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Abstract 

Background:  Genotype-phenotype maps provide a meaningful filtration of sequence space and RNA secondary 
structures are particular such phenotypes. Compatible sequences, which satisfy the base-pairing constraints of a 
given RNA structure, play an important role in the context of neutral evolution. Sequences that are simultaneously 
compatible with two given structures (bicompatible sequences), are beacons in phenotypic transitions, induced by 
erroneously replicating populations of RNA sequences. RNA riboswitches, which are capable of expressing two dis-
tinct secondary structures without changing the underlying sequence, are one example of bicompatible sequences 
in living organisms.

Results:  We present a full loop energy model Boltzmann sampler of bicompatible sequences for pairs of structures. 
The sequence sampler employs a dynamic programming routine whose time complexity is polynomial when assum-
ing the maximum number of exposed vertices, κ , is a constant. The parameter κ depends on the two structures and 
can be very large. We introduce a novel topological framework encapsulating the relations between loops that sheds 
light on the understanding of κ . Based on this framework, we give an algorithm to sample sequences with minimum 
κ on a particular topologically classified case as well as giving hints to the solution in the other cases. As a result, we 
utilize our sequence sampler to study some established riboswitches.

Conclusion:  Our analysis of riboswitch sequences shows that a pair of structures needs to satisfy key properties 
in order to facilitate phenotypic transitions and that pairs of random structures are unlikely to do so. Our analysis 
observes a distinct signature of riboswitch sequences, suggesting a new criterion for identifying native sequences 
and sequences subjected to evolutionary pressure. Our free software is available at: https://​github.​com/​Fenix​Huang​
667/​Bifold.
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Background
Bicompatible sequences in evolution
RNA evolution has been studied extensively in the 
framework of theoretical evolutionary optimization, 
center staging the genotype-phenotype mapping from 
RNA sequences to their structures [1–7]. RNA second-
ary structures are particular such phenotypes, contact 

structures that can be represented as diagrams, where 
vertices are nucleotides and arcs are base pairs drawn 
in the upper half-plane. If the arcs are not crossing, the 
represented RNA secondary structure is pseudoknot-free 
[8, 9]. These pseudoknot-free structures correspond to 
tree structures based on the lengths of contiguous sub-
sequences. As a result, finding a structure with minimum 
free energy (mfe) to a given sequence can be computed 
efficiently using dynamic programming (DP) routines 
[10, 11]. Diagrams containing crossing arcs represent 
RNA pseudoknots [12, 13]. These pseudoknot structures 
can not be decomposed into trees in a straightforward 
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fashion. Recently, pseudoknots have been studied from 
a topological perspective and their structural complex-
ity was characterized by the topological genus [14–17]. In 
our paper, we are interested in RNA riboswitches, a small 
segment of an mRNA molecule that regulates mRNA 
translation and can express two alternative secondary 
structures. As riboswitches are small ( < 500  nts), they 
are not likely to exhibit pseudoknots [13, 18, 19]. In the 
following we restrict our analysis to pseudoknot-free sec-
ondary structures.

In [4], the authors realized that genotype–phenotype 
mappings provide a natural filtration of the sequence 
space by means of considering sequences “equivalent” 
if they fold into the same mfe-secondary structure. This 
perspective naturally leads to consider the induced sub-
graphs of preimages of the folding map in sequence 
space, i.e., the neutral networks of RNA secondary struc-
tures [5]. Neutral network are graphs, consisting of all 
sequences that fold into a distinguished structure, with 
edges connecting two such sequences if they differ in 
exactly one nucleotide. These networks provide a frame-
work to quantify well-known evolutionary theories, such 
as Motoo Kimura’s neutral theory of evolution.

A plethora of work has been done on the diffusion-
like process of sequences searching for an optimal 
structure, ranging from simulation-based studies [20] 
to the mathematical analysis of the cluster-size distri-
bution depending on the structure of the neutral net 
[5]. These studies have shown that connectivity and 

density of neutral networks are of central importance 
for the understanding of how sequences evolve.

One prominent phenomenon is that of spontane-
ous, rapid transitions of evolving populations of RNA 
sequences from one structure to another—even in 
absence of fitness advantages [6, 21]. Despite of the 
Intersection Theorem [5], guaranteeing the existence 
of bicompatible sequences for any two RNA second-
ary structures, transitions between neutral networks 
are only observed for certain structure pairs. In [21], 
the authors showed that in the course of a phenotypic 
transition an evolving population of RNA sequences 
tunnels through bicompatible sequences. These 
sequences constitute de facto a gateway between differ-
ent phenotypes.

Bicompatible sequences play furthermore a promi-
nent role in the analysis of RNA riboswitches [22]. 
Riboswitch sequences express two distinct structures, 
each of which appearing in a specific biophysical con-
texts, see Fig.  1. Both structures are typically ther-
modynamically suboptimal and exhibit a large base 
pair distance [23]. Specific mechanisms are observed, 
most prominently that of the existence of a switch-
ing sequence, a contiguous subsequence that engages 
for each respective structure in a unique fashion. The 
two structures are mutually exclusive, since bases of 
the switching sequence pair downstream in one and 
upstream in the other configuration [22].

Fig. 1  Riboswitch. Alternative structures of the Adenine riboswitch [24] and its switching sequence (blue), involved two respective helices
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Finding bicompatible sequences for two structures
The studies of bicompatible sequences of a pair of sec-
ondary structures of the same length, or in more general 
cases where a sequence satisfies multiple structure con-
straints, are motivated by the computational design of 
RNA sequences [25–29]. Early developments such as [11, 
25] design a sequence by simulation approaches. These 
entail considering an objective function that involves 
the energy contribution of multiple target structures on 
a common sequence. They then replicate a sequence by 
introducing a single random mutation, and a sequence 
survives if it improves the performance of the designated 
objective function. Later developments such as [26, 27] 
generate sequences satisfying multiple structure con-
straints based on a multi-objective genetic algorithm.

Recently, new approaches such as [30–33], design 
sequences on a single secondary structure using a Boltz-
mann sequence sampler based on the “dual” partition 
function of with respect to McCaskill’s partition function 
of secondary structures for a fixed sequence [34]. These 
approaches consider a sequence and a structure as a pair, 
and the pair can be mapped via

Here, η is the energy function of a sequence-structure 
pair (σ , S) , Qn

4 and Sn are the collections of all sequences 
and secondary structures of length n respectively, K is a 
constant(the Boltzmann constant), and T is a tempera-
ture parameter. The Eq. 1 resembles the notion of a sca-
lar product of vector spaces: V × V → K  , whence the 
notion of dual partition function. The partition function 
for a fixed structure induces a probability space with 
Boltzmann distribution where a sequence has a higher 
probability if it is energetically more stable with respect 
to the given structure.

For multiple structures, [35, 36] made use of a com-
bination of graph coloring theory and heuristic local 
optimization in order to find sequences whose energy 
landscapes are dominated by the prescribed conforma-
tions. Later development in [28] presents an algorithm 
to sample sequences with multiple structure constraints 
with uniform probability.

