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Abstract 

Identifying the secondary structure of an RNA is crucial for understanding its diverse regulatory functions. This paper 
focuses on how to enhance target identification in a Boltzmann ensemble of structures via chemical probing data. 
We employ an information-theoretic approach to solve the problem, via considering a variant of the Rényi-Ulam 
game. Our framework is centered around the ensemble tree, a hierarchical bi-partition of the input ensemble, that is 
constructed by recursively querying about whether or not a base pair of maximum information entropy is contained 
in the target. These queries are answered via relating local with global probing data, employing the modularity in 
RNA secondary structures. We present that leaves of the tree are comprised of sub-samples exhibiting a distinguished 
structure with high probability. In particular, for a Boltzmann ensemble incorporating probing data, which is well 
established in the literature, the probability of our framework correctly identifying the target in the leaf is greater than 
90%.
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Background
Computational methods for RNA secondary structure 
prediction have played an important role in unveiling 
the various regulatory functions of RNA. In the past four 
decades, these approaches have evolved from predicting 
a single minimum free energy (MFE) structure [1, 2] to 
Boltzmann sampling an ensemble of possible structures 
[3, 4]. Despite its success in a wide range of small RNAs, 
these thermodynamics-based predictions are by no 
means perfect.

In parallel, experiments by means of chemical and 
enzymatic probing have become a frequently used tech-
nology to elucidate RNA structure [5–7]. The basic idea 
of these probing methods is to use chemical probes that 
react differently with paired or unpaired nucleotides. 
The binding sites can later be detected by biochemical 

techniques, such as selective 2′-hydroxyl acylation with 
primer extension (SHAPE) [7, 8], which yield reactivities 
at nucleotide resolution. To some extent, these reactivi-
ties provide information concerning single-stranded or 
double-stranded RNA regions. However, the reactivity 
does not unambiguously determine a specific position to 
be unpaired or paired [9]. While high SHAPE reactivity 
matches well with unpaired nucleotides, medium reactiv-
ity could correspond either to paired or unpaired nucle-
otides depending on various factors, such as the RNA 
structure itself or the experimental conditions. Recent 
advances focus on the development of thermodynamics-
based computational tools that incorporate such experi-
mental data as soft constraints to handle the ambiguity 
[7, 10, 11].

While the use of probing data has significantly 
improved the prediction accuracy of in silico structure 
prediction for several classes of RNAs [12], these meth-
ods have not solved the folding problem for large RNA 
systems, such as long non-coding RNAs (lncRNAs, typi-
cally 200–20k bases). The reason is that the footprinting 
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data is one-dimensional, i.e. it does not identify base pair-
ing partners of a given nucleotide. In particular, probing 
data alone cannot distinguish short-range and long-range 
base pairings. For long RNAs, the existence of the latter, 
however, has been shown experimentally [13] as well as 
theoretically [14, 15]. Thus, even combined with experi-
mental data, there are still numerous RNA folds consist-
ent with the probing data.

Based on chemical probing, Sanbonmatsu et  al. [16] 
developed a fragmentation method for determining the 
secondary structure of lncRNAs in the wet lab. Their 
approach applies chemical probing of the entire RNA, 
followed by parallel probing of certain overlapping frag-
ments. Regions of each fragment exhibiting similar prob-
ing profiles are folded independently, and combined in 
order to obtain the entire structure. Although the method 
has been successfully applied to identify the structures 
of several lncRNAs [16, 17], their choice of fragments is 
empirical, which hinders its application to longer RNA 
sequences [17].

In the following, as in [16], we shall stipulate (∗) : in all 
probing experiments there exists a unique distinguished 
structure, the target. We furthermore assume that the 
collection of all possible structures is in thermodynamic 
equilibrium, i.e. a Boltzmann ensemble, and the target is 
contained in the ensemble. Hence, the problem of struc-
ture prediction gives rise to the following challenge:

In relation to [16], our approach to Problem  1 can be 
understood as well as outlined as follows: Sanbonmatsu 
employs in parallel localization of the chemical probing 
experiment via fragmentation. The latter are somewhat 
ad hoc and almost certainly “break” any long-range base 
pairs, see Fig. 1.

The novelty of this paper lies in a different, sequential 
fragmentation process, assuming (∗) . Our input consists 
of the probing data of the entire sequence, giving rise 

(1)
How to enhance target identification in

a Boltzmann ensemble of structures?

to an augmented Boltzmann ensemble containing by 
construction the target (which of course is not known). 
Instead of a parallel fragmentation into subsequences, we 
“localize” differently, namely we successively ask whether 
a specific base pair is contained in the target or not. The 
particular base pair is identified using information theo-
retic properties of the Boltzmann ensemble. While we do 
not know the target explicitly, we can decide, with high 
accuracy, if it contains a particular base pair. Specifically, 
we cut the subsequence covered by the base pair, and glue 
the remainder at the cut-points. On the resulted two sub-
sequences, our approach requires probing data to be gen-
erated from probing experiments. We then compare the 
additional probing data with the initial probing profile of 
the entire sequence. At a fundamental level, our fragmen-
tation is different from Sanbonmatsu’s approach [16], in 
that we allow bases from two non-contiguous fragments 
to pair, see Fig. 1. As a consequence, our method is well 
suited to deal with the long-range base pairings, these 
being a prominent feature of RNA secondary structures 
[13, 14].

The answer to each question produces a split of the 
ensemble into two sub-samples, and we arrive at smaller 
sub-samples via successively querying and answering. We 
then establish that, after a few iterations, we arrive at a 
sample that contains a distinguished structure that, with 
high probability, coincides with the target. We illustrate 
the overall strategy in Fig. 2.

We formalize the above sequential process, by consid-
ering a variant of the Rényi-Ulam game, in which a player 
tries to identify an unknown object via asking yes–no 
questions [18, 19]. Our framework is centered around 
the ensemble tree, a hierarchical bi-partition of the input 
ensemble, whose leaves are comprised of sub-samples 
exhibiting a distinguished structure with high probability. 
Specifically, the ensemble tree is constructed by recur-
sively querying about whether or not a base pair of maxi-
mum information entropy is contained in the target. We 
prove that the query of maximum entropy base pair splits 

full length transcript

Fragments
1 2

3 4 5

5' 3' 5' 3'
s i j

Fragments

Is (i,j) contained?

Fig. 1  The fragmentation of Sanbonmatsu et al. [16] (LHS) and our approach (RHS). Their approach almost certainly “breaks” long-range base pairs 
(dotted arcs), while ours allows bases from two non-contiguous fragments to pair
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the ensemble into two even parts and in addition pro-
vides maximum reduction in the entropy of the ensem-
ble. These questions can be answered in the affirmative 
because of assumption (∗) . They are answered via relat-
ing additional “local” probing data with the initial one, 
employing the modularity in RNA secondary structures. 
By this means, we identify the correct path in the ensem-
ble tree from the root to the leaf.

The key result of this paper is that the probability of the 
ensemble tree correctly identifying the target in the leaf 
is greater than 90% , for the Boltzmann ensembles from 
random sequences of length 300, in “Target identifica-
tion” section. To demonstrate the result, we firstly utilize 
a q-Boltzmann sampler with signature distance filtration, 
which is well suited for Boltzmann ensembles subjected 
to the probing data constraint [7, 11], see “The Boltzmann 
ensemble” section. Secondly, we consider the error rates 
arisen from answering the queries via probing data. We 
show that these error rates can be significantly reduced 
via repeated queries in “Target identification” section. 
Thirdly, in “Entropy” section, we prove that the leaf with 
low information entropy contains a distinguished struc-
ture. We present that, once in the correct leaf, the prob-
ability the distinguished structure being identical to the 
target is almost always correct. Fourthly, in “Robustness” 
section, we analyze the robustness of our approach. We 
demonstrate that the ensemble tree localizing the target 
with high fidelity is robust, across Boltzmann samples of 
different sizes and nucleotide compositions.

We would point out that the q-Boltzmann sampler is 
only required to benchmark our approach on random 
sequences, due to the absence of probing data. In applica-
tion scenarios where chemical probing data is provided, 
our approach utilizes Boltzmann ensembles with soft 
constraints [7].

As proof of concept, we apply our approach to natural 
RNAs with SHAPE probing data and compute the distin-
guished structure from the ensemble tree to predict the 
accepted secondary structure, i.e., the target. We show 
in “Performance comparison” section that our approach 
improves the average prediction accuracy by 5% , com-
pared with [8].

To summarize, the key points of our approach are: 

1.	 our method is based on a Boltzmann sample and 
derives a sub-sample that contains the target with 
high probability,

2.	 the derivation is facilitated by means of the ensemble 
tree, and the identification of the correct path from 
root to leaf, is obtained by a variant of the Rényi-
Ulam game,

3.	 the answers to the respective queries are inferred 
from chemical probing, by relating additional prob-
ing data to the initial data using modularity.

This paper is organized as follows: in “Methods” section, 
we introduce the main elements of our framework: the 
Rényi-Ulam game, the Boltzmann ensemble, base-pair 
queries and the ensemble tree. In “Path identification” 

Input: RNA sequence  + probing data

Generate Boltzmann ensemble Ω

Ω)(Teert elbmesne etupmoC
and base pairs X

Is (1,11) contained?Yes No

Is (2,7) contained?Yes YesNo Is (3,10) contained? No

ensemble

leaf

AGGAGCCCUUU

Ω)(Teert elbmesne

Succesively querying and
answering about X

Output:
the distinguished structure

distinguished structure

Fig. 2  The workflow diagram (LHS) and schematic example (RHS) of our approach. LHS: we compute the ensemble tree, i.e., successively split the 
Boltzmann ensemble of structures into smaller sub-samples, by querying certain base pairs is contained in the target or not. RHS: the answers to the 
base-pair questions allow us identify a path (red) in the ensemble tree from the root to the leaf, which contains a distinguished structure
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section, we demonstrate how to integrate additional 
probing data with the initial ones allowing to answer the 
queries, thereby identifying the correct path. In “Results” 
section, we analyze the ensemble tree and present that 
our approach identifies the target reliably and efficiently. 
Finally, we discuss and integrate our results in “Discus-
sion” and Conclusion” sections.

