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Abstract 

Background:  Many of the commonly used methods for orthology detection start from mutually most similar pairs 
of genes (reciprocal best hits) as an approximation for evolutionary most closely related pairs of genes (reciprocal best 
matches). This approximation of best matches by best hits becomes exact for ultrametric dissimilarities, i.e., under the 
Molecular Clock Hypothesis. It fails, however, whenever there are large lineage specific rate variations among paralo-
gous genes. In practice, this introduces a high level of noise into the input data for best-hit-based orthology detection 
methods.

Results:  If additive distances between genes are known, then evolutionary most closely related pairs can be identi-
fied by considering certain quartets of genes provided that in each quartet the outgroup relative to the remaining 
three genes is known. A priori knowledge of underlying species phylogeny greatly facilitates the identification of the 
required outgroup. Although the workflow remains a heuristic since the correct outgroup cannot be determined reli-
ably in all cases, simulations with lineage specific biases and rate asymmetries show that nearly perfect results can be 
achieved. In a realistic setting, where distances data have to be estimated from sequence data and hence are noisy, it 
is still possible to obtain highly accurate sets of best matches.

Conclusion:  Improvements of tree-free orthology assessment methods can be expected from a combination of the 
accurate inference of best matches reported here and recent mathematical advances in the understanding of (recip-
rocal) best match graphs and orthology relations.

Availability:  Accompanying software is available at https​://githu​b.com/david​-schal​ler/Asymm​eTree​.
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Background
The distinction of orthologous and paralogous pairs of 
genes, respectively, is of key importance in evolution-
ary biology as well as genome annotation. As defined by 
Walter Fitch [1, 2], two genes are orthologs if their last 
common ancestor (in the gene tree) corresponds to a spe-
ciation event, and they are paralogs if they arose through 

a duplication event. In general, orthologs are expected to 
have the same function in different organisms, while the 
functions of paralogs are usually similar but clearly dis-
tinct [3, 4].

A large class of computational approaches to orthology 
assessment [5, 6] uses symmetric best matches (SBM) [7], 
also known as bidirectional best hits (BBH) [8], reciprocal 
best hits (RBH) [9], or reciprocal smallest distance (RSD) 
[10]. The intuitive justification for these approaches is 
that symmetric best matches (in the sense of sequence 
similarity) approximate the idea of evolutionarily closest 
relatedness. These two concepts are not the same, how-
ever. The notion of evolutionary relatedness depends 
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on the underlying phylogenetic tree T and is naturally 
expressed by comparing last common ancestors: a gene 
x is more closely related to a gene y than to y′ if the last 
common ancestor lca (x, y) is a successor of lca (x, y′) in T.

From an evolutionary point of view, therefore, one is 
interested in reciprocal best matches (defined in terms 
of the gene tree T) rather than in reciprocal best hits 
(defined in terms of some distance of similarity meas-
ure between sequences). Best matches and best hits are 
equivalent if and only if the Molecular Clock Hypothesis 
is satisfied [11, 12]. In general this is not the case. In par-
ticular, paralogous members of a gene family often dif-
fer in their evolutionary rates due to (adaptive) changes 
in the function [13, 14]. Both the “Duplication-Degen-
eration-Complementation” (DDC) model [15] and the 
“Escape from Adaptive Conflict” (EAC) model [16] pre-
dict that the fate of paralogs, including their evolution-
ary rate, may differ substantially between lineages that 
diverge soon after the duplication event due to different 
selective pressures. The simplest case is shown in Fig. 1: 
an ancestral gene is duplicated before the speciation 
event leading to two species (indicated by colors), each 
containing two paralogs (denoted by x and x′ in the red 
species and y and y′ in the blue species). The two para-
logs evolve with very different rates in the two species. 
Although x and y as well x′ and y′ are orthologs, the evo-
lutionary rates are more similar between x and y′ , and x′ 
and y, respectively. This situation is not at all uncommon. 
The asymmetric divergence of the genes in the HOXA 
cluster following the teleost-specific (3R) genome dupli-
cation may serve as a paradigmatic example [17]. While 
in fugu (Takifugu rubripes) and other percomorphs the 
HOXAb paralogs diverge faster, it is the HOXA13b par-
alog that evolves at a faster rate in zebrafish (Danio rerio), 
which diverged early from percomorphs within the Tel-
eostei clade.

The situation as observed in the HOXA cluster is 
shown in Fig.  1. Here, the pair x, y′ shows the smallest 
evolutionary distance and hence will appear as recipro-
cal best hit, while the closest evolutionary relative of x 

is the gene y. This discrepancy is not a consequence of 
inaccurate measurements but an intrinsic feature of the 
evolutionary process: more evolutionary events have 
accumulated on the path from x to y than on the path 
from x to y′ . The correct reciprocal best hit therefore does 
not coincide with the correct reciprocal best match. This 
immediately begs the question whether such cases can be 
detected from sequence comparisons. We consider this 
issue at two levels: (i) Can (reciprocal) best matches be 
identified in principle, i.e., from perfectly accurate data, 
and (ii) how well can this be done in practice? To address 
the first question we will assume that we can determine 
an additive distance between any two genes and investi-
gate the consequences of this assumption. To investigate 
the accuracy that can be achieved from sequence data we 
will devise a simulation system to generate evolutionary 
scenarios with complex rate variations.

The focus on additive metrics is motivated by the close 
connection between additive metrics and evolutionary 
trees. More precisely, an additive metric determines a 
unique unrooted phylogenetic tree T  as well as its branch 
length [18, 19], and vice versa. The determination of best 
matches, which are defined in terms of last common 
ancestors, however, requires a rooted phylogenetic tree 
T. From a theoretical point of view, therefore, the miss-
ing information is the placement of the root of T in the 
underlying unrooted phylogenetic tree T .

The problem of determining the position of the root in 
an unrooted tree T  has been well studied in the phyloge-
netic literature [20]. The most common approach is the 
inclusion of an outgroup, i.e., a taxon z known to branch 
earlier than the taxa of interest. The root is then located 
in the branch leading to z. Outgroup rooting can be unre-
liable in the presence of rapid radiations or when only 
very distant outgroups are available [21, 22]. The simplest 
method is midpoint rooting [23], which places the root 
at the midpoint on the longest path in the tree. Despite 
its simplicity it often works remarkably well [24]. An 
interesting variation on this theme is minimum variance 
rooting [25]. The estimation of dated phylogenies using a 
relaxed clock assumption yields an estimate for the posi-
tion of the root as a by-product [26]. A related Bayesian 
method was introduced in [27]. In a phylogenomics set-
ting, the root of the species tree can also be obtained by 
minimizing the number of inferred gene duplications 
[28]. Most recently, non-reversible substitution models 
have been employed for estimating rooted phylogenetic 
trees [29, 30].

From a practical point of view, furthermore, we wish to 
avoid the explicit construction of a (rooted or unrooted) 
gene tree T since reconstructing accurate evolutionary 
trees from individual gene sequences is a notoriously dif-
ficult problem. Instead we aim to stay as close as possible 
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Fig. 1  Lineage-specific rate variation between paralogs. The 
gene tree, with branch length indicating an additive evolutionary 
distances, pre-dates the speciation ( • ) of the red and blue species. We 
have lca (x , y) ≺ lca (x , y′) but d(x , y′) < d(x , y)
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to the idea of reciprocal best hit methods and thus we 
will attempt to use only “local” comparisons of as few 
as possible measurements of evolutionary distances. 
This idea naturally leads us to considering quartets, i.e., 
unrooted trees describing four taxa, and the correspond-
ing rooted triples. It is well known that the rooted tri-
ples are sufficient to determine the rooted tree in which 
they reside. Moreover, there is a polynomial-time algo-
rithm that either constructs a rooted tree T from a set 
of rooted triples or determines that no such tree exists 
[31]. By Buneman’s Theorem [18, 19], an unrooted tree 
can be uniquely recovered from all its quartets. How-
ever, the problem of determining whether a given set 
is compatible (i.e., whether there is an unrooted tree T  
that contains all quartets) is NP-complete [32], a fact that 
reinforces the desire to avoid the explicit reconstruction 
of T  . Nevertheless, these classical results ensure that 
the relevant information is contained in quartets. More 
directly, we will show in this contribution that if we can 
reliably determine a suitable outgroup, best matches can 
be extracted from a small set of quartets.

Although much of this work is based on the assump-
tion that an additive distance between taxa is available, 
one has to keep in mind that additive evolutionary dis-
tances, like divergence times, cannot be measured 
directly. While it is common practice to determine a dis-
similarity d′(x, y) of two taxa (genes) x and y from pair-
wise alignments, d′ is a systematic under-estimate of the 
number of events d due to back-mutations, and thus not 
additive. In practice, the conversion of measurements of 
d′ into an additive distance d that quantifies the num-
ber of evolutionary events is based on a Markov model 
of the evolutionary process. For sequence data, this may 
be the Jukes-Cantor model [33] or one of its more elabo-
rate variants [34–36]. In the most benign setting, d and d′ 
are related by a monotone transformation, which in par-
ticular implies that the measured distances d′ correctly 
identify the best hits. It can also be shown, however, that 
non-additive distances in general cannot identify the cor-
rect topology of quartets [37]. Hence, we have no hope of 
computing correct best matches directly from non-addi-
tive (dis)similarities.

This contribution is organized as follows: in the follow-
ing section we give a rigorous mathematical rendering of 
the background outlined above and use it to show that, 
given an additive distance measure, it is indeed possible 
to perfectly identify all best matches of a gene x of species 
s among its homologs {y1, . . . , yk} in species t provided a 
suitable outgroup z can be found for every set {x, yi, yj , z} 
of four genes. As a consequence, the practical problem 
becomes the reliable identification of correct “relative 
outgroups”. Assuming knowledge on the phylogeny of 
species from which the genes are taken, we proceed to 

derive several conditions under which z cannot be a cor-
rect choice and use these insights to devise a heuristic 
approach that works nearly perfect given additive dis-
tance data. We then introduce (in “Methods” section) a 
simulation environment for generating gene family his-
tories with complex rate variations and show that it is 
possible to recover best matches more accurately than 
approximating them by best hits.