In [29], the authors developed a Boltzmann sam-
pler to generate sequences for two secondary struc-
tures of the same length such that the total energy of 
the two sequence-structure pairs is minimized. Their 
sampler is based on a simplified energy model focusing 
on the energy contribution of helices, while the energy 
contributions from hairpin loops, interior loops, and 
multi-loops are ignored. The key challenge is to decom-
pose the loops contained in the two structures in a tree 
structure such that a DP-routine can be employed to 

(1)ε : Qn
4 × Sn −→ R+, ε(σ , S) = e−

η(σ ,S)
KT .

compute their partition function. In their approach, a 
hyper-graph model is used to describe the intersection 
relationships among the loops. Assume a tree decompo-
sition of the hyper-graph is given with tree-width w, then 
the time complexity of computing the partition func-
tion is O(4w+1n) , thus fixed-parameter tractable (FPT). 
However, in the general case, finding a tree decomposi-
tion of a hyper-graph with minimum tree-width is NP-
hard. Bodlaender’s famed result [37] shows that checking 
whether a tree decomposition with tree-width ≤ k exists 
and constructing a tree decomposition with tree-width k, 
if such k exists, can be performed in linear time. How-
ever, it remains unknown how big the gap between such 
k and the minimum tree-width is. As the sampler in 
[29] considers only simple loops formed by helices, the 
induced hyper-graph is usually simple, whence an opti-
mal tree decomposition can be approximated. Though 
the authors in [29] claim their approach can be general-
ized to a full-loop energy model [38], the hyper-graph 
will become more involved, and an optimal tree decom-
position is arguably no longer easy to obtain.

Boltzmann sampling
In order to understand how the time complexity is 
affected when considering a full-loop energy model [38], 
we express the loop intersection relationship by means 
of a novel topological framework [39]. The framework 
considers each loop as a vertex (a 0-simplex), and d loops 
having nontrivial intersection as a(d − 1)-simplex. Thus, 
the simplicial complex obtained by gluing all d-simplices, 
for all d ≥ 0 , gives rise to a topological space. The simpli-
cial complex is called a loop nerve, see Fig. 2. Specifically, 
the 0-simplices representing the loops are equivalent to 
the hyper-edges in the hyper-graph model discussed in 
[29], while the d-simplices for d > 0 capture additional 
information that is not present in the hyper-graph model.

We observe that the time complexity of computing 
the partition function is closely related to the structure 
of the topological space, in particular whether or not it 
contains d-dimensional holes. In topology, d-dimen-
sional holes are elements of the dth homology group 
and the latter constitute a key signature of the space. 
The easiest way to understand the significance of this 
is to consider a disc and a punctured disc. While the 
former can continuously be contracted into a point, the 
latter does not allow for such a contraction. We illus-
trate the geometric interpretation of the 0th-, 1st-, and 
2nd-homology group in Fig. 3. Homological signatures 
play a central role in the context of differentiating topo-
logical spaces, since any homeomorphism of topologi-
cal spaces induces an isomorphism of homologies. For 
instance, the characterization of closed surfaces as a 
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sphere, a finite connected sums of projective planes, 
or a finite connected sums of tori uses the fact that the 
homologies of spheres, projective planes and tori are 
distinct.

In [39] it is shown that the loop nerve induced by a 
pair of secondary structures has an associated topo-
logical quotient space of a very particular type: it is 
obtained by gluing tetrahedra, spheres and ribbons. 
It turns out that the tetrahedra can be processed via 
homotopies and the resulting space may be depicted as 
an apple tree, the spheres representing the apples and 
the ribbons the branches. In the absence of spheres, 
we shall obtain an optimal algorithm to compute the 
partition function of a pair of secondary structures, 
i.e., we can obtain in this case a tree decomposition of 

the hyper-graph in [29] with minimal tree-width. It is 
the spheres, that are responsible for the computational 
complexity and an optimal polynomial time algorithm 
is at present unknown.

The topological framework introduced does, at pre-
sent, not solve the NP-hardness rooted in the tree 
decomposition with minimum tree-width, it does how-
ever present a fundamentally different approach to the 
study of computational complexity problems associated 
with computing mfe-sequences to two or more sec-
ondary structures. One might speculate that simplicial 
complexes specifically the recently developed frame-
work of weighted complexes (a generalization in which 
simplices are endowed with a certain weight) may prove 

(A) (B)

(C) (D)

Fig. 2  From two secondary structures to a topological space: A two secondary structures drawn in the upper- and lower-half plan respectively. 
A rainbow arc (0, 9) is added to both of the structures to close to exterior loop. B The secondary structures are decomposed into loops. The loops 
induce a hyper-graph G = (V = {0, . . . , 9}, E) , where E = {e1, e2, e3, e4, e5, e6} with e1 = {0, 1, 4, 5, 7, 8, 9}, e2 = {1, 2, 3, 4}, e3 = {2, 3}, e4 = {5, 6, 7} , 
e5 = {0, 1, 2, 3, 4, 5, 6, 8, 9} and e6 = {6, 7, 8} are loops. C The nerve over E. A (d − 1)-simplex represent the nontrivial intersection of d loops. D The 
topological quotient space K(R) induced by C, where a ribbon induced by {e1, e2, e5, e3} is glued to a sphere induced by {e1, e5, e4, e6}

(A) (B) (C)
Fig. 3  Geometric interpretation of the 0th-, 1st-, and 2nd- homology group. A The rank of the 0th homology group is 2, counting the number of 
connected components, where each of them can be contracted to a single point. B The rank of the 1st homology group is 2, counting the number 
of uncontactable circles on a torus. C The rank of the 2nd homology group is 2, counting the number of empty volume (2-dimensional holes) 
induced by the spheres
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useful for larger classes of computational complexity 
problems.

The framework presented here is tailored to express 
intrinsic relations between loops of different structures 
and reveals a detailed blueprint of how they organize, 
namely as topological wedge-sums of spheres.

It is well-known [40, 41] that even identical genotypes 
can lead to many different phenotypes in response to 
environmental changes, and riboswitches are natural 
sequences that can easily access a variety of phenotypes. 
Phenotypic accessibility is closely connected to bicom-
patible sequences and we shall employ the sequence sam-
pler for two secondary structures in a full-loop energy 
model [38] to investigate properties of RNA riboswitch 
sequences on multiple levels. First, we compare the 
energy spectra of sample sequences under the constraint 
of being compatible and bicompatible, respectively. We 
show that for the two alternative structures of a ribos-
witch, the energy spectra of compatible sequences with 
either one structure is similar to the sequences that are 
bicompatible, i.e.  compatible with both structures. This 
implies that riboswitch sequences can switch between 
their assumed structures easily, without affecting the free 
energy since there exist multiple, energy favorable bicom-
patible sequences. In contrast, random structure pairs do 
not facilitate such phenotypic switches, i.e. native ribos-
witches are distinguished sequences.

Second, we analyze how sequence-structure pairs rank 
within the partition function by comparing riboswitch 
sequences with random sequences. The rank analy-
sis allows us to conclude that the relative rank of native 
riboswitch sequences is distinctively higher than the rela-
tive rank of the sampled sequences. Accordingly, native 
sequence exhibit an optimized thermodynamic stability 
with respect to the pair of structures.

Thirdly, we investigate a certain adaptability index, 
measuring the capability of a structure R to change into 
the structure S. We find that the adaptability of the alter-
native structures of riboswitches are distinctively differ-
ent from that of random structure pairs. This indicates 
that the two alternative structures of a riboswitch are 
more evolutionary accessible by sequences than random 
structure pairs.

