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Abstract 

Background:  A classical problem in comparative genomics is to compute the rearrangement distance, that is the 
minimum number of large-scale rearrangements required to transform a given genome into another given genome. 
The traditional approaches in this area are family-based, i.e., require the classification of DNA fragments of both 
genomes into families. Furthermore, the most elementary family-based models, which are able to compute distances 
in polynomial time, restrict the families to occur at most once in each genome. In contrast, the distance computation 
in models that allow multifamilies (i.e., families with multiple occurrences) is NP-hard. Very recently, Bohnenkämper 
et al. (J Comput Biol 28:410–431, 2021) proposed an ILP formulation for computing the genomic distance of genomes 
with multifamilies, allowing structural rearrangements, represented by the generic double cut and join (DCJ) opera-
tion, and content-modifying insertions and deletions of DNA segments. This ILP is very efficient, but must maximize a 
matching of the genes in each multifamily, in order to prevent the free lunch artifact that would otherwise let empty 
or almost empty matchings give smaller distances.

Results:  In this paper, we adopt the alternative family-free setting that, instead of family classification, simply uses the 
pairwise similarities between DNA fragments of both genomes to compute their rearrangement distance. We adapted 
the ILP mentioned above and developed a model in which pairwise similarities are used to assign weights to both 
matched and unmatched genes, so that an optimal solution does not necessarily maximize the matching. Our model 
then results in a natural family-free genomic distance, that takes into consideration all given genes, without prior clas-
sification into families, and has a search space composed of matchings of any size. In spite of its bigger search space, 
our ILP seems to be boosted by a reduction of the number of co-optimal solutions due to the weights. Indeed, it 
converged faster than the original one by Bohnenkämper et al. for instances with the same number of multiple con-
nections. We can handle not only bacterial genomes, but also fungi and insects, or sets of chromosomes of mammals 
and plants. In a comparison study of six fruit fly genomes, we obtained accurate results.

Keywords:  Comparative genomics, Genome rearrangement, DCJ-indel distance

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Genomes are subject to mutations or rearrangements 
in the course of evolution. A classical problem in com-
parative genomics is to compute the rearrangement 
distance, that is the minimum number of large-scale rear-
rangements required to transform a given genome into 
another given genome [1]. Typical large-scale rearrange-
ments change the number of chromosomes, and/or the 

positions and orientations of DNA segments. Examples 
of such structural rearrangements are inversions, trans-
locations, fusions and fissions. One might also need to 
consider rearrangements that modify the content of a 
genome, such as insertions and deletions (collectively 
called indels) of DNA segments.

In order to study the rearrangement distance, one usu-
ally adopts a high-level view of genomes, in which only 
“relevant” fragments of the DNA (e.g., genes) are taken 
into consideration. Furthermore, a pre-processing of the 
data is required, so that we can compare the content of 
the genomes. One popular method, adopted for more 

Open Access

Algorithms for
Molecular Biology

*Correspondence:  mbraga@cebitec.uni-bielefeld.de
2 Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld 
University, Bielefeld, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4092-2646
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00183-8&domain=pdf


Page 2 of 16Rubert et al. Algorithms Mol Biol            (2021) 16:4 

than 20 years, is to group the fragments in both genomes 
into families, so that two fragments in the same family 
are said to be equivalent. This setting is said to be family-
based. Without duplications, that is, with the additional 
restriction that each family occurs at most once in each 
genome, many polynomial models have been proposed 
to compute the genomic distance [2–6]. However, when 
duplications are allowed the problem is more intricate 
and all approaches proposed so far are NP-hard, see for 
instance [7–12].

The required pre-classification of DNA fragments into 
families is a drawback of the family-based approaches. 
Moreover, even with a careful pre-processing, it is not 
always possible to classify each fragment unambiguously 
into a single family. Due to these facts, an alternative to 
the family-based setting was proposed and consists in 
studying the rearrangement distance without prior fam-
ily assignment. Instead of families, the pairwise similari-
ties between fragments is directly used [13, 14]. By letting 
structural rearrangements be represented by the generic 
double cut and join (DCJ) operation [4], a first family-free 
genomic distance, called family-free DCJ distance, was 
already proposed [15]. Its computation helps to match 
occurrences of duplicated genes and find homologies, 
but unmatched genes are simply ignored.

In the family-based setting, the mentioned approaches 
that handle duplications either require the compared 
genomes to be balanced (that is, have the same number 
of occurrences of each family) [11, 12] or adopt some 
approach to match genes, ignoring unmatched genes [7, 
9]. Recently, a new family-based approach was proposed, 
allowing each family to occur any number of times in 
each genome and integrating DCJ operations and indels 
in a DCJ-indel distance formula [16]. For its computation, 
that is NP-hard, an efficient ILP was proposed.

Here we adapt the approach mentioned above and give 
an ILP formulation to compute a new family-free DCJ-
indel distance. In the family-based approach from [16] 
as well as in the family-free DCJ distance proposed in 
[15], the search space needs to be restricted to candidates 
that maximize the number of matched genes, in order 
to avoid the free lunch artifact that would otherwise let 
empty or almost empty matchings give smaller distances 
[5]. In our formulation we use the pairwise similarities to 
assign weights to matched and unmatched genes, so that, 
for the first time, an optimal solution does not necessarily 
maximize the number of matched genes. For the fact that 
our model takes into consideration all given genes and 
has a search space composed of matchings of any size, 
we call it natural family-free genomic distance. Our simu-
lated experiments show that our ILP can handle not only 
bacterial genomes, but also complete genomes of fungi 
and insects, or sets of chromosomes of mammals and 

plants. We use our implementation to generate pairwise 
distances and reconstruct the phylogeny of six species of 
fruit flies from the genus Drosophila, obtaining accurate 
results.

This paper is an extended version of a work presented 
at WABI 2020 [17].

Preliminaries
We call marker an oriented DNA fragment. A chromo-
some is composed of markers and can be linear or cir-
cular. A marker m in a chromosome can be represented 
by the symbol m itself, if it is read in direct orientation, 
or the symbol m , if it is read in reverse orientation. We 
concatenate all markers of a chromosome Z in a string z, 
which can be read in any of the two directions. If Z is lin-
ear, the string z is flanked by square brackets. If Z is circu-
lar, we can start to read it at any marker and the string z is 
flanked by parentheses. A set of chromosomes comprises 
a genome. As an example, let A = { [61784 ], [352 ] } 
be a genome composed of two linear chromosomes. 
A genome can be transformed or sorted into another 
genome with the following types of mutations. 

