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Abstract 

Background :  As the number of sequenced genomes grows, researchers have access to an increasingly rich source 
for discovering detailed evolutionary information. However, the computational technologies for inferring biologically 
important evolutionary events are not sufficiently developed.

Results :  We present algorithms to estimate the evolutionary time ( tMRS ) to the most recent substitution event from 
a multiple alignment column by using a probabilistic model of sequence evolution. As the confidence in estimated 
tMRS values varies depending on gap fractions and nucleotide patterns of alignment columns, we also compute the 
standard deviation σ of tMRS by using a dynamic programming algorithm. We identified a number of human genomic 
sites at which the last substitutions occurred between two speciation events in the human lineage with confidence. 
A large fraction of such sites have substitutions that occurred between the concestor nodes of Hominoidea and 
Euarchontoglires. We investigated the correlation between tissue-specific transcribed enhancers and the distribution 
of the sites with specific substitution time intervals, and found that brain-specific transcribed enhancers are threefold 
enriched in the density of substitutions in the human lineage relative to expectations.

Conclusions :  We have presented algorithms to estimate the evolutionary time ( tMRS ) to the most recent substitution 
event from a multiple alignment column by using a probabilistic model of sequence evolution. Our algorithms will be 
useful for Evo-Devo studies, as they facilitate screening potential genomic sites that have played an important role in 
the acquisition of unique biological features by target species.
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Background
As sequenced genomes continue to accumulate, a very 
rich source for discovering detailed evolutionary infor-
mation grows. The UCSC genome browser provides 
multiple genome alignments for 100 vertebrate species, 
including humans (the multiz100way track) [1–3].

In previous decades, multiple DNA alignments are often 
used to reconstruct species trees and ancestral nucleotide 
states [4] and many algorithms and softwares are devel-
oped for such purposes. Some of the most used algorithms 
include Neighbor-Joining algorithm [5] and maximal 

likelihood method [4] and Bayesian Markov chain Monte 
Carlo method [6]. These algorithms usually assume evolu-
tionary models that each nucleotide stochastically mutates 
over evolutionary time, and output the most consist-
ent phylogenetic tree from possible (2n− 3)!! rooted or 
(2n− 5)!! unrooted trees for n-species. On the other hand, 
since the species tree of 100 vertebrates of multiz100way 
are basically resolved from the previous studies [7], find-
ing functional genomic sites rather than determining the 
phylogenetic tree is becoming more important application 
as the use of multiple genomic alignments in recent years.

As it is difficult to visually inspect functional regions 
from 100-species alignments, computing genome-wide 
summary statistics is very important. Measuring the 
strength of negative or positive selection is among the 
most popular analyses for screening functional regions 
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of genomes [8–14]. These statistics are computed using 
probabilistic models that model the stochastic processes 
of DNA mutations along phylogenetic species trees, which 
are used in tree reconstruction [4–6], and detect genomic 
regions that show smaller or larger mutation rates using 
likelihood ratio tests or similar probabilistic computations.

Such statistics have advantages over simpler statistics 
that do not assume a particular evolutionary model, such 
as nucleotide frequency of alignment columns and pair-
wise mismatch rates. By using a phylogenetic tree, we 
can appropriately count the number of ancestral muta-
tions that are widespread within extant species. Further, 
stochastic processes can account for multiple nucleotide 
mutations whose effects are not negligible when we study 
evolutionarily distant species. However, only conserva-
tion/divergence measures are not sufficient to extract 
all evolutionarily important events from potential 4100 
nucleotide patterns of a 100-species alignment column.

In this study, we develop algorithms to compute three sta-
tistics, tMRS , σ , and q, for each column of a multiple genome 
alignment based on an evolutionary model that is similar 
to those described above. tMRS is the evolutionary time to 
the most recent substitution event that occurred along the 
lineage of a given target species in the phylogenetic tree. 
Since the confidence in estimated tMRS values varies mark-
edly among alignment columns depending on gap fractions 
and complexity of nucleotide patterns (see Fig. 1 for expla-
nation), we also compute the standard deviation σ of tMRS . 
Further, we compute the probability q that there is no muta-
tion in the target lineage because the estimated tMRS value 
has no meaning in such cases. By filtering out sites with non 
negligible probability of nucleotide conservation over the 
entire target lineage based on q, we can remove highly con-
served sites. By comparing tMRS with speciation time points, 
we can categorize sites by the groups of species that share 
mutation effects with the target species. Such detailed infor-
mation is difficult to obtain from conservation measures. 
Our algorithms can be a very useful tool for screening the 
genomic sites that may have been involved in the acquisition 
of unique biological features by target species.

In the next section, we describe our algorithms to com-
pute tMRS and data processing procedures. We first explain 
the tMRS algorithm on a single edge of phylogenetic tree, 
and then generalize it to account for the entire tree. The 
algorithms for computing σ and q are described in Addi-
tional file 1 as they are very similar to that of tMRS . In the 
result section, we empirically show the correctness of our 
algorithms by posterior sampling of mutation history. We 
also show that our algorithm is fast enough to be applied 
to the entire human genome, and that tMRS statistic is very 
different from other statistics to detect evolutionary con-
servation/divergence of genomic sites. We then apply our 
algorithms to the multiz100way dataset and investigate 

distributions of tMRS in different genomic contexts. In 
particular, we investigate the correlation between tMRS 
distribution on the bidirectionally transcribed enhancers 
and tissue specificity of enhancer activities and found that 
brain-specific transcribed enhancers are threefold enriched 
in the density of tMRS that located in the human lineage.