Theory
Notation and basic definitions
Let T be a phylogenetic (gene) tree with leaf set L. For 
each gene x ∈ L we denote by σ(x) the species within 
which it resides. We write L[s] = {y ∈ L | σ(y) = s} 
for the set of genes in species s. For a leaf set L′ ⊆ L we 
define the rooted tree T [L′] as the tree obtained from 
T by retaining only the vertices and edges along paths 
from the root to a leaf in L′ and suppressing all ver-
tices with degree 2. The vertex set of a rooted tree T is 
endowed with a partial order ≺ such that x � y when-
ever y lies along the unique path connecting x and the 
root ρT . Thus the leaves are the minimal elements w.r.t. 
≺ . Furthermore, for A ⊆ L we define the last common 
ancestor lca (A) = min{z | x � z for all x ∈ A} , where the 
minimum is taken w.r.t. the partial order ≺ . Moreover, if 
A = {x, y} contains only two elements, we write lca (x, y) 
instead of lca ({x, y}) . For every u ∈ V (T ) , we denote by 
T(u) the subtree of T rooted at u.

Consider a gene x in species s. Among all genes in spe-
cies t  = s , the best matches of x are all those genes y in 
species t that have the lowest lca (x, y) . These y are the 
closest relatives of x in species t. This concept is made 
precise in

Definition 1  [38]       Let T be a phylogenetic tree with 
leaf set L (denoting genes) and σ : L → S identify-
ing the species σ(x) ∈ S in which a gene x resides. 
Then y ∈ L is a best match of x ∈ L , in symbols x → y , 
if lca (x, y) � lca (x, y′) holds for all leaves y′ from species 
σ(y′) = σ(y).

The best match relation → is reflexive (since 
lca (x, x) = x ), but it is neither transitive nor symmetric. 
Its mathematical properties are discussed in detail in [38, 
39]. In particular, all orthologs of x are among its best 
matches [40].

The evolutionary relatedness of two taxa x and y is 
most directly expressed by the divergence time τ (x, y) , 
which is the total time elapsed in both lineages since 
the last common ancestor of x and y. Here, we con-
sider only the case that all leaves refer to extant genes 
or taxa, i.e., τ (x, y) = 2τ̂ ( lca (x, y)) , where τ̂ is the age of 
lca (x, y) . Divergence times are ultrametric by definition. 
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Furthermore, there is a well-known one-to-one cor-
respondence between isomorphism classes of dated, 
rooted, phylogenetic trees and ultrametrics, cf. [41, 42]. 
The best match relation → can thus also be defined in 
terms of divergence time: x → y if and only if

The distinction between best hits and best matches thus 
is simply the distance function: best matches require 
divergence times, while best hits use one of several (dis)
similarity measures for sequence data. They are equiva-
lent under the Molecular Clock Hypothesis, which how-
ever fails for most real life data sets.

Reconciliation of gene tree and species tree
Since genes evolve as part of species, we can expect that 
a priori knowlege of the species phylogeny can be help-
ful for understanding the phylogeny of a gene family. This 
link is made precise by considering the embedding of a 
gene tree T into a species tree S.

As it is possible that gene duplications and losses pre-
date the first speciation event, we model the species tree 
S with leaf set S as a planted tree, i.e., we introduce a 
vertex 0S that is called the planted root of S and has the 
“conventional” root ρS = lca (L) as its single child. Using 
this construction, the embedding of the gene tree into 
the species tree is formalized by the reconciliation map 
µ : V (T ) → V (S) ∪ E(S) , which maps duplications to 
the edges of S and speciations to the inner vertices V 0(S) 
of the species tree. We follow here the notation of [40]. 
Restricting ourselves to duplication/loss scenarios, i.e., 
disregarding horizontal gene transfer, the reconcilia-
tion map satisfies the root constraint (R0) µ(x) = 0S if 
and only if x = 0T ; the leaf constraint (R1) µ(x) = σ(x) 
for x ∈ L(T ) , the ancestor preservation (R2), i.e., 
x ≺T y =⇒ µ(x) �S µ(y) , and the following two specia-
tion constraints for all speciation vertices µ(x) ∈ V 0(S) : 
(R3.i) µ(x) = lca S(µ(v

′),µ(v′′)) for at least two distinct 
children v′, v′′ of x in T. (R3.ii) µ(v′) and µ(v′′) are incom-
parable in S for any two distinct children v′ and v′′ of x in 
T [40]. Equivalent axiom systems are considered e.g. in 
[43–45]. Such reconciliation maps satisfy

i.e, an event x ∈ V (T ) in the gene tree cannot be 
mapped to a node in the species tree below the last 
common ancestor of all the species In this contri-
bution we assume that µ in addition satisfies (R4): 
If µ( lca T (x, y)) = µ( lca T (x, z)) ∈ V 0(S) , then 
lca S(σ (x), σ(y)) = lca S(σ (x), σ(z)) . In essence, (R4) 

(1)
y ∈ arg min τ

(

x, y′
)

y′ ∈ L
[

σ
(

y
)]

(2)µ(x) �S lca S(σ (L(T (x)))),

ensures that a single node in T cannot represent two dis-
tinct speciation events, i.e., that the gene tree T is not 
“less resolved” than the species tree S into which it is 
embedded.

The reconciliation map µ defines event labels on the 
inner nodes of the gene tree T, identifying u as a duplica-
tion node if µ(u) ∈ E(S) and as speciation if µ(u) ∈ V (S) . 
While it is possibly to find a reconciliation map µ for 
every pair of gene and species tree [46], this is no longer 
true when event labels on T are given [45, 47]. Conversely, 
T and S imply constraints on the event labels, identifying 
nodes that have to be duplications under any reconcilia-
tion map [40]. Here, we characterize these nodes further. 
We start from the following technical results:

Lemma 2  ([40, Lemma 2]) Let T be a gene tree, S be a 
species tree and µ : V (T ) → V (S) ∪ E(S) be a reconcili-
ation map without horizontal gene transfer that does not 
necessarily satisfy (R4). Let x ∈ V (T ) be a vertex with 
µ(x) ∈ V 0(S) . ]Then, σ(L(T (v′))) ∩ σ(L(T (v′′))) = ∅ for 
all distinct v′, v′′ ∈ child(x).

Let us first consider the case of binary gene trees:

Lemma 3  Let T be a binary gene tree, S be a species 
tree, and µ : V (T ) → V (S) ∪ E(S) be a reconciliation 
map without horizontal gene transfer that does not nec-
essarily satisfy (R4). Let x, y ∈ L(T ) be two genes with 
σ(x)  = σ(y) . If lca S(σ (x), σ(y)) ≺ µ( lca T (x, y)) , then 
lca T (x, y) is a duplication event.

Proof  Assume for contradiction u := lca T (x, y) is a spe-
ciation event, i.e., µ(u) ∈ V 0(S) . Let v′ and v′′ be the two 
children of u in T. Observe that u := lca T (x, y) implies 
that x ∈ L(T (v′)) and y ∈ L(T (v′′)) or vice versa. W.l.o.g. 
we assume that x ∈ L(T (v′)) and y ∈ L(T (v′′)) . By (R3.i) 
and (R3.ii), µ(u) = lca S(µ(v

′),µ(v′′)) and, in particular, 
µ(v′) and µ(v′′) are incomparable in S. Then by Lemma 
2, we have σ(L(T (v′))) ∩ σ(L(T (v′′))) = ∅ . This and R2 
implies that µ(v′) �S σ(x) and µ(v′) �S σ(y) . The lat-
ter two arguments imply that lca S(σ (x), σ(y)) = µ(u) ; a 
contradiction. � �

The assumption that T is binary is necessary here as 
the example in Fig. 2 shows. Such reconciliations, how-
ever, cannot be meaningfully interpreted in terms of evo-
lutionary events. Instead, the root of T confounds the 
duplication leading to x and y and the speciation separat-
ing lca S(σ (x), σ(y)) from σ(z) . To suppress such undesir-
able cases, we in addition require that µ satisfies axiom 
(R4). In essence, (R4) forbids to map two distinct specia-
tion events to the same vertex of S.



Page 5 of 20Stadler et al. Algorithms Mol Biol            (2020) 15:5 	

Lemma 4  Let µ : V (T ) → V (S) ∪ E(S) be a reconcili-
ation map without horizontal gene transfer that satisfies 
(R4) and let x, y ∈ L(T ) be two genes with σ(x)  = σ(y) . 
If lca S(σ (x), σ(y)) ≺ µ( lca T (x, y)) , then lca T (x, y) is a 
duplication event.

Proof  We assume that T is non-binary since the 
binary case is covered already by Lemma 3. Moreo-
ver, we assume, for contradiction, that u := lca T (x, y) 
is a speciation event, i.e., µ(u) ∈ V 0(S) . Let vx and vy 
be the children of u with x �T vx and y �T vy ; thus 
we have σ(x) ∈ σ(L(T (vx))) and σ(y) ∈ σ(L(T (vy))) . 
Since u = lca T (x, y) , vx and vy are incompara-
ble in T and hence vx  = vy . By (R3.i), µ(vx) and 
µ(vy) are incomparable in S. Lemma 2 implies 
σ(L(T (v′))) ∩ σ(L(T (v′′))) = ∅ for all distinct children v′ 
and v′′ of u. The latter two facts together with (R2) imply 
lca S(σ (x), σ(y)) = lca S(µ(vx),µ(vy)) ≺ µ(u) . By (R3.i), 
µ(u) = lca S(µ(v

′),µ(v′′)) for some children v′ and v′′ of 
u, and thus lca S(µ(v

′),µ(v′′)) = lca S(σ (z
′), σ(z′′)) for 

some leaves z′ ∈ L(T (v′)) and z′′ ∈ L(T (v′′)) from differ-
ent species σ(z′) �= σ(z′′).

