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Abstract 

Background: Advances in molecular biology have resulted in big and complicated data sets, therefore a clustering 
approach that able to capture the actual structure and the hidden patterns of the data is required. Moreover, the geo-
metric space may not reflects the actual similarity between the different objects. As a result, in this research we use 
clustering-based space that convert the geometric space of the molecular to a categorical space based on clustering 
results. Then we use this space for developing a new classification algorithm.

Results: In this study, we propose a new classification method named GrpClassifierEC that replaces the given data 
space with categorical space based on ensemble clustering (EC). The EC space is defined by tracking the membership 
of the points over multiple runs of clustering algorithms. Different points that were included in the same clusters will 
be represented as a single point. Our algorithm classifies all these points as a single class. The similarity between two 
objects is defined as the number of times that these objects were not belong to the same cluster. In order to evaluate 
our suggested method, we compare its results to the k nearest neighbors, Decision tree and Random forest classifica-
tion algorithms on several benchmark datasets. The results confirm that the suggested new algorithm GrpClassifierEC 
outperforms the other algorithms.

Conclusions: Our algorithm can be integrated with many other algorithms. In this research, we use only the k-means 
clustering algorithm with different k values. In future research, we propose several directions: (1) checking the effect 
of the clustering algorithm to build an ensemble clustering space. (2) Finding poor clustering results based on the 
training data, (3) reducing the volume of the data by combining similar points based on the EC.

Availability and implementation: The KNIME workflow, implementing GrpClassifierEC, is available at https ://malik 
youse f.com
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Background
Clustering has a broad range of applications in life sci-
ences and is used in many fields, from clinical informa-
tion analysis to phylogeny and genomics and proteomics, 
over many years. The aim of clustering biological data is 

to cover the natural structure of the data and find impor-
tant patterns within the data. Advances in molecular 
biology have resulted in big and complicated data sets, 
making clustering vital for information understanding 
and visualization. In addition, clustering can be a strong 
method to define the relationship between different sam-
ples (points) [1].

A clustering ensemble attempts to combine many clus-
tering models to produce a better consistency and reli-
ability result than that of individual clustering algorithms 
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[2]. Cluster ensembles have been shown to be better than 
any standard clustering algorithm at improving accu-
racy and robustness across different data collections [3]. 
However, for clarification purposes in this study we are 
introducing the ensemble cluster (EC) algorithm that is 
different from the known clustering ensemble (CE).

The main assumption in this research is that points 
belonging to the same cluster are more similar to other 
points from other clusters even though their Euclidean 
distance is closer. This is because the clustering algo-
rithms take into account both the geometric space as well 
as other statistical parameters.

In this research, the EC transformation algorithm is to 
run clustering algorithm (or multiple algorithms) several 
times with different parameter values where each run 
produce a categorical dimension (feature) of the new cat-
egorical data. For example running k-means with differ-
ent value of k, k = 1,…,50, will generate a new categorical 
data with 50 dimensions.

Our current research presents a novel classification 
model that based on the Ensemble Cluster (EC) space. 
EC space is generated by EC transformation algorithm 
(See Algorithm  1 and Fig. 2) applied on a given data to 
generate a categorical data using clustering algorithms 
(one or more).

For example for a given point from the original data 
X = (x1, . . . , xn) with n features applying EC transfor-
mation using k-means over k = 1,…,50 will generate a 
new point X̂ = (c1, . . . , c50) in the new categorical space 
with 50 categorical values. The value of each ci indi-
cates the cluster label that was assigned to the point in 
the i ∈ {1, . . . , 50} iteration. Additionally, we can define 
an boolean identity function id() over the EC space 
between two categorical points X̂ = (c1, . . . , c50) and 
Ŷ = (v1, . . . , v50)

In other words, two points in the EC space are identi-
cal if they were assigned to the same clusters over all the 
iteration (k = 1,…,50). All the points that fall in the same 
cluster in the different clustering runs constitute a single 
group and are represented by a single point. Our algo-
rithm classifies only the representors, and all the group 
members will have the same class label.