1.	 DCJ operations modify the organization of a 
genome: A cut performed on a genome  A sepa-
rates two adjacent markers of  A. A double-cut and 
join or DCJ applied on a genome  A is the opera-
tion that performs cuts in two different posi-
tions of  A, creating four open ends, and joins these 
open ends in a different way [2, 4]. For example, let 
A = { [61784 ], [352 ] } , and consider a DCJ that 
cuts between markers 1 and 7 of its first chromosome 
and between markers 5 and 2 of its second chromo-
some, creating segments 61• , •784 , 35• and  •2 
(where the symbols • represent the open ends). If we 
join the first with the fourth and the second with the 
third open end, we get A′ = { [612 ], [35784 ] } , 
that is, the described DCJ operation is a translocation 
transforming A into A′ . Indeed, a DCJ operation can 
correspond not only to a translocation but to several 
structural rearrangements, such as an inversion, a 
fusion or a fission. (Note that a DCJ is a symmetric 
operation: in the example above, we can transform 
A′ into A with a DCJ operation whose cuts create the 
same open segments 61• , •2 , 35• and  •784.)

2.	 Indel operations modify the content of a genome: 
The content of a genome can be modified with inser-
tions and with deletions of blocks of contiguous 
markers, collectively called indel operations [5, 6]. 
As an example, consider the deletion of segment 78 
from chromosome [61784 ] , resulting in chromo-
some  [614 ] . (An indel operation is also symmet-
ric: the inverse of the given example would be the 



Page 3 of 16Rubert et al. Algorithms Mol Biol            (2021) 16:4 	

insertion of segment 78 between markers 1 and 4 in 
chromosome [614 ] , resulting in [61784 ] ). In the 
model we consider, we do not allow that a marker 
is deleted and reinserted, nor inserted and then 
deleted. Furthermore, at most one chromosome can 
be entirely deleted or inserted at once. In the com-
parison of two genomes, these restrictions prevent 
the free lunch artifact of sorting one genome into the 
other by simply deleting the content of the first and 
inserting the content of the second, ignoring their 
common parts, but does not guarantee that distances 
including indel operations are metric. Indeed, indel 
operations allow comparisons of genomes of very 
distinct contents and sizes and may disrupt the trian-
gular inequality [18].

The DCJ-indel distance of two genomes A and B is the 
minimum number of DCJ and indel operations required 
to transform A into B (or vice-versa). Denote by G(A) the 
set of markers in genome A and by G(B) the set of mark-
ers in genome  B. In the present work we consider two 
distinct settings:

•	 In a family-based setting markers are grouped into 
families. Let F(A) be the set of families in genome A 
and F(B) be the set of families in genome B.

	 Each marker from a genome is represented by its 
family, and a family can occur more than once in 
each genome, i. e., here the sets G(A) and  G(B) are 
multisets that may contain more than one copy of 
each marker. Genomes  A and  B may share a set of 
common families F⋆ = F(A) ∩ F(B) . We also have 
sets A = F(A) \ F⋆ and B = F(B) \ F⋆ of families 
that occur respectively only in A and only in B and are 
called exclusive families. Markers from exclusive fam-
ilies are called exclusive markers. A family that occurs 
at most once in each genome is said to be singular. For 
example, we could have A = { [31432 ], [352 ] } 
and B = { [123326 ] } . In this case we have 
F(A) = {1,2,3,4,5} and F(B) = {1,2,3,6} . Con-
sequently, F⋆ = {1,2,3} , A = {4,5} and B = {6} . 
Note also that G(A) = {1,2,2,3,3,3,4,5} and 
G(B) = {1,2,2,3,3,6} . Here the set of singular fam-
ilies is {1, 4, 5, 6}.

•	 In a family-free setting the markers of  A and  B 
are all distinct and unique. In other words, 
sets  G(A) and  G(B) are necessarily simple 
sets, and  G(A) ∩ G(B) = ∅ . An example here 
is the pair of genomes A = { [1342 ] } and 
B = { [875 ], [96 ] } , with G(A) = {1,2,3,4} and 
G(B) = {5,6,7,8,9}.

Relational diagram and DCJ‑indel distance of family‑based 
singular genomes
Let A and B be two genomes in a family-based setting 
and assume that both A and B are singular, that is, each 
common family from F⋆ = F(A) ∩ F(B) is singular, 
occurring exactly once in each genome.1 We will now 
describe how the DCJ-indel distance can be computed in 
this case [6].

For a given marker m, denote its two extremities by mt 
(tail) and mh (head). Given two singular genomes A and B, 
the relational diagram R(A, B) [16] has a set of vertices 
V = V (A) ∪ V (B) , where V(A) is the set of extremities 
of markers from A and V(B) is the set of extremities of 
markers from B. There are three types of edges in R(A, B):

•	 Adjacency edges: for each pair of marker extremi-
ties γ1 and γ2 that are adjacent in a chromosome of 
any of the two genomes, we have the adjacency 
edge γ1γ2 . Denote by EA

adj and by EB
adj the adjacency 

edges in A and in B, respectively. Marker extremities 
located at chromosome ends are called telomeres and 
are not connected to any adjacency edge.

•	 Extremity edges, whose set is denoted by Eγ : for each 
common family  m ∈ F⋆ , we have two extremity 
edges, one connecting the vertex mh from V(A) to the 
vertex mh from  V(B) and the other connecting the 
vertex mt from V(A) to the vertex mt from V(B).

•	 Indel edges: for each occurrence of an exclusive fam-
ily m ∈ A ∪ B , we have the indel edge mtmh . Denote 
by  EA

id and by  EB
id the indel edges in  A and in  B, 

respectively.

Each vertex has degree one or two: it is connected either 
to an extremity edge or to an indel edge, and to at most 
one adjacency edge, therefore R(A, B) is a simple collec-
tion of cycles and paths. A path that has one endpoint 
in genome A and the other in genome B is called an AB
-path. In the same way, both endpoints of an AA-path are 
in A and both endpoints of a BB-path are in B. A cycle 
contains either zero or an even number of extremity 
edges. When a cycle has at least two extremity edges, it is 
called an AB-cycle. Moreover, a path (respectively cycle) 
of  R(A,  B) composed exclusively of indel and adjacency 
edges in one of the two genomes corresponds to a whole 
linear (respectively circular) chromosome and is called 
a linear (respectively circular) singleton in that genome. 
Actually, linear singletons are particular cases of  AA - 
or BB-paths. Since there is an even number of telomeres 

1  Exclusive families are not restricted to be singular: an exclusive family that 
occur multiple times in a genome can be trivially split into singular families.



Page 4 of 16Rubert et al. Algorithms Mol Biol            (2021) 16:4 

in R(A,  B), the number of AB-paths is always even. An 
example of a relational diagram is given in Fig. 1.

DCJ distance of canonical genomes
When singular genomes A and B have no exclusive fami-
lies, that is, A = B = ∅ , they are said to be canonical. In this 
case A can be sorted into B with DCJ operations only and 
their DCJ distance dDCJ can be computed as follows [2]:

where c is the number of AB-cycles and i is the number 
of AB-paths in R(A, B).