Materials and methods
Bistructures
We present an RNA secondary structure as an arc dia-
gram, a graph whose vertices are drawn on a horizon-
tal line and the Watson-Crick as well as Wobble base 
pairs are drawn as arcs in the upper half-plane [42–44], 
see Fig.  4B. The vertices are labeled by V = {1, 2, . . . , n} 
from left to right, representing the nucleotides. The lin-
ear order of the vertices indicates the direction of the 
RNA strand from 5′-end to 3′-end. Here we consider only 
the canonical Watson-Crick and Wobble base pairs in 
an RNA secondary structure. As a result, for any pair of 
nucleotides, there can be at most one such canonical base 
pair, each vertex can be only incident to one arc.

An arc, (i,  j), represents the base pair between the ith 
and jth nucleotides. Two arcs (i,  j) and (r,  s) are called 
crossing if and only if i < r < j < s holds. An RNA struc-
ture is called a secondary structure, if it does not contain 
any crossing arcs. Furthermore, the arcs of a second-
ary structure can be endowed with the partial order: 
(r, s) ≺ (i, j) if and only if i < r < s < j . We shall intro-
duce two “formal” vertices associated with positions 0 
and (n+ 1) , respectively and add the formal arc (0, n+ 1) , 
referred to as the rainbow. An interval, [i, j], is the set of 
vertices {i, i + 1, . . . , j − 1, j}.

(A)

(B)

(C)

(D)

(E)

Fig. 4  A An RNA secondary structure. B Diagram representation of A. C A secondary structure with a rainbow arc (dash). D Loops in a secondary 
structure. The loop (gray) contains a distinguished maximal arc (1, 17). E A bistructure B is a collection of loops {L1, . . . , L9} . X = {L3, L7, L9} (blue) is 
an irreducible substructure of B with its complement X = {L1, L2, L4, L5, L6, L8} . We mark the exposed vertices EX = VX ∩ VX  in red. The closure of X 
is given by X̃ = {L2, L3, L4, L6, L7, L8, L9}
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In a loop-based energy model [38, 45], arcs and 
unpaired vertices are organized in loops contributing to 
the energy. A loop, L, is a subset of vertices, represented 
as a disjoint union of S-intervals, L = ˙

⋃k

i=1[ai, bi] , such 
that (a1, bk) and (bi, ai+1) , for 1 ≤ i ≤ k − 1 , are arcs 
(including the rainbow arc (0, n+ 1) ) and where any 
other interval-vertices are unpaired, see Fig. 4D. It can be 
represented by a maximal arc (a1, bk) with respect to the 
partial order ≺ . Given a loop, this maximal arc is unique, 
whence a loop can be represented by L

(a1,bk ) . In particu-
lar, the rainbow arc, (0, n+ 1) , represents an exterior 
loop, that is not nested in any arc in the arc diagram, see 
Fig.  4C. Furthermore, each non-rainbow arc appears in 
exactly two loops, being maximal for exactly one of them. 
Loops correspond to the boundary components of the 
secondary structure viewed as a fatgraph [46]. In the fol-
lowing, we shall identify loops with their sets of vertices.

Given two secondary structures, R and S, having the 
same vertex set V = {1, . . . , n} , we draw the vertices on a 
horizontal line, the arcs of R in the upper and the arcs of 
S in the lower half-plane. We refer to this arc diagram as 
a bistructure, B(R, S). The idea of considering a second-
ary structure pair of given length has been studied in [47, 
48]. Here we shall distinguish the R-arcs from the S-arcs 
even though they might have the exact same endpoints. 
For example an arc (i,  j) in R is denoted by (i, j)R and an 
arc (i, j) in S is denoted by (i, j)S . In a loop-based model, 
the R-loops and the S-loops are distinct since their rep-
resented R-arcs from the S-arcs are distinct. Hence, a 
bistructure B(R, S) can be considered as the set of loops 
B = {Lpi | pi ∈ B(R, S), 1 ≤ i ≤ m} , where pi , 1 ≤ i ≤ m , 
is an arc in B(R, S), see Fig. 4E.

A substructure of B, denoted by B′ , is a subset of loops 
where B′ ⊆ B . The vertex set of B′ , denoted by VB′ , is the 
union of vertices in loops that are contained in B′ . The 
complement of B′ , B′ = B \ B′ , with its vertex set VB′  , see 
Fig. 4. Accordingly, we have (a) VB′ ∪ VB′  contains all ver-
tices in B(R, S) and (b) VB′ ∩ VB′  is not necessarily empty, 
since paired and unpaired vertices can be contained in 
the intersection of the B′ - and B′-loops. Furthermore, 
for a given substructure X = {L1, · · · , Lk} , we define the 
boundary of X by XC = {L ∈ X |∃Li ∈ X , L ∩ Li �= ∅} , 
i.e., XC is the set of all loops in the complement of X that 
have nontrivial intersection with X. We call X̃ = X ∪ XC 
the closure of X. A substructure is called reducible if 
the loop set can be bi-partitioned into two sets of loops 
X1 = {Li1 , . . . , Lim} and X2 = {Lj1 , . . . , Ljn} , such that 
Lit ∩ Ljs = ∅ , ∀1 ≤ t ≤ m , 1 ≤ s ≤ n , otherwise we call X 
irreducible, see Fig. 4E.

The intersection EB′ = VB′ ∩ VB′  is called the set of 
exposed vertices of B′ . The exposed vertices are key ele-
ments in computing the partition function of a bistruc-
ture, since the vertices are contained in multiple loops 

and their nucleotide information needs to be remem-
bered until the energies of the loops containing the 
exposed vertices are calculated.

Partition function and Boltzmann sampler
We first recall the notion of a partition function for 
sequences that are compatible to a single structure R [34].

Here Cn(R) denotes the set of R-compatible sequences 
while η(σ ,R) is the energy of the sequence-struc-
ture pair (σ ,R) . Lastly, K is the Boltzmann constant 
and T the temperature. In Turner’s model [38, 45], 
η(σ ,R) =

∑

L∈R η(σ , L) , where L is a loop contained in 
the secondary structure R. The energy of a loop L is a 
function of its type and of the nucleotides associated to 
the arcs and the unpaired bases it contains. In practice, 
the energy computation takes into account a maximum 
of two specific arcs and four unpaired vertices, as well as 
the number of arcs and the number of unpaired bases.

For a bistructure B(R,  S) and a sequence σ , we set 
η(σ ,B(R, S)) = 1

2 (η(σ ,R)+ η(σ , S)) . Then we define the 
partition function of sequences bicompatible to R and S 
by

where Cn(R, S) denotes the set of bicompatible sequences 
to both R and S.

A decomposition of B is a block sequential loop 
removal of the bistructure. Let us first illustrate the 
computation of Q(R,  S) when a specific decomposi-
tion is given. Suppose X = {L1, . . . , Lk} is a substructure 
of B(R, S) with vertex set V, and exposed vertex set EX . 
X = B \ X denotes the complement of X. Let σX = (σv)v 
denote a subsequence with v ∈ V  , σv ∈ {A,U,G,C} . Then 
we can compute the energy η(σX ,X) since the nucleotide 
information of the vertices contained in V is specified. 
Let further τX = (τv)v be a subsequence where v ∈ EX , 
τv ∈ {A,U,G,C} . Clearly, τX ⊆ σX . For ℓ = |V | , we define 
a partition function for X that is parameterized by τX

Here, �ℓ is the collection of RNA sequences of length ℓ.
By definition, if X is an irreducible substructure, then 

removing a loop L from X produces a set of irreduc-
ible substructures X1, . . . ,Xk . We investigate how the 
exposed vertex set evolves with a loop removal. To this 
end let x ∈ EX be an exposed vertex. If x ∈ L , then either 

Q(R) =
∑

σ∈Cn(R)

e−
η(σ ,R)
KT .