Methods
The Rényi‑Ulam game
We now approach Problem 1 via the Rényi-Ulam game, a 
two-person game, played by a questioner (Q) and an ora-
cle, (O). Initially O thinks of an integer, Z, between one 
and one million and Q’s objective is to identify Z, asking 
yes-no questions. O is allowed to lie at a rate specific to 
yes and no, respectively.

The Rényi-Ulam game has been extensively studied 
since the early works by Rényi and Ulam [18, 19], and 
has various applications such as adaptive error-correct-
ing codes in the context of noisy communication [20, 
21]. Depending on the respective application scenario, 
numerous variants of the Rényi-Ulam game have been 
considered, specifying the format of admissible queries 
or the way O lies [22, 23].

In what follows, we shall play the following version of 
the game: O holds a set of bit strings y1y2 . . . yl of finite 
length l, not every bit string being equally likely selected 
and the queries ask for the state of the ith-bit, i.e., Q exe-
cutes bit query. O’s lies occur at random, are independent 
and context-dependent. Specifically, O lies with probabil-
ity e0 and e1 in case of the truthful answer being ”No” and 
“Yes”, respectively. The particular cases e0 = 0 and e1 = 0 
have been studied in the context of half-lies [24].

The majority of studies on the Rényi-Ulam game to 
date is combinatorial. That is, they stipulate the number 
of lies (or half-lies) being a priori known and focus on 
finding optimal search strategies which uses a minimum 
number of queries to identify the target in all cases [23, 
24].

Within the framework of this paper, we study the mani-
festation of the oracle, which is embodied as an indica-
tor random variable whose distribution is derived from 
a modularity analysis on RNA MFE-structures, see “Path 
identification”. In the manifestation, erroneous responses 
arise intrinsically at random: either as a result of the dis-
tribution of the random variable (r.v.) or intrinsic errors 
of the experimental data.

By construction, this rules out a unique winning strat-
egy for Q: instead, we consider the average fidelity or 
accuracy to identify the target utilizing a sub-optimal 
number of queries. We shall propose an entropy-based 
strategy: at any point a query is selected relative to the 
subset of bit strings coinciding with the target in all 

previously identified positions, that maximizes the uncer-
tainty reduction on the subset.

The Boltzmann ensemble
At a given point in time, an RNA sequence, x , assumes 
a fixed secondary structure, by establishing base pairings. 
Over time, however, x assumes a plethora of RNA sec-
ondary structures appearing at specific rates, see Appen-
dix A for details and context on RNA. These exist in an 
equilibrium ensemble expressed by the partition function 
[3] of x.

More formally, the structure ensemble, � of x is a dis-
crete probability space over the set of all secondary 
structures, equipped with the probability p(s) of x fold-
ing into s. We shall assume that the ensemble of struc-
tures is in thermodynamic equilibrium, the distribution 
of these structures being described as a Boltzmann dis-
tribution. The Boltzmann probability, p(s), of the struc-
ture s is a function of the free energy E(s) of the sequence 
x folding into s, computed via the Turner energy model 
[25, 26], see Appendix B for details. The Boltzmann 
probability p(s) is expressed as the Boltzmann factor 
exp (−E(s)/RT ) , normalized by the partition function, 
Z =

∑

s∈� exp (−E(s)/RT ) , i.e.

where R denotes the universal gas constant and T is the 
absolute temperature. The Boltzmann distribution facili-
tates the computation of the partition function Z for each 
substructure. The partition function algorithm [3] for 
secondary structures computes Z and, in particular, the 
base pairing probabilities based on the free energies for 
each structure within the structure ensemble �.

Let pi,j denote the probability of a base pairing between 
nucleotides i and j in the ensemble � . Clearly, pi,j can be 
computed as the sum of probabilities of all secondary 
structures that contain (i, j), that is,

where δi,j(s) denotes the occurrence of the base pair (i, j) 
in s.

The thermodynamics-based partition function has been 
extended to incorporate chemical probing data to gener-
ate a Boltzmann ensemble, �probe . These approaches [7, 
10, 11] transform structure probing data into a pseudo 
energy term, �G(s) , which reflects how well the structure 
agrees with the probing data. The Turner free energy is 
then evaluated by adding the pseudo energy term to the 
loop-based energy, i.e., Eprobe(s) = E(s)+�G(s) . The 
corresponding equilibrium ensemble, �probe , is distorted 

p(s) =
exp (−E(s)/RT )

Z
,

pi,j =
∑

s∈�

p(s)δi,j(s),
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in favor of structures that are consistent with probing 
data, see Appendix C.

For sequences whose probing data are not available, 
we utilize the 0-1 signature of the target, which is suited 
for probing data, and quantify the discrepancy between 
the Boltzmann ensemble and the target via the signa-
ture distance dsn . The 0-1 signature of a structure s is a 
0-1 vector with k-th tuple being 0 when the k-th base is 
unpaired in s, and 1 otherwise. The signature distance 
dsn(s, s

′) between two structures s and s′ is the Hamming 
distance between their corresponding 0-1 signatures, see 
Appendix A. We present that the average distance for 
an unrestricted ensemble � to a random target is 0.21n, 
while the distance for an ensemble �probe incorporating 
simulated probing data is reduced to 0.03n, see Appendix 
D. This motivates us to define a q-Boltzmann ensemble, 
�q , which consists of structures having signature distance 
to the target s at most qn, i.e., �q = {s′|dsn(s

′, s) ≤ qn} . 
By construction, the computation of �q requires the 0-1 
signature of the target, and does not need experimental 
probing data. In particular, we present that the ensem-
ble �probe has an average normalized signature distance 
similar to a q-ensemble having q = 0.05 . In this paper we 
discuss unrestricted and restricted Boltzmann ensembles, 
� and �q.

We shall employ greyscale diagrams in order to visual-
ize a sample of secondary structures by superimposing 
them in one diagram, visualizing the base pairing prob-
abilities. A greyscale diagram displays each base pair (i, j) 
as an arc with greyscale 1− pi,j , where greyscale 0 repre-
sents black and 1 represents white, see Fig. 3.

Instead of computing the entire ensemble, we shall 
consider sub-samples �′ consisting of N secondary struc-
tures with multiplicities of x and refer to �′ as the sample. 
For sufficiently large N (typically of around size 1000, see 
[4]), �′ provides a good approximation of the Boltzmann 
ensemble �.

A sample �′ is a multiset of cardinality N and for 
each structure s in �′ , its multiplicity, f(s), counts the 
frequency of s appearing in �′ . Thus in the context 
of �′ , p(s) is given by the s-multiplicity divided by N, 
p(s) = f (s)/N  . The base pairing probability pi,j has its �′

-analogue f(i,  j)/N, where f(i,  j) denotes the frequency of 
the base pair (i,  j) appearing in �′ . We shall develop our 

framework in the context of the structure ensemble � , 
and only reference the sample �′ , in case the results are 
particular to �′.

The bit queries
Any structure over n nucleotides is considered as a bit 

string of dimension 
(

n
2

)

 , stipulating (1) a structure is 

completely determined by the set of base pairs it contains 
and (2) any position can pair with any other position, 
except of itself.

The bit query now determines a single bit, i.e. whether 
or not the base pair (i,  j) is present in the target, stipu-
lating that a unique target is assumed by the sequence in 
question. We associate the query about the target with 
a random variable, Xi,j , defined on the ensemble, via 
questioning the presence of (i,  j) in each structure. By 
construction, the distribution of Xi,j is given by the base 
pairing probability P(Xi,j(s) = 1) = pi,j.

Any base pair, (i,  j), has an entropy, defined by the 
information entropy of Xi,j , i.e.

where the units of H are in bits. The entropy H(Xi,j) 
measures the uncertainty of the base pair (i,  j) in � . 
When a base pair (i, j) is certain to either exist or not, its 
entropy H(Xi,j) is 0. However, in case pi,j is closer to 1/2, 
H(Xi,j) becomes larger.

The r.v. Xi,j partitions the space � into two disjoint 
sub-spaces �0 and �1 , where �k = {s ∈ � : Xi,j(s) = k} 
( k = 0, 1 ), and the induced distributions are given by

Intuitively, H(Xi,j) quantifies the average bits of informa-
tion we would expect to gain about the ensemble when 
querying a base pair (i,  j). This motivates us to consider 
the maximum entropy base pairs, the base pair (i0, j0) 
having maximum entropy among all base pairs in � , i.e.

As we shall prove in “Entropy” section, Xi0,j0 produces 
maximally balanced splits.

The ensemble tree
Equipped with the notion of ensemble and bit query 
(i.e.  the respective maximum entropy base pairs), we 
proceed by describing our strategy to identify the tar-
get structure as specified in Problem  1. The first step 
consists in having a closer look at the space of ensemble 
reductions.

H(Xi,j) = −pi,j log2 pi,j − (1− pi,j) log2(1− pi,j),

p0(s) =
p(s)

1− pi,j
for s ∈ �0, p1(s) =

p(s)

pi,j
for s ∈ �1.

(i0, j0) = argmax
(i,j)

H(Xi,j).

Fig. 3  The greyscale diagram of of 1024 Boltzmann sampled 
structures of a random RNA sequence via ViennaRNA [12]
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Each split obtained by partitioning the ensemble � 
using r.v. Xi,j , can in turn be bipartitioned itself via any 
of its maximum entropy base pairs. This recursive split-
ting induces the ensemble tree, T (�) , whose vertices 
are sub-samples and in which its k-th layer represents a 
partition of the original ensemble into 2k blocks. T (�) , 
is a rooted binary tree, in which each branch represents 
a Xi,j-induced split of the parent into its two children.

Formally the process halts if either the resulting 
sub-spaces are all homogeneous, i.e.  their structural 

•	split �k into sub-spaces �k0 and �k1 using the 
feature Xik ,jk , that is, �kl = {s ∈ �k : Xik ,jk (s) = l} 
for l = 0, 1,

3.	 repeat Step 2 until all new sub-spaces either have 
structural entropy 0 or reach the maximum level 11.

Xik ,jk = argmax
(i,j) in �k

H(Xi,j).

Yes No

Yes No Yes No

Is (16,62) contained?

Is (66,109) contained? Is (27,109) contained?