Runs and indel‑potential
When singular genomes A and B have exclusive fami-
lies, it is possible to optimally select DCJ operations that 
group exclusive markers together for minimizing indels 
[6], as follows.

Given two genomes  A and  B and a component  C 
of R(A, B), a run [6] is a maximal subpath of C, in which 
the first and the last edges are indel edges, and all indel 
edges belong to the same genome. It can be an A-run 
when its indel edges are in genome A, or a B-run when 
its indel edges are in genome B. We denote by �(C) the 
number of runs in component C. If �(C) ≥ 1 the compo-
nent C is said to be indel-enclosing, otherwise �(C) = 0 
and C is said to be indel-free. The indel-potential of a 
component  C, denoted by �(C) , is the optimal number 
of indels obtained after “sorting” C separately and can be 
directly computed from �(C) [6]:

An illustration of a BB-path with 4 runs and how its 
indel-potential can be achieved is given in Additional 
file 1: Figure S1-1, Appendix S1, Section (1A). With the 

dDCJ (A,B) = |F⋆| − c −
i

2
,

�(C) =

{
0 , if�(C) = 0 (C is indel-free) ;⌈

�(C)+1
2

⌉
, if�(C) ≥ 1 (C is indel-enclosing) .

indel-potential, an upper bound for the DCJ-indel dis-
tance d id

DCJ was established [6]:

DCJ‑indel distance of singular circular genomes
For singular circular genomes, the graph R(A, B) is com-
posed of cycles only. In this case the upper bound given 
by Eq. (1) is tight and leads to a simplified formula [6]:

DCJ‑indel distance of singular linear genomes
For singular linear genomes, the upper bound given by 
Eq.  (1) is achieved when the components of R(A, B) are 
sorted separately. However, it can be decreased by recom-
binations, that are DCJ operations that act on two dis-
tinct paths of R(A, B). Such path recombinations are said 
to be deducting. The total number of types of deduct-
ing recombinations is relatively small. By exhaustively 
exploring the space of recombination types, it is possi-
ble to identify groups of chained recombinations [6], so 
that the sources of each group are the original paths of 
the graph. In other words, a path that is a resultant of a 
group is never a source of another group. This results in a 
greedy approach (detailed in [6]) that optimally finds the 
value δ ≥ 0 to be deducted. We then have the following 
exact formula [6]:

DCJ‑indel distance of family‑based natural genomes
Two genomes A and B in a family-based setting are said 
to be natural when no restriction on the number of 
occurrences of each family in each genome is imposed. 
An approach to compute the DCJ-indel distance of nat-
ural genomes was proposed recently by Bohnenkämper 
et al. [16] and is briefly described below.

Given a family f ∈ F⋆ , let �A(f ) be the number of 
occurrences of f in genome A and �B(f ) be the num-
ber of occurrences of f in genome B. A common fam-
ily whose number of occurrences is bigger than one in 
at least one of the two genomes is called a multifamily. 
Natural genomes A and B can be transformed into 
linked singular genomes A‡ and B‡ by disambiguating 

(1)d id
DCJ (A,B) ≤ |F⋆| − c −

i

2
+

∑

C∈R(A,B)

�(C)

d id
DCJ (A,B) = |F⋆| − c +

∑

C∈R(A,B)

�(C).

d id
DCJ (A,B) = |F⋆| − c −

i

2
+

∑

C∈R(A,B)

�(C) − δ.

Fig. 1  Relational diagram of two singular genomes. For genomes 
A = { [61534 ], [289 ] } and B = { [653472 ], [98 ] } , the 
relational diagram contains two cycles, two AB-paths (represented in 
blue), one AA-path and one BB-path (both represented in red). Short 
dotted horizontal edges are adjacency edges, long horizontal edges 
are indel edges, top-down edges are extremity edges
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all multifamilies: for each multifamily f, a maximum set 
of one-to-one correspondences between occurrences of 
f in A and in B has to be established. The pairs of cor-
responding occurrences are then called linked occur-
rences. Since the disambiguation maximizes the number 
of linked occurrences, for each multifamily f in each 
genome, this number is min{�A(f ),�B(f )} . The linked 
occurrences are assumed to belong to the same new sin-
gular family and receive the same identifier in  A‡ and 
in B‡ (e.g., by having the same index assigned). For exam-
ple, many distinct pairs of linked singular genomes can 
be derived from natural genomes A = [1 3 5 2 3 5 2 ] 
and B = [1 3 1 6 3 2 1 3 ] , including:

The DCJ-indel distance nd id
DCJ of natural genomes A and 

B is then defined as

where X is the set of all possible pairs of linked singular 
genomes derived from natural genomes A and  B. Com-
puting nd id

DCJ (A,B) is an NP-hard problem, and an ILP 
formulation to solve it was provided in [16].

The family‑free setting
As already stated, in the family-free setting, each marker 
in each genome is represented by a distinct symbol, 
therefore G(A) and G(B) are simple sets, and addition-
ally  G(A) ∩ G(B) = ∅ . Observe that the cardinalities 
|G(A)| and |G(B)| may be distinct.

A
‡1 = [11 31 5 21 32 5 2 ] ,

B
‡1 = [1 31 11 6 32 21 1 3 ] , and

A
‡2 = [11 31 5 2 32 5 21 ] ,

B
‡2 = [11 32 1 6 31 21 1 3 ].

nd id
DCJ (A,B) = min

(A‡,B‡)∈X
{d id

DCJ (A
‡,B‡)} ,

Marker similarity graph for the family‑free setting
Given a threshold 0 ≤ x ≤ 1 , we can represent the simi-
larities between the markers of genome A and the mark-
ers of genome B in the so called marker similarity graph 
[14], denoted by Sx(A,B) . This is a weighted bipartite 
graph whose partitions G(A) and G(B) are the sets of 
markers in genomes A and B, respectively. Further-
more, for each pair of markers a ∈ G(A) and b ∈ G(B) , 
denote by σ(a, b) their normalized similarity, a value 
that ranges in the interval [0,  1]. If σ(a, b) ≥ x there is 
an edge e connecting a and b in Sx(A,B) whose weight is 
σ(e) := σ(a, b) . An example is given in Fig. 2.

Mapped family‑based singular genomes
Let A and B be two family-free genomes with marker 
similarity graph Sx(A,B) and let M = {e1, e2, . . . , en} 
be a matching in Sx(A,B) . Since the endpoints of each 
edge ei = (a, b) in M are not saturated by any other 
edge of M, we can unambiguously define the function 
s(a,M) = s(b,M) = i . We then define the set of M-satu-
rated mapped families:

Let ñA be the number of unsaturated markers in A and 
ñB be the number of unsaturated markers in B . We 
extend the function s, so that it maps each unsaturated 
marker a′ ∈ A to one value in {n+ 1, n+ 2, . . . , n+ ñA} 
and each unsaturated marker b′ ∈ B to one value in 
{n+ ñA + 1, n+ ñA + 2, . . . , n+ ñA + ñB} . The sets of 
M-unsaturated mapped families are:

and

The mapped family-based singular genomes AM and 
BM are then obtained by renaming each marker a ∈ A 
to s(a, M) and each marker b ∈ B to s(b, M), preserving 
all orientations.

