
Rahman et al. Algorithms Mol Biol (2021) 16:10
https://doi.org/10.1186/s13015-021-00192-7

RESEARCH

Disk compression of k‑mer sets
Amatur Rahman1*  , Rayan Chikhi2 and Paul Medvedev1 

Abstract 

K-mer based methods have become prevalent in many areas of bioinformatics. In applications such as database
search, they often work with large multi-terabyte-sized datasets. Storing such large datasets is a detriment to tool
developers, tool users, and reproducibility efforts. General purpose compressors like gzip, or those designed for read
data, are sub-optimal because they do not take into account the specific redundancy pattern in k-mer sets. In our
earlier work (Rahman and Medvedev, RECOMB 2020), we presented an algorithm UST-Compress that uses a spec-
trum-preserving string set representation to compress a set of k-mers to disk. In this paper, we present two improved
methods for disk compression of k-mer sets, called ESS-Compress and ESS-Tip-Compress. They use a more relaxed
notion of string set representation to further remove redundancy from the representation of UST-Compress. We
explore their behavior both theoretically and on real data. We show that they improve the compression sizes achieved
by UST-Compress by up to 27 percent, across a breadth of datasets. We also derive lower bounds on how well this
type of compression strategy can hope to do.

Keywords:  De Bruijn graphs, Compression, k-mer sets, Spectrum-preserving string sets

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Many of today’s bioinformatics analyses are powered by
tools that are k-mer based. These tools first reduce the
input sequence data, which may be of various lengths
and type, to a set of short fixed length strings called k-
mers. K-mer based methods are used in a broad range of
applications, including genome assembly [1], metagen-
omics [2], genotyping [3, 4], variant calling [5], and phy-
logenomics [6]. They have also become the basis of a
recent wave of database search tools [7–15], surveyed in
[16]. K-mer based methods are not new, but only recently
they have started to be applied to terabyte-sized datasets.
For example, the dataset used to test the BIGSI data-
base search index, which is composed of 31-mers from
450,000 microbial genomes [11], takes about 12 TB to
store in compressed form.

Storing such large datasets is a detriment to tool devel-
opers, tool users, and reproducibility efforts. For tool
developers, development time is significantly increased

when having to manage such large files. Due to the itera-
tive nature of the development process, these files do not
typically just sit in one place, but instead get created/
moved/recreated many times. For tool users, the time
it takes for the tools to write these files to disk and load
them into memory is non-negligible. In addition, as we
scale to even larger datasets, storage costs start to play
a larger factor. Finally, for reproducibility efforts, stor-
ing and moving terabytes of data across networks can be
detrimental.

To minimize these negative effects, disk compression of
k-mer sets is a natural solution. By disk compression, we
refer to a compressed representation that, while support-
ing decompression, does not support any other query-
ing of the compressed data. Compressed representations
that allow for membership queries [17] are important in
their own right, but are sub-optimal when only storage
is required. Most k-mer sets are currently stored on disk
in one of two ways. In the situation where the set of k-
mers comes from k-mer counting reads, one can simply
compress the reads themselves using one of many read
compression tools [18–20]. This approach requires the
substantial overhead of running a k-mer counter as part

Open Access

Algorithms for
Molecular Biology

*Correspondence: aur1111@psu.edu
1 Penn State University, State College, PA, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-9166-1220
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00192-7&domain=pdf

Page 2 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10

of decompression, but it is often used in the absence of
better options. The second approach is to gzip/bzip the
output of the k-mer counter [21–25]. As we showed in
[26], both of these approaches are space-inefficient by
at least an order-of-magnitude. This is not surprising, as
neither of these approaches was designed specifically for
disk compression of k-mer sets.

Disk compression tailor-made for k-mer sets was
first considered in our earlier work [26]. The idea was
based on the concept of spectrum-preserving string
sets (SPSS), introduced in [26–28]. In [28], the con-
cept of SPSS is introduced under the name simplitigs. A
set of strings S is said to be a SPSS representation of a
set of k-mers K iff 1) the set of k-mers contained in S is
exactly K, 2) S does not contain duplicate k-mers, and 3)
each string in S is of length ≥ k . The weight of an SPSS
is the number of characters it contains. For example,
if K = {ACG,CGT ,CGA} , then {ACGT ,CGA} would
be an SPSS of weight 7; also K itself would be an SPSS
of K of weight 9. On the other hand, {CGACGT } is not
an SPSS, because it contains GAC /∈ K  . Intuitively, a low
weight SPSS can be constructed by gluing together k-
mers in K, with each glue operation reducing the weight
by k − 1 . In [26], we proposed the following simple com-
pression strategy, called UST-Compress. We find a low-
weight SPSS S, using a greedy algorithm called UST, and
compress S to disk using a generic nucleotide compres-
sion algorithm (e.g. MFC [29]). UST-Compress achieved
significantly better compression sizes than the two
approaches mentioned above.

UST-Compress was not designed to be the best possi-
ble disk compression algorithm but only to demonstrate
one of the possible applications of the SPSS concept.
When the goal is specifically disk compression, we are
no longer bound to store a set of strings with exactly the
same k-mers as K, as long as a decompression algorithm
can correctly recover K. The main idea of this paper is
to replace the SPSS with a more relaxed string set rep-
resentation, over the alphabet {A,C ,G,T , [,],+,−} . Our
approach is loosely inspired by the notion of elastic-
degenerate strings [30]. It attempts to remove even more
duplicate (k − 1)-mers from the representation than SPSS
does, using the extra alphabet characters as placeholders
for nearby repetitive (k − 1)-mers. For the above exam-
ple, our representation would be ACG[+A]T  , where the
“+′′ is interpreted as a placeholder for the k − 1 charac-
ters before the open bracket (i.e. CG). After replacing the
“+′′ , we get ACG​[CGA​]T and we split the string by cleav-
ing out the substring within brackets; i.e., we get ACGT​
and CGA​.

Based on this idea, we present two algorithms for the
disk compression of k-mer sets, ESS-Compress and
ESS-Tip-Compress. We explore the behavior of these

algorithms both theoretically and on real data. We give
a lower bound on how well this type of algorithm can
compress. We show that they improve the compression
sizes achieved by UST-Compress by up to 27% across a
breadth of datasets. The two algorithms present a trade-
off between time/memory and compression size, which
we explore in our results. The two algorithms are freely
available open source tools on http://​github.​com/​medve​
devgr​oup/​ESSCo​mpress.