In general, one could use any clustering algorithm or a 
combination of algorithms. However, in our experiments, 
we use the k-means clustering algorithm with different 

id(ci, vi) =






1 ifci = vi

0 otherwise

Similarity
(
X̂ ,Ŷ

)
=

∑n
i id(ci, vi)

n

k values. We have chosen the k-means as first step and 
as a future work; we would examine different algorithms 
and different combination to examine the impact on the 
performance of the algorithm. K-means is chosen for 
couple of reasons; firstly, it well known clustering algo-
rithms, also we can specify the number of clusters, which 
is essential part to our algorithm and the differentiation 
between the different k values, is big. Interestingly, in our 
experiments, we observe that not only the number of the 
data points (size) decreased, but also the number of the 
generated features (categorical) is decreased. This reduc-
tion is different from traditional feature reduction that 
eliminates some of the unneeded features.

Combination clustering is a more challenging task than 
the combination of supervised classifications. Topchy 
et al. [4] and Strehl et al. [5] addressed this issue by for-
mulating consensus functions that avoid an explicit solu-
tion to the correspondence problem. Recent studies have 
demonstrated that consensus clustering can be found 
using graph-based, statistical or information-theoretic 
methods without explicitly solving the label correspond-
ence problem as mentioned in [6]. Other empirical con-
sensus functions were also considered in [7–9].

A clustering-based learning method was proposed in 
[10]. In this study, several clustering algorithms are run to 
generate several (unsupervised) models. The learner then 
utilizes the labeled data to guess labels for entire clusters 
(assuming that all points in the same cluster have the 
same label). In this way, the algorithm forms a number 
of hypotheses. The one that minimizes the PAC-Bayesian 
boundary is chosen and used as the classifier. The authors 
assume that at least one of the clustering runs will pro-
duce a good classifier and that their algorithm will find it.

Clustering ensemble algorithms were also applied 
for semi-supervised classification [11, 12] based on 
the hypothesis that for noisy data they more accurately 
reflect the actual similarity between different objects. 
They propose a Co-association Matrix (CM) based on 
the outputs of different clustering algorithms and use this 
as a similarity matrix in the regularization framework. 
Berikon et al. [13] use the same idea in the semi-super-
vised regression method. They combine graph Lapla-
cian regularization and cluster ensemble methodologies. 
To accelerate the calculation, they apply the low-rank 
decomposition of the CM.

Our method is different from those already published 
studies. We assume that the groups, which were built by 
the identical points in the categorical space, are relatively 
pure (i.e., all the points belonging to the same group have 
the same class).

Abdallah et  al. [14, 15] developed a distance func-
tion based on ensemble clustering and use it within the 
framework of the k-nearest neighbor classifier and then 
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improve selecting sampling for unsupervised data to be 
labeled by an expert. Additionally Abdallah and Yousef 
[16] integrated EC within Decision Trees, K Nearest 
Neighbors, and the Random Forest classifiers. The results 
obtained by applying EC on 10 datasets confirmed the 
hypothesis that embedding the EC space would improve 
the performance and reduce the feature space dramati-
cally. However, in this research we do not integrated 
the EC with an existing algorithms, instead we suggest 
a novel classification method based on the categorical 
space that was received as a result of (EC).

A recent study by Yousef et al. [17] used EC classifica-
tion comparing it to two-class SVM and one-class clas-
sifiers applied on sequence plant microRNA data. The 
results show that K-Nearest Neighbors-EC (KNN-ECC) 
outperforms all other methods. The results emphasize 
that the EC procedure contributes to building a stronger 
model for classification.

In this study we introduce a novel algorithm called 
GrpClassifierEC that based on EC transformation space. 
Several experiments were conducted in order to evalu-
ate the performance of GrpClassifierEC. We tested it 
over 10 biological datasets and compare its results to the 
k-nearest neighbors, decision trees and random forest 
classification algorithms. The results show that the new 
algorithm GrpClassifierEC using the ensemble clustering 
was superior and outperforms the other baseline algo-
rithms on most of the datasets.

