largest common tree (with the
restriction that only leaf labels can be deleted) can be used as a similarity
measure. This similarity measure is akin to set intersection and MLTD, as its
dual, is akin to the symmetric difference between sets. As per symmetric dif-
ference between sets, MLTD does not satisfy the triangle inequality and thus
does not form a “metric”.

Page 4 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

interested in the presented practical application, we also
provide motivation for the introduced multi-labeled tree
and edit operations.

Multi‑labeled tree
A rooted tree T = (V ,E) is a connected, acyclic, undi-
rected graph with set of vertices V (also denoted as V(T))
and edges E (also denoted as E(T)), with a particular ver-
tex r identified as the root. For each non-root vertex v,
any vertex u that lies on the simple path between v and
the root is considered to be its ancestor; in particular,
the vertex u = p(v) on this path which has an edge to v is
considered to be its parent. The depth of vertex v denoted
d(v), is thus defined as the number of its ancestors. The
lowest common ancestor of any pair of vertices u and
v, denoted lca(u, v) , is defined as a common ancestor
of both u and v whose depth is maximum possible. The
structure of a tree induces partial order � on its vertices:
u � v denotes that u is an ancestor of v.

Multi-labeled tree T is a rooted tree in which each
vertex v other than root has a subset Lv of labels from
a universe L and each label is unique to a vertex, i.e.
Lu ∩ Lv = ∅ for each pair of distinct vertices u and v. We
denote the set of all labels assigned to the vertices of T as
L(T). In other words, L(T) =

⋃

v∈V (T) Lv.

MLTD measure between two multi‑labeled trees
Consider the following types of edit operations on multi-
labeled tree:

•	 deleting a label where one of the labels is removed
from some set Lv,

•	 deleting an unlabeled leaf where a vertex is removed
from the tree. This operation is allowed to be per-
formed only for unlabeled leaves, i.e. vertices with no
labels and no children,

•	 expanding a vertex where vertex v is replaced by two
vertices v1 and v2 such that all children of v after this
operation are children of v2 , and the parent of v is the
parent of v1 , and v1 is the parent of v2 . Each of the
labels from Lv is assigned to exactly one of the Lv1 and
Lv2.

A Common tree of arbitrary multi-labeled trees T1 and
T2 is any multi-labeled tree which can be obtained from
each of T1 and T2 by the use of edit operations defined
above. A maximum common tree of T1 and T2 is a com-
mon tree of T1 and T2 having the largest number of labels
among all common trees of T1 and T2 . We define MLTD
measure between T1 and T2 as the difference between the
total number of labels in T1 and T2 and twice the number
of labels in their maximum common tree. In other words,
MLTD is defined as the total number of labels required to

be removed from the two trees in the process of obtain-
ing their maximum common tree.2 For two trees given as
an input, finding their maximum common tree obviously
suffices to compute MLTD and will therefore be the main
focus of our algorithms described below.

As mentioned earlier MLTD defined above is not a
metric since it is akin to the “inverse set intersection” and
thus does not satisfy the triangle inequality. For example,
given L = {A,B} and the following trees: (i) tree T1 con-
sisting of two vertices, labeled by A (root vertex) and B
(non-root vertex) (ii) tree T2 consisting of two vertices,
labeled by B (root vertex) and A (non-root vertex) and
(iii) a single vertex tree T3 where vertex label consists of
both, A and B, MLTD between T1 and T3 , as well as T2 and
T3 , equals 0, whereas MLTD between T1 and T2 equals 2.

(Dis)similarity between multi‑labeled trees in the context
of tumor evolution
Formal definition of multi-labeled tree presented above is
motivated by the clonal tree of tumor evolution discussed
in "Introduction" section. In a clonal tree, root vertex r
represents population of healthy cells and each non-root
vertex represents tumor clone. Universe L represents set
of mutations detected in a given tumor and Lv denotes
the set of mutations appearing for the first time at vertex
(clone) v. The constraint Lu ∩ Lv = ∅ for each pair of dis-
tinct vertices u and v, ensures that each mutation appears
at most once during the course of tumor evolution (this
follows directly from the ISA).

The main difference between multi-labeled and clonal
tree is that in the latter we have constraint that the set
of labels assigned to the root vertex r is empty (since
this vertex represents population of healthy cells which
is assumed to be mutation-free) and Lv = ∅ for each
v ∈ V (T)\{r} . Namely, if v is non-root vertex such that
Lv is empty then clone v would be, with respect to the
set of mutations it harbors, identical to its parent which
is atypical for clonal trees as it introduces unnecessary
redundancy in representation of the process of tumor
evolution. For the simplicity, in the figures of clonal
trees presented in this work we do not show a root since
its set of labels is empty hence such vertex would be
non-informative.

Note that any multi-labeled tree can be converted to a
unique clonal tree using the following steps: (i) merging

2  Note that typically edit distance measures are based on symmetric edit
operations, in a way that each operation is complemented by a reverse opera-
tion (e.g. deleting a label is the reverse of inserting the same label). In such
cases, the edit distance is defined as the minimum number of operations
required to transform one combinatorial object into another. Although it is
possible to define our dissimilarity measure similarly (with label insertions
complementing label deletions), we chose to present our dissimilarity measure
by specifying deletions only for keeping the description compact.

Page 5 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

each of non-root vertices having empty set of labels with
its parent and repeating this until each non-root vertex
has non-empty set of labels and (ii) in the case that root
of the tree obtained after the first step has non-empty set
of labels, add a new vertex without any mutational labels
and connect it to the root of the modified tree (so that it
becomes new root). In the applications, we first consider
each clonal tree as a mutation tree and, once a common
tree is obtained, it is converted to a clonal tree using the
two of these steps.

While the notion for the edit operation of label dele-
tion is intuitively clear as in general case one would be
unable to obtain a common tree without allowing this
or any similar operation which removes some labels, the
edit operation of expanding a vertex at no cost is directly
motivated by the existing different ways of representing
clonal trees of tumor evolution. More precisely, we intro-
duce it in order to be able to capture differences between
two clonal trees which are due to different levels of gran-
ularity in tree representation. An example of such trees is
shown in Fig. 6 where tree of tumor evolution is shown
in (a) and its more refined versions are shown in (c) and
(d) (more detailed discussion of Fig. 6 is provided in "The
existing measures and their limitations" section). Finally,
the operation of deleting an unlabelled leaf is intro-
duced in order to allow obtaining common tree of trees
having certain topological differences, mostly in terms
of branching. For example, if we are given a linear and
non-linear clonal tree as two input trees, they can not be
reduced to a common tree using solely the label deletion
and vertex expansion operations. Also, note that deletion
of unlabeled leaf requires deletion of all of its labels prior
to applying this edit operation which is usually costly.
However, this is desired when computing a “dissimilarity”
between clonal trees of tumor evolution since the place-
ment of mutations on vertices from different branches
(i.e. to the clones from different lineages) in one clonal
tree and to the vertices that in the ancestor–descendant
relation (i.e. to the clones from the same lineage) in the
second clonal tree represents fundamental dissimilarity
between the two trees and needs to have an appropriate
contribution to their “dissimilarity”.

Set alignment problem
We first demonstrate how maximum common tree is
computed for a pair of trees where each tree is a path.
Obviously in this case any common tree between the
input trees is also a path. Let the ordered sequence
of vertices of the first tree/path be v1, v2, . . . , vn with
respective label sets S1, S2, . . . , Sn , and the ordered
sequence of vertices of the second tree/path be
w1,w2, . . . ,wm with respective label sets P1,P2, . . . ,Pm .
(Assume that Si,Pj are subsets of L and that any label

u ∈ L occurs exactly in one of S1, S2, . . . , Sn and exactly
in one of P1,P2, . . . ,Pm .) Let f : L → {1, 2, . . . , n} and
g : L → {1, 2, . . . ,m} be the functions that map labels to
vertex indices, respectively in the first and the second
tree such that vf (a) denotes the vertex of label a in the
first tree and wg(a) denotes the vertex of the label a in
the second tree.