Method
We first derive formulas for tMRS and other variables for an 
edge of a phylogenetic tree, and then describe how to gen-
eralize them into statistics for the entire phylogenetic tree.

Single edge case
A continuous-time Markov model for nucleotide 
sequence evolution can be defined by a differential equa-
tion that determines the time evolution of the probability 
of observing each nucleotide:

where p(a|b,  t) represents the probability of observing 
base a at time t conditioned on base b being observed at 
time zero; Nuc = {A,C ,G,T } = {1, 2, 3, 4} represents 
the set of nucleotides; δij represents the Kronecker delta, 
which is 1 if i = j and is 0 otherwise; and R = {Rij} repre-
sents the substitution rate matrix. The solution is given by 
a matrix exponential, which can be numerically computed 
by using the eigenvalue decomposition of rate matrix 
R = U�U−1 ( � = diag(�1, . . . , �4) ) as follows [15],

Similar to the scalar exponential function, a matrix expo-
nential has an infinite product representation,

where Q = (I + tR/N ) . The matrix Q satisfies the con-
dition of a transition matrix of a discrete Markov pro-
cess for sufficiently large N, and our formula for tMRS 
can be derived via this connection to the discrete 
model. In the second equation, �N (a, b) is the set of all 
paths X along discrete time points 0, . . . ,N  such that 
X = {Xk ∈ Nuc|k = 0, . . . ,N ,XN = a,X0 = b} . Then, the 
summand of the second equation can be interpreted as the 
probability of substitution history P(XN ,XN−1, . . . ,X1|X0) . 
In the discrete model, the random variable TMRS that rep-
resents the time to the most recent substitution is given by

∂
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where I(·) is the indicator function. Note that in 
the first equation, we define TMRS = t if path X has 
no substitution at all. In the second line, we used 
I(a  = b) = 1− I(a = b) , and the two terms in the sec-
ond line mostly cancel out to give the third line. Then, the 
expected value tMRS of TMRS is given by

where QD is the diagonal part of Q.
In order to take the continuum limit ( N → ∞ ), we use 

formulas such as

where RD is the diagonal part of rate matrix R. By using 
these formulas, tMRS can be computed using the follow-
ing formulas
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where R = U�U−1 and � = diag(�1, . . . , �4) is an eigen-
value decomposition of rate matrix R. The formulas for 
the standard deviation σ of TMRS and probability q of no 
substitution can be derived in similar manners and given 
by

The derivation of each above formula is described in 
Additional file 1.

Strand symmetric rate matrix
Let ac be the complementary nucleotide of nucleo-
tide a. A rate matrix R is strand symmetric if it satisfies 
Racbc = Rab for all a, b ∈ Nuc [16]. Strand non-symmetric 
rate matrices such as the general time reversible (GTR) 
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Table 1  Rate parameters

RSymmetric and RGTR represent the rate parameters of strand symmetric and 
general time reversible (GTR) models, respectively. Matrix indices are ordered 
such that i, j ∈ {1, 2, 3, 4} = {A, C ,G, T } . π∗ is the equilibrium distribution of 
the GTR model. Diagonal elements are determined by the Markov condition 
∑

i Rij = 0

RSymmetric =







∗ α β γ

η ∗ δ ǫ

ǫ δ ∗ η

γ β α ∗


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
, RGTR =


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∗ πAα πAβ πAγ

πCα ∗ πCδ πCǫ

πGβ πGδ ∗ πGη

πT γ πT ǫ πTη ∗







Fig. 1  Time to most recent substitution tMRS . These schematically 
show the situations that may impact the confidence levels of 
inferred tMRS values. The leaf nodes correspond to the target species 
are indicated by rectangles. In the left figure, we expect the last 
substitution occurred between node x and y, and tMRS will be around 
t1 to t1 + t2 . In the middle figure, the pattern of alignment column is 
not simple, and the state of node y can be either A or G. Therefore, 
the inferred tMRS will have a large variance between t1 to t1 + t2 + t3 . 
In the right figure, there is an ambiguous nucleotide in the column. 
In such cases, the inferred tMRS value is the same as that inferred from 
only three species, and the confidence will accordingly be lower than 
when all four nucleotides are known
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model generally produce different posterior expecta-
tion values if we take the complement of an alignment 
column. Since there is no specific strand direction in 
intergenic regions and the existence of two different 
expectation values for a single genomic site compli-
cates the downstream analyses, we use the most general, 
6-parameter strand symmetric rate matrix. Table 1 shows 
the parametrization of rate matrices of strand symmet-
ric model and GTR model. The parameters are optimized 
together with the edge lengths of the phylogenetic tree 
using the maximum likelihood method. We optimize 
the parameters using a LBFGSB gradient descent pack-
age [17], where we compute the gradient of likelihood 
function exactly using a inside-outside algorithms as 
described in Refs. [4, 18, 19].