Preliminaries
Basic definitions
Strings
The length of string x is denoted by |x|. A string of length
k is called a k-mer. We assume k-mers are over the DNA
alphabet. A string over the alphabet {A,C ,G,T , [,],+,−}
is said to be enriched. We use · as the string concatena-
tion operator. For a set of strings S, weight(S) =

∑
x∈S |x|

denotes the total count of characters. We define sufk(x)
(respectively, prek(x) ) to be the last (respectively, first) k
characters of x. We define cutPrek(x) = suf|x|−k(x) as x
with the prefix removed. When the subscript is omitted
from pre, suf, and cutPre, we assume it is k − 1 . A string
x is canonical if it is the lexicographically smaller of x and
its reverse complement.

For x and y with suf (x) = pre(y) , we define glu-
ing x and y as x ⊙ y = x · cutPre(y) . For s ∈ {0, 1} ,
we define orient(x, s) to be x if s = 0 and to be
the reverse complement of x if s = 1 . We say
that x0 and x1 have a (s0, s1)-oriented-overlap if
suf (orient(x0, 1− s0)) = pre(orient(x1, s1)) . Intuitively,
such an overlap exists between two strings if we can ori-
ent them in such a way that they are glueable. For exam-
ple, AAC​ and TTG​ have a (0, 0)-oriented overlap.

Bidirected de Bruijn graphs
A bidirected graph G is a pair (V, E) where the set V are
called vertices and E is a set of edges. An edge e is a set of
two pairs, {(u0, s0), (u1, s1)} , where ui ∈ V and si ∈ {0, 1} ,
for i ∈ {0, 1} . Note that this differs from the notion of an
edge in an undirected graph, where E ⊆ V × V  . Intui-
tively, every vertex has two sides, and an edge connects
to a side of a vertex (see Fig. 1 for examples). An edge is
a loop if u0 = u1 . Given a non-loop edge e that is inci-
dent to a vertex u, we denote side(u, e) as the side of u to
which it is incident. We say that a vertex u is a dead-end
if it has exactly one side to which no edges are incident.
A bidirected DNA graph is a bidirected graph G where
every vertex u has a string label lab(u), and for every
edge e = {(u0, s0), (u1, s1)} , there is a (s0, s1)-oriented-
overlap between lab(u0) and lab(u1) (see Fig. 1 for exam-
ples). G is said to be overlap-closed if there is an edge for
every such overlap. Let K be a set of canonical k-mers.

http://github.com/medvedevgroup/ESSCompress
http://github.com/medvedevgroup/ESSCompress

Page 3 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10 	

The node-centric bidirected de Bruijn graph, denoted
by dBG(K), is the overlap-closed bidirected DNA graph
where the vertices and their labels correspond to K. In
this paper, we will assume that dBG(K) is not just a sin-
gle cycle; such a case is easy to handle in practice but is a
space-consuming corner-case in all the analyses.

Paths and spellings
A sequence p = (u0, e1,u1, . . . , en,un) is a path iff (1)
for all 1 ≤ i ≤ n , ei is incident to ui−1 and to ui , (2) for
all 1 ≤ i ≤ n− 1 , side(ui, ei) = 1− side(ui, ei+1) , and
(3) all the ui s are different. A path can also be any sin-
gle vertex. Vertices u1, . . . ,un−1 are called internal
and u0 and un are called endpoints. We call u0 to be
the initiator vertex of p. We say that p is normalized

Fig. 1  Examples of the four types of absorption. Each panel shows the edges along two paths: ψp (red vertices inside a shaded rectangle) and ψc
(blue vertices inside a shaded rectangle) and an absorption edge e = {(up , sp), (uc , sc)} (dashed line) between the parent unitig up and the child
unitig uc . The graph being shown in each panel is cdBG(K), but only the absorption edge and the edges of ψp and ψc are shown. In this simple
example, the unitigs of dBG(K) are just paths made of single vertices, and hence the vertices of cdBG(K) have labels of length k = 3 . Each vertex is
shown as a pointed rectangle with its label inside; we use the convention that the “zero” side of a vertex is the flat side on the left, and the “one” side
is the pointy side on the right. At the bottom left of each panel, we show the spectrum-preserving string set (SPSS) spell({ψp ,ψc}) . At the bottom
right, we show the enriched representation generated by our algorithm. Depending on the value of sp and sc , four different cases can arise. When
sp = 1, sc = 0 (shown in A), pre(lab(uc)) is replaced with marker “ + ”, as it is same as suf (lab(up)) . When sp = 1, sc = 1 (shown in B), pre(lab(uc))
is replaced by “−”, as it is same as the reverse complement of suf (lab(up)) . When sp = 0, sc = 0 (shown in C), pre(lab(uc)) is replaced with “−”, as
it is the same as the reverse complement of pre(lab(up)) . When sp = 0, sc = 1 (shown in D), suf (lab(uc)) is replaced with “ + ”, as it is the same as
pre(lab(up))

Page 4 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10

if for every ei , side(ui−1, ei) = 1 and side(ui, ei) = 0 ;
intuitively, the path uses edges like in a directed graph.
The spelling of a normalized path p is defined as
spell(p) = lab(u0)⊙ · · · ⊙ lab(un) . If P is a set of normal-
ized paths, then spell(P) =

⋃
p∈P spell(p).

Unitigs and the compacted de Bruijn graph
A path in dbG(K) is a unitig if all its vertices have in- and
out-degrees of 1, except that the first vertex can have any
in-degree and the last vertex can have any out-degree. A
single vertex is also a unitig. A unitig is maximal if it is
not a sub-path of another unitig. It was shown in [31] that
if dBG(K) is not a cycle, then the set of maximal unitigs
forms a unique decomposition of the vertices in dBG(K)
into vertex-disjoint paths. The bidirected compacted de
Bruijn graph of K, denoted by cdBG(K), is the overlap-
closed bidirected DNA graph where the vertices are the
maximal unitigs of dBG(K), and the labels of the vertices
are the spellings of the unitigs. In practice, this graph can
be efficiently constructed from K using the BCALM2 tool
[31, 32].

Spanning out‑forest
Given a directed graph D, an out-tree is a subgraph in
which every vertex except one, called the root, has in-
degree one, and, when the directions on the edges are
ignored, is a tree. An out-forest is a collection of vertex-
disjoint out-trees. An out-forest is spanning if it covers all
the vertices of D.

Path covers and UST‑compress
A vertex-disjoint normalized path cover � of cdBG(K)
is a set of normalized paths such that every vertex is in
exactly one path and no path visits a vertex more than
once; we will sometimes use the shorter term path
cover to mean the same thing. There is a close relation-
ship between SPSS representations of K and path covers,
shown in [26]. In particular, a path cover � induces the
SPSS spell(�) . An example of a path cover is one where
every vertex of cdBG(K) is in its own path, and the corre-
sponding SPSS is the set of all maximal unitig sequences.
Figures 1 and 2 show examples of path covers. The num-
ber of paths in � (denoted as |�| ) and the weight of the
induced SPSS is closely related:

This relationship also translates to the number of edges
in � ; by its definition, the number of edges in � is simply
the number of vertices in cdBG(K) minus |�|.