It is easy to see that computing a maximum common
tree in this special case is equivalent to the following
generalized version of the string edit distance problem
for a pair of ordered sets.

Set Alignment Problem
Instance: Two ordered set of labels: (S1, S2, . . . , Si)
and (P1, P2, . . . , Pj) where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Task: Find set A(i, j) ⊆ (
i
⋃

p=1
Sp)

⋂

(
j
⋃

q=1
Pq) of maxi-

mum size such that, for each pair (a, b) of labels from
A(i, j), the following holds: f(a) ≤ f(b) ⇐⇒ g(a) ≤
g(b).

The following lemma offers an efficient algorithm for
solving the Set Alignment Problem. Our approach
for computing dissimilarity between two arbitrary trees
(presented in "Computing a maximum common tree
in the general case" section) uses this algorithm as a
subroutine.

Lemma 1  Let D(i, j) be the size of the set which
is answer of the Set Alignment Problem for the
instance where input sequences are (S1, . . . , Si) and
(P1, . . . ,Pj) (i.e. according to the notation from the above
D(i, j) =

∣

∣A(i, j)
∣

∣ ). Then the following hold:

•	 D(i, 0) = D(0, j) = 0 , for all non-negative integers i
and j.

•	 D(i, j) = max
(

D(i, j − 1), D(i − 1, j)
)

+ |Si ∩ Pj| , for
all positive integers i and j.

Proof  The first equation easily follows from the fact that
A(i, 0) ⊆ ∅ and A(0, j) ⊆ ∅.

For the second equation, we first prove that
D(i, j) ≥ max(D(i, j − 1), D(i − 1, j))+ |Si ∩ Pj| . In order
to prove this, observe that each of A(i, j − 1) ∪ (Si ∩ Pj)
and A(i − 1, j) ∪ (Si ∩ Pj) represent a valid candidate
solution for the instance of Set Alignment Problem
with the input sequences (S1, . . . , Si) and (P1, . . . ,Pj) .
Namely, in the case of set A(i, j − 1) ∪ (Si ∩ Pj) (analo-
gous applies to the set A(i − 1, j) ∪ (Si ∩ Pj) ), if we con-
sider two arbitrary labels a and b of this set, then:

Page 6 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

•	 If a ∈ A(i, j − 1) and b ∈ A(i, j − 1) then
f (a) ≤ f (b) ⇐⇒ g(a) ≤ g(b) holds by the defini-
tion of A(i, j − 1).

•	 If a ∈ A(i, j − 1) and b ∈ Si ∩ Pj then f (a) ≤ i and
g(a) ≤ j − 1 . On the other hand, f (b) = i and
g(b) = j hence f (a) ≤ f (b) ⇐⇒ g(a) ≤ g(b) is
obviously satisfied.

•	 Case where a ∈ Si ∩ Pj and b ∈ A(i, j − 1) is analo-
gous to the previous case.

•	 Case where both a and b are from Si ∩ Pj is trivial since
in this case f (a) = f (b) = i and g(a) = g(b) = j
implying that f (a) ≤ f (b) ⇐⇒ g(a) ≤ g(b) holds
in this case as well.

Now it suffices to prove that D(i, j) ≤ max(D(i, j − 1),

D(i − 1, j))+ |Si ∩ Pj| . In order to prove this, con-
sider the partition of A(i, j) into A(i, j)\(Si ∩ Pj) and
Si ∩ Pj . We claim that at most one of the sets Si and Pj
has non-empty intersection with the set A(i, j)\(Si ∩ Pj) .
To prove this, assume on contrary that there exists
a ∈ Si ∩

(

A(i, j)\(Si ∩ Pj)
)

 and b ∈ Pj ∩
(

A(i, j)\(Si ∩ Pj)
)

 .
Since a ∈ Si we have f (a) = i . For b we have that
b ∈ A(i, j) and b /∈ Si implying that f (b) ≤ i − 1 . Simi-
larly, g(a) ≤ j − 1 and g(b) = j . By the above assump-
tion, both a and b belong to A(i, j) but obviously they
violate constraint f (a) ≤ f (b) ⇐⇒ g(a) ≤ g(b)
which is, by definition of A(i, j) satisfied for all of
its labels. This contradiction directly implies our
latest claim. To finalize the proof of inequality
D(i, j) ≤ max(D(i, j − 1), D(i − 1, j))+ |Si ∩ Pj| assume
WLOG that the intersection of Si and A(i, j)\(Si ∩ Pj) is
the empty set. This implies that A(i, j) does not contain any
label from Si\(Si ∩ Pj) . Therefore D(i, j) ≤ D(i − 1, j)+
∣

∣Si ∩ Pj
∣

∣ ≤ max(D(i, j − 1), D(i − 1, j))+ |Si ∩ Pj| which
completes our proof. � �

Lemma 1 provides a dynamic programming formu-
lation for calculating “dissimilarity” D(n, m) between
trees T1 and T2.

Observation 1  Total time and total space
required for calculating number of labels in each of
the sets Si ∩ Pj , where i ∈ [n] and j ∈ [m] are both
O(

∑n
i=1 |Si| +

∑m
j=1 |Pj| + nm).

Proof  For each label from u ∈ L we can store two indi-
ces f(u) and g(u). This can be implemented in the above
time and space by using a hash table. If we know these
indices, we can fill the table Iij , where Iij = |Si ∩ Pj| , by
iterating through elements of L and increasing the value
of If (x)g(x) by one for each x ∈ L . � �

Lemma 2  The Set Alignment Problem is solvable in
O
(

∑n
i=1 |Si| +

∑m
j=1 |Pj| + nm

)

 time and space.

Proof  Follows straightforwardly from Lemma 1 and
Observation 1. � �

Computing a maximum common tree
in the general case
We now describe an efficient algorithm for computing a
maximum common tree. Note that in the remainder of
the paper we call all vertices in a tree with exactly one
child as non-crucial vertices and all other vertices, i.e.
leaves, and vertices with two or more children, as cru-
cial vertices. Now consider the sequence of edit opera-
tions applied to a tree T1 in the process to reaching a
common tree T with another tree T2.

Observation 2  Each edit operation applied to any ver-
tex creates at most one (new) crucial vertex; no edit opera-
tion can increase the total number of crucial vertices.

Proof  The proof is based on analyzing the effect that
application of a given edit operation might have on the
set of crucial vertices.

•	 The edit operation of deleting a label does not
change the topology of the tree or the set of crucial
vertices in the tree.

•	 The edit operation of deleting a leaf u does change
the topology of a tree, but with respect to the set
of crucial vertices, the only update is that u is
lost, and, (i) provided that u was the only child of
p(u), p(u) becomes crucial, or (ii) provided that u
was one of the two children of p(u), p(u) becomes
non-crucial, or (iii) provided that u was one of
more than two children of p(u), p(u) stays crucial.
All other vertices remain unaltered. See Fig. 2a for
detailed examples.

•	 Finally, the edit operation of expanding, i.e., splitting
a vertex v into v1 and v2 does change the topology of
the tree (i) but it does not create a new crucial vertex
if v is non-crucial; however, (ii) if a vertex v is crucial,
then v2 becomes crucial after the edit operation, but
v1 stays non-crucial. See Fig. 2b for examples.