where Z(Y ) represents the likelihood of alignment col-
umn Y, π represents the equilibrium distribution for 
rate matrix R, Y (L′) represents the partial alignment col-
umn for a subset of leaf nodes L′ ∈ L ( L : the set of all 
leaf nodes), a = Y (c0) , bk represents the sibling node of 
ck−1 with parent node ck , tn represents the edge length 
between node n and its parent node, L(n) the descendant 
leaves of node n, and Xn represents the random variable 
that represents the nucleotide type at node n. The inside 
variable α(n, i) = P(Y (L(n))|Xn = i) represents the prob-
ability of emitting partial alignment column Y (L(n)) given 
the state at node n is fixed to i. See Fig. 2 for the relations 
between tree nodes and dynamic programming variables. 
Because the range of integration is localized only in the k-
th edge in the above equation, we can compute tMRS using 
a dynamic programming algorithm (Algorithm 1). In 

Phylogenetic tree case
To extend our algorithm to phylogenetic trees, we specify a 
target species that corresponds to a leaf node of a tree and 
consider the path from the leaf node to the root node. Each 
internal node along the path corresponds to the last com-
mon ancestor (concestor) [20] of the target species and some 
extant species. Let C = c0, . . . , cM be the set of concestors 
with cM being the root node and c0 being the leaf node of 
the target for convenience. Further, let si be the fraction of 
path length between the leaf and ck , let skl = (sl − sk) , and 
let t̄ be the total path length from the target leaf to the root. 
Then, the corresponding formula of Eq.  1 is obtained by 
dividing the integration range into sub-intervals between 
neighboring concestors and inserting the probabilities {γk} 
that emit partial alignment columns that are descendants of 
the sister branch of each concestor (see Fig. 2),

(2)
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γk = diag(γ (bk , 1), . . . , γ (bk , 4))

γ (bk , i) =
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j

α(bk , j)p(j|i, tbk )

α(n, i) = P(Y (L(n))|Xn = i),

 
 Algorithm  1, pD(j|i, tck−1

) = [exp(tRD)]ji represents the 
probability of transition j ← i after time t without any 
substitution. κ(i, j) is defined by

β(n, i) = P(Y (L\L(n)),XPa(n) = i) is called an outside 
variable and represents the probability of emitting align-
ment nucleotides other than the descendants L(n) of 
node n with a constraint that the state of the parent node 
Pa(n) is fixed to i. The inside and outside variables are 
computed by using the inside and outside algorithms [4, 
19] resembling the use of forward-backward algorithms 
in linear hidden Markov models. αD(ck , i) is the probabil-
ity that emits the partial alignment column Y (L(n)) with 
no substitution along the target lineage up to concestor 
node ck , given the state of node n is fixed to i.

Similar algorithms can be derived for the stand-
ard deviation σ and the probability of no mutation q as 
described in Additional file 1.

Alignment gaps and ambiguous characters
We treat gap and ambiguous nucleotide characters of 
non-target leaves as missing characters; we sum the 

κ(i, j) = t̄
∑

l

UilU
−1

ljK(sk−1,k t̄RDii, sk−1,k t̄�l).
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probabilities of all possible nucleotide patterns in com-
putation. Then, the probability condition indicates that 
the estimated values are the same as those computed 
from the reduced phylogenetic tree and alignment col-
umns after removal of gaps and ambiguous characters 
and the corresponding edges in the tree. This increases 
the standard deviation σ of estimates tMRS . On the 
other hand, we do not consider the sites if the character 
of the target is a gap or an ambiguous character.

Software availability
We implemented our algorithms in the C++ language. The 
resulting software (‘TMRS’) is available at our website [21].

Dataset and data processing
We downloaded the MAF-formatted Multiz100way mul-
tiple alignment files from the UCSC genome browser 
site, which consists of multiple genome alignments of 100 
vertebrate species, including the human genome version 
hg38. We also downloaded the phylogenetic tree data 
from the PhyloP track, whose edge lengths are trained 
using fourfold degenerate (4d) sites of RefSeq genes 
under the general time reversible model.

We used the topology of the PhyloP phylogenetic tree 
as it is, and trained only the edge lengths of the tree 
as well as the rate parameters of the strand symmet-
ric model. For this, we collected alignment columns at 
human 4d sites based on gene annotations of the Ref-
Gene track from the UCSC site, following Siepel et  al. 
[8] and Pollard et al. [9]. The reason for using 4d sites is 
the higher quality of alignments and higher coverage of 
distant species in the alignments [8, 9], though they may 
be subject to various evolutionary constraints. In order 
to investigate the uncertainty of trained parameters, we 

randomly sampled 100 sets of 4d sites from about three 
million 4d sites in the human genome such that each has 
a given number of sites, ranging from 1 to 105 . We gen-
erated an alignment of concatenated genomic alignment 
columns, and trained parameters based on the maximum 
likelihood method [22], using the LBFGS-B gradient 
descent package [17].