Established distances of mapped family‑based singular 
genomes
Let the relational diagram R(AM ,BM) have cM AB-cycles 
and iM AB-paths and note that |F⋆(M)| = |M| . By sim-
ply ignoring the exclusive markers of families  A(M) 
and B(M) , we can compute the DCJ distance:

F⋆(M) = {s(g ,M) : g isM-saturated}

= {1, 2, . . . , n}.

A(M) = {s(a′,M) : a′ ∈ A isM-unsaturated}

= {n+ 1, n+ 2, . . . , n+ ñA}

B(M) = {s(b′,M) : b′ ∈ B isM-unsaturated}

= {n+ ñA + 1, n+ ñA + 2, . . . , n+ ñA + ñB}.

Fig. 2  Example of similarity graph. Here we show the graph 
S0.1(A, B) for the two genomes A = { [1 2 3 4 5 ] } and 
B = { [6 7 8 9 10 11 ] }
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Taking into consideration the weight of the matching M 
defined as w(M) =

∑
e∈M σ(e) , we can also compute the 

weighted DCJ distance wdDCJ (AM ,BM) [15]:

Observe that, when all edges of M have the 
maximum weight 1, we have w(M) = |M| and 
wdDCJ (A

M ,BM) = dDCJ (A
M ,BM).

Finally, taking into consideration the markers from 
exclusive families A(M) and B(M) , but not the weight 
w(M), we can compute the DCJ-indel distance of mapped 
genomes AM and BM:

where δM is the deduction given by path recombinations 
in R(AM ,BM).

The family‑free DCJ‑indel distance
Let AM and BM be the mapped family-based singu-
lar genomes for a given matching M of Sx(A,B) . The 
weighted relational diagram of AM and BM , denoted by 
WR(AM ,BM) , is obtained by constructing the relational 
diagram of AM and BM and adding weights to the indel 
edges as follows. For each mapped M-unsaturated family 
m ∈ A(M) ∪ B(M) , the indel edge mhmt receives a weight 
w(mhmt) = max{σ(uv)|uv ∈ Sx(A,B) and u = s−1(m,M)} , 
that is the maximum similarity among the edges inci-
dent to the marker u = s−1(m,M) in Sx(A,B) . We 
denote by M̃ = EA

id ∪ EB
id the set of indel edges, here 

also called the complement of M. The weight of  M̃ is 
w(M̃) =

∑
e∈M̃ w(e) . Examples of diagrams of mapped 

genomes are shown in Fig. 3.
In the computation of the weighted DCJ-indel distance of 

mapped genomes AM and BM , denoted by wd id
DCJ (A

M ,BM) , 
we should take into consideration the markers from exclu-
sive families A(M) and B(M) , and the weights w(M) and 
w(M̃) . An important condition is that wd id

DCJ (A
M ,BM) 

must be equal to d id
DCJ (A

M ,BM) if w(M) = |M| and 
w(M̃) = 0 . We can achieve this by extending the formula 
for computing wdDCJ (AM ,BM) as follows:

dDCJ (A
M ,BM) = |M| − cM −

iM

2
.

wdDCJ (A
M ,BM) = dDCJ (A

M ,BM)+ |M| − w(M).

d id
DCJ (A

M ,BM) = |M| − cM −
iM

2
+

∑

C∈R(AM ,BM)

�(C) − δM ,

wd id
DCJ (A

M
,BM) = wdDCJ (A

M
,BM)+

∑

C∈WR(AM ,BM)

�(C) − δM + w(M̃)

= dDCJ (A
M
,BM)+ |M| − w(M)+

∑

C∈WR(AM ,BM)

�(C) − δM + w(M̃)

= d id
DCJ (A

M
,BM)+ |M| − w(M)+ w(M̃).

Let us examine the behavior of the formula above for 
the examples given in Fig.  3. Matching M1 is maxi-
mal and gives the distance wd id

DCJ (A
M1 ,BM1) = 8.6 . 

Matching M2 is also maximal and gives the distance 
wd id

DCJ (A
M2 ,BM2) = 5.2 . The empty matching M∅ gives 

the distance wd id
DCJ (A

M∅ ,BM∅) = 9.7 , that is the biggest. 
And the non-maximal matching M3 ⊂ M2 gives the dis-
tance wd id

DCJ (A
M3 ,BM3) = 5.1 , that is the smallest.

Given that M is the set of all distinct matchings 
in Sx(A,B) , the family-free DCJ-indel distance is defined 
as follows:

Allowing matchings of any size
Other approaches that use genomic distances to disam-
biguate multiple connections  (e.g. family-free DCJ dis-
tance [15] and DCJ-indel distance of family-based natural 
genomes [16]) must maximize the homology matching. 
The reason behind this restriction is avoiding the free 
lunch artifact that would otherwise let empty or almost 
empty matchings give smaller distances.

In contrast, here our weighting scheme prevents the 
free lunch and allows matchings of any size in the solution 
space of the family-free DCJ-indel distance. This can be 
explained by the fact that the adopted weights allow the 
family-free DCJ-indel distance to compute the exact DCJ-
indel distance of family-based singular genomes [these 
must be properly transformed into family-free genomes 
together with their similarity graph by a procedure whose 
details can be found in Additional file  1: Appendix  S1, 
Section (1B). The family-free DCJ-indel distance is there-
fore more flexible than the approaches mentioned above.

Complexity
Computing the family-free DCJ-indel distance is an NP-
hard problem and a proof of this statement is provided in 
Additional file 1: Appendix S1, Section (1C).

Family‑free relational diagram
An efficient way to solve the family-free DCJ-indel dis-
tance is to develop an ILP that searches for its solution in 
a general graph, that represents all possible diagrams cor-
responding to all candidate matchings, in a similar way as 
the approaches given in [12, 15, 16]. Given two genomes 

ffd id
DCJ (A,B,Sx) = min

M∈M
{wd id

DCJ (A
M ,BM)}.
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A and B and their marker similarity graph Sx(A,B) , the 
structure that integrates the properties of all possible 
weighted relational diagrams of mapped genomes is the 
family-free relational diagram FFR(A,B,Sx) , that has a 
set V(A) with a vertex for each of the two extremities of 
each marker of genome A and a set V(B) with a vertex for 
each of the two extremities of each marker of genome B.