Q(R, S) =
∑

σ∈Cn(R,S)

e−
η(σ ,B(R,S))

KT ,

Q(X , τX ) =
∑

σX∈�ℓ

e−
η(σX ,X)

KT .
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(a)  ∃L′ ∈ X , L′  = L such that x ∈ L′ , or, (b) at least one 
such L′ loop exists. In the first case (a), we have x is no 
longer exposed, while in the second case (b), we have 
x ∈ EXi for some 1 ≤ i ≤ k . Finally, if x /∈ L to begin with, 
then we have x ∈ EXi for some 1 ≤ i ≤ k after removing L 
form X.

Let τX denote a fixed subsequence over EX , τXi a subse-
quence over EXi , 1 ≤ i ≤ k , and σL a subsequence over 
the loop L. We consider all possible subsequences (σv)v 
where σv ∈ {A,U,G,C} , v ∈

(

L ∪k
i=1 E

Xi

)

\ EX . Then, 
the partition function Q(X , τX ) can be computed recur-
sively by

For a given decomposition, the terms Q(Xi, τXi) , for 
1 ≤ i ≤ k , can be computed in parallel. We illustrate the 
recursion 2 in Fig. 5.

When Q(R, S) is computed, we can Boltzmann sample 
RNA sequences following the classical stochastic back-
tracking method introduced by [49], which is of linear 
time complexity. Given an irreducible substructure X 
that is decomposed into a loop L and a set of irreduc-
ible substructures X1, . . . ,Xk . Assume the nucleotides 
in Xi are sampled, then with a fixed subsequence τX 
over the exposed vertex set EX , the subsequence (σv)v , 
v ∈ L \ ∪iE

Xi is sampled with probability

Multiplying all inside probabilities of each iteration, we 
conclude that a sequence is sampled with probability 
P(σ ) = e−

η(σ ,B(R,S))
KT /Q(R, S).

The topology of a bistructure
The partition function Q(R,  S) is computed recursively 
based on substructures, where a loop is removed from 
the substructure to calculate its energy. The removal 
yields a collection of substructures having fewer loops. 

(2)Q(X , τX ) =
∑

(σv)v

e−
η((σL ,L)

KT

k
∏

i

Q(Xi, τXi).

e−
η((σv)v ,L)

KT
∏k

i Q(Xi, τXi)

Q(X , τX )
.

In this recursion, a nucleotide τi at position i needs to 
be stored until the energy of all loops containing τi are 
calculated. For a fixed decomposition D = {X0, . . . ,Xk} , 
the number of nucleotides that need to be stored at each 
step of the recursion  2 is |L ∪k

i=1 E
Xi | . We denote the 

maximum number of |L ∪k
i=1 E

Xi | in all recursion steps by 
κD(B) . For a fixed decomposition D, κD(B) is a constant.

Assume D is a decomposition of B(R, S), we can imple-
ment a dynamic programming (DP) routine to compute 
Q(R, S) recursively. The time complexity of the algorithm 
is O(4κ(B)n) since for every σv , v ∈ L ∪k

i=1 E
Xi , we have 

four nucleotide choices A,U,G,C . Therefore, the algo-
rithm to compute Q(R, S) is an FPT algorithm, as it can 
be solved in polynomial time (as a function of n) when 
assuming κ(B) is a constant. However, κD(B) can be very 
large, thus contributing a significant factor to the time 
complexity. Thus, a decomposition D that minimizes 
κD(B) is desired. Let further κ(B) = minD κD(B) , i.e. the 
minimum time complexity over all possible decomposi-
tions D. Clearly, κ(B) depends only on the bistructure B.

It is impossible to consider all decomposition since 
there are exponentially many of them. The algorithm 
introduced in [29] computed the partition function fol-
lowing an analogous DP-routine as Eq. 2. The key ques-
tion is then to find a “smart” decomposition of the 
bistructure. The authors in [29] develop a hyper-graph 
model to interpret the overlapping relationships among 
all loops. In their hyper-graph model, a labeled vertex 
represents a nucleotide at a fixed position, and a hyper-
edge represents a loop. Then a tree decomposition of the 
hyper-graph induces a hierarchy tree structure for the 
loops. Following the tree decomposition, one can derive 
a removal order of loops in the bistructure, and by con-
struction the tree-width w = κD(B)− 1.

Finding a tree decomposition with minimum tree-
width for a general hyper-graph is NP-hard. However, 
for the simple energy model in [29], the hyper-graph may 
be simple enough such that a tree decomposition with 
minimum tree-width can be found by approximation 
algorithms [37]. It is not clear whether this is still feasible 
when passing to a full-loop energy model.

Fig. 5  Illustration of the recursion for the partition function. Given a bistructure X with exposed vertices v1 and v2 , we decomposed X into a loop 
L(v1, u1, u2, u3) and a substructure X ′(v1, u1, u2, u3, v2) . Here we assume v1 , u1 , u2 , u3 , and v2 are contained in loops of X ′ , hence v1 and v2 remain 
exposed and u1 , u2 , and u3 are newly exposed vertices
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Loop intersections are studied in [39] via a simplicial 
complex, where a loop in a bistructure B(R,  S) is rep-
resented by an abstract 0-simplex, i.e., a vertex. This 
line of work goes beyond the hyper-graph approach in 
that intersections of multiple loops can be consistently 
expressed and unlocks powerful concepts from algebraic 
topology. If d loops have nonempty mutual intersection, 
they are represented by a (d − 1)-simplex. The collection 
of all d ≥ 0-simplices forms a simplicial complex, called 
a loop nerve, see Fig. 2. A loop removal is tantamount to 
deleting the corresponding 0-simplex as well as all higher 
dimensional simplices that contain it. We shall show that 
understanding the structure of the topological space pro-
vides insight into designing an optimal decomposition.

We first give an overview of how to design the decom-
position of a bistructure via the topological framework. 
In [39], the authors show that the induced loop nerve 
of a bistructure B(R, S) has very specific properties. The 
topological space is uniquely classified by the rank of its 
second homology group r2(B) , which counts the num-
ber of 2-dimensional holes. As mentioned before, the 
geometric realization is comprised of ribbons glued to 
filled tetrahedra and spheres. Each sphere has a com-
binatorial interpretation within the bistructure as a 

crossing component and their number equals the rank 
of the second homology group. We shall show that the 
challenge of the decomposition problem stems from the 
spheres, as the ribbons and tetrahedra are organized in 
a tree-like fashion. The global tree-like structure induces 
a tree decomposition naturally, while the sphere can be 
resolved locally. To resolve the spheres we can map the 
problem to a known NP-problem such as, for instance, 
the traveling salesman problem (TSP). This allows us to 
solve the spheres via approximation algorithms [50]. We 
illustrate this idea in Fig. 6.

Topological framework
In the following we discuss the results in [39].