Fig. 4  An ensemble tree having maximum level 3. A path from the root to a leaf is identified in color red

entropy is 0, which means that they contain only copies 
of one structure, or it reaches a predefined maximum 
level L. In our case we set the maximum level to be 
L = log2N + 1 = 11 , that is, the height of the ensem-
ble tree is at most 10. The procedure is described as 
follows: 

1.	 start with the ensemble �.
2.	 for each space �k with H(�k) > 0 , where k is 

a sequence of 0s and 1s having length at most 
L− 1 = 10 , compute:

•	select the maximum entropy base pair Xik ,jk of 
�k as the feature, i.e. 

In Fig.  4 we display an ensemble tree. We would 
remark that the ensemble tree may not be complete. 
The reason is that, when a sub-sample has entropy 0 
and thus consists of only one structure, the splitting of 
this sub-sample will stop.

Clearly, for each space �k , the entropies of base 
pairs can be computed via the traversal of each bit in 
each structure, and the number of bit queries grows 
quadratically in the sequence length n. Thus find-
ing the maximum entropy base pair can be imple-
mented in quadratic time O(|�k| · n

2) , with respect to 
the sequence length n. Since the sum of sizes of spaces 
on level i equals to N, each level of the ensemble tree 
requires O(N · n2) computations. Therefore the time 
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complexity of Algorithm  1 is O(L · N · n2) , i.e., quad-
ratic with respect to the sequence length n, assuming 
the maximum level L and the ensemble size N are con-
stants. Via indexing structures in � and memorizing 
indices in �k , Algorithm  1 requires O(N) memory on 
each level, i.e., its space complexity is O(L · N ).

Path identification
Given the ensemble tree, we shall construct a path recur-
sively starting from the root to identify the leaf that con-
tains the target. We shall do so by successive bit queries 
about maximum entropy base pairs, see Fig. 4.

As mentioned before, we employ two manifestations of 
the oracle, one using modularity based on RNA-folding, 
and the other determining the existence of base pairs by 
other experimental means.

The oracle via modularity and RNA folding
Here we shall employ modularity of RNA structures, 
i.e.   the loops, which constitute the additive building 
blocks for the free energy have only marginal dependen-
cies. This can intuitively be understood by observing that 
any two loops can only intersect in at most two nucleo-
tides, see Appendix B.

Let us introduce the notion of embedding and 
extraction of a contiguous subsequence or frag-
ment, which are functions ǫi,j : Bn−m × Bm → Bn and 
ξi,j : B

n → Bn−m × Bm given by

where B denote the set of bases {A,U,C,G} , and 
j − i + 1 = n−m . By construction, we have ǫi,j ◦ ξi,j = id 
and a contiguous subsequence or fragment of an RNA 
sequence is called modular if it being extracted folds into 
the same arc configuration as it does embedded in the 
sequence.

Next we show how to employ probing data to reliably 
answer whether or not a particular (maximum entropy) 
arc is contained in the target structure. Structural modu-
larity implies that if this arc can indeed be found in the 
target structure, then a comparative analysis of the prob-
ing data of the entire sequence with those of the extracted 
sequence, as well as the remainder, concatenated at the 
cut points will exhibit distinctive similarity. Modularity is 
a decisive discriminant, if, in contrast, random fragments 
do not exhibit such similarity.

To quantify to what extent modularity can discrimi-
nate base pairs, we perform computational experiments 
on random sequences via splittings. For each sequence, 
we consider its MFE structure s computed via Vien-
naRNA [12]. We shall utilize the 0-1 signature of the MFE 

ǫi,j((xi , . . . , xj), (y1, . . . , ym)) = (y1, . . . , yi−1, xi , . . . , xj , yi+1, . . . ym)

ξi,j(x1, . . . , xn) = ((xi , . . . , xj), (x1, . . . , xi−1, xj+1, . . . , xn)).

to mimics its probing data. Given two positions i and j, 
we cut the entire sequence x into two fragments, xi,j and 
the remainder x̄i,j , i.e., ξi,j(x) = (xi,j , x̄i,j) . Subsequently, 
the two fragments xi,j and x̄i,j refold into their MFE struc-
tures si,j and s̄i,j , respectively, which are combined into a 
structure ǫi,j(si,j , s̄i,j) . If bases i and j are paired in s, such 
a splitting is referred to as modular and the resulting 
structure is denoted by s′ . Otherwise, it is called random, 
with the output structure s′′ . We proceed by computing 
the base-pair and signature distance from the MFE s to 
the structures s′ or s′′ . The base-pair distance is one of the 
most frequently used metrics to quantify the similarity of 
two different structures viewed as bit strings [27, 28], the 
signature distance measures the similarity between their 
signatures, which is well suited within the context of the 
probing profiles, see Appendices A and D.

In the above computation, we run through all possible 
positions i and j. For fragments xi,j and x̄i,j , we compute 
the corresponding MFEs and distances. Accordingly, the 
time complexity of the computation is O(n6) , given by 
O(n2) choices of indices times the O(n3) complexity of 
the MFE folding and the linear time of the distance com-
putation, where n is the sequence length.

Figure 5 (LHS) compares the distribution of the signa-
ture distances dsn(s, s′) and dsn(s, s′′) obtained from mod-
ular and random splittings, respectively. The structures 
induced by modular splitting have much more similar 
signatures to their MFE structures, than those induced by 
random splitting. The situation is analogous for base-pair 
distances, see Fig. 5 (RHS). Since these distances measure 
structural similarity, the data also indicates that, when 
i and j form a base pair in s, the fragment xi,j is more 
likely to fold into the same configuration as it does being 
embedded, i.e. xi,j is modular.

The data displayed in Fig. 5 suggests the threshold dis-
tance, θ , for signatures, by which we distinguish modular 
from random. More specifically, if the signature distance 
is smaller than θ , we predict that bases i and j are paired. 
Otherwise they are unpaired. In order to quantify the 
accuracy of this classification, we consider the resulting 
false discovery rate (FDR) and false omission rate (FOR).1 
In our Rényi-Ulam game variation, the expected values 
of FDR and FOR are the error rates e1 and e0 in case the 
truthful answer being yes and no, respectively. Figure  6 
displays the error rates e0 and e1 as functions of θ . For 

1  They are defined by FDR = FP
TP+FP

 and FOR = FN
TN+FN

, , where TP (true posi-
tive) is the number of correctly identified base pairs, FP (false positive) is the 
number of incorrectly predicted pairs that do not exist in the accepted struc-
ture, TN (true negative) is the number of pairs of bases that are correctly iden-
tified as unpaired and FN (false negative) is the number of base pairs in the 
accepted RNA structure that are incorrectly predicted as unpaired.
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θ = 31 , we compute e0 ≈ 0.052 and e1 ≈ 0.007 , i.e.   we 
have an error rate of 0.052 for rejecting and an error rate 
of 0.007 for confirming a base pair.

A new fragmentation
Equipped with the ensemble tree and the oracle via mod-
ularity, our framework provides a fragmentation pro-
cess combining “local” probing profiles with the “global” 
one via modularity. The novel fragmentation process 
is guided by the base-pair queries of the ensemble tree 
inferred from the restricted Boltzmann sample incorpo-
rating chemical probing. Given the maximum entropy 
base pair, (i,  j), extraction splits the sequence into two 
fragments, one being the extracted fragment xi,j and the 
other, x̄i,j . We perform probing experiments on these 
two segments, and obtain the reactive probabilities qi,j 

and q̄i,j , respectively. Let q be the reactive probability for 
the entire sequence, and q′ be the embedding of qi,j into 
q̄i,j , i.e., q′ = ǫi,j(qi,j , q̄i,j) . As shown in the previous sub-
section, if the Hamming distance d(q,q′) is smaller than 
threshold θ , then the probing profiles are similar, i.e., two 
bases i and j are paired. Otherwise, they are unpaired in 
the target structure.

The fragmentation procedure can be summarized as 
follows: 

1.	 a probing experiment for the entire sequence is per-
formed and the reactive probability q is obtained,

2.	 a Boltzmann sample �probe of N structures, consist-
ent with the probing data q is computed,

3.	 the ensemble tree T (�) containing the sub-spaces �k 
and the corresponding maximum entropy base pairs 
Xik ,jk is constructed,

4	 starting with � we recursively answer the queries, 
determining thereby a path through the ensemble 
tree from the root to a leaf.

5	 once in a leaf, Proposition 1 guarantees the existence 
of a distinctive structure which we stipulate to be the 
target structure.

Figure 7 demonstrates the workflow of the fragmentation 
process, which can be considered as an implementation 
of our overall strategy in Fig. 2 (LHS), via incorporating 
the new fragmentation process into the workflow.

We would point out that the key of path identification 
is determination of base pairs. Instead of using modu-
larity and “local” probing data, we can also apply other 
experimental approaches to identifying base pairs. In 
Appendix E, we summarize state-of-the-art experimen-
tal approaches that could possibly be utilized to deter-
mine base pairs and to identify the path in the ensemble 

Fig. 5  The distributions of the signature distances (LHS) dsn(s, s′), dsn(s, s′′) and the base-pair distances (RHS) dbp(s, s′), dbp(s, s′′) obtained from 
modular splitting (blue) and random splitting (orange). We generated 8000 random sequences x of length 500, and computed their structures 
s (MFE). For any two positions i and j, we compute s′ (modular), s′′ (random) via ViennaRNA [12]. The red dashed line (left) denotes “threshold 
distance”, 31 (see main text)

Fig. 6  The error rates e0 and e1 as a function of the threshold θ . We 
use the same sequences and structures as described in Fig. 5. When 
the signature distance is smaller than θ , we predict that bases i and j 
are paired, otherwise they are unpaired. The error rates e0 and e1 are 
given by the false omission rate (FOR) and false discovery rate (FDR), 
respectively
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tree. In particular, we detail two methods, both of which 
utilize chemical probing data in different ways than our 
fragmentation [29, 30] and recover base pairs with a false 
discovery rate less than 0.05.

Results
Given an input sample � , we construct the ensemble tree 
T (�) having maximum level L = 11 , recursively com-
puting the maximum entropy base pairs as described in 
Algorithm 1. In this section, we shall analyze the entropy 
of leaves in order to quantify the existence of a distin-
guished structure and to identify the target.