For studying differences in tMRS distributions among 
genes, we sampled 100,000 alignment columns from 
intergenic, CDS, 3′UTR, and 5′UTR sequences based on 
‘Gencode v24 Basic’ track gene models from the UCSC 
site [3].

Anderson et al. [23] identified genomic elements called 
transcribed enhancers in human and other genomes, 
where short RNAs are produced by bidirectional tran-
scription as a result of chromatin openings. From the 
FANTOM5 enhancer atlas site [24], we downloaded the 
coordinates of transcribed enhancers and the list of tissue 
and cell specific enhancers where bidirectional transcrip-
tion occurs in a tissue and/or cell-specific manner.

Results and discussions
Parameter optimization and performance tests
We trained rate matrix {Rij} and tree edge lengths {tk} 
from genomic multiple alignment columns sampled from 
4d sites. We trained 100 sets of parameters with random 
initial points from 100 sets of random-sampled align-
ment columns. Figure 3 (top left) shows the distributions 
of pairwise relative differences of trained parameters 
θ =

(

{Rij}, {tk}
)

 for each number of alignment columns. 
Here, the relative difference between two parameters θ1 
and θ2 is defined by |θ1 − θ2|/max(|θ1|, |θ2|) with |v| being 
the Euclidean norm. It shows the trained parameter con-
verges very well as increasing the number of alignment 
columns. Figure  3 (top right) shows the Pearson corre-
lation coefficient with the tree edge lengths provided in 
the PhyloP track of the UCSC genome browser, which 
was computed using the general time reversible model 
[9]. It shows concordant tree edge lengths (correlation 
coefficient > 0.9 ) are learned despite the differences in 
rate matrix models. Figure  3 (bottom) shows the distri-
butions of the tree path lengths from the leaf node of 
humans to its concestor nodes using parameters trained 
with 100,000 alignment columns. As the variance among 
training sets is very small, we use their mean values as 
the times to concestors before the present and do not 
consider the widths of distributions. Table  2 shows the 
mean rate matrix and equilibrium distribution. The aver-
age transition-transversion rate ratio is about 2.7 in this 
model (see Section 6 in Additional file 1 for the computa-
tion). In the following results, we use 100 sets of param-
eters that are trained from 100,000 alignment columns 

Fig. 2  Inside and outside variables. ck denotes the concestor nodes 
on the target lineage. bk denotes the sibling node of ck−1 . α(bk , ∗) 
represents the inside variable, while β(ck , ∗) represents the outside 
variable. γ (bk , ∗) represents a dynamic programming variable in Eq. 2 
in the main text
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and take averages of tMRS , σ , and q computed for each 
parameter set.

In Fig. 4, we compared ( tMRS , σ , q) computed by our algo-
rithms with the corresponding values obtained from poste-
rior sampling of mutation histories along the phylogenetic 
tree in order to numerically check the correctness of our 
algorithms. It shows the relative errors between two values 
monotonically decrease as the sample size and the fineness 
of discretization increases.

Table  3 shows the runtimes of our C++ implementa-
tion. We used a single ES-2670 v3 2.3 GHz core as the com-
putational platform. As the tMRS , σ , and q values of each 

alignment columns are independently computable, our 
algorithms can deal with the entire human genome with 
reasonable time using a compute cluster.

Comparison with other statistical measures
To show the significance of our algorithms, we compared 
the accuracy with two possible methods of estimating tMRS 
and q. The first method (termed ‘reconstruction’) uses the 
ancestral reconstruction. In this method, we first set the 
nucleotide state of each concestor node ck to the base ack 
with the maximal posterior probability:

Fig. 3  Convergence of optimized parameters. The upper left panel shows the distributions of the pairwise relative differences of inferred 
parameters. The x-axis represents the number of alignment columns used to train the parameters. The upper right panel represents the distribution 
of the correlation coefficients of tree edge lengths between the PhyloP model of the UCSC genome browser site and the inferred parameters. The 
x-axis is the same as that shown in the upper left panel. The bottom panel represents the distributions of inferred time to each concestor from the 
present. The unit is the number of substitutions per site. Each parameter set is trained using 100,000 alignment columns sampled from 4d sites
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Then, we return the middle point of the edge between 
nodes ck−1 and ck as tMRS where ck is the most recent con-
cestor whose reconstructed nucleotides differ from that 
of the target species ack  = Y (c0) . We set q = 1 if there 
is no such ck and we set q = 0 otherwise. The second 
method (termed ‘alignment’) to infer tMRS only considers 
nucleotides of extant species: we return the middle point 
of the edge between nodes ck−1 and ck as tMRS where ck 
is the most recent concestor such that partial align-
ment column Y (L(ck) , which are descendants of ck , 
contain different nucleotide from the target nucleotides 

ack = argmaxiP
(

Xck = i|Y
)

=
1

Z(Y )

∑

j

α(ck , i)p(i|j, tck )β(Pa(ck), j)

∃a ∈ Y (L(ck)), a �= Y (c0) . Similarly to the ‘reconstruc-
tion’ method, We set q = 1 if there is no such ck and we 
set q = 0 otherwise.