We proceed by showing that for at least one of σ(z′) and 
σ(z′′) we have lca S(σ (x), σ(z

′)) = lca S(σ (z
′), σ(z′′)) 

or lca S(σ (x), σ(z
′′)) = lca S(σ (z

′), σ(z′′)) . Suppose 
that lca S(σ (x), σ(z

′)) �= lca S(σ (z
′), σ(z′′)) . Hence, 

lca S(σ (x), σ(z
′)) ≺S lca S(σ (z

′), σ(z′′)) = µ(u)   . 
Therefore,  lca S(σ (x), σ(z

′′)) = lca S(σ (z
′), σ(z′′)) . Similar-

ily, if lca S(σ (x), σ(z
′′)) �= lca S(σ (z

′), σ(z′′)) , then  
lca S(σ (x), σ(z

′)) = lca S(σ (z
′), σ(z′′)) . Hence, assume  

w.l.o.g. that lca S(σ (x), σ(z
′)) = lca S(σ (z

′), σ(z′′)) �= lca S

lca S(σ (x), σ(z
′)) = lca S(σ (z

′), σ(z′′)) �= lca S(σ (x), σ(y)) 
Now, by contraposition of (R4), we have µ(u) = µ( lca T (x, y))

µ(u) = µ( lca T (x, y)) �= µ( lca T (x, z
′)) = µ(u) ; a contra-

diction. � �

Lemma 4 conveniently generalizes to sets of genes:

Corollary 5  Let µ : V (T ) → V (S) ∪ E(S) be a rec-
onciliation map without horizontal gene transfer that 
satisfies (R4) and let A ⊆ L(T ) with |σ(A)| ≥ 2 . If 
lca S(σ (A)) ≺ µ( lca T (A)) , then lca T (A) is a duplication 
event.

Proof  Note first that lca T (A) = lca T (x, y) for some x, y ∈ A . 
Assume first σ(x)  = σ(y) . Thus, lca S(σ (A)) ≺ µ( lca T (A)) 
implies lca S(σ (x), σ(y)) � lca S(σ (A))≺ µ( lca T (A)) = µ

( lca T (x, y)) . Hence, the statement follows from Lemma 4. 
If σ(x) = σ(y) , then lca T (A) = lca T (x, y) implies that 
there are distinct children vx and vy of lca T (A) with vx � x 
and vy � y . Thus, lca T (A) = lca T (vx, vy) . However, since 
σ(x) = σ(y) we have σ(L(T (vx))) ∩ σ(L(T (vy))) �= ∅ . 
Thus, Lemma 2 implies that µ( lca T (A)) /∈ V 0(S) and hence, 
lca T (A) is duplication. � �

Trees and (dis)similarities
Neither the divergence times nor the lca function of the 
phylogenetic tree T can be measured directly. The next-
best choice is to work with an evolutionary distance, 
which measures the number of evolutionary events that 
have taken place to separate two taxa. For each edge 
e = uv in T it is given by ℓ(e) =

∫ τ̂ (v)
τ̂ (u) µe(t)dt , where 

µe(t) is the rate of evolution. In general µe(t) depends 
both on the lineage, and thus the individual edges in T, 
as well as on the exact point in time along e. It associates 
with each edge e a measure ℓ(e) of changes incurred, and 
thus an additive distance. If µe(t) = µ0 is constant, we 
simply have dℓ,T (x, y) = µ0τ (x, y) . This is the well-known 
Molecular Clock Hypothesis [11, 12].

In general, we consider ℓ : E(T ) → R
+ simply as an 

assignment of positive lengths to the edges of T, which 
we interpret as a measure proportional to the number of 
evolutionary events. This gives rise to a metric distance 
function dℓ,T (x, y) on L defined as the sum of the lengths 
ℓ(e) of the edges e along the unique path connecting 
x and y in T. From T we obtain an associated unrooted 
tree T  by (i) omitting the planted root 0T and its incident 
edge, and (ii), in case the root ρ in T has exactly two chil-
dren u1 and u2 , by replacing the path u1ρu2 by a single 
edge u1u2 with length ℓ(u1u2) := ℓ(u1ρ)+ ℓ(ρu2) . Note 
that the dissimilarity function ℓ is by construction the 
same on T and T  . Thus T  determines T up to the posi-
tion of the root, i.e., T is obtained from T  by inserting the 
root into an edge of T  or declaring an inner vertex of T  
as the root. As for rooted trees, we define the restriction 
T [L′] for some subset L′ ⊆ L by retaining only the verti-
ces and edges along the paths between pairs of vertices in 

x y z X Y Z x y z

Fig. 2  The reconciliation µ with µ( lca T (x , y , z)) = lca S(X , Y , Z) 
satisfied (R1), (R2), (R3.i), and (R3.ii) but does not admit an 
unambiguous interpretation of lca T (x , y , z) as single event: it 
confounds the speciation separating Z and lca S(Y , X) with a gene 
duplication leading the ancestor of x and y or with the speciation 
separating X and Y. In either interpretation, the reconciliation map µ 
does not correspond to a mechanistic explanation of the gene family 
history
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L′ and then suppressing all vertices of degree 2. We note 
that T [L′] = T [L′].

A dissimilarity d on L is called additive if there is an 
unrooted tree T  with edge lengths ℓ such that d = dℓ,T . A 
key result in mathematical phylogenetics [18, 19] character-
izes additive (pseudo)metrics as those that satisfy the four 
point condition. It states that d is additive if and only if the 
restriction of d to each subset L′ of L with |L′| = 4 , usually 
called a quartet, is additive and thus determines a tree on 
four leaves. Furthermore, the unrooted tree T  is uniquely 
defined by d. In principle, therefore, distance data completely 
determines a phylogenetic tree up to the position of the root.

The results of [18, 19] furthermore imply that T  can 
be expressed in terms of its four-taxa subtrees. This pro-
vides us with a natural possibility to consider only “local” 
topologies instead of having to construct the unrooted 
tree T  explicitly. To this end, we consider the restrictions 
T [p, q, r, s] of T  to four distinct leaves p, q, r, s ∈ L and 
define the quartet relation [48, 49] (pq|rs) if there is an 
edge e in T  , and thus in T [p, q, r, s] , such that {p, q} and 
{r, s} are in different connected components of the forest 
obtained by removing e from T  or T [p, q, r, s] . Equiva-
lently, we have [48, 49]

For additive metrics, the two distance sums on the sec-
ond line are equal [18, 19]. All three terms are equal if 
and only if the four points form a star, whence the exist-
ence of a separating edge requires the strict inequality. By 
a slight abuse of notation we write T [p, q, r, s] = (pq|rs) if 
Eq. (3) holds, and T [p, q, r, s] = × if no quartet exists on 
these four leaves, i.e., if T [p, q, r, s] is the star tree.

From quartets to rooted triples
In a planted phylogenetic tree T with leaf set L ∪ {0T } 
all inner vertices have degree at least 3. The special leaf 
0T identifies the ancestral state. Its only neighbor is the 
root ρT . It will sometimes be useful to consider T(u) as 

(3)

(pq|rs) ⇐⇒ d(p, q)+ d(r, s) <

min (d(p, r)+ d(q, s), d(p, s)+ d(q, r)) .

planted tree by including the unique parent v of u and the 
edge vu. The leaf set of T(u) will be denoted by L(T(u)).

The most common method to specify the root of a 
phylogenetic tree is the use of so-called outgroups, that 
is, additional taxa that are known a priori to be outside 
a monophyletic group of interest. Given a planted (or 
rooted) phylogenetic tree, on the other hand, mono-
phyletic groups are the leaf sets of a subtree, i.e., L′ is 
a monophyletic group if and only if there is a vertex 
u ∈ V (T ) such that L′ = L(T (u)) . Every leaf x ∈ L \ L′ is 
an outgroup for L′.

Every edge in an unrooted tree T  defines a split L′|L′′ 
of L, where L′ and L′′ are the leaves in the connected 
components of . At most one of the two 
subtrees T ′ and T ′′ contains the root of the underly-
ing phylogenetic tree T. If the root is not contained in 
T ′ , then the tree T ′ ∪ {e} planted at the endpoint of e 
describes a monophyletic group. In this case all x ∈ L′′ 
are outgroups for T ′ . Which subtrees of T  correspond 
to monophyletic groups is determined by the position 
of the root, and therefore requires external information.

It will be convenient in the following to define out-
groups not only for monophyletic groups.

Definition 6  For a phylogenetic tree T with leaf set L, 
consider a subset L′ ⊆ L and a leaf z ∈ L \ L′ . We say that 
z is an outgroup for L′ if lca (L′) ≺ lca (L′, z).

Let us now return to the quartets of T  . The following 
simple result, illustrated in Fig.  3, shows that quartets 
can be used to infer inequalities between lca vertices 
in T provided one of the four leaves is known to be an 
outgroup for the other three:

Lemma 7  Suppose z is an outgroup for {x, y′, y′′} in T. If 
T [x, y′, y′′, z] is fully resolved, then 

	(i)	 lca (x, y′) = lca (x, y′′) iff T [x, y′, y′′, z] = (xz|y′y′′),
	(ii)	 lca (x, y′) ≺ lca (x, y′′) iff T [x, y′, y′′, z] = (xy′|y′′z) , 

and
	(iii)	 lca (x, y′) ≻ lca (x, y′′)iff T [x, y′, y′′, z] = (xy′′|y′z).

Fig. 3  Relation of last common ancestors lca (x , y′) and lca (x , y′′) , resp., with quartets on {x , y′ , y′′ , z} with a trusted outgroup z 
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Otherwise, T [x, y′, y′′, z] = × and lca (x, y′) = lca (x, y′′).
Proof  Since z is an outgroup by assumption, there 
are only three possible fully resolved rooted tree 
with L = {x, y′, y′′, z} , see Fig.  3. Each of these trees 
corresponds to a unique quadruple (annotated at 
the top). The relationship between lca (x, y′) and 
lca (x, y′′) is determined by the tree topology. The 
statement follows by inspecting the three cases. 
If T̄ [x, y′, y′′, z] is not fully resolved, no quartet is 
defined on {x, y′, y′′, z} , i.e., T̄  is the star tree and thus 
lca (x, y′) = lca (x, y′′) = lca (y′, y′′) . � �

Observation 8  If u′ = lca (x, y′) and v′ = lca (x, y′′) for 
x, y′, y′′ ∈ L , then u′ and v′ are comparable w.r.t. � in T.

Lemma  7 together with Obs. 8 implies that quartets 
with known outgroups can be used to identify best 
matches. More precisely, in order to determine the 
set {y ∈ L[s] | x → y} it suffices to consider leaf sets 
{x, y′, y′′, z} with y′, y′′ ∈ L[s] such that z is an outgroup 
for {x, y′, y′′} . By Lemma  7, any set of this type implies 
an (in)equality between lca (x, y′) and lca (x, y′′) . It may 
not be necessary to consider all quartets. To explore 
ways to reduce the computational efforts, let us assume 
that for given x ∈ L and s ∈ S , s  = σ(x) , we can identify 
sets Y ⊆ L[s] and Z ⊆ L such that the following three 
assumptions are satisfied: 

(A0)	� The noise in the data is small enough so that for 
any four taxa {x, y′, y′′, z} with y′, y′′ ∈ Y  and z ∈ Z 
one of the three possible quartets or the star 
topology is inferred correctly.