Entropy
To quantify the uncertainty of an ensemble, we define 
the structural entropy of an ensemble, � , of an RNA 
sequence, x , as the Shannon entropy

the units of H being bits. The sum is taken over all sec-
ondary structures s of x , and p(s) denotes the Boltzmann 
probability of the structure s in the ensemble � . The 
notion of structural entropy is originated in thermody-
namics and is usually regarded as a measure of disorder, 
or randomness of an ensemble [31, 32].

Given a sample �′ of size N, the structural entropy 
has the upper bound log2N  , that is, H(�′) reaches its 
maximum when all sampled structures are different. 
Throughout the paper, we assume N = 1024 and there-
fore H(�′) ≤ 10.

H(�) = −
∑

s∈�

p(s) log2 p(s),

Proposition 1  Let �′  be a sample having structural 
entropy E, where 0 ≤ E ≤ 1 . Then there exists one struc-
ture in �′ having probability at least f(E), where f(E) is the 
solution of the equation

satisfying 0.5 ≤ p ≤ 1 . In particular, we have f (1) = 0.5 , 
f (0.469) ≈ 0.9 and f (0.286) ≈ 0.95 , see Fig. 8.

Proposition  1 implies that a sample with small struc-
tural entropy contains a distinguished structure and a 
proof is given in Appendix F. We refer to a sample having 
a distinguished structure of probability at least � as being 
�-distinguished.

Next we quantify the reduction of a bit query on an 
ensemble. Recall that the associated r.v. Xi,j of a base pair 
(i,  j) partitions the sample � into two disjoint sub-sam-
ples �0 and �1 , where �k = {s ∈ � : Xi,j(s) = k} ( k = 0, 1

).
The conditional entropy, H(�|Xi,j) , represents the 

expected value of the entropies of the conditional distri-
butions on � , averaged over the conditioning r.v. Xi,j and 
can be computed by

Then the entropy reduction R(�,Xi,j) of Xi,j on � is the 
difference between the a priori Shannon entropy H(�) 
and the conditional entropy H(�|Xi,j) , i.e.

The entropy reduction quantifies the average change 
in information entropy from an ensemble in which we 

−p log2 p− (1− p) log2(1− p) = E

H(�|Xi,j) = (1− pi,j)H(�0)+ pi,jH(�1).

R(�,Xi,j) = H(�)−H(�|Xi,j).

Input: sequence x + probing data q

Generate ensemble Ω

Ω)(Teert elbmesne etupmoC
and base pairs X

Start from root

Ω k (i j )k, kand

Fragmenting and Probing

Xi jk, k Xi jk, k

_

Compare probing data

Confirm (i j )k, k
is contained or not

update

End at leaf Output:
the distinguished structure

Fig. 7  The workflow diagram of our fragmentation process

Fig. 8  A sample with structural entropy E contains a distinguished 
structure having probability at least f(E)



Page 10 of 22Li and Reidys ﻿Algorithms Mol Biol           (2020) 15:15 

cannot tell whether or not a certain structure contains 
(i,  j), to its bipartition where one of its two blocks con-
sists of structures that contain (i,  j) and the other being 
its complement.

Proposition 2  The entropy reduction R(�,Xi,j) of Xi,j is 
given by the entropy H(Xi,j) of Xi,j, i.e.

Proposition  2 queries a Bernoulli random variable 
inducing a split, reducing its average conditional entropy 
exactly by the entropy of the random variable itself. In 
the context of the Rényi-Ulam game, Q asks a question 
that helps to maximally reduce the space of possibilities. 
A proof of Proposition 2 is presented in Appendix G.

The next observation shows that querying maximum 
entropy base pairs, induces a best possible balanced split 
of the ensemble.

Proposition 3  Suppose that Xi,j induces a partition of 
the ensemble � into sub-samples �i,j

0  and �i,j
1  . Let (i0, j0) be 

a maximum entropy base pair of � . Then we have 

1.	 (i0, j0) minimizes the difference of the probabilities of 
the two sub-samples, 

 for any (i,  j). Here we define 
P(�

i,j
k ) = P(s ∈ � : Xi,j(s) = k) with k = 0, 1.

2.	 (i0, j0) maximizes the entropy reduction R(�,Xi,j) of 
Xi,j on � , 

 for any (i, j).
Proposition  3 first shows that the bit query about the 

maximum entropy base pair Xi0,j0 partitions the ensemble 
as balanced as possible, i.e.  into sub-samples having the 
minimum difference of their probabilities. It furthermore 
establishes that the splits have minimum average struc-
tural entropy (or uncertainty), since Xi0,j0 provides the 
maximum entropy reduction on the ensemble. Thus the 
query about (i0, j0) is the most informative among all bit 
queries.

Finally we quantify the average entropy of sub-sam-
ples, �t , on the t-th level of the ensemble tree, and 
establish the existence of a distinguished structure. 
The analysis of entropies depends of course on the way 
the samples are being constructed. To this end, given a 
random sequence, we construct the ensemble tree for 
two types of samples, one being unrestricted samples 
of structures, � , and the other utilizing q-Boltzmann 

(2)R(�,Xi,j) = H(Xi,j).

|P(�
i0,j0
0 )− P(�

i0,j0
1 )| ≤ |P(�

i,j
0 )− P(�

i,j
1 )|,

R(�,Xi0,j0) ≥ R(�,Xi,j),

sampling that incorporates the signature of the target, 
�q , see “The Boltzmann ensemble” section. Specifically, 
the target structure is randomly selected from the unre-
stricted sample, and the q-Boltzmann sample utilizes 
the 0-1 signature of the target. We would point out that 
our framework does not require to ”choose” the target 
for a sequence, and here we make the choices to facili-
tate the computation on random sequences.

For unrestricted Boltzmann samples, the struc-
tural entropy H(�t) of sub-samples on the t-th level 
decreases, as the level t increases, see Fig.  9. In par-
ticular, the average entropy H(�11) of leaf samples 
is 0.328 and 0.147, for sequences having 200 and 300 
nucleotides, respectively. Proposition  1 guarantees 
that the leaf �11 is 0.90-distinguished, i.e. containing 

Fig. 9  The average entropy of sub-samples H(�t) on the t-th level. 
We randomly generate 1000 sequences of length 200, and sample 210 
structures together with a target structure s for each sequence

Fig. 10  The structural entropy H(�q
11) of the leaf sub-samples 

for different q-values. We randomly generate 1000 sequences of 
length 100, 200 and 300. For each sequence, we then generate a 
q-Boltzmann sample �q of 210 structures together with a target s. 
The red dashed line denotes q-samples having q = 0.05 , which is 
tantamount to Boltzmann samples �probe incorporating the probing 
data via pseudo-energies
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a distinguished structure with ratio at least 0.90 for 
sequences of length 200, and 0.95-distinguished for 
sequences of length 300.

For q-Boltzmann samples �q of structures having 
signature distance to the target s at most qn, the small 
entropy of the leaf and the high ratio of the distin-
guished structure are robust over a range of q-values, 
see Fig. 10. We also observe that, for longer sequences, 
the entropy is smaller, and therefore the ratio of the dis-
tinguished structure is higher.

Target identification
Any leaf of the ensemble tree exhibiting a structural 
entropy less than one, contains, by Proposition 1, a dis-
tinguished structure. Successive queries produce a 
unique, distinguished leaf, �∗ which, with high prob-
ability, contains structures that are compatible with the 
queries. Let s∗ be the distinguished structure in �∗ , and s 
denote the target.

In this section, we shall analyze this probability, 
P(s ∈ �∗) , as well as P(s∗ = s) and P(s∗ = s | s ∈ �∗) , see 
Table 1. For the path identification to the leaf �∗ , we con-
sider the error rates e0 = 0.05 and e1 = 0.01 computed in 
“Path identification” section.

As detailed in “Path identification” section, these 
probabilities depend on the error rates e0 and e1 , and 
since these errors occur independently, we derive 
P(s ∈ �∗) = (1− e0)

l0(1− e1)
l1 , where l0 and l1 denote 

the number of No-/Yes-answers to queried base pairs 
along the path, respectively. Figure 11 displays the distri-
bution of l1 . We observe that l1 has a mean around 5, i.e., 
the probabilities of queried base pairs being confirmed 
and being rejected are roughly equal. For l0 = l1 = 5 , we 
have a theoretical estimate P(s ∈ �∗) ≈ 0.736 . In Fig. 12 
we present that P(s ∈ �∗) decreases as the error rate e0 
increases, for fixed e1 = 0.01.

For (unrestricted) Boltzmann samples generated from 
random sequences, we present the probability P(s ∈ �∗) 
of the leaf containing the target is greater than 74% , 
which agrees with the above theoretical estimate. Note 
that this amounts to having no probing data as a con-
straint for the sampled structures, a worst case scenario, 
so to speak.

Furthermore, the probability that the distinguished 
structure is identical to the target is approximately 
unchanged, see Table 2. P(s∗ = s | s ∈ �∗) indicates, that 
once we are in the correct leaf, the chance of correctly 
identifying the target increases to 94% for sequences 

Fig. 11  The distributions of l1 , the number of queried base pairs on 
the path that are confirmed by the target structure. We generate 
unrestricted Boltzmann samples for random sequences of different 
lengths

Fig. 12  The probability P(s ∈ �∗) as a function of the error rate e0 , 
for fixed e1 = 0.01 and l0 = l1 = 5

Table 1  Key observables

Quantity Description

P(s ∈ �∗) The probability of the target being in the leaf

P(s∗ = s) The probability of the distinguished struc-
ture being identical to the target

P(s∗ = s | s ∈ �∗) The probability of correctly identifying the 
target, given that it is in the leaf

Table 2  Target identification: we randomly generate 
1000 sequences of  length n and  Boltzmann sample 210 
structures together with  a  target structure s for  each 
sequence

We compute the probabilities of identifying the target utilizing the ensemble 
tree. We display mean and standard deviation

n = 100 n = 200 n = 300

P(s ∈ �∗) 0.768± 0.178 0.742± 0.192 0.751± 0.187

P(s∗ = s) 0.669± 0.222 0.646± 0.229 0.706± 0.208

P(s∗ = s | s ∈ �∗) 0.871± 0.288 0.871± 0.309 0.940± 0.277
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of length 300. Accordingly, the key factor is the correct 
identification of the leaf �∗.