To compare the accuracy of our algorithm with these 
approximate algorithms, we simulated evolutionary his-
tory and alignment column of base mutation using forward 
simulation using the phylogenetic model of the previous 
section. We masked nucleotide positions where there are 
gap or ambiguous characters in sampled multiz100way 
alignments in order to imitate the gap patterns of real align-
ments. Details of the simulation algorithm is described 
in Section 6 of Additional file 1. As a result, we obtained 
100,000 alignment columns of 100 species with ‘true’ anno-
tation of tMRS and q ∈ {0, 1}.

Figure 5a shows accuracies of predicting the absence of 
mutation along the target lineage. The x-axis is the frac-
tion of positives in the dataset which was controlled by 
varying threshold of q. Since the ’reconstruction’ and 
’alignment’ methods assign only binary q values, only a 
single point is plotted for each. The y-axis represents the 
ratio of false positives in all the positive predictions (i.e. 

Table 2  Trained rate matrix and equilibrium distribution

The elements of rate matrix RSymmetric and its equilibrium frequency π are shown. 
Parameter variables correspond to matrix RSymmetric in Table 1. We averaged the 
parameters optimized using 100,000 sampled alignment columns in the 4d sites. 
Due to the symmetry of rate matrix, complementary nucleotides have the same 
equilibrium frequency

Substitution type Parameter Rate

A ← C , T ← G α 0.16

A ← G , T ← C β 0.57

A ← T , T ← A γ 0.20

C ← G , G ← C δ 0.24

C ← T , G ← A ǫ 0.59

G ← T , C ← A η 0.25

Nucleotide Equilibrium frequency π

A, T 0.23

C, G 0.27
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Fig. 4  Numerical tests of our algorithms. The statistics tMRS , σ , and q computed by exact algorithms were compared with those estimated using 
sampled histories of nucleotide substitutions. The y-axes represent the relative difference between the values from the exact algorithms and those 
obtained by approximate sampling algorithms. The x-axes show the dependency on the number of sampled histories and the number of discrete 
points in the phylogenetic tree from which the states were sampled

Table 3  Runtime of our implementation

We show runtimes of our implementation. We used 100 species vertebrate 
multiple alignments for the measurements. For training data, we used a sampled 
alignment with 100 K columns from 4d sites. As for the computation of tMRS , 
σ , and q, we used the sampled alignments from 3 ′UTR sequences which have 
2,034,681 total alignment columns, and scaled the runtime for each Datasize

Computation Datasize Runtime

Train, gradient (1 iteration) 100 K columns 4.6 min

Train, total (300 iterations) 100 K columns 23 h

tMRS , σ , q 1 column 7.3× 10−4 s

tMRS , σ , q 1 G columns 204 h
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False Discovery Rate, FDR). It shows that FDR monotoni-
cally decreases with decreasing q threshold, indicating 
the correctness of our algorithm for q. It also indicates 
that the accuracies of absence call of reconstruction and 
alignment methods are similar to that of our algorithm 
with positive fraction 0.5 and 1.0, respectively. Figure 5b 
shows the mean errors of predicted tMRS relative to the 
total length of target lineage for each positive fraction. 
The error mostly decreases with stricter thresholds for 
our method, while reconstruction and alignment meth-
ods show more than 10% errors on average. Table  4 
shows numerical values of FDR and mean error for sev-
eral q threshold. Since the mean error of tMRS is less than 
5% of the total length of target lineage, we will use thresh-
old q = 0.01 in the analyses in the following sections.

Table 5 shows the comparison of tMRS and other statis-
tical measures computed from genomic alignments. We 
used the same alignment columns in the previous para-
graph but with filtering with threshold q < 1 for true q 
values. For this dataset, we computed Spearman’s cor-
relation coefficients with true tMRS and other indicators: 

Fig. 5  Effect of filtering. We investigated the effect of filtering by q threshold on the accuracy of tMRS estimates using simulation dataset. The x-axis 
represents the fraction of alignment columns remained by filtering with varying threshold. a Fraction of alignment columns that have no mutation 
throughout the target lineage in the positive set. b Mean % error of tMRS values in the dataset after filtering. The blue and green points represent the 
approximate tMRS and q computed from the reconstruction of ancestral states, and the closest extant species whose base is different from that of 
the target species, respectively

Table 4  Effects of filtering by probability q of no mutation

We computed a few statistical measures for the simulation dataset obtained 
by forward sampling of base mutation history. The first column represents the 
threshold values qthreshold . ‘positive fraction’ represents the fraction of alignment 
columns with q < qthreshold . ‘FDR for no mutation’ represents the fraction of the 
alignment columns that have no mutation along the target lineage but satisfy 
q < qthreshold . ‘% error of tMRS ’ represents the mean % error of estimated tMRS 
relative to the total edge length of the target lineage

q threshold Positive 
fraction

FDR 
for no mutation

% error of tMRS

0.01 0.24 0.0013 4.4

0.1 0.36 0.015 7.9

0.5 0.68 0.16 15

1.0 1 0.33 15

Table 5  Correlation with other conservation measures

We show Spearman’s correlation coefficient with the true tMRS obtained from 
simulation and several measures for nucleotide conservation. The first three 
columns represent tMRS computed by our exact algorithm with filtering by q 
values. ‘reconstruction’ represents approximate tMRS values estimated from 
reconstruction of ancestral states. ‘alignment’ represents approximate tMRS 
values estimated from closest extant species which has different nucleotide 
base from the nucleotide of the target species. ‘entropy’ represents the negative 
information entropy of the base frequency of alignment column. ‘pairwise’ 
represents the pairwise alignment similarity of alignment column. ‘phastcons’ 
represents the posterior probability of conservation at the alignment column. 
’phylop’ represents the p-values of negative selection. ‘gerp’ represents the 
‘rejected substitution’ values