The idea of our previous algorithm UST-Compress [26]
is to find a path cover �UST with as many edges as pos-
sible. Having more edges reduces the number of paths,
which in turn reduces the weight of the corresponding

(2.1)weight(spell(�)) = |K | + |�|(k − 1)

SPSS and the size of the final compressed output. We can
understand this intuitively as follows. Edges in cdBG(K)
connect unitigs whose endpoints have the same (k − 1)

-mer (after accounting for reverse complements). For
every edge we add to our path cover, we glue these two
unitigs and remove one duplicate instance of the (k − 1)

-mer from the corresponding SPSS. Note however that
�UST does not remove all duplicate (k − 1)-mers from
the SPSS, because � can only have two edges incident
on a vertex, one from each side, and hence a unitig can
only be glued at most twice. If a unitig has edges to more
than two other unitigs, then some of the adjacent unit-
igs would include the duplicate (k − 1)-mer in the SPSS.
The idea of our paper is to exploit the redundancy due to
those remaining edges an thus further reduce the size of
the representation.

ESS‑compress
Main algorithm
Our starting point is a set of canonical k-mers K, the
graph cdBG(K), and a vertex-disjoint normalized path
cover � of cdBG(K) returned by UST.1 To develop the
intuition for our algorithm, we first consider a simple
example (Fig. 1A). In this example, we see a vertex-dis-
joint path cover � composed of two paths, ψp and ψc .
There is an edge between an internal vertex (=unitig2) up
of ψp and the initiator vertex uc of ψc . Such an edge is an
example of an absorption edge. ESS-Compress constructs
an enriched string representation of K, as shown in the
figure. The basic idea is that up and uc share a common
(k − 1)-mer (i.e. GT). We can cut out this common por-
tion from the string representing uc and replace it with
a special marker character “+”. We can then include uc
inside of the representation of up by surrounding uc with
brackets. The marker character “+′′ is a placeholder for
the k − 1 nucleotides right before the opening bracket.
To decompress the enriched string, we first replace the
marker to get TCGT​[GTAA​]T and then cleave out the
bracketed string to get {TCGTT ,GTAA} . This exactly
recovers the SPSS representation of ψp and ψc.

Formally, we say that an edge in cdBG(K) is an absorp-
tion edge iff (1) it connects two unitigs up and uc , on two
distinct paths ψp and ψc , respectively, (2) up is an internal
vertex, and (3) uc is an initiator vertex. We refer to up and

1  Though we did not explain it in [26], UST always returns normalized paths.
It flips any vertex that is in the wrong orientation on its path, by reverse com-
plementing its label, without affecting anything else.
2  Note that the vertices of this graph (i.e. cdBG(K)) correspond to maximal
unitigs in the non-compacted graph (i.e. dBG(K)). We will generally use
“vertex” and “unitig” interchangeably, to refer to a vertex in cdBG(K). We
never use “unitig” to refer to a type of path in cdBG(K).

Page 5 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10 	

ψp as parents and uc and ψc as children; we also say that
ψp and up absorb ψc and uc.3

Figure 1B–D shows the other cases, corresponding to
the possible orientation of the absorption edge. The logic
is the same, but we need to introduce a second marker
character “−′′ that is a placeholder for the reverse com-
plement of the last k − 1 characters right before the
opening bracket. In each of these cases, we add 3 extra
characters (two brackets and one marker) and remove
k − 1 nucleotide characters. Note that, expanding the
alphabet has its inherent cost, but even after taking that

into account, we get lower number of characters than
SPSS representation when k > 4.

Next, observe that a single parent path can absorb
multiple children paths, as illustrated in Fig. 2A. Also,
observe that a single parent unitig can absorb more than
one child path, as shown in Fig. 2B. As in the previous
example, we save k − 1− 3 = k − 4 characters for every
absorbed edge.

These absorptions can be recursively combined, as
shown in Fig. 2C. Because we require a parent unitig to
be an internal vertex and a child unitig to be an initiator
vertex, the same unitig cannot be both parent and child.
Therefore, ESS-Compress can construct a representation
recursively, without any conflicts. The recursion tree is
reflected in the nesting structure of the brackets in the
enriched string.

Panel (A) Panel (B)

Panel (C)

Fig. 2  More complex absorption examples. In A, one path absorbs multiple paths. In B, one unitig up absorbs multiple paths. In C, one path ( ψ1 )
absorbs another ( ψ2 ) which itself absorbs another ( ψ3 ). This is a recursive absorption, showing how a path can be both a child and a parent

3  In our code, we actually allow a slightly broader definition of absorption. In
particular, we also allow an edge to be absorbing if up is an initiator and sp = 1 ,
or if up is an initiator and |lab(up)| ≥ 2k − 2 . For the sake of simplicity, we do
not consider this edge case in the paper.

Page 6 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10

However, we must be careful to avoid cycles in the
recursion. We define the absorption digraph DA as the
directed graph whose vertex set is the set of paths � and
an edge (ψp → ψc) if ψp absorbs ψc . For every edge in
DA , we also associate the corresponding bidirected edge
between up and uc in cdBG(K). We would like to select
a subset of edges F along which to perform absorptions,
so as to avoid cycles in DA and to make sure a path can-
not be absorbed by more than one other path. We would
also try to choose as many edges as possible, since each
absorption saves k − 4 characters. To achieve these goals,
ESS-Compress defines F as a spanning out-forest in DA
with the maximum number of edges. We postpone the
algorithm to find F to Sect. "Algorithm to choose absorp-
tion edges".

The high-level pseudo-code of ESS-Compress is shown
in Algorithm 1 and illustrated in Fig. 3. The recursive
algorithm to create the enriched representation using F
as a guide is shown in Algorithm 2. It follows the intui-
tion we just developed. It starts from the paths that will
not be absorbed (i.e. the roots in F). For a path ψp , it first
computes the enriched representations of all the child
paths (Lines 3–9). It then integrates them into the appro-
priate locations of spell(ψp) (Lines 10–14). It then uses a
marker to replace the redundant sequence in the spelling
of ψp , with respect to ψp ’s own parent (Lines 17–31). To
decide which marker to use, it receives as a parameter the
absorption edge eD that was used to absorb ψp.