Definition 1  Suppose B(R,  S) is a bistructure having 
n loops B = {L1, . . . , Ln} . We call Y = {Li0 , . . . , Lid } a 
d-simplex of B if and only if 

⋂d
k=0 Lik �= ∅ . Let Kd(B) be 

the set of all d-simplices of B. Then the nerve of B is

The loop nerve K(B) has the topological space T(B) 
as its quotient space [51], see Fig.  7. The 0-simplices 

K (B) =
˙⋃∞

d=0
Kd(B) ⊆ 2B.

Fig. 6  A decomposition of a bistructure (LHS) and the evolution of its loop nerve (RHS). LHS: exposed vertices are labelled red. RHS: the loops 1, 2, 
3, 5 and 6 form a sphere. Removing one loop from this sphere is tantamount to deleting one vertex of the loop nerve. The white vertices in the loop 
nerve represent the boundary of the substructure. The sphere corresponding to the crossing component is resolved by removing the S-arc
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correspond to hyper-edges in [29]. In the loop nerve the 
collection of d-simplices, encapsulates the information 
of loop intersections not articulated in the hyper-graph 
model.

The loop nerve of a bistructure B contains no d-sim-
plex for d > 3 [39] and there are only two nontrivial 
homology groups of T(B), both being free and abelian: 
H0(T (B)) ∼= Z and H2(T (B)) ∼= ⊕r

kZ . In view of connec-
tivity, the rank of H2(T (B)) , r2(B) , is the only determi-
nant. An R-arc (i, j) and an S-arc (r, s) are called crossing 
if i < r < j < s holds. We shall proceed by discussing 
overlaps and crossing components.

An overlap is a degree four vertex in its arc diagram. 
An overlap corresponds to a 3-simplex in K3(X) in the 
loop nerve. Assume x is an overlap being the endpoint of 
the arcs p1 ∈ R and p2 ∈ S . We split x into two adjacent 
vertices x1 and x2 , where x1 carries the endpoint of p1 and 
x2 the endpoint of p2 . This is done such that after the 
split p1 does not cross p2 , see Fig. 8

We next convince ourselves that the split does not 
“really” affect the induced topological space, where 
“really” means “upto homotopy”. Let x be an overlap. 
This vertex is contained in four loops and is the end-
point of two arcs p1 and p2 . Let L1 and L2 be the loops 
in R that contain p1 , where p1 is the maximal arc of L2 . 

Furthermore let L3 and L4 be the loops in S that con-
tain p2 , where p2 is the maximal arc of L4 . Clearly, 
∩4
i=1Li = {x} . Splitting x into x1 and x2 [39] is tantamount 

to removing an edge of the corresponding filled tetrahe-
dron as well as its interior. We end up with two triangles 
that are still glued along the opposite edge from the edge 
we removed, see Fig.  8. This splitting does not change 
r2(B) , whence we can restrict ourselves to the non-over-
lap case.

In the arc diagram of a bistructure we adopt the notion 
of crossing component as in [39].

Lemma 2  Let XO be the substructure induced by a 
crossing component O, and let X̃O be its closure. Then the 
induced topological space of X̃O, T (XO

), is homeomorphic 
to an empty sphere, and thus contributes 1 to the rank of 
H2(B).

We define the ∗-graph of the loop nerve to be the graph 
�(B) = (K2(B),E) with edges given by

Each vertex in the ∗-graph represents a filled triangle in 
T(B), and there is an edge between two vertices if their 
respective triangles have nonempty intersection along an 
edge. Then we have:

Lemma 3  Let X be a substructure without crossing arcs 
and overlaps, i.e., H2(B) = 0 and K3(B) = ∅. Then its 
*-graph �(B) is a tree.

We illustrate the ∗-graph of a bistructure without over-
laps and crossing arcs in Fig. 9. Note that, by Lemma 3, if 
B has no crossings, the induced topological space T(B) is 
a “ribbon tree”. Namely, each ribbon is obtained by gluing 
a sequence of triangles along their edges such that each 
triangle has at most two edges glued to other triangles. 
These ribbons are then glued together along some of the 
edges of their constituent triangles such that no closed 
bands appear.

E ∋ e = (�1,�2) ⇔ �1 ∩�2 ∈ K1(B).

(A) (B) (C)

Fig. 7  Examples of topological realizations of the loop nerves for 
different bistructures: A an empty tetrahedron or a sphere), B a filled 
tetrahedron, and C two filled triangles glued along a mutual edge

(A) (B)
Fig. 8  Splitting an overlap without inducing crossing arcs (A). The split is tantamount to removing an edge of the corresponding filled tetrahedron 
as well as its interior, ending up with two triangles that are still glued along the opposite edge from the edge we removed. B The split effect on the 
corresponding simplicial complex of A 



Page 10 of 18Huang et al. Algorithms Mol Biol            (2021) 16:7 

Now we are in position to describe the structure of 
the topological space T(B). If an irreducible substruc-
ture X is induced by a crossing component, then the 
induced topological space is “sphere”-like. Otherwise 
if X is noncrossing, the induced topological space is 
“ribbon tree”-like. T(B) is a ribbon tree modulo edge 
contraction of spheres [39]. Finally, we have the combi-
natorial interpretation of r2(B) and given a bistructure 
B(R, S) with r crossing components. then r2(B) = r.

Scheduling
We next discuss how to design a decomposition based 
on the properties of the loop nerve. The global tree-
like structure induces a tree decomposition naturally, 
while the sphere will be resolved locally. We first con-
sider the case where B contains no crossing arc. In this 
case, we extend the partial order ≺ for a bistructure by 
the following: for any two arcs (i, j), (r, s) ∈ B we say 
(i, j) ≺B (r, s) if and only if i < r < s < j . Then, we show 
in the SM that for an irreducible substructure X ⊆ B , X 
contains a unique maximal arc with respect to ≺B.

We decompose X by removing the loop Lm , where m 
is the maximal arc of X. The loop removal produces a 
set of irreducible substructure X1, . . . ,Xk . Repeating 
this loop removal for any produced irreducible sub-
structures gives a unique loop removal order D0(B) . We 
show

Lemma 4  Let B(R,  S) be a bistructure without cross-
ing arcs or overlaps. Let D0 be the loop removal order 
discussed above. For any loop removal order D  = D0, we 
have κD0(B) ≤ κD(B), i.e., D0 is a decomposition that min-
imizes κ(B).

A bistructure B with overlaps can be mapped to a 
bistructure B′ without overlaps by the above splitting 
of overlapping vertices. The decomposition D0 on B′ 
induces a natural decomposition D on B by the one-to-
one correspondence between the B-arcs and the B′-arcs. 
We illustrate in Fig.  10 how to derive a decomposition 
of a hyper-graph with minimum tree-width for the case 
where B(R,  S) is a bistructure without crossing arcs or 
overlaps.

We next discuss how to resolve spheres. Recall that the 
NP-hardness of the decomposition problem stems from 
the spheres. In this case, we consider mapping the prob-
lem to a known NP-problem as, for instance, the trave-
ling salesman problem (TSP). To this end we remove a 
set of loops from X with a minimum number of exposed 
vertices, such that X has no crossing arcs. The remain-
ing noncrossing substructure can be decomposed using 
the optimal algorithm presented before, see Fig.  6. This 
allows to solve the problem via approximation algorithms 
of the TSP [50]. The approximation approach is the sub-
ject of future work and beyond the scope of this paper, 

Fig. 9  A bistructure having no overlap and crossing arcs (left), its loop nerve (middle), and the ∗-graph (right). Each vertex in the ∗-graph presents a 
triangle in the loop nerve, labeled by a triple of loops. Its ∗-graph is a tree

(A) (B) (C) (D)
Fig. 10  Topologically guided optimal tree decomposition: A a bistructure without crossing arcs or overlaps. B The hyper-graph of A. C Its quotient 
space is a ribbon. D The optimal tree decomposition of B obtained by following (C)
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for the analysis presented below, we employ a greedy 
approach to resolve the spheres.