Significance measure Spearman’s 
correlation 
with true tMRS

tMRS(q < 0.01) 0.965

tMRS(q < 0.1) 0.938

tMRS(q < 1) 0.858

Reconstruction ( q < 1) 0.905

Alignment ( q < 1) 0.338

Entropy 0.301

Pairwise 0.344

Phastcons 0.112

Phylop 0.108

Gerp 0.129
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tMRS(q < 0.01, 0.1, 1) represents our algorithms with a 
few filtering criteria of q. ‘reconstruction’ and ‘alignment’ 
are the approximate methods described above with fil-
tering based on q values computed by their respective 
method. ‘entropy’ represents the information entropy 
of base frequency of alignment column. ‘pairwise’ rep-
resents the ratio of the number of identical bases in 
n(n− 1)/2 possible base pairs of n bases in the alignment 
column. ‘phastcons’ represents the posterior probability 
of conserved region computed by PhastCons [8]. ‘phylop’ 
represents the negative p-value of conservation com-
puted by PhyloP [9]. ‘gerp’ represents the estimated num-
ber of ‘rejected mutations’ compute by Gerp++ [10]. The 
table shows small correlation of conservation measures 
(entropy, pairwise, phastcons, phylop, gerp) with tMRS 
and very high correlation of estimated tMRS with strict 
filtering criterion q < 0.01 . It shows our algorithms can 

accurately extract distinct evolutionary information 
which is difficult to extract with previous conservation 
measures.

Genomic distribution of tMRS

We computed the time to the most recent substitution 
tMRS , its standard deviation σ , and the probability q that 
there is no substitution for alignment columns uniformly 
sampled from the human genome. The scatter plot of 
tMRS and q values (Fig.  6 (top left)) shows the probabil-
ity of no substitution q tends to increase with increasing 
tMRS . However, the distribution is broad depending on 
the nucleotide patterns of alignment columns, and a non-
zero fraction of sites have deep ancestral substitutions 
(i.e., large tMRS and small q) within the Homo–Vertebrate 
lineage. The scatter plot of σ and q (Fig. 6 (right)) shows 
that the probability of no substitution q is very small if 
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σ < 0.1 . The high peaks (the red regions) of these two 
figures show that a large number of alignment columns 
have tMRS ∼ 0.7 , σ ∼ 0.4 , and q ∼ 0.3 . For these sites, it 
is difficult to determine if there are substitutions within 
the interval of the Homo–Vertebrate lineage.

Figure 6 (bottom left) shows the density of q for each 
annotated genomic region. Compared to Intergenic, 
Intron, 3′UTR, and 5′UTR, CDS regions have a large 
fraction of sites with a high probability of no mutation, 
indicating many ancestral nucleotides that were fixed 
before the appearance of the vertebrate concestor. Since 
computed tMRS values have less meaning if q is large, 
we filtered out sites with q > 0.01 and plotted the dis-
tributions of tMRS values for the remaining sites (Fig.  6 
(bottom right)). There are several peaks because some 
sites are guaranteed to experience the last substitution 
between specific interval of concestors. All regions have 
the highest peak around tMRS ∼ 0.1 , which is between the 
Simiiformes and Primate concestors. CDS regions have 
a large peak around tMRS ∼ 0.36 , which corresponds to 
between the Eutheria and Theria concestors.

Concestor interval of the last substitution event
We are generally interested in the substitutions that 
are associated with the evolution of unique features 
in the species that inherited them. In this respect, we 
want to know in which interval between two specia-
tion events (i.e., between two concestor nodes) each 
tMRS is located. In order to simplify the presentation, 
we reduced the concestor nodes from the full 19 con-
cestors of the PhyloP tree to eight as shown in Table 6 
and Fig. 7 in the following analyses of concestor inter-
vals. Since the estimated tMRS values can have a large 
standard deviation σ , we consider intervals between 
all pairs of concestor nodes: Homo–Hominoidea, 

Homo–Mammalia, Mammalia–Vertebrata, etc. Then, 
we assign a concestor interval I to a site if q < 0.01 
and if I is the smallest interval that contains a confi-
dence interval [tMRS − 2σ , tMRS + 2σ ] . Only about 4% 
of sites were assigned to any concestor interval by this 
method. Figure  8 (top) shows the frequency distribu-
tion of genomic sites that are assigned to some conces-
tor interval, which shows that many sites are assigned 
to concestor intervals Hominoidea–Euarchontoglires, 
Hominoidea–Eutheria, or Homo–Euarchontoglires. 
Figure  8 (bottom) shows the same frequency distribu-
tions for each category of annotated genomic regions. 
The distributions, except that of CDS, are similar to 
each other. On the other hand, CDS regions have many 
deep ancestral intervals.