Methods
The ensemble clustering transformation to categorical 
space
This section describes the ensemble clustering (EC) 
transformation that transforms the original data from 
its original feature to categorical space as illustrated in 

Fig. 2. The basic algorithm assumes that points belong-
ing to the same cluster are more similar than points 
that fall in different clusters. In real-world, this assump-
tion may not always hold, as illustrated in the example 
presented in Fig.  1. In this example, the data includes 
two classes (circles and diamonds). If we cluster the 
data into two clusters, then the left cluster will include 
two types of classes and the right one will still have all 
the points from the same class.

As a conclusion, we decided to run the clustering 
algorithm several times. Points belonging to the same 
cluster in the multiple runs are consider as identical 
points and will define a group that will be classified to 
the same class.

Let, D be a set of labeled points used as training data, 
and A a set of unlabeled data. First, the GrpClassifi-
erEC algorithm will create a new dataset E , where E is 
a dataset combining D and A (i.e.,E = D ∪ A ), then the 
GrpClassifierEC runs the k-means clustering algorithm 
several times with different values of k (we refer it to 
nmc = number of clusters) and creates the clustering 
matrix cMat . cMat is a matrix where the ith row con-
sists of the clustering results of the ith point in E . See 
Table 1 for an example of cMat with 20 points and 10 
dimension of categorical features. The first column is 
the results of running k-means with k = 2 while the last 
column is the results of running k-means with k = 11. 
The values are the index of the cluster that was assigned 
by k-means. We record the results from k = 2.

Applying the EC transformation on xi ∈ E will cre-
ate a new point x∗i ∈ cMat with categorical values. The 
dimension of the xi

* is k − 1. Therefore applying the EC 
transformation on the whole data will generate a new 
categorical data (EC data) that consists of l points with 
nmc-1 categorical features.

Fig. 1 Example of clustering data
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Table 1 EC space for 20 points and number of cluster (nmc) of 11

First column is the point name, second column is the results of assigning k-means of each point into two clusters (c0 and c1), the third column is the result of assigning 
k-means for each point into 3 clusters etc.

Point/k 2 3 4 5 6 7 8 9 10 11

Point 1 c0 c2 c3 c2 c2 c4 c5 c4 c4 c5

Point 2 c0 c0 c3 c3 c2 c4 c4 c4 c4 c2

Point 3 c0 c2 c2 c4 c5 c5 c6 c6 c6 c6

Point 4 c1 c0 c0 c3 c3 c2 c2 c3 c3 c3

Point 5 c0 c0 c3 c3 c2 c2 c4 c2 c2 c2

Point 6 c0 c2 c3 c2 c4 c4 c5 c4 c4 c5

Point 7 c0 c2 c3 c2 c4 c4 c5 c5 c5 c4

Point 8 c0 c2 c2 c4 c4 c5 c6 c6 c6 c6

Point 9 c1 c0 c0 c3 c3 c2 c2 c3 c3 c3

Point 10 c0 c2 c3 c2 c4 c4 c5 c5 c4 c5

Point 11 c0 c2 c2 c2 c4 c5 c6 c5 c5 c4

Point 12 c0 c2 c2 c2 c4 c5 c6 c5 c5 c4

Point 13 c0 c2 c2 c2 c4 c5 c6 c5 c5 c4

Point 14 c0 c2 c3 c2 c2 c4 c5 c4 c4 c5

Point 15 c0 c2 c2 c2 c4 c5 c6 c5 c5 c4

Point 16 c0 c2 c3 c2 c4 c4 c5 c5 c4 c5

Point 17 c0 c2 c3 c2 c4 c5 c5 c5 c5 c4

Point 18 c0 c2 c3 c2 c2 c4 c5 c4 c4 c5

Point 19 c0 c0 c3 c3 c2 c2 c4 c2 c2 c2

Point 20 c0 c2 c2 c2 c4 c5 c6 c5 c5 c4

Fig. 2 The workflow for creating the EC categorical space based on the k-means clustering algorithm. The original data is the input to the workflow. 
The outcome is a new dataset named EC data in a categorical space with dimension k. the sign ≪ indicates that k is dramatically smaller than the 
original data dimension N
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The new dimension nmc-1, usually, is much less that 
the original data dimension (nmc-1 ≪  N in Fig. 2). More 
interestingly, the new EC data point can also be reduced 
as the new EC data contains identical points. We will 
explain it in more details in the section “Reduction of the 
Data”. Identical points that share the same clusters over 
the all iteration of k-means are represented as a same 
point in cMat as a result those points are consider to be 
one point, as a result all the identical points will define 
a group. For example, in Table 1, point 11, point 12 and 
point 20 have the same categorical values. This means, 
the vector space that represents those 3 points is = g(c0,
c2,c2,c2,c4,c5,c6,c5,c5,c4). As a result, we consider those 
3 points as a single point g that we refer to it as a unique 
point. In other words, each group is represented by one 
unique point.