Decompression is done by a recursive algorithm
DEC that takes as input an enriched string x and
a (k − 1)-mer called markerReplacement. Initially,
DEC is called independently on every enriched string
x ∈ ESS-Compress(K) , with markerReplacement = null .
We call the characters of x which are not enclosed within
brackets outer. The brackets themselves are not consid-
ered outer characters. DEC first replaces any occurrence
of an outer “+′′ (respectively, “−′′ ) with markerReplace-
ment (respectively, the reverse complement of marker-
Replacement). It then outputs all the outer characters
as a single string. Then, for every top-level open/close
bracket pair in x, it calls DEC recursively on the sequence
in between the brackets, and passes as markerReplace-
ment the rightmost k − 1 outer characters to the left of
the open bracket.

Algorithm to choose absorption edges
Let D be any directed graph and consider the prob-
lem of finding a spanning out-forest with the maximum
number of edges. We call this the problem of finding
an edge-maximizing spanning out-forest. This problem
is a specific instance of the maximum weight out-forest
problem [33], which allows for weights to be placed on
the edges. As we show in this section, there is an optimal
algorithm for our problem that is simpler than the algo-
rithm for arbitrary weights described in [33].

Fig. 3  Visual overview of the steps in Algorithm 1

Page 7 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10 	

Our algorithm first decomposes D into strongly con-
nected components, and builds SC(D), the strongly con-
nected component digraph of D. In SC(D), the vertices
are the strongly connected components of D, and there
is an edge from component c1 to c2 if there is an edge in
D from some vertex in c1 to some vertex in c2 . For every
component that is a source in SC(D), we pick an arbitrary
vertex from it (in D) and put it into a “starter” set. Then,
we perform a depth-first search (DFS) traversal of D, but
whenever we start a new tree, we initiate it with a ver-
tex from the starter set, if one is available. We remove the
vertex from the starter set once it is used to initiate a tree.
We then output the DFS forest F.

We will prove that F is a spanning out-forest of D with
the maximum number of edges.

Lemma 3.1  (Correctness of edge-maximizing spanning
out-forest algorithm) Let D be a directed graph, let F be
the spanning out-forest returned by our algorithm run
on D, and let nsc be the number of source components in
SC(D). Then, the number of out-trees in F is nsc and this
is the smallest possible for any spanning out-forest. Also,
the number of edges in F is the maximum possible for any
spanning out-forest.

Proof  Consider any spanning out-forest of D. If it has
less than nsc out-trees, then by the pigeonhole principle,
there are two source components c1 and c2 with vertices
v1 and v2 , respectively, belonging to the same out-tree.
This is a contradiction, since c1 and c2 are source compo-
nents and hence there cannot be a path between them.
Hence, any spanning out-forest must have at least nsc
out-trees. Now, consider F. Every vertex in D is reachable
from one of the vertices in the starter set, by its construc-
tion. There are nsc starter vertices, so F will have at most
nsc out-trees. Since any spanning out-forest must have at
least nsc out-trees, F will have nsc out-trees and it will be
the minimum achievable. Also, in any spanning out-for-
est, the number of edges is the number of vertices minus
the number of out-trees; hence F will have the the maxi-
mum number of edges of any spanning out-forest.� �

The weight of the ESS‑compress representation
In this section, we derive a formula for the weight of the
ESS-Compress representation and explore the potential
benefits of some variations of ESS-Compress.

Page 8 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10

Theorem 3.2  Let K be a set of canonical k-mers, and let
� be a vertex-disjoint normalized path cover of cdBG(K)
that is used by ESS-Compress(K) . Let nsc be the number
of sources in the strongly connected component graph of
the absorption graph DA . Let X be the solution returned by
ESS-Compress(K) . Then

Proof  If we unroll the recursion of ESS-Compress,
then there are exactly |�| runs of Spell-Path-Enrich,
one for each ψ ∈ � . For each call, we let nψ be the
number of characters in the returned string that are
added non-recursively (i.e. everything except ins0 and

weight(X) = |K | + 3|�| + nsc(k − 4)

ins1 ). Considering the structure of the recursion and
accounting for characters in this way, we have that
weight(X) =

∑
ψ∈� nψ.

Prior to marker replacement (Line 17, the non-
recursive part of x is spell(ψ) ). When ψ is a root in
the absorption forest F, then the marker absorption
stage is not executed and so nψ = |spell(ψ)| . Other-
wise, the marker absorption phase (Lines 17 to 31)
removes k − 1 characters, adds 1 new marker char-
acter, and adds two new bracket characters. Hence,
nψ = |spell(ψ)| − (k − 1)+ 3 = |spell(ψ)| − (k − 4) . By
Lemma 3.1, F contains nsc roots. Hence,

weight(X) =
∑

ψ∈�

nψ =
∑

ψ is a root

|spell(ψ)| +
∑

ψ is not a root

(|spell(ψ)| − (k − 4))

=
∑

ψ∈�

|spell(ψ)| − (k − 4)(|�| − nsc) = |K | + 3|�| − nsc(k − 4)

Page 9 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10 	

The last equality follows by applying Eq. (2.1) from Sect.
"Preliminaries". � �

We can use Theorem 3.2 to better understand ESS-
Compress. The weight depends on the choice of � . The
� returned by UST has, empirically, almost the minimum
|�| possible [26]. This (almost) minimizes the 3|�| term
in Theorem 3.2. However, this may not necessarily lead
to the lowest total weight, because there is an interplay
between � and nsc , as follows. Let � ′ be a vertex-disjoint
normalized path cover with |� ′| > |�| . Its paths are
shorter, on average, than �’s. There may now be edges
of cdBG(K) that become absorption edges, that were not
with � . For example, an edge between two unitigs which
are internal in � is not, by our definition, an absorption
edge. With the shorter paths in � ′ , one of these unitigs
may become an initiator vertex, making the edge absorb-
ing. This may in turn improve connectivity in DA and
decrease nsc , counterbalancing the increase in |� ′| . Nev-
ertheless, ESS-Compress does not consider alternative
path covers and always uses the one returned by UST.

Another aspect of ESS-Compress that could be
changed is the definition of absorption edge. We restrict
absorption edges to be between an initiator unitig and
an internal unitig; however, one could in principle also
define ways to absorb between an endpoint unitig and
an internal unitig, or between two internal unitigs. This
could potentially decrease nsc by increasing the number
of absorption edges, though it would likely need more
complicated and space-consuming encoding schemes.