Again, sets EA
adj and EB

adj contain adjacency edges con-
necting adjacent extremities of markers in  A and in  B. 
But here the set Eγ contains, for each edge ab ∈ Sx(A,B) , 
an extremity edge connecting at to bt , and an extremity 
edge connecting ah to bh . To both edges atbt and ahbh , 
that are called siblings, we assign the same weight, that 

corresponds to the similarity of the edge ab in Sx(A,B) : 
w(atbt) = w(ahbh) = σ(ab) . Furthermore, for each 
marker m there is an indel edge connecting the vertices 
mh and mt . The indel edge mhmt receives a weight 
w(mhmt) = max{σ(mv)|mv ∈ Sx(A,B)} , that is, it is the 
maximum similarity among the edges incident to the 
marker m in Sx(A,B) . We denote by EA

id the set of indel 
edges of markers in genome A and by EB

id the set of indel 
edges of markers in genome B. An example of a family-
free relational diagram is given in Fig. 4.

Fig. 3  Matchings of a similarity graph and their respective weighted relational diagrams. Considering the same genomes A = { [1 2 3 4 5 ] } and 
B = { [6 7 8 9 10 11 ] } as in Fig. 2, let M1 (red) and M2 (blue) be two distinct maximal matchings in S0.1(A, B) . We also represent the non-maximal 
matching M3 (green) that is a subset of M2 . In the middle part we show diagrams WR(AM1 , BM1 ) and WR(AM2 , BM2 ) , both with two AB-paths and two 
AB-cycles. In the lower part we show diagrams WR(AM∅ , BM∅ ) , corresponding to the trivial empty matching M∅ and with two linear singletons (one 
AA-path and one BB-path), and WR(AM3 , BM3 ) , with two AB-paths and two AB-cycles. The labeling (X : Y) indicates that Y = s(X,Mi)
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Consistent decompositions
The diagram FFR(A,B,Sx) may contain vertices of degree 
larger than two. A decomposition of FFR(A,B,Sx) is a 
collection of vertex-disjoint components, that can be 
cycles and/or paths, covering all vertices of FFR(A,B,Sx) . 
There can be multiple ways of selecting a decomposi-
tion, and we need to find one that allows to identify a 
matching of Sx(A,B) . A set S ⊆ Eγ is a sibling-set if it is 
exclusively composed of pairs of siblings and does not 
contain any pair of incident edges. Thus, a sibling-set S 
of FFR(A,B,Sx) corresponds to a matching of Sx(A,B) . 
In other words, there is a clear bijection between match-
ings of Sx(A,B) and sibling-sets of FFR(A,B,Sx) and we 
denote by MS the matching corresponding to the sibling-
set S.

The set of edges D[S] induced by a sibling-set S is said 
to be a consistent decomposition of FFR(A,B,Sx) and can 
be obtained as follows. In the beginning, D[S] is the 
union of S with the sets of adjacency edges EA

adj and EB
adj . 

We then need to determine the complement of the sib-
ling-set S, denoted by S̃ , that is composed of the indel-
edges of FFR(A,B,Sx) that must be added to D[S]: for 
each indel edge e, if its two endpoints have degree one or 
zero in D[S], then e is added to both S̃ and D[S]. (Note 
that S̃ = M̃S , while |S| = 2|MS | and w(S) = 2w(MS) .) The 
consistent decomposition D[S] covers all vertices of 

FFR(A,B,Sx) and is composed of cycles and paths, allow-
ing us to compute the values

where cD and iD are the numbers of AB-cycles and AB-
paths in D[S], respectively, and δD is the optimal deduc-
tion of recombinations of paths from D[S].

Given that S is the sets of all sibling-sets of 
FFR(A,B,Sx) , we compute the family-free DCJ-indel dis-
tance of A and B with the following equation:

Capping
Telomeres produce some difficulties for the decompo-
sition of FFR(A,B,Sx) , and a known technique to over-
come this problem is called capping [3]. It consists of 
modifying the diagram by adding artificial markers, also 
called caps, whose extremities should be properly con-
nected to the telomeres of the linear chromosomes of 
A and B. Therefore, usually the capping depends on the 
numbers κA and κB , that are, respectively, the total num-
bers of linear chromosomes in genomes A and B.

Family‑based singular genomes
First we recall the capping of family-based singular 
genomes. Here the caps must circularize all linear chro-
mosomes, so that their relational diagram is composed of 
cycles only, but, if the capping is optimal, the DCJ-indel 
distance is preserved.

An optimal capping that transforms singular linear 
genomes A and B into singular circular genomes can be 
obtained after identifying the recombination groups [6]. 
The DCJ-indel distance is preserved by properly linking 
the components of each identified recombination group 
into a single cycle [16]. Such a capping may require some 
artificial adjacencies between caps. The following result is 
very useful.

Theorem  1  (from [16]) We can obtain an opti-
mal capping of singular genomes A and B with exactly 

d id
DCJ (D[S]) =

|S|

2
− cD −

iD

2
+

∑

C∈D[S]

�(C)− δD and

wd id
DCJ (D[S]) =d id

DCJ (D[S])+
|S|

2
−

w(S)

2
+ w(S̃) ,

ffd id
DCJ (A,B,Sx) = min

S∈S
{wd id

DCJ (D[S])}.

Fig. 4  Family-free relational diagram. Given genomes 
A = { [1 2 3 4 5 ] } and B = { [6 7 8 9 10 11 ] } , the upper part 
displays the marker similarity graph S0.1(A, B) and the lower part 
displays the family-free relational diagram FFR(A, B,S0.1) . We represent 
in multiple colors the edges that correspond to multiple matchings
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p∗ = max{κA, κB} caps and |κA − κB| artificial adjacen-
cies between caps.

Capped family‑free relational diagram
The diagram FFR(A,B,Sx) is transformed into the capped 
family-free relational diagram FFR◦(A,B,Sx) as follows. 
Add to FFR(A,B,Sx) 4p∗ new vertices, named 
◦1A, ◦

2
A, . . . , ◦

2p∗
A  and ◦1B, ◦

2
B, . . . , ◦

2p∗
B  , each one representing 

a cap extremity. Connect each of the 2κA telomeres of A 
by an adjacency edge to a distinct cap extremity among 
◦1A, ◦

2
A, . . . , ◦

2κA
A  . Similarly, connect each of the 2κB telom-

eres of B by an adjacency edge to a distinct cap extremity 
among ◦1B, ◦

2
B, . . . , ◦

2κB
B  . Moreover, if κA < κB , for 

i = 2κA + 1, 2κA + 3, . . . , 2κB − 1 , connect ◦iA to ◦i+1
A  by 

an artificial adjacency edge. Otherwise, if κB < κA , for 
j = 2κB + 1, 2κB + 3, . . . , 2κA − 1 , connect ◦jB to ◦j+1

B  by 
an artificial adjacency edge. All these new adjacency 
edges and artificial adjacency edges are added to EA

adj and 
EB
adj , respectively. Finally, connect each ◦iA , 1 ≤ i ≤ 2p∗ , by 

a cap extremity edge to each ◦jB , 1 ≤ j ≤ 2p∗ , and denote 
by E◦ the set of cap extremity edges.