Note that, the set E contains labeled and unlabeled 
points, and as a result, the groups may contain labeled 
and unlabeled points. Generally, there are three possible 
cases for the identical points in the same group:

1. The labeled points are having the same class label; the 
unlabeled points will be classified with this label.

2. The labeled points have different class labels: here the 
group points will be classified as the majority class.

3. All the points are not labeled: in this case, the group 
will be an unclassified group and the algorithm clas-
sifies it based on labeled nearest group.

To this end, we define a purity measurement for a given 
group in order to evaluate the purity of the grouping 
process. The purity measurement is based mainly on the 
probabilities of the labeled objects as follows:

purity
(
gi
)
=

#classes∑
j=1

p2j

where gi denotes group i that was represented by vec-
tor gi in the matrix G , #classes denotes the number of 
the classes in gi , and pj denotes the probability of class j 
in group i . As can be seen, purity(gi) equals 1 when the 
group is pure and 1

#classes
 for the lowest purity, that will 

decrease as the number of the classes increases.

The k-means algorithm is known to have a time com-
plexity of O(n 2) where n is the where n is the input data 
size. Then the complexity of the EC transformation is 
O(k.n 2) where k is the number of times we run k-means. 
In fact, this part is the heaviest computation part of the 
GrpClassifierEC algorithm.

GrpClassifierEC—ensemble clustering based classifier
The GrpClassifierEC pseudo code is presented in Algo-
rithm 2. The input to the classifier is the cMat matrix that 
generated by the EC transformation that described in 
Algorithm 1. The first step of the GrpClassifierEC is cre-
ating the groups extracted from cMat. groups = { groupi } 
where i = 1,…, s. s is number of groups. The number of 
groups is influenced by nmc, the number of iteration that 
we run k-means. For instance, if we run k-means with 
nmc = 1 then all the points will be assigned to one clus-
ter which means that we have just one group that con-
tains all the data points. As we seen from Table 2 for the 
data Cercopithecidae vs Malvacea we have 449 groups 
with nmc = 30 while with the same data with nmc = 50 
we have 593 groups (Table  3 #EC_Samples is equal to 
the number of groups). The number of groups is increas-
ing as nmc is increasing and might reach the number of 
points in the data, which means that each group will host 
one point in categorical values.

Groups could have different sizes (size is the number 
of categorical points belongs to it). As seen from Table 2, 

Table 2 The data Cercopithecidae vs Malvacea with k = 30

The total number of points (points) is 894 which is the sum of column #Points. 
The size of the unique points is the sum of columns “Unique Points” which is 449. 
#Points is multiplication of Size and Unique Points. Ratio Unique Points is the 
#Unique Points/Total #Points while Ratio All is #Points/Total #Points

Size Unique points
(groups)

#Points Ratio unique 
points

Ratio all

1 305 305 67.929% 34.116%

2 68 136 30.290% 15.213%

3 22 66 14.699% 7.383%

4 18 72 16.036% 8.054%

5 11 55 12.249% 6.152%

6 5 30 6.682% 3.356%

7 5 35 7.795% 3.915%

10 4 40 8.909% 4.474%

13 3 39 8.686% 4.362%

8 3 24 5.345% 2.685%

9 2 18 4.009% 2.013%

29 1 29 6.459% 3.244%

14 1 14 3.118% 1.566%

31 1 31 6.904% 3.468%

Total 449 894
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group can have just one point; actually, we see that 305 
different groups (unique points) with size 1 while 68 
groups (unique points) with size 2. We see also that we 
have one group with size 31 which is the maximum size 
in this specific data.