How much could be gained by modifying the path
cover and the absorption rules that ESS-Compress uses?
We can answer this by observing that nsc cannot be less
than C, the number of connected components of the
undirected graph underlying cdBG(K). At the same time,
in [26] we gave an algorithm to compute an instance-spe-
cific lower bound β on the number of paths in any vertex-
disjoint path cover. Putting this together, we conclude
that regardless of which path cover is used and which
subset of cdBG(K) edges are allowed to be absorbing,

the weight of a ESS-Compress representation cannot be
lower than:

As we will see in the results, the weight of ESS-Compress
is never more than 2% higher than this lower bound,
which is why we did not pursue these other possible opti-
mizations to ESS-Compress. We note, however, that the
above is not a general lower bound and does not rule out
the possibility of lower-weight string set representations
that beat ESS-Compress.

ESS‑Tip‑compress: a simpler alternative
ESS-Compress is designed to achieve a low compres-
sion size but can require a large memory stack due to its
recursive structure. The memory during compression
and decompression is proportional to the depth of this
stack, which is the depth of the out-forest F. If F were to
be more shallow, then the memory would be reduced. In
this section, we describe ESS-Tip-Compress, a simpler,
faster, and lower-memory technique that can be used
when compression speed/memory are prioritized. It is
centered on dead-end vertices in the compacted graph,
which usually correspond to tips in the uncompacted
dBG and are typically due to sequencing errors, end-
points of transcripts, or coverage gaps. ESS-Tip-Com-
press is based on the observation that a large chunk of the
graph is dead-end vertices (at least for sequencing data),
and limiting absorption to only them can yield much of
the benefits of a more sophisticated algorithm.

First, we find a vertex-disjoint normalized path cover
� that is forced to have each dead-end vertex in its own
dedicated path (i.e. its path only contains the vertex
itself). This can be done easily by running UST on the
graph obtained from cdBG(K) by removing all dead-end
vertices. Next, we select the absorption forest F as fol-
lows. For each dead-end vertex v, we identify a non-dead-
end vertex u which is connected to v via an edge e. In the
rare case that such a u does not exist, we skip v. Other-
wise, we add (u → v) to F. We can assume without loss of
generality that side(u, e) = 1− side(v, e) because if that

(3.1)|K | + 3β + C(k − 4)

Table 1  Dataset characteristics

Dataset Source Read
length (bp)

Reads # Distinct 31-mers # unitigs % Dead-end
unitigs (%)

% Isolated
unitigs (%)

R. sphaeroides GAGE [37] 101 2,050,868 5,908,467 442,681 47 8

Human RNA-seq SRR957915 101 49,459,840 101,017,526 7,665,682 4 13

Gingiva metagenome SRS014473 101 55,419,548 101,872,420 5,678,516 36 15

Soybean RNA-seq SRR11458718 125 83,594,116 111,206,789 3,659,969 28 12

Tongue metagenome SRS011086 101 81,664,789 165,159,726 11,358,233 37 11

Whole human ERR174310 101 207,579,467 2,319,022,432 51,094,913 14 18

Page 10 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10

is not the case, than we can replace lab(v) by its reverse
complement and thereby change the side to which e is
incident. For any paths that remain uncovered by F, we
add them as roots of their own tree. Finally, we run a
slightly modified version of Spell-Path-Enrich, using this
� and this F.

We modify Spell-Path-Enrich as follows. First, observe
that F has max depth of 2 vertices. Hence, the parenthe-
sis generated by Spell-Path-Enrich are never nested. Sec-
ond, observe that the marker value is always “+′′ , because
side(u, e) = 1− side(v, e) for all absorption edges in F.
These observations allow us to reduce the number of
extra characters we need for each absorption down to 2,
instead of 3 (we omit the implementation details).

Empirical results
We evaluated our methods on one small bacterial data-
set, two metagenomic datasets from NIH human micro-
biome project, reads from whole human genome, and
RNA-seq reads from both human and plant (Table 1). To
obtain the set of k-mers K from these datasets, we ran
the DSK k-mer-counter [22] with k = 31 and filtered out
low-frequency k-mers ( < 5 for whole human genome and
< 2 for the other datasets). We then constructed cdBG(K)
using BCALM2. The last three columns in Table 1 show
the properties of the graph: number of vertices, num-
ber of dead-end vertices and total percentage of isolated
vertices. We ran all our experiments single-threaded on

a server with an Intel(R) Xeon(R) CPU E5-2683 v4 @
2.10 GHz processor with 64 cores and 512 GB of mem-
ory. We used /usr/bin/time to measure time and
memory. Detailed steps to reproduce our experiments
are available at https://​github.​com/​medve​devgr​oup/​
ESSCo​mpress/​tree/​master/​exper​iments.

The output of our tools was compressed with MFC.
Note that MFC is not optimized for non-nucleotide
characters, but such characters are rare in our string sets
( < 0.1 bits per k-mer). We compared our tools against
four other approaches. The first is UST-Compress, which
we showed in our previous work to outperform other
disk compressors [26]. The second is to strip the read
FASTA files of all non-sequence information and com-
press them using MFC. The third is to simply write one
distinct k-mer per line to a file and compress it using
MFC. The fourth is the BOSS method, as implemented
in [34]. BOSS is a succinct implementation of a de Bruijn
graph [35]. Though it is designed to answer membership
queries, it also achieved the closest compression size to
UST-Compress in our previous study [26]. As in [26], we
compressed BOSS’s binary output using LZMA. We con-
firmed the correctness of all evaluated tools, including
our own, on the datasets.

We did not explore the possibility of replacing UST in
our pipeline with ProphAsm [36]. ProphAsm is an alter-
native algorithm to compute an SPSS called simplitigs,
but we showed in [26] that the UST SPSS representation

Table 2  The weights and sizes of various string set representations

The rightmost column shows the lower bound computed by Eq. (3.1) in Sect. "The weight of the ESS-Compress representation". The weight of ESS-Compress was
verified to be the same as predicted by Theorem 3.2

Dataset UST ESS-Tip-Compress ESS-Compress Eq. (3.1) lower bound

strings #char/ k-mer # strings #char/ k-mer # strings #char/ k-mer #char/ k-mer

R. sphaeroides 240,562 2.22 61,909 1.38 36,456 1.29 1.28

Human RNA-seq 4,098,389 2.22 1,834,945 1.60 1,098,938 1.42 1.39

Gingiva metagenome 3,095,476 1.91 1,499,270 1.48 917,388 1.33 1.32

Soybean RNA-seq 1,806,078 1.49 1,137,350 1.32 515,244 1.17 1.17

Tongue metagenome 6,030,814 2.10 2,664,422 1.53 1,327,701 1.33 1.32

Whole human 22,072,219 1.32 21,320,263 1.28 10,321,275 1.15 1.14

Table 3  The compression sizes, as measured in bits per k-mer in the compressed output