A set P ⊆ E◦ is a capping-set if it does not contain any 
pair of incident edges and is maximal. Since each cap 
extremity of A is connected to each cap extremity of B, 
the size of any (maximal) capping-set is 2p∗ . A capped 
consistent decomposition Q[S,  P] of FFR◦(A,B,Sx) is 
induced by a sibling-set S ⊆ Eγ and a (maximal) cap-
ping-set P ⊆ E◦ and is composed of vertex disjoint cycles 
that cover all vertices of FFR◦(A,B,Sx) . An example of a 
capped family-free relational diagram is given in Addi-
tional file 1: Figure S1-2, Appendix S1, Section (1A).

Theorem 2  Let Pmax be the set of all distinct (maximal) 
capping-sets from FFR◦(A,B,Sx) . For each sibling-set S of 
FFR(A,B,Sx) and FFR◦(A,B,Sx) , we have

Proof  Each capping-set corresponds to exactly p∗ 
caps. In addition, all adjacencies, including the |κA − κB| 
artificial adjacencies between cap extremities, are part 
of each capped consistent decomposition. Recall that 
each sibling-set S of FFR◦(A,B,Sx) corresponds to a 

d id
DCJ (D[S]) = min

P∈Pmax

{d id
DCJ (Q[S,P])} , and

wd id
DCJ (D[S]) = min

P∈Pmax

{wd id
DCJ (Q[S,P])}.

matching MS of Sx(A,B) . The set of capped consist-
ent decompositions include all possible distinct decom-
positions induced by S together with one distinct ele-
ment of Pmax . Theorem 1 states that the pair of matched 
genomes AMS and BMS can be optimally capped with p∗ 
caps and |κA − κB| artificial adjacencies. Therefore, it is 
clear that d id

DCJ (D[S]) = minP∈Pmax {d
id
DCJ (Q[S,P])} . Since 

the capping does not change the sizes of the sibling-sets 
and their weights and complements, it is also clear that 
wd id

DCJ (D[S]) = minP∈Pmax {wd
id
DCJ (Q[S,P])} . �

Given that S and Pmax are, respectively, the sets 
of all sibling-sets and all maximal capping-sets of 
FFR◦(A,B,Sx) , the final version of our optimization 
problem is

Alternative formula for computing the indel‑potential 
of cycles
The capped consistent decompositions of the dia-
gram FFR◦(A,B,Sx) are composed exclusively of cycles, 
and the number of runs �(C) of a cycle C is always in 
{0, 1, 2, 4, 6, . . .} . Therefore, the formula to compute the 
indel-potential of a cycle C can be simplified to

that can still be redesigned to a form that can be easier 
implemented in the ILP [16]. First, let a transition in a 
cycle C be an indel-free segment of C that is between a run 
in one genome and a run in the other genome and denote 
by ℵ(C) the number of transitions in C. Observe that, if 
C is indel-free, then obviously ℵ(C) = 0 . If C has a single 
run, then we also have ℵ(C) = 0 . On the other hand, if C 
has at least 2 runs, then ℵ(C) = �(C) . The new formula 
is split into two parts. The first part is the function r(C), 
defined as r(C) = 1 if �(C) ≥ 1 , otherwise r(C) = 0 , that 
simply tests whether C is indel-enclosing or indel-free. The 
second part depends on the number of transitions ℵ(C) , 
and the complete formula stands as follows [16]:

ffd id
DCJ (A,B,Sx) = min

S∈S,P∈Pmax

{
wd id

DCJ (Q[S,P])
}
.

�(C) =

{
�(C) , if�(C) ∈ {0, 1}

1+ �(C)
2 , if�(C) ∈ {2, 4, 6, . . .}

�(C) = r(C)+
ℵ(C)

2
.
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New formula for computing the weighted distance
Note that the number of indel-enclosing components 
is 

∑
C∈Q[S,P] r(C) = crQ + sQ , where crQ and sQ are the 

number of indel-enclosing AB-cycles and the number 
of circular singletons in Q[S, P], respectively. Further-
more, the number of indel-free AB-cycles of Q[S, P] is 
cr̃Q = cQ − crQ . We can now compute the values

Cutting threshold
The family-free DCJ-indel distance ffd id

DCJ  was 
designed to be computed with all given pairwise simi-
larities, i.e., with the cutting threshold x = 0 , that leads 
to a “complete” family-free relational diagram. Such a 
diagram would be too large to be handled in practice, 
therefore, if x = 0 , we consider only the similarities 
that are strictly greater than  0. Nevertheless, for big-
ger instances the diagram with similarities close to  0 
might still be too large to be solved in reasonable time. 
Hence, for some instances it may be necessary to do 

(2)

d id
DCJ (Q[S,P]) = p∗ +

|S|

2
− cQ

+
∑

C∈Q[S,P]

�(C)

= p∗ +
|S|

2
− cQ

+
∑

C∈Q[S,P]

(
r(C)+

ℵ(C)

2

)

= p∗ +
|S|

2
− cr̃Q + sQ

+
∑

C∈Q[S,P]

ℵ(C)

2
, and

wd id
DCJ (Q[S,P]) = d id

DCJ (Q[S,P])+
|S|

2

−
w(S)

2
+ w(S̃)

= p∗ + |S| − cr̃Q + sQ

+
∑

C∈Q[S,P]

ℵ(C)

2
−

w(S)

2
+ w(S̃).

a small increase of the cutting threshold. We usually 
adopt a small cutting threshold up to 0.3.

ILP formulation to compute the family‑free 
DCJ‑indel distance
Our formulation is an adaptation of the ILP for com-
puting the DCJ-indel distance of family-based natural 
genomes, by Bohnenkämper et al. [16], that is itself an 
extension of the ILP for computing the DCJ distance 
of family-based balanced genomes, by Shao et al. [12]. 
The main differences between our approach and the 
approach from [16] are the underlying graphs and the 
objective functions. The general idea is searching for a 
sibling-set, that, together with a maximal capping-set, 
gives an optimal consistent cycle decomposition of 
the capped diagram FFR◦(A,B,Sx) = (V ,E) , where the 
set of edges comprises all disjoint sets of distinct 
types: E = Eγ ∪ E◦ ∪ EA

adj ∪ EB
adj ∪ EA

id ∪ EB
id . While in 

the ILP from [16] the search space is restricted to 
maximal sibling-sets, in the family-free DCJ-indel dis-
tance the search space includes all sibling-sets, of any 
size.