For q-Boltzmann samples �q filtered by signature 
distance ≤ qn we observe the following: the probabil-
ity P(s ∈ �∗) of the leaf to contain the target is greater 
than 70% is robust over a range of q-values, see Fig. 13. 
As expected, as q increases, the probability of the target 
being in the correct leaf decreases, due to the fact that the 
q-samples become less constraint by the probing data.

In particular, we observe that, for q = 0.05 and 
sequences of length 300, the probability of the ensem-
ble tree identifying the correct leaf is greater than 
90% , see Fig.  13 (red dashed line). As the Boltzmann 
ensembles incorporation of probing data via pseudo-
energies result in a q-value of 0.05, this translates into 

P(s ∈ �∗) ≥ 90% for such ensembles generated by such 
restricted Boltzmann samplers for sequences of length 
300.

We demonstrate that the ensemble tree localizing 
the target with high fidelity is robust, across samples of 
sequences having various lengths and different signa-
ture filtration q. Figure 14 (LHS) shows that the ensem-
ble tree for longer sequences has a higher chance of 
identifying the target. Once we are in the correct leaf, 
the chance of correctly distinguishing the target signifi-
cantly increases, from around 75% to over 94% in the 
case of sequences having 200 nucleotides, see Fig.  14 
(RHS).

As mentioned above, the key is the correct identifica-
tion of the leaf containing the target, and its distinguished 
structure to coincide with the latter. These events are 
quantified via P(s ∈ �∗) and P(s∗ = s) , which depend on 
the error rates e0 and e1.

These error rates can be reduced by asking the same 
query repeatedly. In our Rényi-Ulam game, repeating 
the same query is tantamount to performing the same 
experiment multiple times. It is reasonable to assume 
that experiments are performed independently and thus 
errors occur randomly. Intuitively, repeated experiments 
reduce errors originated from the noisy nature of experi-
mental data. Utilizing Bayesian analysis, we show that, 
if we get the same answer to the query twice, the error 
rates would become significantly smaller, for example, 
e
[2]
0 = 0.003 and e[2]1 = 0.00005 , see Appendix H.
In principle, we can reduce the error rates by repeating 

the same query k times. The error rates would approach 
to 0 as k grows to infinity. In this case, P(s ∈ �∗) ≈ 1 , i.e. 
the leaf always contains the target. The fidelity of the dis-
tinguished structure P(s∗ = s) increases from 70 to 94% 
for sequences of length 300.

Fig. 13  The probability P(s ∈ �∗) of being in the correct leaf for 
different q-values. We use the same sequences and q-Boltzmann 
samples as described in Fig. 10. Error bars show the standard 
deviations for random sequence samplings in the corresponding 
cases. The red dashed line denotes q-samples having q = 0.05 , 
which is tantamount to Boltzmann samples �probe incorporating the 
probing data via pseudo-energies

Fig. 14  The probabilities P(s∗ = s) (LHS) and P(s∗ = s | s ∈ �∗) (RHS) of correctly identifying the target, either in general or conditioning on 
being in the correct leaf. We use the same sequences and q-Boltzmann samples as described in Fig. 10. Error bars show the standard deviations 
for random sequence samplings in the corresponding cases. The red dashed line denotes q-samples having q = 0.05 , which is tantamount to 
Boltzmann samples �probe incorporating the probing data via pseudo-energies
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Robustness
A significant advantage of our approach is the robust-
ness of target identification across Boltzmann samples 
of various sizes and different GC-contents. For sizes, we 
deliberately change the number N of sampled structures 
ranging from 29 to 211 . Accordingly, the maximum level 
L of the ensemble tree varies, i.e., it grows at a logarith-
mic scale L = log2N + 1 . For GC-contents, we utilize 
sequences with different nucleotide compositions to 
generate Boltzmann samples. It is believed that medium 
or low GC-content offers greater transcription effi-
ciency, while high GC-content provides better structural 

stability [33]. We thus consider GC-rich and AU-rich 
random sequences. For each variant sample, we compute 
the distinguished structure s∗ in the leaf �∗ via succes-
sive L queries, and presents the probabilities of the dis-
tinguished structure being identical to the target, see 
Tables 3 and 4.

In Table  3, we demonstrate that the ensemble 
tree localizing the target with high fidelity is robust, 
across unrestricted samples of various sizes. Addition-
ally, Table  3 shows that the ensemble tree for longer 
sequences has a higher chance of identifying the target, 
see the probabilities displayed in italics. We also observe 
that the probability of being in the distinguished leaf, 
P(s ∈ �∗) , slightly decreases, as the sample size increases. 
This can be improved by repeating the same query multi-
ple times as shown in “Target identification” section.

Table  4 shows the robustness of target identification 
across samples of different GC-contents. This indicates 
that the effectiveness of our approach remains unaffected 
by RNA sequences with various GC-contents.

Performance comparison
Here we apply our approach to natural RNAs, and com-
pare the performance with the RNA structure modeling 
method developed by Hajdin et al. [8]. First, we use the 
data set of 18 RNAs with published SHAPE profiles and 
accepted secondary structures [8]. This data set includes 
tRNAs, ribosomal RNAs, riboswitches, and viruses. RNA 
lengths vary from 34 to 530 nucleotides, see Table 5. We 
consider the accepted secondary structure excluding 
pseudoknots as the target. Specifically, we reduce a pseu-
doknot by removing the helix having the minimum size 
in the pseudoknot. Then, for each sequence, we incor-
porate chemical probing data as pseudo energies [7] and 
generate a Boltzmann sample �probe of 210 structures, 
see “The Boltzmann ensemble” section. We compute 
the ensemble tree for each sample �probe , and identify 
the distinguished leaf �∗ via successive base-pair queries 
on the target. For each base-pair query, we consider the 
error rates e0 = 0.05 and e1 = 0.01 computed in “Path 
identification” section. We output the distinguished 
structure s∗ in the leaf as the predicted structure.

Here we drop the assumption that the target is always 
in the sample. We consider the model-agnostic property 
of our approach, i.e., whether it guarantees to find the 
“best” structure in the sample even if the correct target 
is not contained. Also, we point out that our framework 
does not require a priori knowledge of the target struc-
ture. However, because we are in lack of probing data on 
fragments to confirm or reject certain base-pairs using 
modularity, we need to utilize knowledge of the target to 
answer the queries.

Table 3  The robustness of  target identification across 
 samples of various sizes

We generate 1000 random sequences of length n. For each sequence, we 
then generate (unrestricted) Boltzmann samples of N structures together with 
a target structure s. The size N of the samples varies from 29 to 211 , and the 
maximum level of the ensemble tree is given by L = log2 N + 1 . We compute 
the probabilities of identifying the target utilizing the ensemble tree. We display 
mean and standard deviation

N n = 100 n = 200 n = 300

P(s ∈ �∗) 29 0.774± 0.175 0.782± 0.171 0.761± 0.182

210 0.768± 0.178 0.742± 0.192 0.751± 0.187

211 0.747± 0.189 0.711± 0.206 0.738± 0.194

P(s∗ = s) 29 0.685± 0.216 0.698± 0.211 0.724± 0.200

210 0.669± 0.222 0.646± 0.229 0.706± 0.208

211 0.682± 0.217 0.634± 0.237 0.695± 0.212

P(s∗ = s | s ∈ �∗) 29 0.885 ± 0.279 0.892 ± 0.270 0.951 ± 0.263

210 0.871 ± 0.288 0.871 ± 0.309 0.940 ± 0.277

211 0.913 ± 0.290 0.864 ± 0.334 0.942 ± 0.288

Table 4  The robustness of  target identification across   
samples of different GC-contents

We generate 1000 random sequences of length n with different GC-contents, 
where GC-rich sequences consist of 30% Gs, 30% Cs, 20% As and 20% Us; 
Uniform comprise 25% Gs, 25% Cs, 25% As and 25% Us; AU-rich contain 20% 
Gs, 20% Cs, 30% As and 30% Us. This process can be done by software such as 
GenRGenS [34]. For each sequence, we then generate (unrestricted) Boltzmann 
samples of N = 210 structures together with a target structure s. We compute 
the probabilities of identifying the target utilizing the ensemble tree. We display 
mean and standard deviation

GC-content n = 100 n = 200 n = 300

P(s ∈ �∗) GC-rich 0.778± 0.172 0.732± 0.196 0.735± 0.195

Uniform 0.768± 0.178 0.742± 0.192 0.751± 0.187

AU-rich 0.773± 0.176 0.735± 0.195 0.749± 0.188

P(s∗ = s) GC-rich 0.720± 0.202 0.655± 0.226 0.674± 0.220

Uniform 0.669± 0.222 0.646± 0.229 0.706± 0.208

AU-rich 0.677± 0.219 0.655± 0.226 0.701± 0.210

P(s∗ = s | s ∈ �∗)GC-rich 0.925± 0.259 0.895± 0.309 0.917± 0.299

Uniform 0.871± 0.288 0.871± 0.309 0.940± 0.277

AU-rich 0.876± 0.283 0.891± 0.308 0.936± 0.280
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Nevertheless, as a proof of concept, we present the 
computational results of our approach applying to the 
data set. To compare with [8], we compute three meas-
ures of performance: sensitivities, positive predictive 
value (PPV), and accuracy. We show that the accuracy 
of our method is, on average, 5 percentage points higher 

than that of [8]. Moreover, the improvement on the tar-
get identification accuracy is robust, across sequences 
of different types and various lengths. Although the 
sample �probe does not contain the target structure for 
sequences longer than 76, the results demonstrate that 
our approach is capable of identifying the “best” struc-
ture, which is defined as the one in the sample having the 
smallest base-pair distance to the target.

Discussion
In our framework, the key factor is the correct identifica-
tion of the leaf that contains the target. Figure 15 displays 
the average base-pair distances dbp(s,�t)

2 between the 
target structure s and the t-th sub-sample �t on the path. 
We contrast three scenarios, first the expectation being 
taken over all ensemble trees (blue), the set of ensemble 
trees in which the leaf containing the target is identified 
(green) and its complement (orange). We here present 
that the correct identification of the leaf containing the 
target significantly reduces the distance between the tar-
get and the sub-samples.