In summary, after an arbitrary edit operation, at most
one new vertex is added to the set of crucial vertices.
However, in the case that new crucial vertex is added,
at least one of such vertices is deleted implying that the
total number of crucial vertices never increases. � �

The observation above indicates that an edit opera-
tion applied to a crucial vertex u may create a new

Page 7 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

crucial vertex v. In that case, we say that the crucial ver-
tex u in T1 corresponds to a crucial vertex v in T ′

1 (if lat-
ter was created). In case of an expansion of vertex u in
T1 to two vertices u1 and u2 , we say that u corresponds
to u2 in T ′

1 . In case of a deletion of a leaf u, if p(u) which
was originally non-crucial, became crucial, then we say
that u in T1 corresponds to p(u) in T ′

1 . For any vertex v
which remains unedited and crucial in T ′

1 , we say that v
in tree T1 corresponds to v in the tree T ′

1.
Finally, we say that v in T1 corresponds to v′ in T if for

the sequence of trees T1 = T 0
1 ,T

1
1 , . . . ,T

l
1 = T (where

Ti+1
1 is obtained from Ti

1 by an edit operation) there
exists the sequence of vertices v = v0, v1, . . . , vl = v
(where vl ∈ V (Tl

1) ) such that vi corresponds to vi+1 for
all i. We extend the notion of correspondence to T2 in a
similar manner.

Thus we notice the following fact.

Observation 3  We can construct the correspondence
between a subset of crucial vertices in T1 and T2 and cru-
cial vertices in the common tree. Such that each crucial

vertex in the common tree corresponds to some vertex in
T1 and T2.

Given trees T1 and T2 , their common tree T and the
vertices in T1 and T2 that correspond to every crucial
vertex in T, it is straightforward to establish the edit
operations to transform T1 and T2 to T. The algorithm
to compute T makes use of this observation.

Observation 4  Given two sets of crucial vertices
u1, . . . ,ul and v1, . . . , vl in T1 and T2 respectively such that
ui and vi correspond to same crucial vertex in the com-
mon tree T for each i, we can reconstruct a common tree
T ′ such that the number of labels in T ′ is at least that in T.

Proof  Here we describe the procedure of reconstructing
the tree T ′ in two steps (see Figs. 3 and 4 as illustrations).

In the first step we delete each label which cannot
belong to T in a trivial manner: let S1 ( S2 ) be the set of
vertices which do not lie on a path from the root of T1
( T2 ) to some ui ( vi ). Then we delete all vertices from S1

i)

ii)

iii)

p(u)

ua

p(u)

a

p(u)

ua b

p(u)

a b

p(u)

u

p(u)

ii)

v

a b

p

v1

v2

a b

p

i)

v

a

p

v1

v2

a

p

a b

Fig. 2  a It shows how the set crucial vertices from Observation 2 changes after deleting a leaf u. We use dashed lines to denote correspondence
among u and a vertex in a tree obtained by an edit operation. Only in the case (i), when a u was an unique child of p(u), u corresponds to p(u) in a
tree after deletion of u. In other cases u does not correspond to any vertex in a new tree. In the case (ii) a vertex p(u) lost the status of a crucial in
a tree after deletion and also does not correspond to the copy of himself in a new tree. In the case (iii) the vertex p(u) keep the status of a crucial
and vertex and corresponds to the copy of himself. It is easy to see that the status of other vertices still unchanged and all vertices except p(u)
corresponds to copies of himself in a new tree. b The figure illustrate changing a tree after expanding a vertex v into v1 and v2 . We use dashed lines
to denote correspondence between u in a tree before operation and a vertex in a new tree. In the case (i) v is non-crucial and both copies of v stays
non-crucial. In the case (ii) a crucial vertex v corresponds to a crucial vertex v2

Page 8 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

(and S2 ) together with their labels. Note that no label
which is present in tree T will be deleted: if a vertex v
does not belong to a path from the root to some crucial
vertex in T, then any label from Lv cannot be present in
T. However, if any label in T that is in Lv for some vertex
v which lies on a path from the root to a leaf w (which is
necessarily crucial) then there must exist a pair of verti-
ces ui, vi which correspond to the leaf w.

Thus, starting from the leaf level, we can delete all ver-
tices which do not belong to a path from the root to any
ui (and vi ). It is easy to see that this first step transforms
T1 and T2 into isomorphic trees. Let ri denote the root of
tree Ti ; the isomorphism φ on r1,u1, . . . ,ul which trans-
forms T1 into T2 is φ(r1) = r2,φ(u1) = v1, . . . ,φ(ul) = vl.

Let T ′
1 and T ′

2 denote the trees respectively produced
from T1 and T2 after applying the first step. Notice that, T ′

1
and T ′

2 are also topologically isomorphic to T and T ′.

In the second step, for each pair of vertices vi and ui we
consider the pair of “maximum” paths from vi and ui to
the associated root, which do not contain other vertices
from v1, . . . , vl and u1, . . . ,ul . For this pair of paths we
apply a sequence of edit operations that expand vertices
and delete labels, such that the resulting paths will be
identical with the maximum possible number of labels.
T ′ is the tree produced as a result of the second step.

Note that on any pair of paths from the vertex pair ui and
vi to the respective root, the set of labels observed will
be identical. This implies that T ′ is a common tree with
number of labels necessarily lower bounded by that of T.
� �

The above observation implies that we can reduce
the problem of computing a maximum common tree
between two multi-labeled trees to the problem of find-
ing an optimal pair of sequences of vertices u1, . . . ,ul
and v1, . . . , vl corresponding to the maximum common
tree.

Our general algorithm for computing the “dissimilar-
ity” between two multi-labeled trees requires constant
time access to the solutions to many instances of the Set
Alignment Problem, which we compute in a preproc-
essing step.

Solving Set Alignment Problem for all pairs of
sequences u1, . . . ,ul and v1, . . . , vl is impractical. Fortu-
nately, special conditions with respect to the structure of
these sequences help us develop an efficient algorithm for
finding an optimal pair of sequences as explained below.

The algorithm for computing an optimal pair of
sequences will need the solutions to Set Alignment
Problem for all possible downward paths; we call this
auxiliary problem Pairwise Alignments on a Tree.

Given a pair of vertices u, v such that u � v , let the fol-
lowing sequence of sets of vertex labels be denoted as
P(u, v) = (Lw1 , . . . , Lwk

) where w1(= u),w2, . . . ,wk(= v)
is called the downward path between u and v. Then we
can define Pairwise Alignments on a Tree problem
formally as follows.

Pairwise Alignments on a Tree
Instance: Two rooted unordered multi-labeled trees
T1 = (V1, E1) and T2 = (V2, T2) with associated sets
of labels for each vertex.
Task: For each 4-tuple (a, b, c, d) such that a, b ∈ V1,
c, d ∈ V2, a � b and c � d, compute and store the
answer for Set Alignment Problem on P(a, b),
P(c, d).

In the next lemma, we introduce equations for com-
puting Pairwise Alignments on a Tree which forms
the basis of our dynamic programming algorithm.