(A1)	� The candidate set Y ⊆ L[s] contains all best 
matches of x in species s (but usually also addi-
tional leaves).

(A2)	� Z is a non-empty set of outgroups for Y ∪ {x}.

Before we proceed, let us consider these three 
assumptions in some more detail. (A0) is satisfied 
by construction for additive distance data. In real-
life applications it is often possible to obtain at least 
a very good approximation using explicit models of 
sequence evolution. In addition, several computational 
approaches have been proposed to estimate the quar-
tet relation directly from sequence data. It is also worth 
noting that (A0) does not require precise distance data, 
it only asks for correct categorical data on the quartet 
relation.

Condition (A1) can always be enforced by setting 
Y = L[s] . We make this assumption explicit because in 
practice it will be desirable to work with small subsets 
Y ⊆ L[s] as using L[s] may be too expensive for large 

gene families. The inclusion of very distant relatives may 
be problematic for the construction of good multiple 
sequence alignments and thus the extraction of the quar-
tet relation. Furthermore, it may be difficult to find suit-
able outgroup data in this case. Thus we will limit Y to 
a manageable size and sufficient sequence similarity. In 
ProteinOrtho [50], for example, Y ⊆ L[s] is defined as 
the set sequence with blast bit-scores exceeding a cer-
tain fraction of the best hit for x in species s.

Condition (A2), i.e., the knowledge of appropriate out-
groups, is the only problematic assumption. As discussed 
above, distance-based methods by construction do not 
convey information on the root of the phylogenetic tree 
T but only determine its unrooted version T  . As a con-
sequence, additional information, not contained in the 
pairwise distance measurements, is necessary to deter-
mine the edge in T  that harbors the position of the root 
ρ of T [51]. In general, Z will be chosen from one or more 
species that are outgroups to σ(x) and s in S. Even if out-
group species are given, gene duplications may pre-date 
the divergence of the available species set, so that a given 
data set will usually violate (A2) for some pairs of leaves. 
We will return to these issues in more detail in the fol-
lowing sections. 

The discussion so far suggests to use the quadruple 
relation for sets of the form {x, y′, y′, z} with y′, y′′ ∈ Y  and 
z ∈ Z to determine the best matches of x in the species 
containing the homolog set Y. The procedure is summa-
rized in Alg. 1. The main result of this section establishes 
its correctness.

Theorem  9  Algorithm  1 correctly identifies the set 
of best matches of x with color s as the unique strongly 
connected component of Ŵ without out-edges provided 
assumptions (A0), (A1), and (A2) are satisfied.

Proof  Assumptions (A1) and (A2) imply that compari-
son of the last common ancestors can be performed in 
terms of the quartets according to Lemma  7, which by 
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assumption (A0) are all inferred correctly. Therefore, 
lines 4–7 compute all quartets correctly, and thus the ine-
quality between lca (x, y1) and lca (x, y2) is inferred cor-
rectly. The auxiliary graphs Ŵ therefore contains at least 
one arc between any two vertices y′, y′′ ∈ Y  and both the 
arc (y′, y′′) and (y′′, y′) if and only if lca (x, y′) = lca (x, y′′) , 
i.e., the strongly connected components are cliques. 
Since the lca (x, y) are interior vertices of T that are totally 
ordered along the path from x to the root of T (Observa-
tion 8), there is a unique strongly connected component 
B in Ŵ that has no out-edges, whose vertices are those 
y ∈ B for which lca (x, y) is minimal. Thus B is the set of 
best matches of x with color s.� �

Algorithm  1 therefore works correctly at least under 
idealized assumptions. It also serves as a heuristic in 
cases where one of the assumptions (usually (A2)) is 
violated.

Identification of outgroups
In many practical applications, the phylogenetic relation-
ships between the species under consideration are known. 
We therefore investigate here to what extent knowledge 
of the species tree S can help to identify good outgroup 
sets Z. Ideally, the genes chosen as outgroups Z are co-
orthologs of the focal gene set Y, i.e., the duplication 
event that produced y′ and y′′ occured after the specia-
tion event that separates σ(z) for all z ∈ Z from σ(X) and 
σ(Y ) . As we shall see, it is not possible to identify out-
groups with complete certainty. It is possible, however, to 
identify incorrect choices in many situations.

In the following we consider three species σ(X) , σ(Y ) , 
and σ(z) for z ∈ Z such that

i.e., σ(z) is an outgroup in the species tree for σ(X) and 
σ(Y ) . Problematic cases in which quartets are inter-
preted incorrectly may appear whenever the duplica-
tion event lca T (y

′, y′′) separating two paralogs y′, y′′ ∈ Y  
pre-dates the speciation event separating σ(z) from 
lca S(σ (X), σ(Y )) . We capture this situation in

Definition 10  Let u be an inner node of the spe-
cies tree S, let y′, y′′ ∈ Y  be paralogs in a species 
σ(Y ) ∈ L(S(u)) . Then lca T (y

′, y′′) is an ancient dupli-
cation relative to u ∈ V (S) for the reconciliation map 
µ : V (T ) → V (S) ∪ E(T ) if u ≺S µ( lca T (y

′, y′′)).

Clearly, if lca T (y
′, y′′) is an ancient duplication rela-

tive to lca S(σ (X), σ(Y ), σ(z)) , then genes in z ∈ Z are 
bad choices as outgroups {x, y′, y′′, z} . The difficulty is 
that we do not know the reconciliation map µ in our 
setting. In some cases, however, it is possible to identify 

(4)lca S(σ (X), σ(Y )) ≺S lca S(σ (X), σ(Y ), σ(z)),

vertices in T that are ancient duplications relative to 
some speciation for any reconciliation. Such cases can 
then be avoided.

Before we investigate possibilities to identify some 
ancient duplications in distance data, we prove a rather 
technical result that shows that in cases without too 
many ancient duplications, Algorithm 1 produces cor-
rect results. For the proof we will need to consider the 
reconciliation map µ for complete gene family histories, 
i.e., gene trees T containing extant genes as well as all 
branches leading to loss events. As above, we do not 
consider HGT. The leaf set of T is thus , 
where Le represents the extant genes and L0 denotes loss 
events. Since the species map is naturally restricted to 
extant genes (i.e., σ : Le(T ) → L(S) ), we need to restrict 
(R1): If x ∈ Le(T ) , then µ(x) = σ(x) . We will refer to 
such gene trees and reconciliation maps as extended 
gene trees and extended reconciliation maps, respec-
tively. Correspondingly, Lemma 2 only holds for Le , i.e., 
we can conclude that σ(Le(T (w1))) ∩ σ(Le(T (w2))) = ∅ . 
This can easily be seen by reusing the contradiction 
argument in [40][Lemma 2]. As a consequence of loss 
events we now may have σ(Le(T (v))) = ∅ for some 
nodes v ∈ V (T ).

Lemma 11  Let (T , σ) be an extended 
gene tree with a non-empty set of extant 
genes with |σ(Z)| = 1 , let S be a 
species tree on S = {σ(X) , σ(Y ) , σ(Z)} such that 
lca S(σ (X), σ(Y )) ≺ lca S(σ (X), σ(Y ), σ(Z)) = ρS , a n d 
let µ be an extended reconciliation map from (T , σ) to S. 
If (A0) holds and |µ−1(ρS)| ≤ 2 , then Algorithm 1, using 
Y as the candidate best match set and Z as outgroup 
set, correctly determines, for every gene x ∈ X , all best 
matches in species σ(Y ).

Proof  First note that the statement is trivial if there 
exists only one gene in Y. Hence, we can assume that Y 
contains more than one gene. Moreover, Condition (A1) 
is trivially satisfied since, by assumption, the candidate 
set of best matches of x in Y is exactly Y. Since Le is non-
empty, we have to consider the two cases |µ−1(ρS)| = 1 
and |µ−1(ρS)| = 2.

Assume first |µ−1(ρS)| = 1 , i.e., there exists exactly 
one v ∈ V (T ) such that µ(v) = ρS . We then have 
σ(Le(T (w1))) ∩ σ(Le(T (w2))) = ∅ for any distinct 
w1,w2 ∈ childT (v) (cf. [40] [Lemma 2], Lemma 2), 
which, by construction of the species tree S, immediately 
implies σ(Le(T (w))) ∈ {{σ(X), σ(Y )}, {σ(Z)}} for any 
w ∈ childT (v) . Hence, Z is an outgroup set for Y ∪ {x} , 
i.e., Condition (A2) is satisfied, and the statement thus 
follows directly from Theorem 9.
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Now suppose |µ−1(ρS)| = 2 , i.e., there are exactly 
two distinct v1, v2 ∈ V (T ) with µ(v1) = µ(v2) = ρS . 
Let T1 := T (v1) and T2 := T (v2) be the subtrees of T 
rooted at v1 and v2 , resp., and assume w.l.o.g. x ∈ Le(T1) . 
Note that Le(T1) ∪ Le(T2) = Le . Let w1 ∈ childT (v1) 
such that x �T w1 ≺T v1 . If w1 were mapped to an 
edge or vertex along the path from ρS to σ(Z) , then 
lca S(σ (X), σ(Y )) ≺ lca S(σ (X), σ(Y ), σ(Z)) = ρS 
would imply σ(X) ��S µ(w1) ; a contradiction to (R2). 
Thus, σ(Z) /∈ σ(Le(T (w1))) . Since µ(v1) ∈ V 0(S) , Con-
dition (R3.i) implies that there exists w2 ∈ childT (v1) , 
w2  = w1 , such that µ(v1) = lca (µ(w1),µ(w2)) . Since 
σ(Le(T (w1))) ∩ σ(Le(T (w2))) = ∅ by Lemma  2, 
we obtain σ(Le(T (w1))) ⊆ {σ(X), σ(Y )} and 
σ(Le(T (w2))) ⊆ {σ(Z)} . We distinguish the two cases (a) 
σ(Y ) /∈ σ(Le(T1)) and (b) σ(Y ) ∈ σ(Le(T1)).