Table 5  Target identification results for 18 test sequences with SHAPE profiles from [8]

We consider the accepted secondary structure excluding pseudoknots as the target. Our method identifies the distinguished structure from a Boltzmann sample 
of 210 structures via 10 base-pair queries on the target. For each base-pair query, we consider the error rates of accepting or rejecting a base pair, e0 = 0.05 and 
e1 = 0.01 . To compare the structure prediction approach in [8] and our method, we present three measures of performance: sensitivities (Sens), the fraction of pairs 
in the accepted structure that are predicted ( Sens = FP

TP+FN
 ); positive predictive value (PPV), the proportion of predicted pairs that are in the accepted structure 

( PPV =
FP

TP+FP
 ); and accuracy (Acc), the harmonic mean of Sens and PPV ( Acc = 2·Sens·PPV

Sens+PPV
 ). The average accuracy of both methods is displayed in italics

RNA Length Hajdin et al. [8] Our method

Sens PPV Acc Sens PPV Acc

Pre-Q1 riboswitch, B. subtilis 34 100 100 100 100 100 100

Fluoride riboswitch, P. syringae 66 93.8 93.8 93.8 100 100 100

Adenine riboswitch, V. vulnificus 71 100 100 100 100 100 100

tRNA(asp), yeast 75 95.2 95.2 95.2 100 100 100

tRNA(phe), E. coli 76 100 84.0 91.7 100 100 100

TPP riboswitch, E. coli 79 95.5 87.5 91.4 95.6 100 97.7

SARS corona virus pseudoknot 82 84.6 88.0 86.3 97.4 84.4 90.5

cyclic-di-GMP riboswitch, V. cholerae 97 89.3 86.2 87.7 100 96.6 98.3

5S rRNA, E. coli 120 85.7 76.9 81.2 100 97.3 98.6

M-Box riboswitch, B. subtilis 154 87.5 91.3 89.4 89.7 97.8 93.5

P546 domain, bI3 group I intron 155 94.6 96.4 95.5 98.2 100 99.1

Lysine riboswitch, T. maritima 174 87.3 88.7 88.0 94.8 100 97.3

Group I intron, Azoarcus sp. 214 92.1 95.1 93.6 96.5 96.5 96.5

Hepatitis C virus IRES domain 336 92.3 96.0 94.1 98.0 97.0 97.5

Group II intron, O. iheyensis 412 93.2 97.6 95.4 94.4 100 97.1

Group I Intron, T. thermophila 425 93.9 91.2 92.5 96.8 92.3 94.5

5′ domain of 23S rRNA, E. coli 511 97.2 76.8 86.4 98.7 83.4 90.4

5′ domain of 16S rRNA, E. coli 530 93.0 83.6 88.2 97.6 89.7 93.5

Average 93.0 90.4 91.6 97.6 96.4 96.9

Fig. 15  The average base-pair distance dbp(s,�t) between the target 
s and the sub-sample �t on the path. The expectation is taken over 
all ensemble trees (blue), the set of ensemble trees in which the 
leaf containing the target is identified (green) and its complement 
(orange). The computation is based on the Boltzmann samples of 
sequences of length 300

2  Here dbp(s,�) =
∑

s′∈� p(s′)dbp(s, s
′).
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Our framework is based on two assumptions. The first 
is sampling from the Boltzmann ensemble of structures. 
This assumption is important, as for an arbitrary sam-
ple, the splittings could be highly unbalanced and the 
leaf of the ensemble tree does not always contain a dis-
tinguished structure. By quantifying the distinguished 
structure via the flow of entropies of sub-samples on 
the path, we contrast three classes of samples, the first 
being a Boltzmann sample (B-sample), the second a 
uniform sample (U-sample) and the third an E-sample,3 
see Fig. 16. We present that, in a Boltzmann sample, the 
entropies of sub-samples on the t-th level decrease much 
more sharply than those in the latter two classes, see 
Fig. 16 (LHS). In particular, the latter two produce leaves 
exhibiting an average entropy greater than 1, i.e. not con-
taining a distinguished structure. As proved in Proposi-
tion 2, the entropy reduction equals to the entropy of the 
queried base pair. Figure 16 (RHS) explains the reason for 
the significant reduction, that is, the maximum entropy 
base pairs in Boltzmann samples have entropy close to 
1 on each level, implying that the bit queries split the 
ensemble roughly in half each time. The latter two types 
of samples do not exhibit this phenomenon. In upcoming 
work, we shall investigate this phenomenon via quanti-
fying how the uncertainty or entropy of the ensemble is 
distributed in the bit queries.

The second assumption is that the target is contained 
in the sample. This assumption can be validated by gen-
erating samples of larger size, and checking whether 
or not the distinguished structure is reproducible. We 
would remark that, even though the probability of iden-
tifying the target P(s∗ = s) slightly decreases for larger 

samples (Table 3), we can significantly improve P(s∗ = s) 
by performing the same experiment multiple times, see 
“Target identification” and Appendix H.

Accordingly, the probability and entropy of a base pair 
is calculated in the context of the entire ensemble, and 
thus the ensemble tree together with maximum entropy 
base pairs. [32] show that the structural entropy of the 
entire Boltzmann ensemble is asymptotically linear in 
n, i.e. H(�entire) ≈ 0.07n . Since each queried base pair 
reduces the entropy by approximately 1 and the reduc-
tion is additive by construction, the ensemble tree would 
require approximately 0.07n queries to identify a leaf that 
has entropy smaller than 1 and contains a distinguished 
structure.

For a sample of RNA pseudoknotted structures, the 
ensemble tree in our framework can still be computed. 
However, the structure modularity no longer holds in the 
pseudoknot case. The reason is that a pseudoknot loop 
could intersect in more than one base pair with other 
loops, see Fig. 17 (RHS). The fragmentation with respect 
to a base pair involved in a pseudoknot could affect sev-
eral loops, each contributing to the free energy. The 
change of loop-based energy could lead to splits folding 
into a different configuration compared to the full tran-
script. Nevertheless, it would be interesting to find out 
other experimental methods to facilitate our framework 
for RNA pseudoknotted structures.

Conclusion
In this paper we propose to enhance the method of iden-
tifying the target structure based on RNA probing data. 
To facilitate this we introduce the framework of ensem-
ble trees in which a sample derived from the partition 
function of structures is recursively split via queries 
using information theory. Each query is answered based 

Fig. 16  The average entropy of sub-samples H(�t) (LHS) and queried base pairs H(Xt) (RHS) on the t-th level of the ensemble tree. We contrast 
the ensemble trees obtained from a Boltzmann sample (B, blue), a uniform sample (U, orange), or an E-sample (E, green), which is comprised of 210 
distinct structures, each containing only one base pair. For the former two types of samples, we randomly generate 1000 sequences of length 200. 
For each sequence, we sample 210 structures together with a target structure s, according to the Boltzmann or uniform distributions

3  consisting of N different structures with the uniform distribution, each 
structure containing only one base pair.
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on either RNA folding data in combination with chemi-
cal probing, employing modularity of RNA structures, or, 
alternatively, directly using experimental methods [29, 
30]. The former type of inference can be viewed as a kind 
of localization of probing data, relating local to global 
data by means of structural modularity. We show that 
within this framework it is possible to identify the target 
with high fidelity and that this identification requires a 
small number of base pairs to be queried. In particular we 
present that, for the Boltzmann ensembles incorporating 
probing data via pseudo-energies, the probability of the 
ensemble tree identifying the correct leaf that contains 
the target is greater than 90% , see “Target identification” 
section.
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Appendices
Appendix A: RNA secondary structures
Most computational approaches of RNA structure pre-
diction reduce to a class of coarse grained structures, 
i.e. the RNA secondary structures [1, 35–38]. These are 
contact structures via abstracting from the actual spatial 
arrangement of nucleotides. An RNA secondary struc-
ture can be represented as a diagram, a labeled graph 
over the vertex set {1, . . . , n} whose vertices are arranged 
in a horizontal line and arcs are drawn in the upper half-
plane. Clearly, vertices correspond to nucleotides in the 
primary sequence and arcs correspond to the Watson-
Crick A-U, C-G and wobble U-G base pairs. Two arcs 
(i1, j1) and (i2, j2) form a pseudoknot if they cross, i.e. the 
nucleotides appear in the order i1 < i2 < j1 < j2 in the 
primary sequence. An RNA secondary structure is a dia-
gram without pseudoknots.

We define two distances for comparing two structures, 
the base-pair and signature distances.

The base-pair distance utilizes a representation of a 
secondary structure s as a bit string b(s) = b1b2 . . . bl , 

where l denotes the number of all possible base pairs, 
and bk is a bit. Given the arc set E equipped with the lexi-
cographic order, we define bk = 1 if s contains the k-th 
base pair in E, otherwise bk = 0 . The base-pair distance 
dbp(s, s

′) between two structures s and s′ is the Hamming 
distance between their corresponding bit strings b(s) and 
b(s′) .

The 0-1 signature (or simply signature) of a structure s, 
is a vector q(s) = (q1, q2, . . . , qn) , where qk = 0 when the 
k-th base is unpaired in s, otherwise qk = 1 . The signa-
ture distance dsn(s, s′) between two structures s and s′ is 
defined as the Hamming distance between their corre-
sponding 0-1 signatures q(s) and q(s′) . By construction, 
the 0-1 signature of a secondary structure mimics its 
probing signals, and the signature distance measures the 
similarity between the probing profiles of two structures. 
By observing that each bit corresponds to two base-pair-
ing end, we derive dsn(s, s′) ≤ 2dbp(s, s

′) for any s and s′.

Appendix B: Energy model
Computational prediction of RNA secondary structures 
is mainly driven by loop-based energy models [25, 26]. 
The key assumption of these approaches is that the free 
energy E(s) of an RNA secondary structure s, is estimated 
by the sum of energy contributions E(L) from its individ-
ual loops L, E(s) =

∑

L E(L).
According to thermodynamics, the free energy reflects 

not only the overall stability of the structure, but also its 
probability appearing in thermodynamic equilibrium. 
This leads to the Boltzmann sampling [4, 12] of second-
ary structure based on their equilibrium probabilities, 
whose computation can be facilitated by the partition 
function [3].

In this model, the energy contribution of a base pair 
depends on the two adjacent loops that intersect at the 
base pair, see Fig.  17 (LHS). Note that, in a pseudo-
knot, since two adjacent loops may intersect at several 
base pairs, and thus the energy contribution of a base 
pair could affect several loops, see Fig. 17 (RHS).