T1 T2

a

b c

ed

f

a′

b′c′

e′ d′

g′

k′

h′

i′ j′

T ′
1 T ′

2

a

b c

ed

a′

b′c′

e′ d′

g′

T̃1 T̃2
a

b

c

g

l

ed

a′

b′

c′

l′

e′ d′

g′

Fig. 3  Illustrates how to obtain a maximum common tree of trees
T1 and T2 . We used dashed lines to denote pairs of vertices ui , vi from
the proof of Observation 4. After the first step of proof we delete all
vertices which do not belong to paths from roots to some crucial
vertex and obtain from trees T1 and T2 trees T ′1 and T ′2 which are
topologically isomorphic to each other. After applying the step two
from proof we obtain by applying sequence of optimal operations to
pairs of paths ((a), (a′)), ((c, g), (c′ , g′)), ((b), (b′)), ((d), (d′)), ((e), (e′))
from T ′1 and T ′2 trees T̃1 and T̃2 which are equal to each other and
contain a maximum number of labels

Page 9 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

Lemma 3  Given a, b ∈ V (T1) ; c, d ∈ V (T2) ; a � b ;
c � d , let D(a, c, b, d) be the solution for the instance
P(a, b) , P(c, d) of Set Alignment Problem. Then

1.	 If a = b and c = d then D(a, c, b, d) = |Lb ∩ Ld |.
2.	 If a = b and c = d then D(a, c, b, d) = D(a, c, b, p(d))

+|Lb ∩ Ld |.
3.	 If a = b and c = d then D(a, c, b, d) = D(a, c, p(b), d)

+|Lb ∩ Ld |.
4.	 Otherwise D(a, c, b, d) = max(D(a, c, p(b), d), D(a, c,

b, p(d)))+ |Lb ∩ Ld |.

Proof  Each of the cases above holds true as a direct con-
sequence of Lemma 1. � �

Through a straightforward application of the above
lemma, we obtain the following.

Lemma 4  If I1 and I2 denote the heights of T1 and T2 ,
respectively, Pairwise Alignments on a Tree is solva-
ble in O(|V1||V2|I1I2 + |L(T1)| + |L(T2)|) time and space.

Proof  The algorithm is a straightforward implemen-
tation of Observation 1 and Lemma 3. Namely, from
Observation 1 it follows that the values of |La ∩ Lb| ,
for all a ∈ V1 and b ∈ V2 , can be computed by the
use of algorithm having time and space complexity
O(|V1||V2| + |L(T1)| + |L(T2)|) . After computing these
values, all entries in D can be computed in the time and
space that are proportional to the number of all pos-
sible combinations of a, b, c, d, which is bounded by
|V1||V2|I1I2 . Now, combining the above with the obvious
inequality |V1||V2|I1I2 ≥ |V1||V2| , we have that the over-
all time and space complexity of the proposed algorithm
is O(|V1||V2|I1I2 + |L(T1)| + |L(T2)|) . � �

T1 ∅

A, B

C D

G E, F

T2 ∅

B

A

C, D, E G F

T ′
1 ∅

A, B

C D

G E, F

T ′
2 ∅

B

A

C, D, E G

T̃1 = T̃2 ∅

B

A

∅

G

D

E

a b

c

Fig. 4  a T1 and T2 before applying the first step from Observation 4, b T ′1 and T ′2 obtained from T1 and T2 from a after first step of deleting vertices
which do not belong to paths between root and crucial vertices, c the resulting tree T̃1 = T̃2 after applying second step

Page 10 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

Given a common tree T for T1 and T2 , let
M : V (T1) ∪ V (T2) → V (T1) ∪ V (T2) be the (partial)
bijective mapping between those vertices v in T1 and w
in T2 , which correspond to crucial vertices in T, such that
M(v) = w and M(w) = v only if v and w have the same
crucial vertex in T.

Observation 5  For any pair of vertices a, b ∈ V1
(or V2 ) which correspond to a vertex in the common
tree the lowest common ancestor of a and b, namely
lca(a, b) , has a mapping, M(lca(a, b)) which is equal to
lca(M(a),M(b)) . For any triplet of vertices a, b, c ∈ V1
(or V2 ), the lowest common ancestor of a, b is equal
to the lowest common ancestor of b, c if and only if
lca(M(a),M(b)) = lca(M(b),M(c)).

Proof  The observation follows straightforwardly from
the construction of correspondence. For that notice that
the least common ancestor of vertices can correspond
only the least common ancestor in the common tree
because we may apply only operations of expanding for
internal vertices. � �

We now present our algorithm for computing the size
of a maximum common tree, which is a combination of
dynamic programming and an algorithm for finding a
maximum cost matching.

Theorem 1  The mapping which corresponds to a
maximum common tree can be computed in time
O(|V1||V2|(|V1| + |V2|) log(|V1| + |V2|)+ |V1||V2|I1I2+

|L(T1)| + |L(T2|).

Proof  For i ∈ {1, 2} and x ∈ Vi , let Ti(x) be the subtree
of Ti rooted at vertex x and let T ′

i (x) be the multi-labeled
tree that is identical to Ti(x) except that no labels are
assigned to its root x. Let G(a, b) be the size of the max-
imum common tree of T1(a) and T2(b) . We now define
for those vertices a ∈ V1, b ∈ V2 , such that M(a) = b ,
the function G′ : V1 × V2 → N as the size of the maxi-
mum common tree between subtrees T ′

1(a) and T ′
2(b)

(more specifically the number of common labels between
T ′
1(a) and T ′

2(b)—by definition excluding the labels of a
and b themselves). Notice that G(a, b) is not necessarily
equal to G′(a, b) , since (i) if a and b do not correspond
to each other G′(a, b) is undefined, and (ii) La or Lb are
not necessarily empty. Rather, as will be shown below,
G(a, b) = max(x,y)∈V1(a)×V2(b)[G

′(x, y)+ D(a, b, x, y)] . The
choice of vertices x and y corresponds to the choice of

vertices which are mapped to each other and has the
minimal depth among all such vertices in T1 and T2.

The key observation of our algorithm is that the com-
putation of G′(a, b) can be reduced to finding a maximum
“cost” matching for an auxiliary graph. Let a1, . . . , an be
the children of a, and b1, . . . , bm be the children of b. The
structure conditions on mapping provide the guaran-
tee that all vertices which are leaves of downward paths
from a without internal crucial vertices, lie in distinct
subtrees. Using the Observation 5 this implies that each
such vertex lies in distinct subtrees with roots a1, . . . , an
and b1, . . . , bm . We know inductively that G(ai, bj) =

maxc∈V (T1(ai)),d∈V (T2(bj))(G
′(c, d)+ D(ai, bj , c, d)).

Consider now all possible bijections N between equal
sized subsets of {a1, . . . , an} and {b1, . . . , bm} . Then
G′(a, b) = maxN

∑

(x,y)∈N G(x, y) . The problem of
choosing an optimal N thus trivially reduces to the well
known maximum weighted bipartite matching problem,
which can be solved in a polynomial time [34]. For that
we can construct a bipartite graph on the set of vertices
a1, . . . , an and b1, . . . , bm with the cost of an edge (ai, bj)
equal to G(ai, bj) and return the score of an optimal
assignment in this graph (with n+m vertices and nm
edges) as G′(a, b) . Note that if one or both of a or b are
leaves then G′(a, b) = 0 . See Fig. 5 as an illustration of
constructing graph Q. We provide an example of how our
algorithm works in Appendix 2.