Case (a): If σ(Y ) /∈ σ(Le(T1)) , any leaf y ∈ Y  must reside 
within a subtree T (w′) with w′ ∈ childT (v2) , thus all 
genes in Y are best matches of x. Since the speciation 
node v2 separates σ(Z) from σ(X) and σ(Y ) , we have 
σ(Z) /∈ σ(Le(T (w′))) for any such w′ (cf. Lemma 2). 
Moreover, reusing the same arguments as for v1 , we con-
clude that there exists exactly one such w′ ∈ childT (v2) 
such that σ(Y ) ∈ σ(Le(T (w′))) . Hence, any two distinct 
y, y′ ∈ Y  reside within the same subtree T (w′) and thus 
lca T (x, y) = lca T (x, y

′) . Since σ(Z) /∈ σ(Le(T (w′))) , this 
immediately implies T [x, y, y′, z] = (xz|yy′) for any z ∈ Z . 
Hence, Ŵ is the complete graph, i.e., any gene of species 
σ(Y ) is correctly inferred as a best match of x.

Case (b): Assume, for contradiction, that 
there exists w3 ∈ childT (v1) \ {w1} such that 
σ(Y ) ∈ σ(Le(T (w3))) . Clearly, w3  = w2 . Since 
it must hold σ(Le(T (w1))) ∩ σ(Le(T (w3))) = ∅ 
as well as σ(Le(T (w2))) ∩ σ(Le(T (w3))) = ∅ by 
Lemma 2, we conclude σ(Le(T (w1))) = {σ(X)} and 
σ(Le(T (w3))) = {σ(Y )} . However, (R4) then implies 
lca S(σ (X), σ(Y )) = lca S(σ (Y ), σ(Z)) ; a contradiction. 
Hence, there exists an extant gene y �T w1 in Y. Then, as 
σ(Z) /∈ σ(Le(T (w1))) , any z ∈ Z infers the same quartet 
on {x, y, y′, z} , y′ ∈ Y \ {y} . We therefore conclude that the 
auxiliary graph Ŵ contains a unique strongly connected 
component without out-edges, which represents the set 
of best matches of x in Y. Note that in these cases Condi-
tion (A2) is not necessarily satisfied, but Algorithm 1 still 
provides the exact solution. � �

The condition |µ−1(ρS)| ≤ 2 makes an explicit 
assumption on the true history of the gene family by 
limiting the scenario to at most one ancient duplica-
tion on . Figure  4 shows that this condition 

cannot be dropped: if there are two or more ancient 
duplications affecting X, Y, and Z, then the correct 
inference of best matches from quartets can no longer 
be guaranteed. It is important to note that the condi-
tion |µ−1(ρS)| ≤ 2 cannot be checked in real data since 
µ is unknown. In the simulated data, however, it is easy 
to validate and we observed empirically that it is rarely 
violated in our data (see “Simulation results” section).

In some situations ancient duplications can be 
inferred unambiguously, independent of the recon-
ciliation map µ . This is in particular the case if there 
are incongruences between quartets of genes and spe-
cies. Consider four genes a,  b,  c,  d residing in four 
pairwise distinct species σ(a) , σ(b) , σ(c) , and σ(d) , 
and assume that these four species form the quartet 
(σ (a)σ (b)|σ(c)σ (d)) . Then we say that the gene and 
species quartets are congruent if T [a, b, c, d] = (ab|cd) 
or × . Otherwise, i.e., for T [a, b, c, d] ∈ {(ac|bd), (ad|bc)} , 
we say they are incongruent, see Fig. 5. In the following 
we show that the incogruence of gene and species quar-
tets implies ancient duplications. More precisely:

a b

c d

Fig. 4  Minimal examples in which ancient duplications lead to 
false positives (FP) or false negatives (FN) when choosing outgroups 
as described in the text. (A) The species tree S displaying the triple 
( σ(X)σ (Y)|σ(Z) ). (B-D) Gene trees T with two ancient duplications. 
We assume that y′ and y′′ are the only extant genes of color σ(Y) , i.e. 
color σ(Y) is extinct in the subtree of x in each of the shown cases. 
The asterisk marks the discriminating edge for the quartet inference. 
(B) A quartet (xy′|y′′z) is inferred so that only y′ but not y′′ is a best 
match, (x , y′′) is a FN. (C) A quartet (xz|y′y′′) is inferred so that y′ is a 
false best match, (x , y′) is a FP. (D) A quartet (xy′|y′′z) is inferred so that 
(x , y′) is a FP and (x , y′′) is a FN
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Theorem  12  Let (T , σ) and S be gene and species 
trees, respectively, and a, b, c, d ∈ L(T ) . Moreover, let 
σ(a) , σ(b) , σ(c) , and σ(d)be pairwise distinct species, set 
u := lca S(σ (a), σ(b), σ(c), σ(d)) , v1 := lca S(σ (a), σ(b)) , 
and v2 := lca S(σ (c), σ(d)) . If v1 ≺S u , v2 ≺S u and 
T [a, b, c, d] = (ac|bd) or T [a, b, c, d] = (ad|bc) , then 
u ≺S µ( lca T (a, b, c, d)) for every reconciliation map 
µ : V (T ) → V (S) ∪ E(S) without HGT events. In par-
ticular, lca T (a, b, c, d) is a duplication event.

Proof  By assumption, S[σ(a), σ(b), σ(c), σ(d)] has 
the topology shown in Fig.  5. Assuming (ac|bd), Eq.  (2) 
implies µ( lca T (a, c)) � lca S(σ (a), σ(c)) = u and 
µ( lca T (b, d)) � lca S(σ (a), σ(c)) = u . Thus both inner 
nodes p and q of the quartet are mapped no lower than 
u. The edge between them therefore must be mapped to 
an edge pre-dating u, since the speciation constraint (R3) 
implies that two ≺T-comparable events in T of which one 
is a speciation cannot by mapped to the same vertex of 
S. Thus u ≺S µ( lca T (a, b, c, d)) . The case (ad|bc) is han-
dled by an analogous argument exchanging c and d. The 
fact that lca T (a, b, c, d) is a duplication event now follows 
from Lemma 4. � �

This theorem can be used to discard suspicious out-
groups: If T [x, y, z1, z2] is incongruent with the known 
species tree, then σ(z1)  = σ(z2) should be replaced by 
outgroup candidates from earlier-branching species. 
The downside of using Theorem 12 is that it requires the 
systematic investigation of a possibly large numbers of 
quartets.

We suspect that it is possible in most cases to unam-
biguously identify pairs whose last common ancestor 

in the gene tree pre-dates the last common ancestor of 
the species tree under consideration. While it may be 
difficult to determine the relative order of such dupli-
cations, we suspect that clustering methods used to 
extract groups of co-orthologs (COGs) can be adapted 
to disentangle such ancient “paralog groups”.

Simulation results
Well curated data for gene family histories are not 
available at large scale. We therefore use simulated data 
to evaluate how well best matches (in the sense of evo-
lutionary relatedness) can be estimated from both per-
fect and noisy evolutionary distance measurements. 
For this purpose, it is important to have data sets that 
emphasize asymmetric rate variations among paralogs, 
i.e., the situations in which sequence dissimilarities and 
divergence times are not well correlated. We therefore 
developed a simulation system (see “Methods” sec-
tion) that can produce this type of test data. Each sce-
nario consists of a dated, planted species tree S and a 
gene tree T, that was simulated along S and thus is also 
dated. Each edge in T is assigned a rate, drawn from a 
distribution to model rate differences between paralog 
groups following gene duplications [14, 15, 52]. The 
product of the time difference between the end points 
of an edge and the evolutionary rate assigned to it then 
defines its length. The genetic distance d(x,  y) of two 
genes x and y is the sum of the edge lengths along the 
unique path connecting x and y in T, see Eq. (7). Thus d 
is additive by construction. A typical example of a gene 
tree with distances can be found in Additional file  1: 
Fig. S1. In total, we simulated 2000 scenarios.

Since perfect additivity of d cannot be expected 
in the presence of measurement noise, we therefore 
superimposed normally distributed noise on the dis-
tance data, using the standard deviation s to control the 
noise level, see "Simulation of measurement noise” sec-
tion. As a more realistic way to produce noisy data, we 
instead simulated sequence data along T, such that the 
expected number of events is proportional to the edge 
length, and thus to d.

Gene families in real-life data differ quite drastically 
from each other not only in their rate of sequence evo-
lution but also as far as the rates of gene duplication 
and loss of paralogs in concerned. We therefore con-
sider here a mix of scenarios with a different number 
of species. See Additional file  1: Figs.  S2–5 for vari-
ous statistics of the data set including the distribution 
of species and gene number per scenario, the average 
number of genes per species, and the distribution of 
edge lengths.
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Fig. 5  Incongruence of gene and species quartets implies the 
existence of an ancient duplication. Consider four pairwise distinct 
species A, B, C, and D whose species tree is given on the l.h.s., and let 
four genes a, b, c, and d be chosen such that σ(a) = A , σ(b) = B , 
σ(c) = C , and σ(d) = D . The two speciation events separating 
A from B and C from D are indicated by © . The root of this tree is 
indicated by � . Of the three possible gene quartets, one is congruent 
with the species tree. The other two are incongruent. In each of these, 
Eq. (2) implies that the two interior vertices in these quartets cannot 
be mapped to the species tree below the root. The root of the gene 
tree must thus be mapped above the root of the species tree
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Best matches from evolutionary distances
We compare three strategies to estimate best matches 
directly from the evolutionary distance d:

1. Reciprocal best hits are inferred directly from 
the distance data. In order to account for rate varia-
tions among paralogs, we follow the strategy of Pro-
teinOrtho [50] and consider nearly co-optimal best 
hits by considering for a given gene x in species σ(x) all 
those y ∈ Y  as almost best hits that have distance not 
worse than a factor 1+ ǫ than the most similar gene in Y. 
In symbols:

For further comparison we then chose the value of ǫ∗ that 
maximizes the F-measure ( ǫ∗ = 0.5 , see Fig. 6). Still, this 
approach produces a substantial number of both false 
positives and false negatives in data sets with large rate 
variations between paralogs. We expect that the optimal 
value of ǫ∗ will depend on the details of the data set, in 
particular on the extent of evolution rate asymmetries. 
In general these will have to be estimated from the 
gene family history. We refer to this approach as the “ ǫ
-method”. Since we chose the cut-off ǫ∗ to maximize the 
F-measure, we effectively determine an upper bound on 
the performance of the best hits approach.