Appendix C: Chemical probing
The basic idea of RNA structure probing is that chemi-
cal probes react differently with paired or unpaired 
nucleotides. More reactive regions of the RNA are 
likely to be single stranded and less reactive regions 
are likely to be base paired. Thus every nucleotide in 
a folded RNA sequence can be assigned a reactivity 
score, which depends on the type of chemical or enzy-
matic footprinting experiments and the strength of the 
reactivity. It is rarely of absolute certainty, whether or 

https://github.com/GaussBackyard/RNAStructureIdentifier
https://github.com/GaussBackyard/RNAStructureIdentifier
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not a specific position is unpaired, or paired; instead, 
the method produces a probability. The probing data 
thus produce a vector of probabilities. Several com-
peting methods have been developed to convert the 
footprinting data for each nucleotide into a probabil-
ity. Due to its ambiguity, probing data has been further 
incorporated into RNA folding algorithms by adding a 
pseudo-energy term, �G(s) , to the free energy [7, 10, 
11], i.e.

This term engages in the folding process as follows: while 
positions where structure prediction and experiment 
data agree with each other are rewarded by a negative 
pseudo-energy, mismatching locations receive a penalty 
by way of a positive term. This is tantamount to shifting 
the partition function in such a way that the equilibrium 
distribution of structures in �probe favors those that agree 
with the data.

Appendix D: q‑Boltzmann sampler
Here we incorporate the signature of a target via 
restricted Boltzmann sampling structures with the signa-
ture distance filtration.

We first analyze the signature distances in two classes 
of Boltzmann samples, one being unrestricted, � , and the 
other being restricted �probe that incorporates simulated 

Eprobe(s) = E(s)+�G(s).

probing data via pseudo-energies. The target structure 
is randomly selected from the unrestricted sample, and 
probing data is simulated from the signature of the target 
by a binary model. That is, the reactivity is set to 0.1 when 
a nucleotide is unpaired in the target, and to 0.7 when it 
is paired. These values are computed from the mean of 
collected SHAPE data among both paired and unpaired 
nucleotides in E. coli sequences [8]. According to [7], if 
SHAPE reactivity is 0.36, which lies in the middle of 0.1 
and 0.7, there is no added pseudo-energy, i.e., �G = 0.

For both types of samples, the distribution of the sig-
nature distance between the target s and the ensemble 
is approximately normal, Fig.  18. The means and vari-
ances of the normalized signature distance are shown in 
Table  6. It shows that, while the average signature dis-
tance between the target and the unrestricted sampled 
structure is around 0.21n, integrating the signature of the 
target reduces the distance to 0.03n. This indicates that 
the incorporation of the signature improves the accuracy 
of the Boltzmann sampler identifying the target.

The above analysis motivates us to introduce a 
q-Boltzmann sampler for structures with signature dis-
tance filtration. For any fraction q ∈ (0, 1) , let �q denote 
the restricted Boltzmann ensemble of structures hav-
ing signature distance to the target at most q · n , i.e., 
�q = {s′|dsn(s

′, s) ≤ q · n} . The enhanced Boltzmann 

Fig. 17  The loop-based decomposition of a secondary structure (LHS) and a pseudoknot (RHS). LHS: two adjacent loops intersect at one base pair. 
RHS: two pseudoknot loops meet at two base pairs (orange)

Fig. 18  The distributions of the signature distances dsn(s,�) and dsn(s,�probe) between the target s and two types of Boltzmann ensembles. LHS 
utilizes unrestricted samples � of structures, and RHS uses samples �probe incorporating probing data simulated from the signature of the target 
structure s 
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sampling can be implemented by partition function [3] 
and stochastic backtracking technique [4], with the aug-
mentation via an additional index recording the signature 
distance. A complete description of the new sampler will 
be provided in a future publication. The constraint on 
the signature distance changes the equilibrium distribu-
tion of structures via eliminating those that are inconsist-
ent with signature over certain ratio q. Table 6 shows the 
means and variances of the normalized signature distance 
for �q . In particular, we observe that Boltzmann samples 
�probe incorporating the probing data via pseudo-ener-
gies behave similarly as q-samples having q = 0.05.

Appendix E: State‑of‑the‑art experimental approaches
Determination of base pairs is a fundamental and long-
standing problem in RNA biology. A large variety of 
experimental approaches have been developed to provide 
reliable solutions to the problem, such as X-ray crystal-
lography, nuclear magnetic resonance (NMR), cryogenic 
electron microscopy (cryo-EM), chemical and enzymatic 
probing, cross-linking [39–42]. Each method has certain 
strengths and limitations. In particular, chemical prob-
ing, as one of the most widely accepted experiments, 
allows to detect RNA duplexes in vitro and in vivo, and 
has been combined with high-throughput sequencing to 
facilitate large-scale analysis on lncRNAs [42]. Thus, in 
the following, we focus on determining the queried base 
pairs via chemical probing.

Chemical probing data is one-dimensional, i.e. it does 
not specify base pairing partners. Thus probing data 
itself does not directly detect base pairings, and any 
structure information can only be inferred based on com-
patibility with probing data. Two strategies of structural 
inference have been developed, correlation analysis and 
mutate-and-map. [29] introduce PAIR-MaP, which uti-
lizes mutational profiling as a sequencing approach and 
correlation analysis on profiles. The authors claim that 
PAIR-MaP provides around 0.90 accuracy of structure 

modeling (on average, sensitivity 0.96 and false discov-
ery rate 0.03). [30] introduce M2-seq, a mutate-and-map 
approach combined with next generation sequencing, 
which recovers duplexes with a low false discovery rate 
( < 0.05).

Appendix F: Structural entropy
Proposition 4  Let �′ be a sample of size N and s ∈ �′ 
be a structure having probability p0 . Then the structural 
entropy of �′ is bounded by

where

Proof  By construction, the multiplicity of s in �′ is given 
by pN0 = ⌊p0N⌋ . Since the function −x log2 x is for x > 0 
concave, the structural entropy is maximal in case of all 
remaining N − pN0  structures being distinct, i.e.  each 
occurs with probability (1− p0)/(N − pN0 ) = 1/N  . 
Therefore

On the other hand, the minimum is achieved 
when all remaining structures are the same. Thus 
Hmin(p0) = −p0 log2 p0 − (1− p0) log2(1− p0) . � �

Now we prove Proposition 1.

Proof of Proposition 1  Let s0 be the structure having the 
highest probability p0 in �′ . By Proposition 4, we have

Hmin(p0) ≤ H(�′) ≤ Hmax(p0),

Hmin(p0) = −p0 log2 p0 − (1− p0) log2(1− p0),

Hmax(p0) = −p0 log2 p0 + (1− p0) log2N .

Hmax(p0) = −p0 log2 p0 −
∑

N−pN0

1

N
log2

1

N

= −p0 log2 p0 + (1− p0) log2N .

Table 6  The means and  variances of  the  normalized 
signature distances between  the  target s 
and the Boltzmann samples � , �probe or �q

For � and �probe , we utilize the same Boltzmann samples as described in Fig. 18. 
Values following the ± symbols are the standard deviation of the sampling 
errors

n = 100 n = 200 n = 300

dsn(s,�)/n 0.214± 0.088 0.219± 0.068 0.217± 0.063

dsn(s,�probe)/n 0.035± 0.021 0.034± 0.015 0.034± 0.012

dsn(s,�
0.05)/n 0.031± 0.008 0.038± 0.012 0.037± 0.018

dsn(s,�
0.1)/n 0.074± 0.014 0.080± 0.015 0.087± 0.010

dsn(s,�
0.15)/n 0.098± 0.021 0.116± 0.018 0.123± 0.011

dsn(s,�
0.20)/n 0.127± 0.034 0.144± 0.027 0.157± 0.020

dsn(s,�
0.25)/n 0.144± 0.043 0.167± 0.038 0.180± 0.029

Fig. 19  The graph of Hmin(p) as a function of p 
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Inspection of the graph of Hmin(p) as a function of p, 
we conclude, that for E < 1 , two solutions of the equa-
tion Hmin(p) = E exist, one being for f (E) > 0.5 and the 
other for g(E) < 0.5 , see Fig. 19. In case of E = 1 , we have 
the unique solution, f (E) = g(E) = 0.5 . Since Hmin(p) is 
monotone over [0, 0.5] and [0.5, 1], inequality (3) implies

We shall proceed by excluding p0 ≤ g(E) . A contradic-
tion, suppose that p0 < 0.5 and that structures in �′ are 
arranged in descending order according to their prob-
abilities pi for i = 0, 1, . . . , k . Since each structure in �′ 
has probability smaller than 0.5, the sample �′ contains 
at least three different structures, i.e. k ≥ 2 . By construc-
tion, we have pi ≤ p0 < 0.5 . Now we consider the follow-
ing optimization problem

We inspect that the multivariate function 
∑k

i=0 pi log2 pi 
reaches its minimum 1 only for p0 = p1 = 0.5 and pi = 0 
for i ≥ 2 . In the case of p0 < 0.5 , the minimum cannot 
be reached and we arrive at some E > 1 , in contradiction 
to our assumption E ≤ 1 . Therefore p0 ≥ f (E) is the only 
possible scenario, i.e., �′ contains a distinguished struc-
ture with probability at least f(E).�  �

Appendix G: Information theory
Here we will provide proofs of the information-theoretic 
results on the Boltzmann ensemble of secondary struc-
tures. In particular, we point out that these results on 
the Boltzmann ensemble hold in the more general setup, 
i.e., discrete probability spaces. Let (�,P(�), p) be a dis-
crete probability space consisting of the sample space � , 
its power set P(�) as the σ-algebra and the probability 
measure p. We shall refer to the space as � . The Shannon 
entropy of � is given by

where the units of H are in bits.
A feature X is a discrete random variable defined on � . 

Assume that X has a finite number of values x1, x2, . . . , xk . 

(3)Hmin(p0) ≤ E.

p0 ≥ f (E) or p0 ≤ g(E).

min
pi

k
∑

i=0

pi log2 pi

s.t.

k
∑

i=0

pi = 1

0 ≤ pk ≤ pk−1 ≤ · · · ≤ p0 ≤ 0.5.

