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Abstract 

K-mer based methods have become prevalent in many areas of bioinformatics. In applications such as database 
search, they often work with large multi-terabyte-sized datasets. Storing such large datasets is a detriment to tool 
developers, tool users, and reproducibility efforts. General purpose compressors like gzip, or those designed for read 
data, are sub-optimal because they do not take into account the specific redundancy pattern in k-mer sets. In our 
earlier work (Rahman and Medvedev, RECOMB 2020), we presented an algorithm UST-Compress that uses a spec-
trum-preserving string set representation to compress a set of k-mers to disk. In this paper, we present two improved 
methods for disk compression of k-mer sets, called ESS-Compress and ESS-Tip-Compress. They use a more relaxed 
notion of string set representation to further remove redundancy from the representation of UST-Compress. We 
explore their behavior both theoretically and on real data. We show that they improve the compression sizes achieved 
by UST-Compress by up to 27 percent, across a breadth of datasets. We also derive lower bounds on how well this 
type of compression strategy can hope to do.
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Introduction
Many of today’s bioinformatics analyses are powered by 
tools that are k-mer based. These tools first reduce the 
input sequence data, which may be of various lengths 
and type, to a set of short fixed length strings called k-
mers. K-mer based methods are used in a broad range of 
applications, including genome assembly [1], metagen-
omics [2], genotyping [3, 4], variant calling [5], and phy-
logenomics [6]. They have also become the basis of a 
recent wave of database search tools [7–15], surveyed in 
[16]. K-mer based methods are not new, but only recently 
they have started to be applied to terabyte-sized datasets. 
For example, the dataset used to test the BIGSI data-
base search index, which is composed of 31-mers from 
450,000 microbial genomes [11], takes about 12 TB to 
store in compressed form.

Storing such large datasets is a detriment to tool devel-
opers, tool users, and reproducibility efforts. For tool 
developers, development time is significantly increased 

when having to manage such large files. Due to the itera-
tive nature of the development process, these files do not 
typically just sit in one place, but instead get created/
moved/recreated many times. For tool users, the time 
it takes for the tools to write these files to disk and load 
them into memory is non-negligible. In addition, as we 
scale to even larger datasets, storage costs start to play 
a larger factor. Finally, for reproducibility efforts, stor-
ing and moving terabytes of data across networks can be 
detrimental.

To minimize these negative effects, disk compression of 
k-mer sets is a natural solution. By disk compression, we 
refer to a compressed representation that, while support-
ing decompression, does not support any other query-
ing of the compressed data. Compressed representations 
that allow for membership queries [17] are important in 
their own right, but are sub-optimal when only storage 
is required. Most k-mer sets are currently stored on disk 
in one of two ways. In the situation where the set of k-
mers comes from k-mer counting reads, one can simply 
compress the reads themselves using one of many read 
compression tools [18–20]. This approach requires the 
substantial overhead of running a k-mer counter as part 
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of decompression, but it is often used in the absence of 
better options. The second approach is to gzip/bzip the 
output of the k-mer counter [21–25]. As we showed in 
[26], both of these approaches are space-inefficient by 
at least an order-of-magnitude. This is not surprising, as 
neither of these approaches was designed specifically for 
disk compression of k-mer sets.

Disk compression tailor-made for k-mer sets was 
first considered in our earlier work [26]. The idea was 
based on the concept of spectrum-preserving string 
sets (SPSS), introduced in [26–28]. In [28], the con-
cept of SPSS is introduced under the name simplitigs. A 
set of strings S is said to be a SPSS representation of a 
set of k-mers K iff 1) the set of k-mers contained in S is 
exactly K, 2) S does not contain duplicate k-mers, and 3) 
each string in S is of length ≥ k . The weight of an SPSS 
is the number of characters it contains. For example, 
if K = {ACG,CGT ,CGA} , then {ACGT ,CGA} would 
be an SPSS of weight 7; also K itself would be an SPSS 
of K of weight 9. On the other hand, {CGACGT } is not 
an SPSS, because it contains GAC /∈ K  . Intuitively, a low 
weight SPSS can be constructed by gluing together k-
mers in K, with each glue operation reducing the weight 
by k − 1 . In [26], we proposed the following simple com-
pression strategy, called UST-Compress. We find a low-
weight SPSS S, using a greedy algorithm called UST, and 
compress S to disk using a generic nucleotide compres-
sion algorithm (e.g. MFC [29]). UST-Compress achieved 
significantly better compression sizes than the two 
approaches mentioned above.

UST-Compress was not designed to be the best possi-
ble disk compression algorithm but only to demonstrate 
one of the possible applications of the SPSS concept. 
When the goal is specifically disk compression, we are 
no longer bound to store a set of strings with exactly the 
same k-mers as K, as long as a decompression algorithm 
can correctly recover K. The main idea of this paper is 
to replace the SPSS with a more relaxed string set rep-
resentation, over the alphabet {A,C ,G,T , [, ],+,−} . Our 
approach is loosely inspired by the notion of elastic-
degenerate strings [30]. It attempts to remove even more 
duplicate (k − 1)-mers from the representation than SPSS 
does, using the extra alphabet characters as placeholders 
for nearby repetitive (k − 1)-mers. For the above exam-
ple, our representation would be ACG[+A]T  , where the 
“+′′ is interpreted as a placeholder for the k − 1 charac-
ters before the open bracket (i.e. CG). After replacing the 
“+′′ , we get ACG​[CGA​]T and we split the string by cleav-
ing out the substring within brackets; i.e., we get ACGT​ 
and CGA​.