All string representations (i.e. not BOSS) are compressed using MFC in the final step. Since BOSS is a binary representation, we use LZMA for the final compression step

Dataset Read FASTA One k-mer per
line

BOSS UST-Compress ESS-Tip-
Compress

ESS-Compress

R. sphaeroides 45.4 28.4 6.55 3.93 2.90 2.87

Human RNA-seq 45.8 31.7 6.89 4.14 3.43 3.33

Gingiva metagenome 48.0 32.4 10.64 3.76 3.22 3.05

Soybean RNA-seq 43.0 33.1 5.97 2.83 2.66 2.55

Tongue metagenome 48.1 33.3 3.59 4.07 3.32 3.07

Whole human 31.9 48.2 4.65 2.49 2.46 2.40

https://github.com/medvedevgroup/ESSCompress/tree/master/experiments
https://github.com/medvedevgroup/ESSCompress/tree/master/experiments

Page 11 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10 	

|
|

|

|

|

|

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

k

nu
m

be
r

of
 c

ha
r/

k
m

er

21 31 41 51 61 71

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

threshold=2
threshold=2
threshold=3
threshold=3
threshold=4
threshold=4

+

+
+

+

+

+

2.
5

3.
0

3.
5

4.
0

k

co
m

pr
es

si
on

 s
iz

e
(b

its
/k

m
er

)

21 31 41 51 61 71

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

threshold=2
threshold=3
threshold=4

Fig. 4  Compression performance of ESS-Compress when varying k and the low-frequency filter threshold, on Human RNA-seq dataset. In the left
panel, solid lines represent the weight of the ESS-Compress representation, compared against the lower bound, represented by the dashed lines. In
the right panel, compressed sizes are shown in bits/k-mer

Table 4  Decompression time in seconds

The time is broken down into the portion taken by MFC to decompress the binary file into an enriched string set and the portion taken by our core algorithm to
decompress the enriched string set into an SPSS. Note that BOSS does not implement decompression (because it is a membership data structure) so it is not included

Dataset UST-Compress ESS-Tip-Compress ESS-Compress

MFC-D MFC-D Core Total MFC-D Core Total

R. sphaeroides 3 2 1 4 2 1 3

Human RNA-seq 40 41 19 60 34 17 51

Gingiva metagenome 37 38 16 54 30 15 45

Soybean 31 33 13 46 29 13 42

Tongue metagenome 62 61 28 89 49 25 74

Whole human 302 337 259 596 303 250 553

Table 5  Peak memory usage for compression and decompression

Decompression takes far less memory than compression, so compression memory is shown in GB and decompression memory in MB. Decompression memory is split
in the same manner as the running time in Table 4

Dataset Compression (GB) Decompression (MB)

BOSS UST-
Compress

ESS-Tip-
Compress

ESS-Compress UST-Compress ESS-Tip-Compress ESS-Compress

MFC-D MFC-D Core MFC-D Core

R. sphaeroides 2 3 3 3 509 513 3 513 4

Human RNA-seq 4 3 3 6 515 515 3 515 38

Gingiva metagenome 4 2 2 5 515 515 3 515 4

Soybean 4 2 2 3 515 515 3 515 12

Tongue metagenome 4 2 2 9 515 515 3 515 6

Whole human 5 12 11 42 515 515 3 515 735

Page 12 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10

is nearly optimal, with only 2–3% difference to the lower
bound of weight. Since ProphAsm computes the same
kind of representation, it is impossible for it to improve
result beyond 2–3%. We also did not compare against
other k-mer membership data structures because in our
previous paper [26], we showed that UST-Compress and
BOSS achieve a better compression ratio on the tested
datasets.

String set properties
We first measure the weights and sizes of our ESS-
Compress and ESS-Tip-Compress, shown in Table 2.
ESS-Compress uses 13–42% less characters than UST.
ESS-Tip-Compress was worse than ESS-Compress
(6–13% larger), but still better than UST-Compress
(3–38% smaller). The lower bound computed by Eq. (3.1)
is very close to the weight of ESS-Compress (within
1.7%, Table 2), indicating that the alternate strategies
explored in Sect. "The weight of the ESS-Compress rep-
resentation" would not be useful on these datasets.

Compression size
Table 3 shows the final compression sizes, after the string
sets are compressed with MFC. ESS-Compress outper-
forms the second best tool (which is usually UST-Com-
press) by 4–27%. It outperforms the naive strategies (i.e.
read FASTA or one k-mer per line) by an order-of-mag-
nitude. Interestingly, it outperforms ESS-Tip-Compress
by only 1–8%; this can be attributed to the large number
of dead-end vertices (Table 1).

We observe that our improvement in weight (Table 2)
does not directly translate to improvement after com-
pression with MFC (Table 3). For ESS-Compress, the
average improvement in weight over UST is 30% but the
improvement in bits is 17%. We attribute this to the fact
that MFC works by exploiting redundant regions, based
on their context. Thus, the redundant sequence that

ESS-Compress removes is likely the sequence that was
more compressible by MFC and hence MFC looses some
of its effectiveness.

We also verified that ESS-Compress can successfully
compress datasets of varying k-mer sizes (between 21
and 71) and low-frequency thresholds (2, 3, and 4). Fig-
ure 4 shows compressed sizes of human RNA-seq data in
bits/k-mer as well as their weights compared to the lower
bounds. The weight of ESS-Compress closely matches
the lower bound across all parameters ( < 2.4% gap), but
the weight and compression size increase for larger k and
lower thresholds.

Decompression and compression time and memory
The cost of decompression is important since it is
incurred every time the dataset is used for analysis. For
both ESS-Compress and ESS-Tip-Compress, the decom-
pression memory is < 1 GB (Table 5) the time is < 10 min
for the large whole human dataset and < 1.5 minutes for
the other datasets (Table 4). Both of these are dominated
by the MFC portion.

Compression is typically done only once, but the time
and memory use can still be important in some appli-
cations. Tables 5 and 6 show the compression time and
memory usage. For UST-Compress, the time is domi-
nated by the cdBG construction step (i.e. BCALM2). For
ESS-Compress, the time and memory are significantly
increased beyond that. Here, the advantage of ESS-Tip-
Compress stands out. Its run time is nearly the same as
UST-Compress, and its memory, while higher than UST-
Compress, is significantly lower than ESS-Compress.