In Algorithm 1 we give the formulation for comput-
ing ffd id

DCJ (A,B,Sx) , distributed in three main parts. 
Counting indel-free cycles in the decomposition makes 
up the first part, depicted in constraints (C.01)–(C.06), 
variables and domains (D.01)–(D.03). The second part 
is for counting transitions, described in constraints 
(C.07)–(C.10), variables and domains (D.04)–(D.05). 
The last part describes how to count the number of 
circular singletons, with constraint (C.11), variable 
and domain (D.06). The objective function of our ILP 
minimizes the size of the sibling-set, with sum over 
variables xe , the number of circular singletons, cal-
culated by the sum over variables sk , half the overall 
number of transitions in indel-enclosing AB-cycles, 
calculated by the sum over variables te , and the weight 
of all indel edges in the decomposition, given by the 
sum over their weights wexe for all e ∈ Eid , while maxi-
mizing both the number of indel-free cycles, counted 
by the sum over variables zi , and half of the weights of 
the edges in the decomposition, given by the sum over 
their weights wexe for all edges e ∈ Eγ . The minimiza-
tion is not affected by constant p∗ , that is included in 
the objective function to keep the correspondence to 
Eq. (2).
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for which each gene must share some similarity in, (ii) 0.1 
for the stringency threshold, (iii) 1 for the BLAST e-value, 
and (iv) default values for the remaining parameters.

ILP solver and processing environment
In all our experiments we used the ILP solver CPLEX 
with 8 2.67GHz cores.

2  https://​bibis​erv.​cebit​ec.​uni-​biele​feld.​de/​ffgc.

Implementation
The ILP for computing the family-free DCJ-indel distance 
can be downloaded from our GitLab server at https://​git-
lab.​ub.​uni-​biele​feld.​de/​gi/​gen-​diff. In the remainder of 
this paper it will be referred to as DIFF .

Experiments
For all pairwise comparisons, we obtained gene simi-
larities using the FFGC pipeline2 [19], with the following 
parameters: (i) 1 for the minimum number of genomes 

https://bibiserv.cebitec.uni-bielefeld.de/ffgc
https://gitlab.ub.uni-bielefeld.de/gi/gen-diff
https://gitlab.ub.uni-bielefeld.de/gi/gen-diff


Page 12 of 16Rubert et al. Algorithms Mol Biol            (2021) 16:4 

Performance evaluation of DIFF on simulated genomes
We generated simulated genomes using Artificial Life 
Simulator (ALF) [20] in order to benchmark our algo-
rithm for computing the family-free DCJ-indel distance. 

We simulated and compared 190 pairs of genomes with 
different duplication rates, keeping all other parameters 
fixed (e.g. rearrangement, indel and mutation rates). 
The extant genomes have around 10,000 genes. We 

a b

Fig. 5  Performance of the ILP computing the family-free DCJ-indel distance of simulated genomes. The experiment results are displayed in two 
parts and in both of them instances are grouped by the number of genes with multiple connections (i.e. vertices with degree > 1 in S0.1 ): a shows 
the average running time for instances grouped in intervals of 100 and up to 900, and b shows the average optimality gap and the average number 
of connections for groups of instances that did not finish within the time limit of 1 h (in intervals of 500)

Fig. 6  Phylogenetic tree computed based on the distances given by the family-free approach. This tree was computed by the Neighbor-Joining 
method [27, 28] based on distance matrices of pairwise comparisons of complete Drosophila genomes calculated by DIFF
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obtained gene similarities between simulated genomes 
using FFGC [19], as previously mentioned, and adopted 
a cutting threshold of x = 0.1 . This resulted in similarity 
graphs with up to 8400 genes with multiple connections 
(i.e. vertices with degree > 1 in S0.1 ) and with an average 
of 2.5 connections per gene. In addition, for each pair 
the genomes are about 3000 rearrangement events away 
from each other. The complete parameter sets used for 
running ALF, together with additional information on 
simulated genomes, can be found in Additional file  1: 
Appendix 2, Section (2A).

For computing the family-free DCJ-indel distances 
for these simulated genome pairs, we ran CPLEX with 
maximum CPU time of 1 h. Figure  5 summarizes the 
performance of DIFF  showing the pairwise comparisons 
grouped depending on the respective number of genes 
with multiple connections. The running times escalate 
quickly as the number of genes with multiple connections 
increase (Fig.  5a, grouped in intervals of 100), reaching 
the time limit after 2000 of them (Fig.  5b, grouped in 
intervals of 500). The optimality gap is the relative gap 
between the best solution found and the upper bound 

found by the solver, calculated by (upper boundbest solution − 1)× 100 , 
and appears to grow, for our simulated data, linearly in 
the number of genes with multiple connections (Fig. 5b).

The solution time and the optimality gap of our algo-
rithm clearly depends less on genome sizes and more on 
the multiplicity of connections. In our experiments, we 
were able to find in 1 h optimal or near-optimal solutions 
for genomes with 10,000 genes and up to 4000 genes with 
2.2 connections on average. Our formulation should be 
able to handle, for instance, the complete genomes of 
bacteria, fungi and insects, or even sets of chromosomes 
of mammal and plant genomes.

Real data analysis
For all ILP computations described in this subsection we 
ran CPLEX with maximum CPU time of 3 h. [Additional 
tables and figures referred to here can be found in Addi-
tional file 1: Appendix S2, Section (2B)].

We evaluated the potential of our approach by doing 
a comparative analysis of fruit flies from the genus 
Drosophila, including the following species: D.  busckii, 

Fig. 7  Phylogenetic tree computed based on the distances given by the family-based approach. This tree, reproduced from the results originally 
published in [16], was computed by the Neighbor-Joining method based on distance matrices of pairwise comparisons of complete Drosophila 
genomes calculated by DING . The gene families here were generated in [16] by computing OMA orthologies [25] on the same genome assemblies 
used in the present study
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D. melanogaster, D. pseudoobscura, D. sechellia, D. simu-
lans and D. yakuba [21–24]. Each genome has approxi-
mately 150Mb, with about 13,000 genes distributed in 
5–6 chromosomes. The sources of the genome assem-
blies used in our experiments are given in Additional 
file 1: Table S1.

The same assemblies were used by Bohnenkämper 
et  al. [16] to evaluate the performance of their ILP that 
is called DING and computes the related family-based 
DCJ-indel distance  nd id

DCJ of natural genomes (in their 
work, they computed OMA orthologies [25] to derive the 
gene families of Drosophila genomes, resulting in 12,735 
families present in at least two genomes with 1.04 occur-
rences in each genome on average and at most 23 occur-
rences). We reproduced here the analysis done in [16] 
by running DING in our processing environment, with 
the same families derived by OMA. The running time of 
CPLEX for each pairwise comparison was very fast, rang-
ing from 2 to 32 s.