H(�) = −
∑

s∈�

p(s) log2 p(s),

Set qi = P(X = xi) . The Shannon entropy H(X) of the fea-
ture X is given by

In particular, the values of X define a partition of � into 
disjoint subsets �i = {s ∈ � : X(s) = xi} , for 1 ≤ i ≤ k . 
This further induces k spaces (�i,P(�i), pi) , where the 
induced distribution is given by

and qi denotes the probability of X having value xi and is 
given by

Let H(�|X) denote the conditional entropy of � given 
the value of X. The entropy H(�|X) gives the expected 
value of the entropies of the conditional distributions on 
� , averaged over the conditioning feature X and can be 
computed by

Then the entropy reduction R(�,X) of � for feature X 
is the difference between the a priori Shannon entropy 
H(�) and the conditional entropy H(�|X) , i.e.

The entropy reduction indicates the change on average 
in information entropy from a prior state to a state that 
takes some information as given.

Now we prove Propositions 2 and 3.

Proof of Proposition 2 

H(X) = −
∑

i

qi log2 qi.

pi(s) =
p(s)

qi
for s ∈ �i,

qi = P(X = xi) =
∑

s∈�i

p(s).

H(�|X) =
∑

i

qiH(�i).

R(�,X) = H(�)−H(�|X).

H(�|X) =
∑

i

qiH(�i)

= −
∑

i

qi
∑

s∈�i

pi(s) log2 pi(s)

= −
∑

i

qi
∑

s∈�i

p(s)

qi
log2

p(s)

qi

= −
∑

i

∑

s∈�i

p(s)(log2 p(s)− log2 qi)

= −
∑

i

∑

s∈�i

p(s) log2 p(s)+
∑

i

log2 qi
∑

s∈�i

p(s)

= −
∑

s∈�

p(s) log2 p(s)+
∑

i

qi log2 qi

= H(�)−H(X).
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Therefore Eq. (2) follows. � �

Proof of Proposition 3  By definition,

Similarly, we have P(�
i,j
0 ) = 1− pi,j . Thus 

|P(�
i,j
0 )− P(�

i,j
1 )| = |1− 2pi,j| is strictly decreas-

ing on pi,j ∈ [0, 1/2] and strictly increas-
ing on [1/2,  1]. Meanwhile, the function 
H(Xi,j) = −pi,j log2 pi,j − (1− pi,j) log2(1− pi,j) is 
strictly increasing on pi,j ∈ [0, 1/2] and symmetric 
with respect to pi,j = 1/2 . Therefore, |P(�i,j

0 )− P(�
i,j
1 )| 

reaches its minimum when H(Xi,j) has the maximum 
value, that is, Xi0,j0.

Assertion (2) follows directly from Proposition 2. � �

Given two features X1 and X2 , we can partition � either 
first by X1 and subsequently by X2 , or first by X2 and then 
by X1 , or just by a pair of features (X1,X2) . In the follow-
ing, we will show that all three approaches provide the 
same entropy reduction of �.

Before the proof, we define some notations. The joint 
probability distribution of a pair of features (X1,X2) is 
given by qi1,i2 = P(X1 = x

(1)
i1

,X2 = x
(2)
i2

) , and the marginal 
probability distributions are given by q(1)i1

= P(X1 = x
(1)
i1

) 
and q

(2)
i2

= P(X2 = x
(2)
i2

) . Clearly, 
∑

i1
qi1,i2 = q

(2)
i2

 and 
∑

i2
qi1,i2 = q

(1)
i1

 . The joint entropy H(X1,X2) of a pair 
(X1,X2) is defined as

The conditional entropy H(X2|X1) of a feature X2 given 
X1 is defined as the expected value of the entropies of the 
conditional distributions X2 , averaged over the condi-
tioning feature X1 , i.e.

P(�
i,j
1 ) =

∑

s∈�
i,j
1

p(s) = P(Xi,j(s) = 1) = pi,j .

H(X1,X2) = −
∑

i1

∑

i2

qi1,i2 log2 qi1,i2 .

H(X2|X1) =
∑

i1

P(X1 = x
(1)
i1

)H(X2|X1 = x
(1)
i1

).

Proposition 5  (Chain rule, [43])

Proposition 6  Let R(�,X1,X2) denote the entropy reduc-
tion of � first by the feature X1 and then by the feature X2 , 
and R(�, (X1,X2)) denote the entropy reduction of � by a 
pair of features (X1,X2) . Then

Proof  By Proposition 2, we have

Let �i1 denote the spaces obtained by partition-
ing � via X1 , i.e. �i1 = (�i1 ,P(�i1), pi1) , where 
�i1 = {s ∈ � : X1(s) = x

(1)
i1

} , and

where q
(1)
i1

= P(X1 = x
(1)
i1

) . Then the space 
�i1 is further partitioned into �i1,i2 via X2 . 
That is, �i1,i2 = (�i1,i2 ,P(�i1,i2), pi1,i2) , where 
�i1,i2 = {s ∈ �i1 : X2(s) = x

(2)
i2

} , and

The entropy reduction R(�,X1,X2) is given by the differ-
ence between the a priori Shannon entropy H(�) and the 
conditional entropy H((�|X1)|X2) , which is the expected 
value of the entropies of �i1,i2 , weighted by the probabil-
ity P(s ∈ �i1,i2) = P(X2 = x

(2)
i2

,X1 = x
(1)
i1

) = qi1,i2 . In view 
of Proposition 2, we derive

(4)H(X1,X2) = H(X1)+H(X2|X1).

(5)R(�,X1,X2) = R(�, (X1,X2)).

R(�,X1) = H(X1),

R(�, (X1,X2)) = H(X1,X2).

pi1(s) =
p(s)

q
(1)
i1

, for s ∈ �i1 ,

pi1,i2(s) =
pi1(s)

P(X2 = x
(2)
i2

|X1 = x
(1)
i1

)

=

p(s)

q
(1)
i1

qi1,i2

q
(1)
i1

=
p(s)

qi1,i2
, for s ∈ �i1,i2 .
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Eq. (5) follows.�  �

The maximum entropy of an arbitrary feature is achieved 
when all its outcomes occur with equal probability, and 
this maximum value is proportional to the logarithm of the 
number of possible outcomes to the base 2. Thus Propo-
sition 2 implies that the more possible outcomes a feature 
has, the higher entropy reduction it could possibly lead to.

Meanwhile, a feature with an arbitrary number of out-
comes can be viewed as a combination of binary features, 
the ones with two possible outcomes. Even though the 
entropy of the combination of two features is greater than 
each of them, Proposition  6 shows that partitioning the 
space subsequently by two features has the same entropy 
reduction as partitioning by their combination. Therefore, 
instead of considering features with outcomes as many as 
possible, we focus on binary features.

Appendix H: Query repeats
Here we assess the improvement of the error rates by 
repeating the same query twice. Let Y (or N) denote the 
event of the queried base pair existing (or not) in the target 
structure. Let y (or n) denote the event of the experiment 

R(�,X1,X2) = H(�)−H((�|X1)|X2)

= H(�)−
∑

i1,i2

P(s ∈ �i1,i2)H(�i1,i2)

= H(�)+
∑

i1,i2

P(s ∈ �i1,i2)
∑

s∈�i1,i2

pi1,i2(s) log2 pi1,i2(s)

= H(�)+
∑

i1,i2

qi1,i2

∑

s∈�i1,i2

p(s)

qi1,i2
log2

p(s)

qi1,i2

= H(�)+
∑

i1,i2

∑

s∈�i1,i2

p(s) log2 p(s)−
∑

i1,i2

∑

s∈�i1,i2

p(s) log2 qi1,i2

= H(�)+
∑

s∈�

p(s) log2 p(s)−
∑

i1,i2

log2 qi1,i2

∑

s∈�i1,i2

p(s)

= H(�)−H(�)−
∑

i1,i2

qi1,i2 log2 qi1,i2

= H(X1,X2)

= R(�, (X1,X2)).

confirming (or rejecting) the base pair. Let nn denote the 
event of two independent experiments both rejecting the 
base pair. Similarly, we have yy and yn. Utilizing the same 
sequences and structures as described in Fig.  5, we esti-
mate the conditional probabilities P(n|N ) ≈ 0.993 and 
P(n|Y ) ≈ 0.055 . The prior probability P(Y ) can be com-
puted via the expected number l1 of confirmed queried 
base pairs on the path, divided by the number of queries in 
each sample. Figure 11 displays the distribution of l1 hav-

ing mean around 5. Thus we adopt P(Y ) = P(N ) = 0.5 . By 
Bayes’ theorem, we calculate the posterior

where P(nn) = P(nn|N )P(N )+ P(nn|Y )P(Y ) . Since two 
experiments can be assumed to conditionally independ-
ent given Y and also given N, we have P(nn|N ) = P(n|N )2 
and P(nn|Y ) = P(n|Y )2 . Similarly, we compute P(Y |nn) , 
P(Y |yy) and P(Y |yn) etc, see Table  7. It demonstrates 
that, if we get the same answer to the query twice, the 
error rates would become significantly smaller, for exam-
ple, e[2]0 = 0.003 and e[2]1 = 0.00005 . In the case of mixed 
answers ny or yn, its probability P(ny) = 0.0292 , i.e., it 
rarely happens. We would recommend a third experi-
ment and take the majority of three answers when getting 
two mixed answers.

In principle, we can extend to reducing the error rates 
by repeating the same query k times. The above Bayes-
ian argument is then generalized to sequential updat-
ing on the error rates from e0 to e[k]0  . We can show that 
e
[k]
0  and e[k]1  approach to 0, as k grows to infinity. In this 

case, the reliability of the leaf space P(s ∈ �11) is 1, i.e. 

P(N |nn) =
P(nn|N )P(N )

P(nn)
=

P(n|N )2P(N )

P(n|N )2P(N )+ P(n|Y )2P(Y )
,

Table 7  The posterior probabilities after two experiments

We use the same sequences and structures as described in Fig. 5

Outcome of two 
experiments

Y N

nn P(Y |nn) = 0.003 P(N|nn) = 0.997

yy P(Y |yy) = 0.99995 P(N|yy) = 0.00005

ny or yn P(Y |ny) = 0.881 P(N|ny) = 0.119
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the leaf always contain the target. The fidelity of the dis-
tinguished structure P(s∗ = s) increases from 70 to 94% 
for sequences of length 300. To sum up, asking the same 
query a constant number of times significantly improves 
the fidelity of the leaf and the distinguished structure.
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