Following the step of creating the groups, we suggest our 
novel approach for classification, by randomly selecting 
one point from each group. The label of the selected point 
will be the label of all points belongs to the group. The pro-
cess of selecting random point and assigning its label to 
its group repeated r times. The GrpClassifierEC classifier 
produce a list named prd_set that for contains the predic-
tions results. Then in order to calculate the performances 
we run a scorer function. The scorer function compare the 
assigned label and original label for each point in order to 
get the confusion matrix. Accuracy statistics such as True-
Positives, False-Positives, True-Negatives, False-Negatives, 
Recall, Precision, Sensitivity, Specificity, F-measure, as well 
as the overall accuracy and Cohen’s kappa, are calculated.

Reduction of the data
Table 2 shows the output of the EC procedure with k = 30 
applied on the data Cercopithecidae vs Malvacea that 
contains 894 examples (points). The table also shows 
that the EC data has 449 unique points or groups, a 50% 
reduction in the size of the original data (449/894 = 0.5).

For each group (unique point), we measure its size, 
equal to the number of times this unique point appears in 

the EC data. For example, in Table 2, we have 305 unique 
points with size 1. All these points appear once in the 
new data space. In addition, we have 68 unique points. 
If each one appears twice in the data, then each one is 
size 2. There are 22 points with size 3—each of these 22 
unique points appears 3 times in the data. Note that the 
labels are not included in the EC data. This means that 
the group of points at the EC space can have different 
labels associated with the original points and still share 
the same group.

Figure  3, shows the distribution of the group size for 
nmc = 30 and nmc = 50, and clearly indicates that as 
nmc increases, the number of groups with size 1 also 
increases. The expectation is that the number of groups 
of size of 1 should be the same as the number of the origi-
nal number of points as we increase the value of nmc. In 
other words, each point will be hosted in one cluster. This 
actually raises a scientific question: what is the optimal 
value of nmc that will yield in improving the performance 
of the classifier, or more specifically, capture the nature of 
the data in terms of clusters. Answering this question is 
requiring additional future research.

Experiments on numerical datasets
To evaluate the performance of the new classifier Grp-
ClassifierEC we compared its results to the k-nearest 
neighbors, decision trees and random forest classification 
algorithms. We tested it over 10 biological datasets and 
we compared the performance for each algorithm. The 

0
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0.6

1 2 3 4 5 6 7 8 9 10 13 >1
3

Cercopithecidae vs Malvacea 

k=30 k=50
Fig. 3 Distribution of the groups points (points) size comparing 
nmc = 30 and nmc = 50

Table 4 The table shows a list of clades used in the study

The first column represents the name of the clade, the second column the 
number of pre-cursors available on miRBase, and the third column the number 
of precursors after preprocessing the data

Data set Number 
of precursors

Number of unique 
precursors

Hominidae 3629 1326

Brassicaceae 726 535

Hexapoda 3119 2050

Monocotyledons (Liliopsida) 1598 1402

Nematoda 1789 1632

Fabaceae 1313 1011

Pisces (Chondricthyes) 1530 682

Virus 306 295

Aves 948 790

Laurasiatheria 1205 675

Rodentia 1778 993

Homo sapiens 1828 1223

Cercopithecidae 631 503

Embryophyta 287 278

Malvaceae 458 419

Platyhelminthes 424 381
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results show that the new algorithm using the ensemble 
clustering was superior and outperforms the other base-
line algorithms on most the datasets.

Datasets
The data consists of microRNA precursor sequences, 
and each sequence is made up of 4 nucleotide letters 
{A,U,C,G,}. The length of each precursor sequence is 
about 70 nucleotides. The source of this data is miRbase 
[18]. Part of the data we have used has was from other 
different studies [19–21], including our study [16].

One simple way of representing sequences that consist 
of 4 nucleotide letters is by employing the k-mers fre-
quency. The k-mer counts in a given sequence were nor-
malized by the length of the sequence.

Our features include k-mer frequencies, other distance 
features that were recently suggested by Yousef et al. [19] 
and secondary features suggested suggest by [22]. Many 
additional features describing pre-miRNAs have also 
been proposed [23] and are included in the feature set 
that numbers1038 features.