Structural adaptability
In this section, we introduce three measures for quanti-
fying the structural adaptability using the bicompatible 
sequence sampler. Given two structures R and S, we first 
sample sequences with single-compatible and bicompat-
ible constraints respectively, and compare their energy 
spectrum of sampled sequences paired with R and S. In 
case of bicompatibility not affecting the energy spectrum 
significantly, we can conclude that switching from R to S 
(and vice versa) is feasible. Secondly, we investigate the 
energy ranking of (σ ,R) and (σ , S) , within the partition 
function of σ . This shows how stable R and S are in the 
Boltzmann ensemble of a sampled sequence. Finally, we 
introduce an index, called the adaptability, measuring 
the capability of a structure R to transform into S. The 
adaptability is obtained by comparing the proportion of 
the partition function for bicompatible sequences w.r.t. 
the partition function of single-compatible sequences. In 
case of all sequences being bicompatible, the index equals 
1, while in the case of sequences not being bicompatible, 
the index equals 0.

Energy spectra
Let us begin by introducing the spectrum over a partition 
function. Let Q(X) be a partition function of sequences 
compatible with X, where X is a secondary or bistructure 
and Q(X) =

∑

σ
e−

η(σ ,X)
KT  . To simplify notation, we shall 

write Q instead of Q(X), if we do not need to emphasize 
the context of the underlying structure X. Naturally, Q 
induces the discrete probability space (�n,PQ) , where 
PQ(σ ) = e−

η(σ ,X)
KT /Q . We consider a real-valued random 

variable f : (�n,PQ) −→ R and refer to the induced 
measure Pf  on R , Pf (r) =

∑

{σ |f (σ )=r} PQ(σ ) , as the 
f-spectrum over Q.

For practical purposes, an f-spectrum, Pf (r) , can-
not be computed directly, since we have to consider 
all σ ∈ �n and potentially infinitely many r ∈ R . To 
approximate the f-spectrum we first discretize by 
means of a monotone increasing multiset (as) , where 
� = as − as−1 , setting Pf (as) =

∑

as−1<r≤as
Pf (r) . We 

employ a Boltzmann sampler to generate sequences of 
the probability space (Qn

4 ,PQ) and approximate Pf (as) 
by Pf (as) ≈

1
m | {σ | as−1 < f (σ ) ≤ as}| , where σ is a 

sequence sampled from the partition function Q and m 
denotes the sample size. Here we set m = 104.

We proceed by introducing some particular choices for 
the pair (f, Q), which we shall denote by fQ:

We call Pf RQ
(r) the R-spectrum of Q and Pf SQ

(r) the S-spec-
trum of Q.

Ranking
Next we investigate how stable R and S are in the Boltz-
mann ensemble of Q(σ ) , where σ ∈ (�n,PQ(R,S)) is a 
sequence sampled via Q(R, S). We compare the energies, 
η(σ ,R) and η(σ , S) to η(σ ,M(σ )) , where M(σ ) denotes 
the mfe-structure of σ . Then we consider the ratios

For a fixed sequence σ , the ratios reflect the gap between 
the energies obtained when considered with R (or with S) 
and the mfe-structure.

Adaptability
We discuss the energy-spectrum over a partition func-
tion, Q as an induced measure of a random variable, f. By 
construction we normalize, when working with the prob-
ability measure PQ(σ ) , the value of Q. As a result, the 
absolute values of the different partition functions, for 
instance, when comparing Q(R) and Q(R)|S is not a factor.

Comparing a plethora of riboswitches, as well as 
sequences of various random structure pairs, we end up 
with relating the partition functions of sequences over 
an entire spectrum of lengths. The free energy of any 
sequence is however the sum of loop energies, and each 
loop has a unique maximal arc. In Jin and Reidys [52] it 
is shown that the number of arcs in random structures 
satisfies a central limit theorem, whence its mean scales 
linearly with n. This implies that the number of loops 
grows linearly with n, which in turn suggests that the free 
energy of a sequence grows linearly with n.

Accordingly, we consider the scaled partition function

and set

We call wR and wS the densities of the structure R and S 
respectively. The adaptability wR is a real number in [0, 1] 
measuring the proportion of the partition function of R 
composed by bicompatible sequences relative to that 

f RQ (σ ) = η(σ ,R) f SQ (σ ) = η(σ , S).

rR =
η(σ ,R)

η(σ ,M(σ ))

, rS =
η(σ , S)

η(σ ,M(σ ))

.

Q̃(R) =
∑

σ

e
1
n
η(σ ,R)
KT Q̃(R)|S =

∑

σ∈Cn(S)

e
1
n
η(σ ,R)
KT

wR = log

(

Q̃(R)|S

Q̃(R)

)

, wS = log

(

Q̃(S)|R

Q̃(S)

)

.
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composed by sequences compatible only with R. The 
closer this adaptability is to 1, the more energy favora-
ble bicompatible sequences there are, suggesting that the 
structure R can change into the structure S more easily. 
Note that by construction wR and wS are asymmetric, 
namely, the transitions from R to S and those from S to R 
are not necessarily equal.

Results
In this section we focus on using the RNA sequence sam-
pler to study the sequence-structure relations of RNA 
riboswitch sequences. The time complexity of the algo-
rithm presented here is O(4κ(B)n) , where κ(B) is con-
stant depending only on the bistructure B, and n is the 
length of the two input sequences. Currently, we can 
only deal reliably in case of κ(B) ≤ 20 . In the following, 
we select six riboswitch sequences from the literature, 
across different classes, organisms and switching mech-
anisms, exhibiting a sequence length below 250nts, and 
κ(B) ≤ 20 , see Table 1.

Energy spectra
We are now in position to study the R- and S-spectra of 
Q-Boltzmann sampled, bicompatible sequences of spe-
cific structure pairs, or equivalently the R- and S-spec-
tra of sequences compatible to bistructures using the 
measure of  “Energy spectra” section. It will be interest-
ing to compare these with the spectra of the compatible 
sequences of each respective secondary structures, R and 
S and to provide a comparative analysis of the R- and 
S-spectra of native structures with that of random struc-
ture pairs.

Let R,  S be two secondary structures, to begin the 
comparative analysis of compatible and bicompatible 
sequences we compare Q(R) and Q(S), given by

Q(R) =
∑

σ∈�n

e
−η(σ ,R)

KT , Q(S) =
∑

σ∈�n

e
−η(σ ,S)

KT ,

with the partition functions

Q(R) and Q(S) are recursively computed and their Boltz-
mann samplers are introduced in [32, 33]. On an abstract 
level, Q(R)|S and Q(S)|R were a priori available by means 
of rejection Boltzmann samplers for Q(R) and Q(S). 
However, sampling such sequences is impractical as the 
probability of randomly encountering a bicompatible 
sequence is too low. As a first application, our frame-
work developed in  “Materials and methods” section 
we observe that Q|S(R) and Q|R(S) can be computed by 
replacing the energy function η(σ ,B(R, S) by η(σ ,R) and 
η(σ , S) , respectively.