Note that MFC is one of many DNA sequence com-
pressors that can be used with our algorithms. MFC is
known to achieve superior compression ratios but is
slower for compression/decompression than other com-
petitors [38]. We recommend using MFC since it was not

Table 6  Compression time, measured in minutes

The column for BOSS includes the time for k-mer counting the reads using KMC [21], the time to run BOSS construction, and the time to run LZMA. The total time
in UST-Compress, ESS-Tip-Compress and ESS-Compress include the time to compute cdBG from the reads using BCALM. The time to compute cdBG is same for all
three. The columns labelled core refer to Algorithm 1. ESS-Tip-Compress core uses the specific instance of Algorithm 1 defined in Sect. "ESS-Tip-Compress: a simpler
alternative"

Dataset BOSS BCALM UST-Compress ESS-Tip-Compress ESS-Compress

UST MFC Total Core MFC Total Core MFC Total

R. sphaeroides 0.2 0.4 0.1 0.1 1 0.1 0.0 1 0.2 0.0 1

Human RNA-seq 4.0 6.6 1.6 0.8 9 1.3 0.7 9 5.0 0.6 12

Gingiva metagenome 4.3 5.5 1.2 0.7 7 1.0 0.7 7 3.4 0.6 10

Soybean 5.7 9.6 0.8 0.6 11 0.7 0.7 11 2.4 0.5 13

Tongue metagenome 7.4 8.7 1.6 0.8 11 1.9 1.1 12 7.6 0.9 17

Whole human 95 106 11 7 124 10 6 122 40 7 152

Page 13 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10 	

the time or memory bottleneck during compression, in
our datasets.

Discussion
In this paper, we presented a disk compression algorithm
for k-mer sets called ESS-Compress. ESS-Compress is
based on the strategy of representing a set of k-mers as
a set of longer strings with as few total characters as pos-
sible. Once this string set is constructed, it is compressed
using a generic nucleotide compressor such as MFC. On
real data, ESS-Compress uses up to 42% less characters
than the previous best algorithm UST-Compress. After
MFC compression, ESS-Compress uses up to 27% less
bits than UST-Compress.

We also presented a second algorithm ESS-Tip-Com-
press. It is simpler than ESS-Compress and does not
achieve as good of compression sizes. However, the dif-
ference is less than 8% on our data, and it has the advan-
tage of being about twice as fast and using significantly
less memory during compression. For many users, this
may be a desirable trade-off.

Our algorithms can also be used to compress informa-
tion associated with the k-mers in K, such as their counts.
Every k-mer in K corresponds to a unique location in
the enriched string set. The counts can then be ordered
sequentially, in the same order as the k-mers appear in
the string set, and stored in a separate file. This file can
then be compressed/decompressed separately using a
generic compressor. After decompression of the enriched
string set, the order of k-mers in the output SPSS will be
the same as in the counts file.

We discussed several potential improvements to ESS-
Compress, such as allowing more edges in the compacted
de Bruijn graph to be absorbing or exploring the space of
all path covers. We also gave a lower bound to what such
improvements could achieve and showed they cannot
gain more than 2% in space on our datasets. This makes
these improvement of little interest, unless we encounter
datasets where the gap is much larger.

ESS-Compress works by removing redundant (k − 1)

-mers from the string set, but a more general strategy
could be to somehow remove ℓ-mer duplicates, for all
ℓmin ≤ ℓ ≤ k − 1 . Such a strategy would require novel
algorithms but would still be unable to reduce the charac-
ters per k-mer below one. On our datasets, this amounts
to at most a 30% improvement in characters, which
would be further reduced after MFC compression. It is
also not clear if a 30% improvement in characters is even
possible, since this kind of strategy would require a more
sophisticated encoding scheme with more overhead.

Another direction to achieve lower compression sizes
is to look beyond string set approaches. We observe, for
example, that the large improvement of ESS-Compress

compared to UST-Compress, measured in the weight of
the string set, was significantly reduced when measured
in bits after MFC compression. This indicates that some
of the work done by ESS-Compress duplicates the work
done by MFC on UST, which is itself designed to remove
redundancy in the input. Thus, generic compressors such
as MFC could potentially be modified to work directly on
k-mer sets.

We believe that the biggest opportunity for improv-
ing the two algorithms of this paper are the compression
time and memory. The time is dominated by the initial
step of running BCALM2 to find unitigs. It may be possi-
ble to avoid this step by running UST directly on the non-
compacted graph. Such an approach was taken in [28],
and it would be interesting to see if it ends up improving
on the memory and run-time of BCALM2. The memory
usage, on the other hand, can likely be optimized with
better software engineering. The current implementa-
tion of Algorithm 2 is done in a memoized bottom-up
manner. Instead, a top down iterative implementation
can reduce memory usage by directly writing to disk
as soon as a vertex is processed. A “max-depth” option
in Algorithm 2 could also be used to limit the depth of
the recursion, thereby controlling memory at the cost of
the compression ratio.

Another practical extension of ESS-compress is to
allow the compression of associated information. Each k
-mer, for example, could have an abundance. count asso-
ciated with it. ESS-Compress representation defines an
ordering on the k-mers. This ordering can be tracked
through the algorithm and can then be used to sort the
input associated data in the same order. Then, the asso-
ciated data can be further compressed using LZMA (or
any suitable compressor) and distributed with the ESS-
Compress representation. The decompression algorithm
would then similarly track the reordering of k-mers and
apply the same permutation to the associated data.

Acknowledgements
PM and AR were supported by NSF awards 1453527 and 1439057. AR is sup-
ported by NIH Computation, Bioinformatics, and Statistics training program.
RC is supported by INCEPTION project (PIA/ANR-16-CONV-0005).

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Penn State University, State College, PA, USA. 2 Department of Computational
Biology, C3BI USR 3756 CNRS, Institut Pasteur, Paris, France.

Received: 5 February 2021 Accepted: 8 June 2021

Page 14 of 14Rahman et al. Algorithms Mol Biol (2021) 16:10

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

References
	1.	 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin

VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome
assembly algorithm and its applications to single-cell sequencing. J
Comput Biol. 2012;19(5):455–77.

	2.	 Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biol. 2014;15(3):46.

	3.	 Sun C, Medvedev P. Toward fast and accurate snp genotyping from
whole genome sequencing data for bedside diagnostics. Bioinformatics.
2018;35(3):415–20.

	4.	 Denti L., Previtali M., Bernardini G., Schönhuth A., Bonizzoni P. MALVA:
genotyping by Mapping-free ALlele detection of known VAriants. iSci-
ence. 2019;18:20–7.

	5.	 Standage D.S., Brown C.T., Hormozdiari F. Kevlar: a mapping-free frame-
work for accurate discovery of de novo variants. iScience. 2019;18:28–36.

	6.	 Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S,
Phillippy AM. Mash: fast genome and metagenome distance estimation
using MinHash. Genome Biol. 2016;17(1):132.