The main data consists of information from 15 clades 
(Table 4). The Homo sapiens sequences were taken out of 
the data of its clade Hominidae. The homology sequences 
were removed from the dataset and only one representa-
tive was kept. Each clade can serve as a positive examples 
or a as a negative examples. Considering all the different 
combination of pair of clades (positive/negative) it is pos-
sible to generate 256 datasets. We selected 10 datasets at 
random presented in Table 5.

Implementation
We have implemented the GrpClassifierEC in Knime 
[24]. We have decided to use the free and open-source 
platform Knime due to its simplicity and very useful 
graphical presentations. Additionally, Knime is also a 
highly integrative tool. The Knime workflow consists 
from two parts, the first part is performing the EC trans-
formation as describe on Algorithm 1. Actually, this part 
is time consuming where for example it took 13 min to 
generate the EC matrix for the input file that consists 
from 1038 features ad 1068 points. The run was per-
formed on a laptop with Intell® Core ™ i7 7600U CPU 
@2.80 GHz 2.90 GHz with 16GM RAM.

Model performance evaluation
We tested a different number of EC clusters using the 
k-means clustering algorithm with nmc values from 10 
to 50. For each level, we performed 100 iterations with 
equal sample size, and then calculated the mean of each 
performance measurements described below.

For each established model we calculated a number of 
performance measures for the evaluation of the classi-
fier such as sensitivity, specificity, and accuracy accord-
ing to the following formulas (TP: True Positive, FP: 
False Positive, TN: True Negative, and FN False Negative 
classifications):

Results and discussion
We also conducted a study comparing the new classifier 
GrpClassifierEC with the other known classifiers such 
as k-nearest neighbors, decision trees and random for-
est classifiers. The results are presented in Table  3. The 
results clearly show that the performance of the sug-
gested classifier GrpClassifierEC was superior.

Figure  4 shows the performance of different classifiers 
at different levels of training percentage of the data. The 
results of EC refer to our own GrpClassifierEC classifier. 
We see that the performance is not significantly influenced 
by the size of the training part for the other classifiers 
while it does increase significantly for the GrpClassifierEC 
classifier, at the 39% level. In addition, performance can be 
improved significantly if the training part is increased, as a 
function of the value of k in the EC transformation.

In terms of data reduction, Tables 3 and 6 demonstrate 
that about 56% of the points data are reduced in the EC 
space with a k value of 49 and 39% in the EC space with 
a k value of 30. The results demonstrate the advantage of 

Sensitivity =
TP

TP + FN
(SE, recall)

Specificity =
TN

TN + FP
(SP)

Sensitivity =
TP + TN

TP + FN + TN + FP
(ACC)

Table 5 Ten datasets

The first column shows the name of the first clade positive data, and the second 
column the second clade negative data

Positive data Negative data

Aves Embryophyta

Cercopithecidae Malvaceae

Embryophyta Laurasiatheria

Fabaceae Nematoda

Hexapoda Aves

Laurasiatheria Brassicaceae

Malvaceae Fabaceae

Brassicaceae Hexapoda

Hominidae Cercopithecidae

Monocotyledons homoSapiens
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our approach in reducing the size of the data, for dealing 
with big data.

Tables 3 and 6 show the results of a comparison of the 
EC classifier with other classifiers applied on the whole 
feature space (named Regular Classifiers), and the per-
formance of Random forest applied on the EC categorical 
data(EC-RF).

Table  3 presents results with a k value of 49, while 
Table 6 presents results with k 3. Interestingly, EC Classi-
fier outperforms all the other approaches while using just 
56% in average of the data (see ratio column), while the 
regular classifiers use 80% of the data for training. The EC 
classifier outperforms the standard approaches by 9% for 
the DT, 6% for the KNN, 8% for the random forest applied 
on the EC sample, and by 3% for the regular random forest.

The data in Table  6 show that one can reduce the 
size of the data to 39% ration with k = 30 and while still 

providing a reasonable result. The EC classifier out-
performs DTT and EC-RF and KNN by 5%, 3% and 1% 
respectively, while RF outperforms it by 2%. More inter-
estingly, that ratio of the reduction is an indication about 
the data redundancy and the similarity of the original 
data points.