Comparing the R- and S-spectra of Q(R) with Q(R)|S 
and Q(S) with Q(S)|R , respectively, allows us to draw 
conclusions about the difficulty of the process of modi-
fying a R-compatible sequence into an R, S-bicompatible 
sequence, while maintaining the energy with respect to R 
and the analogue statement for S.

In Fig.  11d we compare f RQ(R) with f RQ(R)|S
 , i.e.  the 

R-energy spectra over Q(R) and Q(R)|S (LHS) and f SQ(S) 
with f SQ(S)|R

 , i.e. the S-energy spectra over Q(S) and Q(S)|R 
(RHS). We remark that these are pairwise comparisons of 
measures over distinctively different, nested probability 
spaces.

We show that the R-energy spectra over Q(R) and 
Q(R)|S and S-energy spectra over Q(S) and Q(S)|R pair-
wise coincide. This means, that modifying a R-compat-
ible sequence into a R,  S-bicompatible sequence can be 
done without affecting the free energy with respect to R 
and vice versa for S. Moreover, this finding holds for all 
native, as well as random structure pairs we analyzed. 
The results for the other riboswitch as well as random 
structures pairs are shown in the SM.

The next step is to relate bicompatible sequences, 
Boltzmann sampled from Q(R,  S) to those Boltzmann 
sampled from Q(R). In the context of the Q(R)|S versus 

Q(R)|S =
∑

σ∈Cn(R,S)

e
−η(σ ,R)

KT , Q(S)|R =
∑

σ∈Cn(R,S)

e
−η(σ ,S)

KT .

Table 1  The riboswitch sequences

Riboswitch add_Adenine xpt_Guanine mtgE_Mg lysC_Lysine VEGFA yitJ_SAM

Abbr add xpt mgt lys VEGFA sam

Length 147 162 213 243 125 170

Class Adenine Guanine Magnesium Lysine Het. nuclear ribonu-
cleoprotein L

S-Adenosylmethionine

Organism Vibrio vulnificus Bacillus subtilis Bacillus subtilis Bacillus subtilis Homosapiens Bacillus subtilis

Function Translation Transcription Transcription Transcription Alt. Splicing Transcription

Energy on (kcal/mol) − 92.90 − 94.61 − 150.00 − 148.05 − 89.18 − 78.76

Energy off (kcal/mol) − 99.90 − 109.80 − 135.80 − 166.56 − 55.20 − 93.70

Reference [24] [53] [54] [55] [56] [57]
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Q(R) analysis, we now factor in the energy with respect to 
S. While R-energy levels can be maintained while satisfy-
ing the S base-pairing conditions, it turns out to be much 
more intricate to derive bicompatible sequences that are 
well suited for both R and S at the same time. Thus we 
consider

and compare the energy spectra f RQ(R,S) and f RQ(R) as well 
as f SQ(R,S) and f SQ(S) for a variety of riboswitch sequences 
and their respective native structure pairs, see Table  1. 
We display the energy spectrum of the riboswitch add in 
Fig. 12(top). The energy spectra and detailed analysis of 
the other riboswitch sequences is presented in the SM.

In order to put our results into context, we present 
an analysis of the spectra f RQ(R,S) and f RQ(R) as well as 
f SQ(R,S) and f SQ(S) for structure pairs that are not ribos-
witches. We consider two random RNA sequences and 
fold them to their mfe-structures, where each struc-
ture is thermodynamically stable to not only one of 
the sequences, but to both. For practical reasons, we 
consider sequences of length 150, which is close to 
the average length of natural riboswitches. We show a 

Q(R, S) =
∑

σ∈Cn(R,S)

e
−1/2·(η(σ ,R)+η(σ ,S))

KT

representative result for in Fig. 12(bottom). Our obser-
vations are remarkably robust: the energy spectra of 
random structure pairs are literally identical and we 
provide a detailed analysis of additional spectra in the 
SM.

Figure 12(top left) shows that the R-spectrum, f RQ(R,S) , 
is practically identical to the R-spectrum, f RQ(R) . The 
S-spectra behave completely analogous, there is no sig-
nificant difference between the S-spectrum f SQ(R,S) and 
f SQ(S) , see Fig. 12(top right). In the SM we provide addi-
tional data and the spectra of the riboswitch sequences 
listed in Table 1. The phenomenon holds robustly for all 
riboswitch sequences we analyzed.

For random structure pairs, however, the picture 
changes: the R-spectrum, f RQ(R,S) , is shifted distinctively 
to the left of the R-spectrum, f RQ(R) , see Fig.  12(bottom 
left). The same holds for the S-spectra: f SQ(R,S) is shifted 
distinctively to the left of the S-spectrum f SQ(S) , see 
Fig.  12(bottom right). More data for random structure 
pairs are presented in the SM. The different patterns of 
the R-spectrum and S-spectrum for riboswitches in con-
trast to random structure pairs reveals a strong signal 
as the two structures corresponding to a riboswitch are 
strongly correlated. As such, the signal can be used to 
identify riboswitch features.

Fig. 11  The R- and S spectra of the riboswitch structure pair, add and rand1. Top left: f R
Q(R) versus f R

Q(R)|S
 for add. Top right: f S

Q(S) versus f S
Q(S)|R

 for 
add. Bottom left: f R

Q(R) versus f R
Q(R)|S

 for rand1. Bottom right: f S
Q(S) versus f S

Q(S)|R
 for rand1 
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Ranking
We compute the (rR, rS) for the riboswitches mht and 
lys according to the test introduced in  “Ranking”. We 

display our result in Fig. 13.
Figure  13 displays the ratios (rR, rS) for the ribos-

witch mgt (LHS) and lys (RHS). The figure is obtained 

Fig. 12  The R- and S spectra of the riboswitch structure pair, add and rand1. Top left: f R
Q(R) versus f R

Q(R,S) for add. Top right: f S
Q(S) versus f S

Q(R,S) for 
add. Bottom left: f R

Q(R) versus f R
Q(R,S) for rand1. Bottom right: f S

Q(S) versus f S
Q(R,S) for rand1 

Fig. 13  (rR , rS) for the riboswitches mgt (left) and lys (right): Boltzmann sampled sequences versus native sequences. For each riboswitch we 
Boltzmann sample 103 sequences and compute (rR , rS) for the sampled sequences (blue). We contrast this with (rR , rS) of for the respective, native 
riboswitch sequence (red)
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based on the Boltzmann sampling of 103 sequences from 
(Q(R, S)) (blue) and displays in addition the ratios of the 
native sequences of mgt and lys (red).

We find for mgt that all ratios satisfy rR > 70% and 
rS > 62% and furthermore the respective (coordinate-
wise) means are (85%, 74%) . For lys we have rR > 64% 
and rS > 72% with a mean of (78%, 85%) . Accordingly, R 
and S are suboptimal structures in the Boltzmann sam-
pled sequences. Furthermore, we find that the ratio of 
ratios, rR/rS is almost constant within the set of sampled 
sequences. For both, mgt and lys alike, (rR, rS) of the 
native sequence is distinctively higher than the ratio pairs 
obtained from the sampled sequences. This indicates that 
the native sequence exhibits an evolved thermodynamic 
stability with respect to the pair of structures (R, S).