Tissue‑concestor interval correlations for transcribed 
enhancers
Andersson et  al. [23] identified genomic elements 
called transcribed enhancers in the human genome 
and other genomes where short RNAs are produced 
by bidirectional transcription as a result of chromatin 
opening. They showed transcribed enhancers often 
overlap with protein-binding marks such as ChIP-seq 
peaks or protein-binding motifs. They are also enriched 
in disease-associated single nucleotide polymorphisms 
(SNPs). Many transcribed enhancers are tissue-spe-
cific in that bidirectional transcription of short RNAs 
occurs frequently in specific tissues. They showed the 
expressions of a number of genes are well explained by 
those of a few transcribed enhancers upstream of the 
genes. Thus, we can see tissue specific enhancer activi-
ties for these transcribed enhancers. In the FANTOM5 

Homo

Hominoidea
Hylobatidae (Gibbon)

Euarchontoglires
Glires (Mouse,Rabbit)

Eutheria
Atlantogenata (Elephant,Armadillo)

Mammalia
Prototheria (Platypus)

Amniota
Sauropsida (Bird,Reptile)

Tetrapoda
Amphibia (Frog)

Vertebrata
Cyclostomata (Lamprey)

Fig. 7  Topological relationship of reduced concestors. We show the 
topology of simplified phylogenetic tree of 100 vertebrate species 
used in the analyses of concestor intervals. See Table 6 for the 
numerical values of evolutionary time

Table 6  Evolutionary time of reduced concestors

We used the following set of reduced concestors in the analyses of concestor 
intervals. Each concestor was named based on the corresponding taxonomic 
class of descendants. ‘Time’ represents phylogenetic time from the present in 
units of substitutions per site. ‘Sibling’ represents the sibling clade that departed 
from the human lineage at each concestor. ‘Descendants’ represent some 
examples of extant species in the sibling clade. Topological relationships are 
shown in Fig. 7

Concestor Time Sibling Descendants

Homo 0 – Human

Hominoidea 0.026 Hylobatidae Gibbon

Euarchontoglires 0.17 Glires Mouse, rabbit

Eutheria 0.22 Atlantogenata Elephant, armadillo

Mammalia 0.55 Prototheria Platypus

Amniota 0.69 Sauropsida Bird, reptile

Tetrapoda 0.80 Amphibia Frog

Vertebrata 1.1 Cyclostomata Lamprey
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enhancer atlas site [24], tissue-specific enhancers 
are annotated by using the UBERON tissue anatomy 
ontology and Cell Ontology [25, 26]. For example, 41 
diverse tissues were assigned to 10-1335 differentially-
expressed enhancers (see Additional file  1: Table  S2) 
[24]. Using these data, we studied the tissue and con-
cestor interval of the last substitution event as an exam-
ple of screening evolutionarily important events that 
affected life designs of extant organisms. We computed 
(tMRS, σ , q) for each site of the transcribed enhancer 
regions, filtered out the sites with q > 0.01 , and asso-
ciated concestor intervals as described above. For each 
concestor interval, we list the enhancers that contain 
sites associated with the interval. We used the hyperge-
ometric test to determine if the sites corresponding to 
a specific concestor interval are significantly enriched 
for the enhancers transcribed in a specific tissue type. 
Table 7 shows tissues that have the top five most signif-
icant p-values for some concestor interval (more details 
are discussed in Section 7 of Additional file 1). We find 
that the brain and Homo–Vertebrata interval associa-
tion has the most significant p-value and Homo–Ver-
tebrata sites are enriched threefold in brain-associated 
enhancers relative to expectations. The second tissue 
was meninx, which is also associated with the nervous 
system (Table 7). Figure 9 shows a few sampled align-
ment columns in a brain-specific enhancer, which are 
assigned to the Homo–Vertebrata interval. Alignment 
columns that have three or more nucleotides suggest 
there are some substitutions along the Homo–Verte-
brata lineage, but the patterns of nucleotide types and 
the number of gaps makes it difficult to determine at 
what time point the substitution occurs. Thus, the 
assigned intervals are the most ambiguous for these 
alignment columns.

Tissue‑concestor interval correlations for genes
We studied the correlation between the tissue-specificity 
and concestor intervals for genes in a similar manner as 
for transcribed enhancers. See Section  9 in Additional 
file  1 for detailed description of the method. Table  8 
shows the top three tissues that have genes with sites 
corresponding to specific concestor intervals are shown. 
Within each tissue, the top three concestor intervals are 
shown. As compared to the corresponding Table  7 for 
transcribed enhancers, deeply ancestral intervals appear 
in the table, indicating the high level of conservation of 
exonic sequences. On the other hand, fold enrichment 
of concestor intervals are smaller than in transcribed 
enhancers which make it more difficult to infer the 
impact of the most recent mutations on the life design of 
extant species than in the case of transcribed enhancers.