Conclusion
In this paper, we proposed a novel classifier based on 
ensemble clustering GrpClassifierEC. Moreover, we 
demonstrated the advantage of the EC approach in 
reducing the feature space and also in reducing the data 
size. Generally speaking, we shown that we are able to 
reduce the number of features dramatically to 5% or 3% 
(50/1038 = 0.048, 30/1038 = 0.028) and reduce the size of 
the data to 56% and 39%, and still achieve a similar per-
formance level, or even outperform regular classifiers 
applied on the original data. However, to achieve these 
results the computation times that the EC transformation 
algorithm requires, increase.

The main assumption was that points within the same 
cluster share common traits more than points within dif-
ferent clusters. Thus, it may be more beneficial to repre-
sent objects based on the clustering space rather than the 
geometric space.

The approach suggested here is very useful for reduc-
ing the sample size and feature size when dealing with big 
data, while considering the EC data. For future research 
we will need to suggest an algorithm that would pick the 
optimal value of the clusters that and yield improved 
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0.95

1

1% 5% 9% 16% 24% 39% 50% 58% 67% 74% 81% 90%

Cercopithecidae vs Malvacea 

EC AccDT AccKNN AccRF
Fig. 4 The accuracy of the classifiers over different level of sample 
training size

Table 6 GrpClassifierEC: EC classifier results with a k value of 30 compared to Random forest applied on the EC samples 
and results for regular classifiers applied on the original data

K is number of clusters. The section “Accuracy Difference” is EC Classifier-ACC of the other classifier. A positive value indicates that the EC classifier is better than the 
other corresponding classifiers. EC-RF is a random forest applied on the EC data, RF is a random forest applied on the original data. DTT is a decisionTrees while KNN is 
K- Nearest Neighbors applied on the original data

Data/performance Data info EC classifier
GrpClassifierEC

Accuracy difference

#Sample #EC_Samples ratio Sensitivity Specificity F-measure Accuracy EC-RF RF DTT KNN

Aves vs Embryophyta 1068 513 48% 0.86 0.94 0.85 0.92 -0.01 -0.03 0.02 -0.01

Cercopithecidae vs Malvaceae 894 449 50% 0.94 0.92 0.94 0.94 0.04 0.01 0.06 0.03

Embryophyta vs Laurasiatheria 953 493 52% 0.94 0.83 0.94 0.91 0.04 0.00 0.06 0.03

Fabaceae vs Nematoda 2642 536 20% 0.78 0.88 0.79 0.84 -0.01 -0.05 0.01 -0.04

Hexapoda vs Aves 2840 1647 58% 0.76 0.92 0.78 0.88 0.05 -0.01 0.07 0.06

Laurasiatheria vs Brassicaceae 1209 406 34% 0.89 0.88 0.89 0.88 0.00 -0.04 0.00 -0.03

Malvaceae vs Fabaceae 1401 451 32% 0.55 0.80 0.53 0.73 0.07 -0.04 0.06 0.03

brassicaceae vs Hexapoda 2584 542 21% 0.77 0.95 0.78 0.91 -0.01 -0.03 0.01 -0.02

Hominidae vs Cercopithecidae 1829 786 43% 0.61 0.87 0.63 0.80 0.10 0.04 0.14 0.09

Monocotyledons vs HomoSapiens 2625 855 33% 0.86 0.87 0.86 0.87 0.04 -0.03 0.03 -0.01

Average 39% 80% 89% 80% 87% 3% -2% 5% 1%
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performance while reducing the size of the data 
considerably.

Our algorithm can be integrated with many other algo-
rithms. In this research, we use only the k-means cluster-
ing algorithm with different k values. In future research, 
we propose several directions: (1) checking the effect of 
the clustering algorithm to build an ensemble cluster-
ing space. (2) Finding poor clustering results based on 
the training data, (3) reducing the volume of the data by 
combining similar points based on the EC. Additionally 
we will test it on gene expression data where the size of 
the features/genes is very large which might reach ten 
thousand of features.

Abbreviations
EC: Ensemble clustering; RF: Random forest.
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