	7.	 Solomon B, Kingsford C. Fast search of thousands of short-read sequenc-
ing experiments. Nat Biotechnol. 2016;34(3):300–2.

	8.	 Solomon B, Kingsford C. Improved search of large transcriptomic
sequencing databases using split sequence bloom trees. J Comput Biol.
2018;25(7):755–65.

	9.	 Sun C, Harris RS, Chikhi R, Medvedev P. AllSome Sequence Bloom Trees.
In: 21st Annual International Conference. Research in Computational
Molecular Biology. RECOMB 2017, Hong Kong, China, May 3–7, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10229, 2017;pp.
272–286.

	10.	 Harris RS, Medvedev P. Improved representation of sequence bloom
trees. Bioinformatics. 2020;36(3):721–7.

	11.	 Bradley P, den Bakker HC, Rocha EP, McVean G, Iqbal Z. Ultrafast search
of all deposited bacterial and viral genomic data. Nat Biotechnol.
2019;37(2):152.

	12.	 Bingmann T, Bradley P, Gauger F, Iqbal Z. COBS: a compact bit-sliced
signature index. arXiv preprint arXiv:​1905.​09624 2019.

	13.	 Pandey P, Almodaresi F, Bender MA, Ferdman M, Johnson R, Patro R.
Mantis: a fast, small, and exact large-scale sequence-search index. Cell
Syst. 2018;7(2):201–7.

	14.	 Dadi TH, Siragusa E, Piro VC, Andrusch A, Seiler E, Renard BY, Reinert K.
DREAM-Yara: an exact read mapper for very large databases with short
update time. Bioinformatics. 2018;34(17):766–72.

	15.	 Marchet C, Iqbal Z, Gautheret D, Salson M, Chikhi R. Reindeer: efficient
indexing of k-mer presence and abundance in sequencing datasets.
bioRxiv 2020.

	16.	 Marchet C, Boucher C, Puglisi SJ, Medvedev P, Salson M, Chikhi R. Data
structures based on k-mers for querying large collections of sequencing
datasets. bioRxiv, 866756 2019.

	17.	 Chikhi R, Holub J, Medvedev P. Data structures to represent sets of k-long
DNA sequences. arXiv:​1903.​12312 [cs, q-bio] 2019.

	18.	 Hosseini M, Pratas D, Pinho A. A survey on data compression methods for
biological sequences. Information. 2016;7(4):56.

	19.	 Hernaez M, Pavlichin D, Weissman T, Ochoa I. Genomic data compression.
Ann Rev Biomed Data Sci. 2019;2.

	20.	 Numanagić I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C, Mat-
tavelli M, Sahinalp SC. Comparison of high-throughput sequencing data
compression tools. Nat Methods. 2016;13(12):1005.

	21.	 Kokot M, Długosz M, Deorowicz S. KMC 3: counting and manipulating
k-mer statistics. Bioinformatics. 2017;33(17):2759–61.

	22.	 Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory
usage. Bioinformatics. 2013;29(5):652–3.

	23.	 Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70.

	24.	 Pandey P, Bender MA, Johnson R, Patro R. Squeakr: an exact and approxi-
mate k-mer counting system. Bioinformatics. 2017;34(4):568–75.

	25.	 Turner I, Garimella KV, Iqbal Z, McVean G. Integrating long-range
connectivity information into de bruijn graphs. Bioinformatics.
2018;34(15):2556–65.

	26.	 Rahman A, Medvedev P. Representation of k-mer sets using spectrum-
preserving string sets. In: 24th Annual International Conference. Research
in Computational Molecular Biology. RECOMB 2020, Padua, Italy, May
10-13, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12074,
pp. 152–168. Springer, 2020.

	27.	 Břinda K. Novel computational techniques for mapping and classify-
ing Next-Generation Sequencing data. PhD thesis, Université Paris-Est
(November 2016). https://​doi.​org/​10.​5281/​zenodo.​10453​17.

	28.	 Břinda K, Baym M, Kucherov G. Simplitigs as an efficient and scalable
representation of de Bruijn graphs. bioRxiv 2020. https://​doi.​org/​10.​1101/​
2020.​01.​12.​903443.

	29.	 Pinho AJ, Pratas D. MFCompress: a compression tool for FASTA and multi-
FASTA data. Bioinformatics. 2013;30(1):117–8.

	30.	 Iliopoulos CS, Kundu R, Pissis SP. Efficient pattern matching in elastic-
degenerate texts. In: International Conference on Language and
Automata Theory and Applications, 2017;pp. 131–142. Springer.

	31.	 Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs
from sequencing data quickly and in low memory. Bioinformatics.
2016;32(12):201–8.

	32.	 Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the repre-
sentation of de Bruijn graphs. In: Research in Computational Molecular
Biology, RECOMB 2014. Lecture Notes in Computer Science, 2014; vol.
8394: pp. 35–55. Springer.

	33.	 Bang-Jensen J, Gutin GZ. Digraphs: theory. Algorithms and applications.
Berlin: Springer; 2008.

	34.	 https://​github.​com/​cosmo-​team/​cosmo/​tree/​VARI.
	35.	 Bowe A, Onodera T, Sadakane K, Shibuya T. Succinct de bruijn graphs.

In: Proceedings of the 12th International Conference on Algorithms in
Bioinformatics. LNCS, 2012; vol. 7534: pp. 225–235. Springer.

	36.	 https://​github.​com/​proph​yle/​proph​asm.
	37.	 Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen

TJ, Schatz MC, Delcher AL, Roberts M, et al. GAGE: a critical evalua-
tion of genome assemblies and assembly algorithms. Genome Res.
2012;22(3):557–67.

	38.	 Kryukov K, Ueda MT, Nakagawa S, Imanishi T. Nucleotide Archival Format
(NAF) enables efficient lossless reference-free compression of DNA
sequences. bioRxiv, 501130 2018.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1905.09624
http://arxiv.org/abs/1903.12312
https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.1101/2020.01.12.903443
https://doi.org/10.1101/2020.01.12.903443
https://github.com/cosmo-team/cosmo/tree/VARI
https://github.com/prophyle/prophasm

	Disk compression of k-mer sets
	Abstract
	Introduction
	Preliminaries
	Basic definitions
	Strings
	Bidirected de Bruijn graphs
	Paths and spellings
	Unitigs and the compacted de Bruijn graph
	Spanning out-forest

	Path covers and UST-compress

	ESS-compress
	Main algorithm
	Algorithm to choose absorption edges
	The weight of the ESS-compress representation

	ESS-Tip-compress: a simpler alternative
	Empirical results
	String set properties
	Compression size
	Decompression and compression time and memory

	Discussion
	Acknowledgements
	References