The time to construct auxiliary graphs is bounded
by O(|V1||V2|I1I2) . The computational bottleneck of
this algorithm is however the bipartite matching pro-
cedure: for a graph with n vertices and m edges it
takes O(nm log n) time. Let na be the number of chil-
dren of any vertex a in T1 and nb the number of chil-
dren of any vertex b in T2 ; then the total time of our
algorithm is O(

∑

a,b(na + nb)nanb log(na + nb))
which is O(|V1||V2|(|V1| + |V2|) log(|V1| + |V2|)) or
O((|V1|

∑

b n
2
b + |V2|

∑

a n
2
a) log(|V1| + |V2|)) . The sec-

ond bound is significantly better if the maximum degree
of a vertex is bounded by a small value. � �

Discussion and an application
The existing measures and their limitations
There are number of measures in the literature that are
being used to compare clonal trees. Two of the most
widely used measures include: (1) Ancestor–Descendant
Accuracy (ADA), measure which considers only muta-
tions originating at vertices (clones) which are in ances-
tor–descendant relationship in the true tree and returns
the fraction of pairs of such mutations for which the

Page 11 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

relationship is preserved in the inferred tree. (2) Differ-
ent-Lineage Accuracy (DLA), defined analogously as
ADA, where only pairs of mutations originating from
different clones which are in neither ancestor–descend-
ant nor descendant–ancestor relationship are considered.
In addition to these two measures, used in [10–12, 35]
and elsewhere, (3) Clustering Accuracy (CA) [10] and
(4) Co-Clustering Accuracy (CCA) [35] were also intro-
duced in order to measure the accuracy in the place-
ment of mutations originating from the same clone in
true tree. CA measures the fraction of label pairs that are
both co-located in the same vertex in both trees, whereas
CCA measures the proximity in the inferred tree of pairs
of mutations originating from the same clone in true
tree (see [10] and [35] for definitions of CA and CCA).
Finally, (5) Pair-wise Marker Shortest Path “dissimilarity”
(PMSPD) [13] is (symmetric) “dissimilarity” measure cal-
culated as the sum, over all label pairs, of the absolute dif-
ference of path length between the two labels in true tree
with the equivalent length calculated in the inferred tree.

All of the above mentioned are designed to compare
inferred tree against the given true tree and no single
measure can capture the overall similarity/difference
between two arbitrary trees. Furthermore, for each of the

measures there exist cases where it returns high similar-
ity for topologically very different true and inferred trees.
We will illustrate this below by presenting several exam-
ples using trees from Fig. 6 where true tree and four trees
inferred by (hypothetical) methods are shown. Each ver-
tex in any one of these trees have one or more labels (cor-
responding to mutations in clonal trees) represented by
A,B,C , . . . , J .

For ADA measure, one needs to consider all pairs
of labels in the true tree: {(A,B), (A,C), (A,D), (A,E),
(A, F), (A,G), (A,H), (A, I), (A, J)} . We see that ‘Inferred
tree 1’ has the maximum score despite being topologi-
cally very different from ‘True tree’. The same tree can be
used as an illustration for the limitations of DLA measure
where the following set of label pairs need to be considered
in true tree {(B,G), (B,H), (B, I), (B, J), (C ,G), (C ,H),

(C , I), (C , J), (D,G), (D,H), (D, I), (D, J), (E,G), (E,H),

(E, I), (E, J), (F ,G), (F ,H), (F , I), (F , J)} . Clustering of
mutations in ‘Inferred tree 4’ is in the perfect agreement
with the clustering in the ‘True tree’ hence both CA and
CCA measures will return maximum score for this tree,
even though it is also topologically very different from
‘True tree’. Finally, the calculation of the PMSPD meas-
ure between the ‘True tree’ and ‘Inferred tree 1’, as well as
‘Inferred tree 2’, is shown in Fig. 7. This measure assigns
the same score to these two inferred trees, despite the
fact that ‘Inferred tree 2’ is, from the perspective of inter-
preting tumor evolution, much closer to ‘True tree’.

Applications of MLTD
In order to facilitate the interpretation of results,
for two arbitrary trees T1 and T2 , in addition to the
MLTD similarity measure which returns the num-
ber of mutations in common tree of T1 and T2 and is
denoted here as MLTD(T1,T2) , we also introduce
MLTD-normalized(T1,T2) defined as MLTD(T1,T2)

max(a,b)  , where
a and b denote number of mutations in T1 and T2 . MLTD-
normalized can be interpreted as similarity measure
which takes values from [0, 1], with higher values denot-
ing higher similarity among trees. In the discussion of
results below, all presented scores represent MLTD-
normalized similarity measure, although it is obviously
equivalent to MLTD (assuming that the sets of vertex
labels are known for both trees, which is true in all of our
comparisons).

a

a1 a2

F1

T1(a)

F2

b

b1
b2

b3

T2(b)

H1 H2 H3

a1

a2

b1

b2

b3

c(F1, H1) = max
c∈F1,d∈H1

(D(a1, b1, c, d) +G(c, d))Q

Fig. 5  Trees T1(a) , T2(b) and a graph Q constructed for a subproblem
G′(a, b) from Theorem 1

Page 12 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

Application to the synthetic examples with the available
ground truth
In this section we discuss similarity between true and
inferred trees shown in Fig. 6.

‘Inferred tree 1’ has relatively low score equal to 0.3
which rewards the proper placement of mutation A and

correctly inferred phylogenetic relations for pairs of
mutations originating from different clones, but penal-
izes for extensive branching which leads to the inaccurate
placement to different branches of mutations originating
from the same clone, as well as to significant topological
differences between this and true tree. In contrast, and

 a True tree

b Inferred tree 1

c Inferred tree 2 d Inferred tree 3 e Inferred tree 4
Fig. 6  a True clonal tree depicting the evolution of hypothetical tumor. b–e Hypothetical trees inferred by methods for reconstructing history of
tumor evolution (input data to these methods is assumed to be obtained from the hypothetical tumor mentioned in the description of ‘True tree’).
These trees are used as examples which demonstrate limitations of the existing measures for calculating similarity/“dissimilarity” between true and
each of the four inferred trees (details provided in "The existing measures and their limitations" section). In "Application to the synthetic examples
with the 56available ground truth" section we discuss the application of MLTD in calculating similarities between these pairs of trees

Page 13 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

a b c
Fig. 7  “Dissimilarities" between pairs of labels required for calculating Pair-wise Marker Shortest Path “dissimilarity” (PMSPD) for trees from Fig. 6.
Entries in each matrix represent length of path between labels (note that labels are shown in the first row and the first column of each matrix).
“Dissimilarity” is calculated as the sum of absolute values of differences between pairs of entries which are at the same position in both matrices.
Red colored entries in labels pairwise “dissimilarity” matrix shown in b, c differ from the corresponding entries in matrix for true tree shown in a and
therefore contribute to the overall “dissimilarity”. PMSPD assigns the same score to ‘Inferred tree 1’ and ‘Inferred tree 2’, despite the fact that ‘Inferred
tree 2’ is, from the perspective of interpreting tumor evolution, much closer to ‘True tree’

a b

Fig. 8  Clonal trees of tumor evolution, inferred by SiFit and PhISCS, for triple-negative breast cancer (TNBC) dataset originally published in [37]
and consisting of the binary presence/absence profile of 22 mutations across 16 single cells. Names of the clones are assumed not to be included
as part of the vertex label. Trees are very similar to each other in placement of the vast majority of mutations: (i) Clone 1 in the SiFit tree is almost
identical (with respect to the set of mutations assigned to its label) to Clone 1 in PhISCS tree (ii) Clone 2 in SiFit tree is split into two adjacent clones,
namely Clone 2 and Clone 3, in PhISCS tree. Analogous applies to Clone 7. (iii) The order of mutations in genes CHRM5 and TGFB2, as well as in most
other pairs of mutations (including the pairs where both mutations are at the same vertex), is same among the trees. Notable exceptions leading to
some dissimilarities between the trees include mutations in genes MAP3K4 and ECM1. In addition, mutations in genes CBX4 and TNC are absent in
tree reported by SiFit. Removing these four mutations and their corresponding vertices from each tree (if present) and assigning each of the Clone
4 and Clone 7 in SiFit tree as child of Clone 2, and Clone 7 as child of Clone 3 in PhISCS tree, we obtain trees which are same up to the existence of
splits of single into two adjacent clones belonging to the same lineage (see (ii) from above). MLTD-normalized score for the two trees equals 0.82,
which well reflects the overall high topological similarity and concordance in ordering pairs of mutations

Page 14 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

as expected based on our discussion from the introduc-
tion, ‘Inferred tree 2’ (which represents slightly refined
version of ‘True tree’ where green and yellow clones
are each split into two adjacent clones belonging to the
same branch) and ‘Inferred tree 3’ (which represents fully
resolved mutation tree that can be obtained from ‘True
tree’) both have score 1. ‘Inferred tree 4’, having score 0.6,
is rewarded for the proper placement of mutation A and
large cluster of mutations appearing for the first time at
green clone, but is penalized for inaccurate placement of
yellow clone from where 4 out of 10 mutations originate.