2. Explicit reconstruction of T  . Since the additive dis-
tances completely determine T  , the only source of errors 
for perfect data is a potentially incorrect choice for the 
root of T  . For additive distance data, the Neighbor Join-
ing algorithm [53] is guaranteed to produce the correct 
T  [54]. We then use midpoint rooting [24] to pass from 
T  to T ∗ and compute the best matches in T. We refer 
to this method as “NJ+midpoint rooting”. This method 
is not intended as a viable means of analysis for real-life 
sequence data. It serves, however, as a convenient way to 
assess the effects of rate imbalances because it isolates 
the errors that are introduceεd by the choice of the root 
alone i.e., by rate imbalances.

3. The “Quartet” approach starts from a known 
(rooted) species tree S. For x ∈ X , and y′, y′′ ∈ Y  

(5)

H(Y |x) := {y ∈ Y | d(x, y) ≤ (1+ ǫ)min
y′∈Y

d(x, y′)}

we select the set of outgroup genes Z from out-
group species w.r.t. the species of X and Y, i.e., 
lca S(σ (X), σ(Y )) ≺ lca S(σ (X), σ(Y ), σ(z)) for z ∈ Z . To 
reduce the risk for too many ancient duplications, which 
are a source of error in this approach (see Lemma 11), we 
may require in addition that lca S(σ (X), σ(Y ), σ(z)) = ρS , 
i.e., we only allow outgroup species from “the other side 
of the root”. For reasons of time complexity, we randomly 
select min(20, |Z̃|) among the genes Z̃ that meet this con-
dition as the final outgroup set Z in Algorithm  1. Since 
we operate on distance data, quartets can directly be esti-
mated using Eq. (3).

In order to benchmark the inference of best matches we 
compute recall and precision w.r.t. the true best matches 
restricted to pairs of gene sets X and Y for which such 
outgroups are available. On average we could assign out-
group genes to 74.6% of the n(n− 1)/2 gene pairs, where 
n is the number of non-loss leaves in the respective sce-
nario (see also Additional file 1: Fig. S6 for the scenario-
wise percentage).

The comparison in Fig. 7 (bottom panel) shows that the 
quartet method outperforms the alternatives for differ-
ent levels of the simulated random measurement error in 
terms of F-measure. As an example, for s = 1.0 the 10th 
percentile of the F-measure reaches 0.909 for the quartet 
method compared to 0.869 and 0.884 for the ǫ-method 
and the Neighborjoining trees, respectively. The median 
values, on the other hand, are almost identical and fairly 
high (around 0.985). Hence, we suspect that more sophis-
ticated methods are advantageous for a number of rare 

Fig. 6  Recall, precision, and F-measure of the true best matches as a 
function of ǫ for simulated data (2000 scenarios)

Fig. 7  Performance comparison of the best match inference 
methods for simulated data (2000 scenarios). Top panel: Median 
(solid) and 10th percentile (dashed) of recall and precision as a 
function of noise level s (standard deviation of the distribution from 
which perturbations were drawn, see “Simulation of measurement 
noise” section). Lower panel: Boxplots of F-measure for different 
levels of noise superimposed on the additive distance; s = 0 refers to 
perfect data. Orange: ǫ method, turquoise: explicit construction of the 
unrooted tree T  and midpoint rooting, green: inference of quartets 
with outgroups chosen in another branch of the root
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(but not negligible) difficult cases. Moreover, note that 
both recall and precision are almost perfect for noiseless 
data ( s = 0 ) and that the results are robust over a wide 
range of simulated measurement error. The same was 
observed for systematically biased noise (see Additional 
file 1: Fig. S7), which was simulated by computing a con-
vex combination of the original matrix and a perturba-
tion matrix derived from another tree. The performance 
of all three methods drops quickly when the perturbation 
becomes large.

The highest and most stable recall values could be 
obtained with the ǫ-method for both types of noisy data. 
For our choice of ǫ , this clearly comes at the cost of pre-
cision. Not surprisingly, the reconstruction of Neighbor-
joining trees already provides a higher precision than the 
ǫ-method. The simple midpoint rooting strategy how-
ever still incurs noticable level of error. For the quartet 
method operating on noiseless data the only source of 
errors are bad choices of outgroups, which are the con-
sequence of ancient duplications. The number of ancient 
duplication exceeds 1 in 5.15% of the simulated gene fam-
ily scenarios. Due to loss events predating the root of the 
species tree, the condition in Lemma 11 is only violated 
in 3.7% of the gene trees. Out of these problematic cases, 
little more than half ( 2.25% ) actually result in a non-per-
fect inference accuracy.

Restricting the choice of outgroup genes z to species 
that are separated from X and Y by the root of the species 
tree, i.e., such that lca S(σ (z), lca S(σ (X), σ(Y ))) = ρS , is 
likely to be problematic whenever S is skewed in a way 
that leaves very few choices for σ(z) and whenever the 
divergence between σ(z) and lca S(σ (X), σ(Y )) is large. In 
the latter case, saturation effects may impair the quartet 
inference in fast evolving gene families. Hence, it would 
be advantageous to consider also genes from closer spe-
cies. In principle, every relative outgroup w.r.t. species 
σ(X) and σ(Y ) is a viable candidate. These can then be 
filtered by applying Theorem 12 to reduce the number of 
bad choices of z. We find that filtering for outgroups with 
identifiable ancient duplications and giving preferences 
to the closest outgroup genes, i.e., those with the low-
est lca S(σ (z), lca S(σ (X), σ(Y ))) indeed yields a further 
moderate improvement of the estimated best matches 
(see Fig. 8). However, the performance is slightly reduced 
for perfectly additive data due to ancient duplications 
that were not detected by the currently available filtering 
heuristics.

At first glance the F-measures in Figs. 7, 8 look “to good 
to be true”. Our collection of scenarios, however, contains 
many easy instances with few paralogs and losses. Real-
life data furthermore are plagued by systematic biases, 
incomplete and missing annotations, inconsistent choices 
between isoforms, etc., that affect the ability to correctly 

estimate evolutionary distances and thus pairwise best 
hits. So far, we have assumed that we have perfect data 
in this respect and evaluate only our ability to recover 
(reciprocal) best matches. In the following we briefly 
consider the effect of having to estimate evolutionary 
distances from sequences. Again, we will consider only 
the most benign situation, i.e., sequences generated from 
Markov processes.

Best matches from sequences
In applications to real-life data sets, additional uncertain-
ties arise through the reconstruction of distances from 
sequences. We therefore simulated sequences (without 
in/dels) from the gene tree/species tree scenarios and 
inferred the best matches from the sequence data. Con-
sidering only substitutions avoids the need for comput-
ing sequence alignments. We explored two different 
ways of determining the quartet relation: (a) We derived 
an approximately additive evolutionary distance from 
the observed dissimilarity, before again applying Eq.  (3). 
More precisely, for nucleic acid sequences we trans-
formed the normalized Hamming distance using the 
simple Jukes-Cantor transform [33], and for amino acid 
sequences we applied the BLOSUM-based transforma-
tion [55] in the Biopython package [56]. (b) We directly 
inferred the quartets using the Quartet Mapping method 
(QM) [57] as outlined in “Methods” section.

Figure  9 summarizes the results for simulated nucleic 
acid and amino acid sequences of different lengths and 
different scaling of the evolutionary rates. As expected, 
the short sequences incur a relative large noise level com-
pared to the perfect additive distances. Nevertheless, 
the overwhelming majority of best matches is still esti-
mated correctly (F-measures well above 0.9 for the vast 
majority of scenarios even for nucleic acid sequences as 
short as 200 nt). Larger false positive rates are observed 
only in a small number of scenarios with many duplica-
tions and losses. This is not surprising since our relatively 

Fig. 8  Performance comparison of two different outgroup choice 
methods: (1) outgroups chosen randomly from species in another 
branch of the root (green, same as in Fig. 7), (2) closest outgroups in 
all relative outgroup species corrected with Theorem 12 (red). Left 
and middle: Median (solid) and 10th percentile (dashed) of recall and 
precision as a function of noise level. Right: Boxplots of the F-measure 
differences for selected noise levels (method 2 − method 1)
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simple rule for outgroup choice tends to fail if there are 
many ancient duplications. As expected, the F-measure 
improves with increasing sequence length due to the 
increased amount of information from which the dis-
tances are estimated. Since the standard deviation of the 
estimated distances (normalized by sequence length) 
decreases ∼ n−1/2 , the main effect of the sequence 
length is to tune the noise level. Likewise, the F-measure 
improves when saturation effects are reduced by down-
scaling the total number of events. To this end the edge 
lengths in the original trees were rescaled by a factor of 
1/2 and 1/4, respectively. We expect, however, that reduc-
ing the number of even events further will ultimately lead 
to a decreasing performance, since deriving topology 
information from almost identical sequences is difficult 
or even impossible. The same trends were observed for 
simulated protein sequences.

Figure 9 also shows that the Quartet Mapping method 
outperforms the other methods for the 200 nucleotide 
sequences, indicating that this approach is advantageous 
when sequence length is small. In case of long nucleic 
acid sequences (2000 nt) and amino acid sequences (500 
nt), the best results are obtained by estimating additive 
distances from pairwise sequence comparison using the 
Jukes-Cantor transform or a BLOSUM-based transfor-
mation, respectively.

The rather disappointing performance of the QM 
method for long sequences is probably the conse-
quence of the majority voting procedure used choose 
the quartets. We suspect that majority voting is too 

simple-minded in situations where none of the three pos-
sible splits dominates. In the default setting, these are 
interpreted as unresolved trees ( × ) and inserted as bi-
directional edges into the auxiliary graph Ŵ . This, how-
ever, leads to a moderate overprediction of best matches. 
Alternatively, a consensus can be taken over multiple 
choices of the outgroup z. Finally, the unresolved quar-
tets can be omitted altogether in the construction of the 
auxiliary graph Ŵ . Both alternatives perform worse than 
the default method, see Additional file 1: Fig. S8.

We also investigated to what extent the number of 
gene duplication and losses in a scenario influences the 
inference of best matches. As a representative example, 
Fig. 10 shows the false positive rate for QM. As expected, 
the number of false positives increases with increas-
ing number of duplication and loss events. This can be 
observed both for the absolute and the relative number 
of events , i.e., after normalizing by the number of spe-
cies (see also Additional file 1: Fig. S9 and S10 for the 200 
nt sequences and for F-measure instead of false positive 
rate, respectively).