Conclusions
We have developed algorithms to infer the time tMRS to 
most recent substitution in the lineage from a given target 
species to the root of a phylogenetic tree. In order to filter 
out highly conserved sites and ambiguous sites where the 
confidence of estimated tMRS is low, we also compute the 
probability q of no mutation and the standard deviation 
σ of tMRS . We computed these variables efficiently using 
dynamic programming algorithms on the phylogenetic 
tree such that the algorithms can be applied to multiple 
genomic alignments with 100 species. We have empirically 
checked the correctness of our algorithms by posterior 
sampling of mutation histories on the tree. Our algorithms 
are exact under the assumptions of the model: genome 
evolution follows a site-independent continuous-time 
Markov process along the phylogenetic tree. Our results 
also depend on the quality of Multiz alignment, which was 
debated previously [27]. Although alignment errors can be 

Table 7  Tissue-concestor interval correlation for transcribed enhancers

The top three tissues that have transcribed enhancers with sites corresponding to specific concestor intervals are shown. Within each tissue, the top three concestor 
intervals are shown. The sorting order is based on Z-scores that are based on the hypergeometric test and indicate the significance of enrichment of specific concestor 
intervals in tissue-specific enhancers. ‘ − log10(p-value) ’ is the minus log10 p-value of the test computed using the phyper() function in the R programming language. 
‘Enrichment’ is the fold enrichment within the concestor interval relative to the expected occurrence by random sampling. ‘Observed’ is the number of transcribed 
enhancers that have both attributes of the Tissue and Interval columns. see Section 8 in Additional file 1 about the use of Z-scores for ranking tissues

Tissue Interval Z-score − log10(p-value) Enrichment Observed

Brain Homo–Vertebrata 14.2 32.0 2.97 140

Hominoidea–Tetrapoda 13.3 29.2 2.69 148

Hominoidea–Vertebrata 11.5 22.1 2.17 115

Meninx Hominoidea–Tetrapoda 8.58 11.7 3.84 32

Hominoidea–Vertebrata 6.68 7.72 3.52 23

Hominoidea–Amniota 6.06 6.96 3.01 25

Eye Hominoidea–Vertebrata 8.43 11.5 3.50 37

Eutheria–Tetrapoda 8.42 7.44 9.69 9

Eutheria–Vertebrata 8.06 8.98 5.13 19
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less influential if the corresponding leaf nodes are far from 
the target lineage, the incomplete coverage of sequenced 
genomes directly affects the number of sites whose tMRS 
can be determined with confidence. We expect that the 
number of sites with confident tMRS value will increase as 
the coverage of genome sequences improve in the future.

We have applied our tool to 100-species multiple 
genome alignments with human target and obtained 
a frequency spectrum of concestor intervals that 
categorized the time points at which the last sub-
stitutions occurred. Furthermore, we studied the cor-
relation between the frequency of concestor intervals 
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Panda

Microbat
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Armadillo
Platypus

Zebra_finch
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Frog_X._tropicalis

Medaka

Lamprey
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nuc
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Fig. 9  Examples of alignment columns. The figure shows the examples of alignment columns that include the concestor interval Homo–Vertebrata 
in the transcribed enhancer regions and show brain-specific RNA transcription. The y-axis represents nine example alignment columns and x-axis 
represents nucleotides of each column, in which gaps, ambiguous nucleotides, and unaligned regions are shown as blank. The species are aligned 
such that it conforms phylogenetic trees and sorted such that species more evolutionarily distant from humans are placed on the right

Table 8  Tissue-concestor interval correlation for genes

The top three tissues that have genes with sites corresponding to specific concestor intervals are shown. Within each tissue, the top three concestor intervals are 
shown. The sorting order is based on Z-scores that are based on the hypergeometric test and indicate the significance of enrichment of specific concestor intervals in 
tissue-specific genes. ‘ − log10(p-value) ’ is the minus log10 p-value of the test computed using the phyper() function in the R programming language. ‘Enrichment’ is 
the fold enrichment within the concestor interval relative to the expected occurrence by random sampling. ‘Observed’ is the number of Entrez genes that have both 
attributes of the tissue and interval columns

Tissue Interval Z-score − log10(p-value) Enrichment Observed

Muscle Eutheria–Tetrapoda 6.44 11.3 1.26 250

Eutheria–Amniota 6.23 11.9 1.18 287

Eutheria–Mammalia 5.22 10.8 1.09 307

Artery aorta Eutheria–Tetrapoda 5.73 9.76 1.36 122

Eutheria–Amniota 4.22 6.20 1.18 131

Euarchontoglires–Eutheria 4.16 5.11 1.33 99

Pineal gland Euarchontoglires–Eutheria 5.50 8.05 1.28 217

Eutheria–Amniota 5.45 9.04 1.15 290

Eutheria–Tetrapoda 5.21 7.60 1.21 247
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and the tissue-specificity of transcribed enhancers and 
found that brain-specific transcribed enhancers are 
highly enriched among the sites with mutations in the 
human lineage. It may be very interesting to combine 
our method with genome editing experiments to see 
if nucleotide changes at the screened sites affect tissue 
functions.
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