Application to real data
In order to demonstrate the application of measure
developed in this work in real settings where true tree is
usually not available, we analyzed two datasets obtained
by sequencing real samples of triple-negative breast can-
cer (TNBC) and acute lymphoblastic leukemia (ALL). For
each sample, we inferred trees of tumor evolution by the
use of SCITE [5], SiFit [3] and PhISCS [36]. We provide
more details about these methods and parameters used
in running them, as well as details of obtaining real data,
in Appendix 1. Inferred trees and very detailed discus-
sion of the calculated MLTD-normalized scores for pairs
of inferred trees are shown in Figs. 8, 9 (for the TNBC
sample) and Fig. 10 (for the ALL sample). We show that
MLTD-normalized score recognizes high similarity in
the placement of vast majority of mutations between two
trees (as demonstrated for trees inferred by PhISCS and
SiFit for TNBC sample where score equals 0.82), but also
penalizes for topological differences and different sort-
ing of mutations along linear chains (as demonstrated for
trees inferred by SCITE and SiFit for ALL sample where
the score equals 0.69).

Fig. 9  Mutation tree for TNBC dataset (see Fig. 8 for details) inferred
by SCITE. This tree can be obtained from PhISCS tree by expanding
vertices having more than one label, hence MLTD-normalized
score between the two trees is maximum possible (i.e. equals 1).
Compared with tree inferred by SiFit, SCITE tree has analogous
topological similarities and differences as tree inferred by PhISCS, and
MLTD-normalized score for these two trees is also equal to 0.82

◂

Page 15 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

Authors’ contributions
NK, SM, and MKR contributed equally and their names are listed in alphabetic
order. All authors collaborated on the writing of the manuscript. All authors
read and approved the final manuscript.

Funding
SCS is supported in part by NSF Grant CCF-1619081, NIH Grant GM108348,
and the Indiana University Grant Challenges Program, Precision Health Initia-
tive. NK is partially supported by NSF CCF-1525024 and IIS-1633215. SM is
supported by a Vanier Canada Graduate Scholarship.

Availability
We have implemented our algorithm to compute MLTD and successfully
applied it to a variety of data sets. The source code of the implementation can
be found at: https​://githu​b.com/khale​d-rahma​n/MLTED​.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, Indiana University, Bloomington, IN, USA.
2 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada.

Appendix 1: Details of obtaining trees of tumor
evolution for the real data sets
Summary of methods used for inferring trees of tumor
evolution
In this work, we inferred trees of tumor evolution by the
use of SCITE [5], SiFit [3] and PhISCS.3 Each of the meth-
ods takes as the input single-cell sequencing (SCS) data
matrix and estimated noise rates of SCS experiment. The

a b
Fig. 10  Trees inferred by SCITE and SiFit for acute lymphoblastic leukemia (ALL) patient dataset from [38] consisting of 115 single cells and 16
mutations. Unsurprisingly, due to large number of single-cells in this dataset, sequencing noise and similarities in the scoring schemes used in
PhISCS and SCITE (see Appendix 1: Details of obtaining trees of tumor evolution for the real data sets) both methods report the same mutation
tree so we only focus on SCITE in this discussion. The most notable difference among the two trees is in the placement and ordering of mutations
in genes ZC3H3, XPO7 and BRD7P3 as well as in the ordering of mutations in genes FGD, RRP8, FAM105A, BDNF-AS and PCDH7. Furthermore, the
relative order also differs for mutations in genes TRRAP and ATRNL1. However, in contrast to these important differences, the trees still share most
of the major branching events in tumor evolution and have consistent ancestor–descendant order for most of the pairs of mutations. All these are
reflected in MLTD-normalized score of 0.69 assigned to this pair of trees

3  Available at https​://githu​b.com/haghs​henas​/PhISC​S.

https://github.com/khaled-rahman/MLTED
https://github.com/haghshenas/PhISCS

Page 16 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

underlying scoring used in PhISCS is analogous to that
in SCITE and the major difference among the two meth-
ods is in the type of tree returned in the output. While
SCITE searches for the maximum likelihood mutation
tree, PhISCS reports the maximum likelihood clonal tree.
Due to the equivalence in tree scoring, assuming that both
methods find the optimal solution, clonal tree reported
by PhISCS is expected to represent compressed version
of mutation tree reported by SCITE (i.e. we expect that
tree reported by SCITE belongs to the set of mutation
trees which can be obtained from clonal tree reported
by PhISCS). Similarly as PhISCS, SiFit also returns clonal
tree of tumor evolution but uses different tree search
methodology and does not necessarily yield the same out-
put as PhISCS nor SCITE (as demonstrated in [3]).

Details of obtaining input data and running SCITE, SiFit
and PhISCS
We obtained binary SCS data mutation matrix for TNBC
patient sample from [39] and for ALL patient sample from
[38]. For each sample, false positive and false negative rates
of sequencing experiment were estimated in the original
studies [37, 38] and provided as the input to the methods
used in the analysis. In order to obtain better convergence,
we run MCMC based methods SiFit and SCITE for very
large number of iterations. For SiFit, we set number of
iterations to 5,000,000. For SCITE we set number of repeti-
tions of the MCMC to 3 and chain length of each MCMC
repetition to 1,000,000. PhISCS is combinatorial optimiza-
tion based method which provided guarantee of the opti-
mality for each solution.

Appendix 2: Demonstration of algorithm
with an example
In this section, we will illustrate how the maximum
common tree of trees from Fig. 11 is found using our
algorithm. For the convenience of notation, since each

label appears at exactly one vertex, we will use a string
of concatenated labels as a unique identifier of a vertex.
For example, vertex having labels c, d, e (blue vertex in
the second tree) will be denoted as cde.

The first part of our algorithm consists of computing
4-dimensional table D (see Lemma 3 for a definition). As
computation of D is a straightforward application of the
dynamic programming, here we will skip details of this
step and proceed directly to demonstrating how table G′
is computed. As defined earlier, for any pair of vertices
x ∈ V1, y ∈ V2 , such that M(x) = y , G′(x, y) represents
the size of the maximum common tree between sub-
trees rooted at x and y, namely T ′

1(x) and T ′
2(y)—exclud-

ing the root labels. Since our algorithm for computing
G′ is recursive, we present how G′ is computed in several
steps, starting from the leaves of the two trees and then
propagating towards the roots.

The first step for computing G′ is shown in Table 1. In
this step, all entries G′(u, v) of G′ , where either u is a leaf
in T1 or v is a leaf in T2 , are computed (as 0 by definition).