Discussion and conclusions
The idea to use quartet structures for improvement 
of orthology estimates is not new; it was used e.g. in 
QuartetS [58]. Quartets are also used as witnesses of 
non-orthology in OMA [59] to avoid some types of false-
positives. Here, we systematically investigate how and 
when quartets help to improve and/or correct empiri-
cal best-hit data to identify best matches in the sense of 

Fig. 9  Comparison of the quality of best match estimates in terms of the F-measure for short nucleic acid sequences (200 nt), long nucleic acid 
sequences (2000 nt), and amino acid sequences (500 aa)
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closest evolutionary relatives. We propose that recipro-
cal best matches, rather than the uncorrected reciprocal 
best hits, should then be used to infer orthology relation-
ships. This second step has been the topic of a separate 
manuscript [40], in which the mathematical connections 
between (reciprocal) best matches and orthology are elu-
cidated in detail.

The key observation of the present contribution is 
that the best matches of a gene x in the set Y of genes 
from a different species can be computed correctly if 

for every y′, y′′ ∈ Y  one can find a gene z from a third 
species that is an outgroup for {x, y′, y′′} . From a theo-
retical point of view, this condition is closely related to 
rooting the gene tree. The second necessary ingredi-
ent is an estimate of an additive evolutionary distance 
between the genes that is accurate enough to correctly 
identify the topology of a certain subset of quartets. We 
emphasize that this is a much less stringent condition 
compared to the ability of reconstructing the complete 
gene tree T.

Empirically, we observe that (partial) knowledge of 
the species tree (more precisely: reliable monophyletic 
groups) is very useful for the choice of outgroup genes z: 
excellent results are obtained by choosing a candidate z 
from a species that is an outgroup for σ(x) and σ(Y ) . The 
results can be further improved by using filtering crite-
ria that identify ancient duplication events and by com-
puting a consensus over several choices of z. In data sets 
with little measurement noise, we indeed obtain nearly 
perfect best match estimates. The theoretical considera-
tions outlined here also suggest additional in-roads for 
further improvements by means of identifying ancient 
duplications, which not only serve as “witnesses of non-
orthology” but can also be used to prune the set of candi-
date outgroups.

In order to make the methods described here applica-
ble to very large real-life data sets, it will be necessary to 
optimize the computational performance. To this end, 
we will develop heuristic rules to prune the set Y in the 
case of large gene families. An obvious candidate is to use 
the ǫ-method as an initial filter, where ǫ is now chosen 
to optimize the tradeoff between |Y| and false negative 
predictions of best matches. We expect that the heuristic 
rules for choosing the set Z of candidate outgroups can 
also be improved substantially.

Best matches are rarely if ever of interest in isolation. 
Instead, they are an intermediate construction, in par-
ticular in orthology detection or the assessment of syn-
teny. It is difficult therefore to benchmark the translation 
of reciprocal best hits to reciprocal best matches in a 
truly realistic setting because best hit data themselves 
are burdened with diverse sources of errors, includ-
ing incorrect sequence assembly, incorrect or missing 
annotation of coding sequences, and the use of different 
splicing isoforms. The benchmarking results shown here 
thus have to be taken with a grain of salt. In particular, 
we expect that error levels of a pipeline that determines 
best hits and then converts them to best matches will be 
dominated by the first step, i.e., the computation of best 
hits from genome or proteome data. Our data also show, 
however, that there are difficult instances for which we 
currently have no good way to compute the correct best 
matches. Fortunately, these appear to be rare.

Fig. 10  Inference of best matches from simulated sequence data 
(2000 nt sequences). Heat map of the fraction of false positive best 
matches inferred by QM as a function of the number of duplication 
and loss events in the simulated scenario. Upper panel: absolute 
number of events; lower panel: number of events normalized by the 
number of species. The false positive rate is computed relative to the 
number of true best matches
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We expect that methods for orthology assessment can 
be improved in both reliability and computational per-
formance by combining the accurate estimation of best 
matches described here with a better understanding of 
(reciprocal) best match graphs [38, 39, 60] and their con-
nection with the orthology relation [40]. Since tree-free 
methods for orthology detection rely on (pairwise) best 
hits as proxy for reciprocal best matches, we expect that 
the accuracy of most tools would improve if best matches 
are supplied as input data. This is not easy to test, how-
ever, since the best hit computation is usually an integral 
part of the software. Such a benchmark study is hence 
beyond the scope of this contribution.

The work reported here is primarily intended to pro-
vide a solid theoretical foundation for the construc-
tion of improved best match heuristics. The theoretical 
results give some guarantees for obtaining the correct 
best matches and highlight some limitations that cannot 
be overcome with certainty as long as only distance data 
are available. The most promising additional data source 
is synteny, or more precisely, genomic proximity [61]. 
Given two proximal genes u and v from different families 
in species A and a pair of family members u′ and v′ proxi-
mal in species B, it is very likely that either both u,u′ and 
v, v′ or neither of them are best matches. A more system-
atic development of such filters will be the topic of future 
work.

The software used for simulating and testing the con-
version of best hits to best matches has been made 
available on github [62]. As a next step, it will be incor-
porated into ProteinOrtho [50, 63, 64] to assess and 
benchmark the achievable improvements on real-life 
data. Best matches instead of best hits could of course 
also be used in other orthology detection tools.

Methods
Simulations of dated species trees
As in previous work [40], we use the Innovation Model 
[65] to produce realistic topologies for the planted 
species tree S. We then construct a dating function 
τ : V (S) → [0, 1] such that τ (0S) = 1 and τ (x) = 0 for 
x ∈ L(S) . In order to assign a date to an interior vertex, 
we traverse S top-down, more precisely for the current 
node u at time τ (u) we proceed as follows: 

(1)	 We pick a child v ∈ child(u) and a leaf x ∈ L(S(v)) 
in the subtree below v. If v is already a leaf, we set 
τ (v) = 0 and proceed to the next child of u.

(2)	 Otherwise, we determine the number k of specia-
tions on the path between v and x. Hence, the path 
from u to x comprises k + 2 edges.

(3)	 We pick a random number r with mean 1 and 
range (0,  2) from a uniform distribution and set 

τ (v) = τ (u)(1− r/(k + 2)) . This rule is chosen 
so that the expected time elapsed along the edge 
uv equals τ (u) divided by the number (k + 2) of 
edges along the path to the root and ensures that 
τ (v) > 0 . The result is a dated species tree in which 
each edge uv has length τ (u)− τ (v).

The choice of the uniform distribution in (3) is a mere 
convenience. In principle it should be replaced by an 
empirically estimated distribution. Alternatively, genera-
tors capable of producing dated trees such as TreeSi-
mGM [66] could be used.

Simulation of gene trees in the dated species tree
We use the Gillespie algorithm [67] to simulate the 
duplication, loss and horizontal gene transfer events 
(HGT) occurring in S. The branches of the species tree 
S are independent in Duplication/Loss scenarios. How-
ever, horizontal gene transfer introduces dependencies 
between them. We therefore have to simulate the evolu-
tion process in such a way that at each time point τ the 
possible reactions are given by the Cartesian product 
G(τ )× {D, L,H} , where g ∈ G(τ ) is a gene that is present 
at time τ in any one of the branches of the dates species 
tree, and q ∈ {D, L,H} is one of the three possible events 
(Duplication, Loss, HGT). Every possible simulation 
event ξ := (g , q) is associated with a rate rξ (τ ) that may 
depend explicitly on the point in time. Rate constants are 
described below.

In each step, two random numbers r1 and r2 are drawn 
independently from the uniform distribution on [0,  1]. 
The first random number r1 is used to select ξ with prob-
ability rξ (τ )/R(τ ) , where R(τ ) is the sum of the rates of all 
reactions available at time τ . We refer to [67] for a con-
venient way to implement the rate-proportional choice of 
the “reaction channel”. Depending on the selected event 
type, the following actions are performed:

(q = L ) Gene loss is modeled by removing g from the 
list of active genes.

(q = D ) Gene duplications are modeled by placing a 
copy g ′ of g into the same branch of S at time τ.

(q = H ) For HGT the copy of g ′ is placed into a differ-
ent branch of S. The “landing site” for the HGT copy is 
chosen uniformly from the branches of S available at time 
τ with the exception of the branch harboring the parental 
gene g.

The rules determining the rate parameters for gene 
copies g ′ and the optional adjustment of rates for the 
genes g are discussed below. The second random variable 
r2 is used to update the clock according to τ ← τ −�τ 
with �τ = ln(1/r2)/R . The simulation terminates as soon 
as τ −�τ ≤ 0.
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A complication arises from the fact that the time inter-
val [τ , τ −�τ ] may contain a speciation event at time 
τs . At a speciation, the gene content is copied into the 
daughter-lineages, and the rates are modified in a line-
age-specific manner. As a consequence, the waiting time 
�τ has to be re-estimated since the set of reaction chan-
nels has changed. More precisely, we need to determine 
the distribution of waiting times from a time point t0 
until the next event conditioned on the fact that no event 
occurred between t0 and t1 , where t1 designates the time 
point of the speciation. For the complementary cumula-
tive distribution function and s := t0 − t1 we have

Since the waiting time distributions are exponential with 
rate r1 before t1 and rate r2 following the speciation event, 
we obtain

Hence, if the simulated waiting time reaches beyond the 
speciation event, the clock is advanced to the speciation 
event and a new waiting time is drawn with the rates after 
the speciation event. In practice, a new random number 
to obtain the time step �τ ′ with the updated rates after 
the speciation event. In the new interval [τS , τS −�τ ′] we 
again have to check for speciation events. Since the spe-
ciation events are known a priori from the dated species 
tree S, they are held in a priority queue in temporal order. 
The final result is a dated gene tree T, i.e., each event is 
unambiguously associated with a time stamp. The simu-
lation also completely determines the reconciliation map 
µ.

We simulated 2000 pairs of species and gene trees, 
where |L(S)| was drawn uniformly from the interval 
[3,  50]. The duplication and loss rates were (indepen-
dently) drawn from [0.5, 1.0).