For our analysis with DIFF  , pairwise gene similarities 
for the six Drosophila genomes were computed using 
FFGC [19], as previously described. The distribution 
of obtained similarities is detailed in Additional file  1: 
Table S2. Considering similarities that are strictly greater 
than x = 0 , we obtained pairwise similarity graphs with 
an average of 11.2 connections per gene, some of them 
having up to 95 connections. Since these instances were 
too large, we set the cutting threshold to x = 0.3 , result-
ing in similarity graphs with an average of 1.92 and at 
most 31 connections per gene. The full list including the 
numbers of genes with 0, 1 and multiple connections for 
each resulting S0.3 is given in Additional file 1: Table S3. 
All CPLEX computations of DIFF  on these graphs fin-
ished within the time limit, most of them in less than 10 
minutes (the complete list of running times are given in 
Additional file 1: Table S4).

Assessing the quality of the results
For the three species D.  melanogaster, D.  simulans and 
D. yakuba we obtained reference gene families (homolog 
gene sets) from Flybase [26] (release FB2020_04). We 
classified pairs of homologous genes inferred with DIFF  
calculations for pairwise comparisons involving these 
three species into four classes, listed together with their 
respective resulting average percentages: 

	(i) 	 Match (97.3%): both genes are in the same (Fly-
base) family;

	(ii) 	 New (1.4%): both genes are not part of any family;
	(iii)	 Extension (1.1%): one of the two genes is not part of 

any family;
	(iv)	 Mismatch (0.2%): each gene is in a different family.

These results show that genes were associated with high 
fidelity. The complete list of homologies inferred by DIFF  
can be found in Additional file 2.

The distances computed by DIFF  were then used to 
build a phylogenetic tree using Neighbor-Joining [27, 
28].3 The resulting tree is shown in Fig.  6 and is very 
similar to the reference phylogenetic tree of the six Dros-
ophila species, generated by TimeTree [29] and shown 
in  Additional file  1: Figure  S2-1. Indeed, DIFF  appears 
to have generated a phylogenetic tree that is slightly 
more accurate when we compare it to the one shown in 
Fig. 7, obtained using Neighbor-Joining on the distances 
computed by DING in [16]. This indicates that, besides 
the advantage of directly inferring homologies without 
pre-defined families, the flexibility of not maximizing 
matched genes might play an important role in obtaining 
better results.

Assessing the running times
It is not possible to fairly compare the previously men-
tioned running times of DING and DIFF  because the 
underlying relational graphs differ in the number of con-
nections between genes (i.e. family sizes in DING ver-
sus number of edges in similarity graphs in DIFF  ). In an 
effort to shed some light on this matter, we devised the 
following experiment to balance that number for both 
models. 

First, we used a simple approach to convert our 
pairwise similarity graphs (with cutting threshold 
of x = 0.3 ) into families: for each graph, all markers 
that belong to the same connected component were 
defined to belong to one family. All but one computa-
tions of DING for these instances reached the time 
limit of 3 h.
Second, we transformed each connected component 
in each similarity graph into a bipartite clique by add-
ing extra edges with weight 0.3 (the same as the cut-
ting threshold). With these extended graphs, DIFF  
reached the time limit of 3  h for only one instance, 
taking 380 s on average for the remaining ones.

 Note that DING , in spite of having a much smaller search 
space only composed of maximal sibling-sets, took con-
siderably longer. This is probably due to a large number 
of co-optimal solutions in nd id

DCJ that must be handled 
by DING , while in  ffd id

DCJ the co-optimality is reduced 
by weights, which helps DIFF  to converge faster: indeed, 
in a simulation in which the weights of all edges of the 
similarity graphs were set to 1, the running times of DIFF  

3  The output of this algorithm is an unrooted tree, and we assumed the most 
distant species D. busckii as the outgroup for rooting the tree.
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were much slower than those of DING for instances with 
the same number of multiple connections.

A note on the length of indel segments
As a generalization of the singular DCJ-indel model [6], 
the basic idea behind our approach is that runs can be 
merged and accumulated with DCJ operations. Note that 
the singular DCJ-indel model minimizes the number of 
indels and DCJ operations together, allowing a space of 
trade-off between DCJ and indel operations. Therefore it 
allows, up to a certain limit, co-optimal scenarios to have 
less DCJs and more indels, or more DCJs and less indels. 
This is a more elaborated and parsimonious alternative 
to the trivial approach of inserting or deleting exclusive 
markers individually. However, it raises the question of 
whether the indels then tend to be very long, and whether 
this makes biological sense. Considering that it is possi-
ble to distribute the runs so that each indel is composed 
of 1–2 runs, we can say that the lengths of the runs play 
a major role in defining the length of indel segments. In 
the particular analysis of Drosophila complete genomes, 
we have an average run length of 5.1, while the maximum 
run length is 121. We conjecture that the long runs are 
mostly composed of genes that are part of a contiguous 
segment from the beginning, and are not really accumu-
lated by DCJ operations. In a future work we intend to 
have a closer look into the long runs, so that we can char-
acterize their structures and verify this conjecture for the 
Drosophila dataset.

Conclusions and discussion
In this work we proposed a new genomic distance, for the 
first time integrating DCJ and indel operations in a fam-
ily-free setting. In this setting the whole analysis requires 
less pre-processing and no classification of the data, since 
it can be performed based on the pairwise similarities of 
markers in both genomes. Based on the positions and 
orientations of markers in both genomes we build the 
family-free relational diagram. We then assign weights to 
the edges of the diagram, according to the given pairwise 
similarities. A sibling-set of edges corresponds to a set of 
matched markers in both genomes. Our approach trans-
fers weights from the edges to matched and unmatched 
markers, so that, again for the first time, an optimal solu-
tion does not necessarily need to maximize the number 
of matched markers. Instead, the search space of our 
approach allows solutions composed of any number of 
matched markers. The computation of our new family-
free DCJ-indel distance is NP-hard and we provide an 
efficient ILP formulation to solve it.

The experiments on simulated data show that our ILP 
can handle not only bacterial genomes, but also complete 
genomes of fungi and insects, or sets of chromosomes of 
mammals and plants. We performed a comparison study 
of six fruit fly genomes, using the obtained distances 
to reconstruct the phylogenetic tree of the six species, 
obtaining accurate results. The sibling-sets inferred by 
our ILP in this experiment correspond to gene homolo-
gies that are 99.8% consistent with annotated gene 
homologies of FlyBase [26], as only 0.2% of gene match-
ings connected genes of different annotated families. 
Comparisons with the related family-based model nd id

DCJ 
[16] suggest that our ffd id

DCJ model can deliver more accu-
rate results and can be solved faster when the inputs are 
of the same sizes, with the extra advantage of bypassing 
the pre-identification of gene families. This study is a first 
validation of the quality of our method and a more rigor-
ous evaluation will be performed in future works, includ-
ing, as previously mentioned, the investigation of the 
reasons behind insertions and deletions of long segments 
in the Drosophila dataset.
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