Next, we compute G′ for a pair of vertices each with a
single child (specifically, vertices {h} , {g} in tree T1 , and
{g} , {hi} in T2 ) easily—since the optimal matching con-
tains only one edge (see Table 2).

a,b

c,d,e f g

h,i

j

a,b

c h

d,e f g

i,j

Fig. 11  Two multi-labeled trees, T1 (on the left) and T2 (on the right)
to be compared

Table 1  The table G′ with entries computed for the cases
when vertex from the first tree is a leaf (such vertices are
de, f and ij) or vertex from the second tree is a leaf (such
vertices are cde, f, and j)

Rows and columns of the table respectively correspond to the vertices from the
first and the second tree

G
′ {ab} {cde} {f} {g} {hi} {j}

{ab} – 0 0 – – 0

{c} – 0 0 – – 0

{h} – 0 0 – – 0

{de} 0 0 0 0 0 0

{f } 0 0 0 0 0 0

{g} – 0 0 – – 0

{ij} 0 0 0 0 0 0

Table 2  The table G′ updated for entries corresponding
to vertices from T1 and T2 each with a single child

G
′ {ab} {cde} {f} {g} {hi} {j}

{ab} – 0 0 – – 0

{c} – 0 0 – – 0

{h} – 0 0 2 1 0

{de} 0 0 0 0 0 0

{f } 0 0 0 0 0 0

{g} – 0 0 2 1 0

{ij} 0 0 0 0 0 0

Page 17 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

Every other entry in the table correspond to a non-
trivial subproblem which involves the computation of a
maximum matching. First we consider the cases where
one of the vertices has a single child. In this case comput-
ing the cost of maximum cost matching is relatively sim-
ple as one needs to compare the single child of the root of
one tree to every child of the root on the other tree (see
Table 3).

At this point in the example, the only entries that
remain to be computed are G′(ab, ab) and G′(c, ab) .
For these entries we need to solve non-trivial instances
of maximum cost matching. Recall that the construc-
tion of an auxiliary graph requires information about
the values of some entries in the table G, where entry
G(u, v) is defined as the size of maximal common tree
between subtrees T1(u) and T2(v) . Also recall that
G(a, b) = maxc∈V (T1(a)),d∈V (T2(b))(G

′(c, d)+ D(a, b, c, d))
and for computing entries of G we just need to pick
the maximum value among a few values which were

computed before. Finally recall the connection between
G and costs in the auxiliary graph for computing G′(u, v) :
the auxiliary graph is a complete bipartite graph with the
children of u on one side and children of v on the other
side such that the cost of any given edge (a, b) is G(a, b).

The entries G(u, v) are given in Tables 4, 5. [We skip the
details on how these entries are computed since they fol-
low from the values G′(u, v) .] Let’s first focus on comput-
ing G′(c, ab) . For this case, the relevant auxiliary (bipartite)
graph edge costs G(u, v) are provided in Table 4. We can
now compute the value of G′(c, ab) : as the maximum cost
matching between the children of c in T1 and the children
of ab in T2 is between (1) de in T1 and cde in T2 as well
as (2) f in T1 and f in T2 , the total cost of the matching is
2+ 1 = 3—implying that G′(c, ab) is also equal to 3.

For G′(ab, ab) , the relevant edge costs of the auxiliary
graph can be found in Table 5. Again, it is easy to see
that the cost of the maximum cost matching and thus the
value of G′(ab, ab) is equal to 6. This completes the com-
putation of the table G′ as presented in Table 6.

There is one last step to obtain the final answer,
i.e. the value of G(ab, ab). For that recall that
G(a, b) = maxc∈V (T1(a)),d∈V (T2(b))(G

′(c, d)+ D(a, b, c, d)).
Thus if we want to compute the value G(ab, ab) we should
use the values from the array D which contains answers
on the corresponding instances of the set alignment
problem. In the following table, we present these values
(answers on instances of the set alignment problem).

Table 3  The table G′(u, v) with entries (u, v) updated
for the cases when either u or v (but not both) has only one
child

G
′ {ab} {cde} {f} {g} {hi} {j}

{ab} – 0 0 3 1 0

{c} – 0 0 0 0 0

{h} 3 0 0 2 1 0

{de} 0 0 0 0 0 0

{f } 0 0 0 0 0 0

{g} 2 0 0 2 1 0

{ij} 0 0 0 0 0 0

Table 4  The costs of relevant edges in the auxiliary graph
for computing the value of G′(c,ab) : note that the cost
for the edge (u, v) is exactly value of G(u, v), the size
of the maximum common subtree between T1(u) and T2(v)

For computing G′(c, ab) we only need the values G between each child of vertex
c in T1 (i.e. de and f) and that of vertex ab in T2 (i.e. cde, f, g)

G {cde} {f} {g}

{de} 2 0 0

{f } 0 1 0

Table 5  The costs of relevant edges in the auxiliary graph
for computing the value of G′(ab,ab) : we only provide
those values for edges between each child of vertex ab
in T1 (i.e. c and h) that of vertex ab in T2 (i.e. cde, f, and g)

G {cde} {f} {g}

{c} 3 1 0

{h} 0 0 3

Table 6  The table G′ after filling all entries

G
′ {ab} {cde} {f} {g} {hi} {j}

{ab} 6 0 0 3 1 0

{c} 3 0 0 0 0 0

{h} 3 0 0 2 1 0

{de} 0 0 0 0 0 0

{f } 0 0 0 0 0 0

{g} 2 0 0 2 1 0

{ij} 0 0 0 0 0 0

Table 7  The slice of the 4-dimensional array D(x, y, u, v)
if we fix the first two index values as x = ab and y = ab

Here the entry in the u-th row and v-th column represents D(ab, ab, u, v)

D(ab, ab) {ab} {cde} {f} {g} {hi} {j}

{ab} 2 2 2 2 2 2

{c} 2 3 2 2 2 2

{h} 2 2 2 2 2 2

{de} 2 5 2 2 2 2

{f } 2 3 3 2 2 2

{g} 2 2 2 3 4 4

{ij} 2 2 2 3 4 5

Page 18 of 18Karpov et al. Algorithms Mol Biol (2019) 14:17

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

Combining Tables 6, 7 we compute the value of G(ab, ab)
to be equal to 8 = 6+ 2.

Received: 31 January 2019 Accepted: 15 July 2019

References
	1.	 Nowell PC. The clonal evolution of tumor cell populations. Science.

1976;194(4260):23–8.
	2.	 Kuipers J, et al. Advances in understanding tumour evolution through

single-cell sequencing. Biochim Biophys Acta. 2017;1867(2):127–38.
	3.	 Zafar H, et al. Sifit: inferring tumor trees from single-cell sequencing data

under finite-sites models. Genome Biol. 2017;18(1):178.
	4.	 Kim KI, Simon R. Using single cell sequencing data to model the evolu-

tionary history of a tumor. BMC Bioinform. 2014;15(1):27.
	5.	 Jahn K, et al. Tree inference for single-cell data. Genome Biol.

2016;17(1):86.
	6.	 Strino F, et al. Trap: a tree approach for fingerprinting subclonal tumor

composition. Nucleic Acids Res. 2013;41(17):165165.
	7.	 Jiao W, et al. Inferring clonal evolution of tumors from single nucleotide

somatic mutations. BMC Bioinform. 2014;15(1):35.
	8.	 Hajirasouliha I, et al. A combinatorial approach for analyzing intra-tumor

heterogeneity from high-throughput sequencing data. Bioinformatics.
2014;30(12):78–86.

	9.	 Deshwar AG, et al. Phylowgs: reconstructing subclonal composition and
evolution from whole-genome sequencing of tumors. Genome Biol.
2015;16(1):35.

	10.	 El-Kebir M, et al. Reconstruction of clonal trees and tumor composition
from multi-sample sequencing data. Bioinformatics. 2015;31(12):62–70.

	11.	 Popic V, et al. Fast and scalable inference of multi-sample cancer lineages.
Genome Biol. 2015;16(1):91.

	12.	 Malikic S, et al. Clonality inference in multiple tumor samples using
phylogeny. Bioinformatics. 2015;31(9):1349–56.