Modeling rate imbalances
In order to produce realistic (sequence) data, an evolu-
tion rate ωe has to be associated with each edge e of T. 
To this end we use a hierarchical model that first deter-
mines a baseline gene substitution rate ω0

e for each edge 
e of the species tree S in order to simulate effects such 
as variations of population size and generation time. This 
introduces a correlation between the rates of all genes in 
the same lineage of S. These base rates are then modified 
by gene-specific contributions that capture effects such 
as differences in selection pressures that depend on gene 
function and rate differences in the wake of duplications 

P(T ≥ s + t|T ≥ s)

= P(T ≥ s + t ∧ T ≥ s)/P(T ≥ s)

= P(T ≥ s + t)/P(T ≥ s)

P(T ≥ s + t|T ≥ s) = e−(r1s+r2t)/e−r1s = e−r2t

such as neofunctionalization and subfunctionalization 
[15]. In detail, we use the following parametrization:

•	 mean substitution rate of the conserved members of 
a gene family (default 1.0).

•	 variance σ 2
0  for the baseline substitution rate in S 

(default 0.2).
•	 a gamma distribution for the substitution rates > 1 of 

divergent genes. The parameters are estimated from 
data for the whole genome duplication in saccharo-
mycete yeasts [52]. Alternatively, a uniform distribu-
tion on (1; rmax] can be selected.

•	 weights for the relative frequency of the possible fates 
of duplicates (functional conservation, subfunction-
alization, neofunctionalization; default equal weights 
1/3).

We determine the baseline substitution rates ω0
uv for the 

edge uv ∈ E(S) as follows: We simply assign the mean 
substitution rate to the planted edge 0SρS (i.e. 1.0 by 
default). We traverse S in pre-order and draw for each 
edge uv ∈ E(S) \ {0SρS} the logarithm lnω0

uv of the rate 
of evolution from a normal distribution with variance 
σ 2 = σ 2

0 (τ (u)− τ (v)) . To avoid bias towards higher or 
lower rates, we normalize the mean of the normal distri-
bution such that E(ω0

uv) = ω0
par(u)u.

For the gene specific rates we first sort all vertices 
u ∈ V (T ) by τ (u) in descending temporal order. We keep 
track of the current number of genes in each branch of 
the species tree. During the simulation, the edges of T 
will be marked as either conserved or divergent 
depending on the fate of the branch after a duplication 
event. For each edge e = uv ∈ E(T ) in the gene tree, we 
initialize an empty list Le of ordered pairs of the form 
(τ ,ω) to record the gene-specific evolution rates ω and 
the corresponding time points τ at which they become 
valid during the existence of e. This allows us to reset the 
divergent status of a gene in case it is the last survivor 
in a given species. At present, we do not consider other 
events that change the rate of evolution of a gene within 
the edge e. The framework, however, can easily accom-
modate such rules in future refinements of the model. 
We denote by Le,i the ith ordered pair (τi,ωi) in Le and 
define τ (Le,i) := τi and ω(Le,i) := ωi.

Recall that 0TρT is the first (planted) edge in T. To ini-
tialize the simulation, we mark 0TρT as conserved and 
append (τ (0T ), 1.0) to L0TρT . Then for each vertex u in 
the sorted list we proceed as follows:

	(1).	 u is a speciation event

	Mark all edges uv with v ∈ child(u) the same as 
par(u)u . To Luv we append the pair (τ (u),ω) 
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with ω = 1.0 (uv is conserved) or ω Gamma-
distributed (uv is divergent), respectively.

	 (2).	 u is a duplication event
	If the edge par(u)u is marked as divergent, then all 

edges uv with v ∈ child(u) are also marked as 
divergent and corresponding pairs (τ (u),ω) 
are appended to Luv , where the values of ω are 
drawn i.i.d. from the Gamma distribution.

	If par(u)u is marked as conserved, we choose 
between (a) conservation, (b) subfunctionaliza-
tion and (c) neofunctionalization with the speci-
fied weights. For (a) mark both incident edges 
below u as conserved, for (b) as divergent 
and for (c) one edge is conserved and the 
other is divergent. To Luv we append the pair 
(τ (u),ω) with ω = 1.0 (uv is conserved) or ω 
Gamma-distributed (uv is divergent), respec-
tively.

	 (3).	 u is a loss event
	If a single copy is left in the respective species after the 

loss: Let e∗ be the corresponding edge of the 
remaining copy at τ (u) . Mark e∗ as conserved 
and append the pair (τ (u), 1.0) to Le∗.

	 (4).	 u is an HGT event
	Let v1 be the copy that remains in the species and v2 the 

transferred copy. Mark uv1 the same as par(u)u 
and append (τ (u),ω) to Luv1 where ω is the last 
rate that was appended to Lpar(u)u . Mark uv2 as 
divergent and append (τ (u),ω) to Luv2 with ω 
Gamma-distributed.

	For each edge e = uv in T we finalize Le by append-
ing (τ (v),ω) where ω is the last rate that was 
appended to Le so far. We then define the edge 
length ℓ(e) for each edge e in T as

where f is the edge in the species tree S into 
which e is embedded.

Computation of distances
The resulting function ℓ : E(T ) → R

+ (see Eq. 6) defines 
an additive metric on the set of vertices V(T). We denote 
by d a distance function on the set of non-loss leaves in 
T (i.e., the extant genes at time τ = 0 ), representing the 
evolutionary distance between each pair of these genes. 
In order to compute d, we first construct the observable 
gene tree T̃  by removing all branches that lead to losses 
only, and then contracting all inner vertices that are left 
with a single child. The distance d(x,  y) of two leaves x 

(6)

ℓ(e) = ω0
f

|Le|−1
∑

i=1

ω(Le,i) · (τ (Le,i)− τ (Le,i+1))

and y in T̃  is given by the sum of edge lengths on the 
unique path Pxy connecting x and y in T̃  , thus

Simulation of measurement noise
In order to simulate measurement noise we consider 
three strategies:

(1)	 Adding i.i.d. random noise to the additive distance 
d in general violates the triangle inequality, i.e., the 
condition d(x, y) ≤ d(x, z)+ d(z, y) no longer holds 
for all x, y, z ∈ L . We therefore use the following 
simple algorithm: choose two distinct x, y ∈ L at 
random. Moreover, we draw a noise factor εxy from 
a normal distribution with mean  1 and standard 
deviation s, then substitute the distance of x and y, 
i.e. d(x, y) and d(y, x), by d′ := εxyd(x, y) . If the per-
turbed distance d′ satisfies the triangle inequality, 
we accept the perturbed distance d′ . Otherwise, d′ 
is rejected and a new random perturbation is gener-

ated. We repeat this until 
(

|L|
2

)

 perturbations have 

been accepted. An alternative approach is to first 
introduce perturbations to all distances and then to 
extract a corrected distance d̂ using one of several 
algorithms for the “metric repair problem”, see e.g. 
[68, 69]. A cursory test showed that the trees recon-
structed from distance matrices processed with 
these methods tend to be more different from the 
reference than with our approach of enforcing the 
triangle inequality immediately. We therefore did 
not pursue them further in this contribution.

(2)	 We denote by D a distance matrix on the set of 
non-loss leaves in T whose entries correspond to 
the distances of d. It is easy to see that a convex 
combination (1− α)D+ αD′ , 0 ≤ α ≤ 1 of two 
metrics D and D′ is again a metric (i.e., in particular, 
satisfies the triangle inequality). Even if both D and 
D

′ are additive, however, their convex combination 
is not additive in general. This yields a distance that 
is affected by a systematic bias corresponding to the 
noise contribution αD′.

(3)	 The edge lengths ℓ(e) (see Eq.  (6)) can also be 
interpreted as the average number of evolutionary 
events per site. These are then simulated directly 
using the generation tool pyvolve [70]. We gen-
erated nucleic acid sequences of length 200 with 
equal transition and transversion rates and of 
length 2000 with a transition : transversion ratio of 
2 : 1. To assess saturation effects, we scaled the rates 

(7)d(x, y) =
∑

e∈Pxy

ℓ(e).
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µe by 1/4, 1/2, 1, and 2, respectively. To better con-
nect this work with protein-based orthology assess-
ment pipelines, we simulated aminoacid sequences 
of length 500 using the WAG model [71]. Distances 
were then estimated in Biopython [56] with the 
BLOSUM62 matrix [72] for aminoacid sequences 
and with the Jukes-Cantor model for nucleid acid 
sequences.

Quartet mapping
In order to estimate quartets directly from aligned 
sequence data, we use the approach of statistical geom-
etry [73, 74]. We start from a multiple alignment of the 
sequences x, y′ , y′′ , and z, which we assume to appear 
in this order. The alignment itself is produced by the 
sequence simulator and thus does not need to be rec-
omputed. Each alignment column belongs to one of the 
15 categories determined by which of the four sequence 
x, y′ , y′′ , and z feature the same character: 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12C13C14C15

x a a a a b a a a a a a b b b a

y′ a a a b a a b b a b b a a c b

y′′ a a b a a b a b b a c a c a c

z a b a a a b b a c c a c a a d

The categories C1 through C5 and C15 do not convey 
phylogenetic information. Of the remaining ones, C6 , 
C9 , and C14 support (xy′|y′′z) , C7 , C10 , and C13 support 
(xy′′|y′z) , and C8 , C11 , and C12 support (xz|y′y′′) [57]. 
Denoting by daaaa , etc., the number of alignment col-
umns belonging to a given category, the support scores 
for quartet mapping (also referred to as geometry map-
ping) [57] are

Using S := S(xy′|y′′z)+ S(xy′′|y′z)+ S(xz|y′y′′) , normal-
ized scores are defined as s(xy′|y′′z) := S(xy′|y′′z)/S . This 
unweighted version can be extended to a weighted ver-
sion when a non-trivial distance measure D on the under-
lying alphabet is given. As derived in [57], a support value 
for the three possible quartets can be computed sepa-
rately for each alignment column i as the isolation index 
for the distances on the four characters:

(8)

S(xy′|y′′z) = daabb +
1

2
(daabc + dbcaa)

S(xy′′|y′z) = dabab +
1

2
(dabac + dbaca)

S(xz|y′y′′) = dabba +
1

2
(dabca + dbaac)

Here D∗
i  is the largest of the three distance sums appear-

ing in Eq. (9). Summing up the βi( . ) values over all align-
ment columns i yields aggregated support scores β( . ) . 
These are conveniently normalized to relative values 
as in the unweighted case. The relative support scores 
for the weighted model reduce to the unweighted ones 
if D(a, b) = 1− δ − a, b is the trivial metric [57]. If no 
quartet can be inferred unambiguously, then we default 
to the assumption lca (x, y′) = lca (x, y′′).
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