Density
We compute (wR,wS) for all riboswitch structures pairs 
in Table  1 according to measure introduced in  “Adapt-
ability” section, and augment the analysis by inspecting 
50 random structure pairs as control set. The random 
structure pairs are obtained using the method described 
in  “Energy spectra” section. We consider random struc-
ture pairs having length of 150, which is close to the 
average sequence length of riboswitches. We display in 
Fig. 14 the pairs (wR,wS).

Figure  14 shows that the pairs (wR,wS) of riboswitch 
sequences are distinctively different from random 

structure pairs and appear in the top right corner, while 
the (wR,wS) of random structure pairs are shifted towards 
the bottom left corner. The closeness of ratio pairs dis-
played in Fig. 14 to the top right corner represents how 
likely a sequence, Boltzmann sampled from Q̃(R) , is 
contained in Q̃(R)|S . This reflects how dense the bicom-
patible sequences sampled from Q̃(R) are within the 
compatible sequence Boltzmann sampled from Q̃(R) . Fig-
ure 14 shows that this adaptability is significantly higher 
for native riboswitch sequences, compared to sequences 
Boltzmann sampled from Q̃(R)|S for random structure 
pairs (R, S).

Discussion
The time complexity of computing the partition function 
for a given pair of secondary structures is determined by 
the decomposition of the bistructure and the computa-
tion of the partition function. Hammer et al. [29] shows 
that when assuming a tree decomposition is given with a 
constant tree-width, the partition function can be com-
puted in polynomial time. However, obtaining such a 
tree decomposition with minimum tree-width remains 
an NP-hard problem. The work in [29] focuses on the 
former, presenting an algorithm that computes the par-
tition function on a simplified loop-based energy model. 
Although in general a hyper-graph can be decomposed 
into a tree-like structure having tree-width k, the param-
eter k is not understood in a systematic way.

Fig. 14  The energy weighed space of bicompatible sequences. (wR ,wS) of the six riboswitch structure pairs, presented in Table 1 (blue). 
Furthermore: (wR ,wS) of 50 random structure pairs of length 150, as control set (red)
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Although our Boltzmann sequence sampler addresses 
the same topic [29], i.e.  the computation of the parti-
tion function for two given structures and Boltzmann 
sampled sequences, our approach is fundamentally dif-
ferent. Instead of following the established hyper-graph 
approach and parameterized complexity paradigm, we 
summon a different framework. The loop-complex intro-
duced here allows to differentiate the relations of loops of 
two distinct secondary structures since intersections can 
occur for two, three or even four distinct loops. The sim-
plicial complex of [39] offers a new approach for the anal-
ysis of bistructures. The topology captures higher order 
information by higher dimensional simplices. In [39], the 
authors provide a natural classification of bistructures via 
the rank of their second homology group, r2(B) . It further 
describes the topological space of a given bistructure, 
namely, a ribbon tree modulo the contraction of spheres. 
In Lemma  4 we construct in case of r2(B) = 0 , i.e., for 
a ribbon tree, the optimal loop removal schedule. Our 
implementation is based on a full-loop energy model, 
whereas [29] considers a simplified energy model consid-
ering only on the energy of helices. It is thus, that a direct 
comparison of the results between the two implementa-
tions is not being presented.

The understanding of the topological space provides 
deeper insight into the design of decompositions of the 
bistructure. The tree-like structure is naturally a tree 
decomposition, while the complexity of the problem 
originates from the spheres. Though we have not yet 
obtained an explicit solution to resolve the spheres, we 
are considering mapping the resolution to a known NP-
problem like for instance, the traveling salesman problem 
(TSP). Via such a mapping, efficient approximation algo-
rithms [50] can be levied.

Therefore, we believe there is a strong connection 
between our loop nerve framework and the tree decom-
position problem, as they essentially model the same 
computational problem. We will further investigate such 
a connection in future studies. Assuming the decomposi-
tion of a bistructure is given, the implementation of the 
Boltzmann sequence sampler is analogous to the algo-
rithm in [29]. Thus, sampling sequences subject to spe-
cific constraints, and sampling sequences for multiple 
structures can be done generalizing the loop-complex 
introduced in [29]. This generalization will be studied in 
future work.

The filtration of sequence space by mapping sequences 
into their mfe-secondary structure has been a powerful 
tool for the analysis of evolutionary optimization [4]. This 
search exhibits extended periods of phenotypic neutrality 
separated by transition events, during which structural 
change manifests [2, 3, 6, 21]. Bicompatible sequences 
facilitate these transitions, which depend heavily on the 

particular choice of the two structures. Our framework 
allows us to quantify the adaptability of the two struc-
tures by means of the adaptability (wR,wS) , see Fig.  14. 
The result shows that this ratio is distinctively higher for 
the native structure pairs of riboswitches compared to 
random structure pairs. As a result transitions between 
native structure pairs are much easier than for random 
pairs. This motivates to identify what properties of the 
native structure pairs lead to the high adaptability of their 
bicompatible sequences.

Over two decades multistable sequences were ana-
lyzed [25]. These are multistable w.r.t.  alternative 
conformations, performing different functionality by 
switching between their alternative structures in gene 
regulation and as such these sequences represent bea-
cons in evolution. Flamm et  al. [25] studies sequences 
that are multistable with respect to two structures, 
both being suboptimal by mapping the problem into 
a combinatorial optimization problem. The latter is 
then solved via an adaptive walk, initiated at a ran-
dom sequence. The Boltzmann sampling of the starting 
sequences for the adaptive walks of [25] will likely have 
the same speedup effect, as the Boltzmann sampling of 
compatible sequences in the context of inverse folding 
[58].

On the level of phenotypes, our results on energy spec-
tra and adaptability of a bistructure can clearly distin-
guish between riboswitch or native and random structure 
pairs reliably, see Figs.  12 and 14. While we are not in 
position to formulate criteria for designing such struc-
ture pairs, we can recognize them. As for genotypes, it 
is not easy to identify whether a sequence is a candidate 
for a riboswitch–even if the native structure pair is given. 
Such a sequence has to contain a specific sequence pat-
tern, facilitating the switch from one structure to the 
other. Various studies are trying to give criteria for ribos-
witch sequences. Freyhult et al. [59] considers the Boltz-
mann ensemble of a sequence with base pair filtration. If 
there are multiple clusters of structures which have high 
adaptability and a fixed base pair distance to the mfe-
configuration, then alternative structures are predicted. 
However, the analysis specifies the existence of structure 
clusters relative to the mfe-structure and it is not clear 
if they can switch. The ranking (rR, rS) in Fig.  13 allows 
to identify native riboswitch sequences from Boltzmann 
sampled sequences of the native riboswitch structure 
pair. Thus, for riboswitches both: the phenotype pair and 
the genotype are distinguished. The alternative struc-
tures of riboswitches have a dense set of bicompatible 
sequences and the native sequence assumes a particularly 
low energy for the alternative configurations. The latter 
is displayed in Fig.  13. Boltzmann sampled sequences 
for riboswitch structure pairs are distinctively different 
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from the native sequence. Thus the design of riboswitch 
sequences involves two types of data: the structure pair, 
as well as the sequence simultaneously.

Our results on riboswitches captured intrinsic phe-
notypic transition features. However, our analysis was 
focussed on RNA riboswitches. As for future work , we 
will undertake a systematic analysis of the performance 
of the bicompatible sequence sampler in the context of 
general phenotypic transitions. In particular transitions 
of rapidly evolving virus populations.
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