	13.	 Ross EM, Markowetz F. Onconem: inferring tumor evolution from single-
cell sequencing data. Genome Biol. 2016;17(1):69.

	14.	 El-Kebir M, et al. Inferring the mutational history of a tumor using multi-
state perfect phylogeny mixtures. Cell Syst. 2016;3(1):43–53.

	15.	 Donmez N, et al. Clonality inference from single tumor samples using
low-coverage sequence data. J Comput Biol. 2017;24(6):515–23. https​://
doi.org/10.1089/cmb.2016.0148.

	16.	 Wagner RA, Fischer MJ. The string-to-string correction problem. J ACM.
1974;21(1):168–73. https​://doi.org/10.1145/32179​6.32181​1.

	17.	 Backurs A, Indyk P. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In: Proceedings of STOC. 2015. pp.
51–8. https​://doi.org/10.1145/27465​39.27466​12.

	18.	 Muthukrishnan S, Sahinalp SC. An efficient algorithm for sequence com-
parison with block reversals. Theor Comput Sci. 2004;321(1):95–101. https​
://doi.org/10.1016/j.tcs.2003.05.005.

	19.	 Shapira D, Storer JA. Edit distance with block deletions. Algorithms.
2011;4(1):40–60. https​://doi.org/10.3390/a4010​040.

	20.	 Zhang K, Shasha DE. Simple fast algorithms for the editing distance
between trees and related problems. SIAM J Comput. 1989;18(6):1245–
62. https​://doi.org/10.1137/02180​82.

	21.	 Jiang T, et al. Alignment of trees—an alternative to tree edit. Theor Com-
put Sci. 1995;143(1):137–48. https​://doi.org/10.1016/0304-3975(95)80029​
-9.

	22.	 Kuo-Chung T. The tree-to-tree correction problem. J ACM.
1979;26(3):422–33. https​://doi.org/10.1145/32213​9.32214​3.

	23.	 Klein PN. Computing the edit-distance between unrooted ordered trees.
In: Algorithms—ESA ’98, 6th annual European symposium, Venice, Italy,
August 24–26, 1998, Proceedings. pp. 91–102. https​://doi.org/10.1007/3-
540-68530​-8_8.

	24.	 Chen W. New algorithm for ordered tree-to-tree correction problem. J
Algorithms. 2001;40(2):135–58. https​://doi.org/10.1006/jagm.2001.1170.

	25.	 Zhang K. Algorithms for the constrained editing distance between
ordered labeled trees and related problems. Pattern Recogn.
1995;28(3):463–74. https​://doi.org/10.1016/0031-3203(94)00109​-Y.

	26.	 Shasha D, Zhang K. Fast algorithms for the unit cost editing dis-
tance between trees. J Algorithms. 1990;11(4):581–621. https​://doi.
org/10.1016/0196-6774(90)90011​-3.

	27.	 Selkow SM. The tree-to-tree editing problem. Inf Process Lett.
1977;6(6):184–6. https​://doi.org/10.1016/0020-0190(77)90064​-3.

	28.	 Jansson J, Lingas A. A fast algorithm for optimal alignment between
similar ordered trees. Fundam Inform. 2003;56(1–2):105–20.

	29.	 Chen W. More efficient algorithm for ordered tree inclusion. J Algorithms.
1998;26(2):370–85. https​://doi.org/10.1006/jagm.1997.0899.

	30.	 Kilpeläinen P, Mannila H. Ordered and unordered tree inclusion. SIAM J
Comput. 1995;24(2):340–56. https​://doi.org/10.1137/S0097​53979​12182​
02.

	31.	 Matoušek J, Thomas R. On the complexity of finding iso- and other mor-
phisms for partial k-trees. Discret Math. 1992;108(1–3):343–64. https​://doi.
org/10.1016/0012-365X(92)90687​-B.

	32.	 Zhang K, Jiang T. Some MAX SNP-hard results concerning unor-
dered labeled trees. Inf Process Lett. 1994;49(5):249–54. https​://doi.
org/10.1016/0020-0190(94)90062​-0.

	33.	 Bille P. A survey on tree edit distance and related problems. Theor Com-
put Sci. 2005;337(1–3):217–39. https​://doi.org/10.1016/j.tcs.2004.12.030.

	34.	 Fredman ML, Tarjan RE. Fibonacci heaps and their uses in improved
network optimization algorithms. J ACM. 1987;34(3):596–615. https​://doi.
org/10.1145/28869​.28874​.

	35.	 Malikic S, et al. Integrative inference of subclonal tumour evolution from
single-cell and bulk sequencing data. In: Proceedings of RECOMB. 2018.

	36.	 Malikic S, et al. Phiscs—a combinatorial approach for sub-perfect
tumor phylogeny reconstruction via integrative use of single cell
and bulk sequencing data. 2018. bioRx​iv:10.1101/37699​6. https​://
doi.org/10.1101/37699​6. https​://www.biorx​iv.org/conte​nt/early​
/2018/07/25/37699​6.full.pdf.

	37.	 Wang Y, et al. Clonal evolution in breast cancer revealed by single nucleus
genome sequencing. Nature. 2014;512(7513):155.

	38.	 Gawad C, et al. Dissecting the clonal origins of childhood acute
lymphoblastic leukemia by single-cell genomics. Proc Natl Acad Sci.
2014;111(50):17947–52.

	39.	 Ramazzotti D, et al. Learning mutational graphs of individual tumor
evolution from multi-sample sequencing data. 2017. arXiv preprint arXiv​
:1709.01076​.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1089/cmb.2016.0148
https://doi.org/10.1089/cmb.2016.0148
https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1016/j.tcs.2003.05.005
https://doi.org/10.1016/j.tcs.2003.05.005
https://doi.org/10.3390/a4010040
https://doi.org/10.1137/0218082
https://doi.org/10.1016/0304-3975(95)80029-9
https://doi.org/10.1016/0304-3975(95)80029-9
https://doi.org/10.1145/322139.322143
https://doi.org/10.1007/3-540-68530-8_8
https://doi.org/10.1007/3-540-68530-8_8
https://doi.org/10.1006/jagm.2001.1170
https://doi.org/10.1016/0031-3203(94)00109-Y
https://doi.org/10.1016/0196-6774(90)90011-3
https://doi.org/10.1016/0196-6774(90)90011-3
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1006/jagm.1997.0899
https://doi.org/10.1137/S0097539791218202
https://doi.org/10.1137/S0097539791218202
https://doi.org/10.1016/0012-365X(92)90687-B
https://doi.org/10.1016/0012-365X(92)90687-B
https://doi.org/10.1016/0020-0190(94)90062-0
https://doi.org/10.1016/0020-0190(94)90062-0
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
http://bioRxiv.org/abs/10.1101/376996
https://doi.org/10.1101/376996
https://doi.org/10.1101/376996
https://www.biorxiv.org/content/early/2018/07/25/376996.full.pdf
https://www.biorxiv.org/content/early/2018/07/25/376996.full.pdf
http://arxiv.org/abs/1709.01076
http://arxiv.org/abs/1709.01076

	A multi-labeled tree dissimilarity measure for comparing “clonal trees” of tumor progression
	Abstract
	Introduction
	(Dis)similarity measures between tree representations of tumor evolution

	Definitions
	Multi-labeled tree
	MLTD measure between two multi-labeled trees
	(Dis)similarity between multi-labeled trees in the context of tumor evolution

	Set alignment problem
	Computing a maximum common tree in the general case
	Discussion and an application
	The existing measures and their limitations
	Applications of MLTD
	Application to the synthetic examples with the available ground truth
	Application to real data

	References