Based on this idea, we present two algorithms for the 
disk compression of k-mer sets, ESS-Compress and 
ESS-Tip-Compress. We explore the behavior of these 

algorithms both theoretically and on real data. We give 
a lower bound on how well this type of algorithm can 
compress. We show that they improve the compression 
sizes achieved by UST-Compress by up to 27% across a 
breadth of datasets. The two algorithms present a trade-
off between time/memory and compression size, which 
we explore in our results. The two algorithms are freely 
available open source tools on http://​github.​com/​medve​
devgr​oup/​ESSCo​mpress.

Preliminaries
Basic definitions
Strings
The length of string x is denoted by |x|. A string of length 
k is called a k-mer. We assume k-mers are over the DNA 
alphabet. A string over the alphabet {A,C ,G,T , [, ],+,−} 
is said to be enriched. We use · as the string concatena-
tion operator. For a set of strings S, weight(S) =

∑
x∈S |x| 

denotes the total count of characters. We define sufk(x) 
(respectively, prek(x) ) to be the last (respectively, first) k 
characters of x. We define cutPrek(x) = suf|x|−k(x) as x 
with the prefix removed. When the subscript is omitted 
from pre, suf, and cutPre, we assume it is k − 1 . A string 
x is canonical if it is the lexicographically smaller of x and 
its reverse complement.

For x and y with suf (x) = pre(y) , we define glu-
ing x and y as x ⊙ y = x · cutPre(y) . For s ∈ {0, 1} , 
we define orient(x,  s) to be x if s = 0 and to be 
the reverse complement of x if s = 1 . We say 
that x0 and x1 have a (s0, s1)-oriented-overlap if 
suf (orient(x0, 1− s0)) = pre(orient(x1, s1)) . Intuitively, 
such an overlap exists between two strings if we can ori-
ent them in such a way that they are glueable. For exam-
ple, AAC​ and TTG​ have a (0, 0)-oriented overlap.

Bidirected de Bruijn graphs
A bidirected graph G is a pair (V, E) where the set V are 
called vertices and E is a set of edges. An edge e is a set of 
two pairs, {(u0, s0), (u1, s1)} , where ui ∈ V  and si ∈ {0, 1} , 
for i ∈ {0, 1} . Note that this differs from the notion of an 
edge in an undirected graph, where E ⊆ V × V  . Intui-
tively, every vertex has two sides, and an edge connects 
to a side of a vertex (see Fig. 1 for examples). An edge is 
a loop if u0 = u1 . Given a non-loop edge e that is inci-
dent to a vertex u, we denote side(u, e) as the side of u to 
which it is incident. We say that a vertex u is a dead-end 
if it has exactly one side to which no edges are incident. 
A bidirected DNA graph is a bidirected graph G where 
every vertex u has a string label lab(u), and for every 
edge e = {(u0, s0), (u1, s1)} , there is a (s0, s1)-oriented-
overlap between lab(u0) and lab(u1) (see Fig. 1 for exam-
ples). G is said to be overlap-closed if there is an edge for 
every such overlap. Let K be a set of canonical k-mers. 

http://github.com/medvedevgroup/ESSCompress
http://github.com/medvedevgroup/ESSCompress
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The node-centric bidirected de Bruijn graph, denoted 
by dBG(K), is the overlap-closed bidirected DNA graph 
where the vertices and their labels correspond to K. In 
this paper, we will assume that dBG(K) is not just a sin-
gle cycle; such a case is easy to handle in practice but is a 
space-consuming corner-case in all the analyses.

Paths and spellings
A sequence p = (u0, e1,u1, . . . , en,un) is a path iff (1) 
for all 1 ≤ i ≤ n , ei is incident to ui−1 and to ui , (2) for 
all 1 ≤ i ≤ n− 1 , side(ui, ei) = 1− side(ui, ei+1) , and 
(3) all the ui s are different. A path can also be any sin-
gle vertex. Vertices u1, . . . ,un−1 are called internal 
and u0 and un are called endpoints. We call u0 to be 
the initiator vertex of p. We say that p is normalized 

Fig. 1  Examples of the four types of absorption. Each panel shows the edges along two paths: ψp (red vertices inside a shaded rectangle) and ψc 
(blue vertices inside a shaded rectangle) and an absorption edge e = {(up , sp), (uc , sc)} (dashed line) between the parent unitig up and the child 
unitig uc . The graph being shown in each panel is cdBG(K), but only the absorption edge and the edges of ψp and ψc are shown. In this simple 
example, the unitigs of dBG(K) are just paths made of single vertices, and hence the vertices of cdBG(K) have labels of length k = 3 . Each vertex is 
shown as a pointed rectangle with its label inside; we use the convention that the “zero” side of a vertex is the flat side on the left, and the “one” side 
is the pointy side on the right. At the bottom left of each panel, we show the spectrum-preserving string set (SPSS) spell({ψp ,ψc}) . At the bottom 
right, we show the enriched representation generated by our algorithm. Depending on the value of sp and sc , four different cases can arise. When 
sp = 1, sc = 0 (shown in A), pre(lab(uc)) is replaced with marker “ + ”, as it is same as suf (lab(up)) . When sp = 1, sc = 1 (shown in B), pre(lab(uc)) 
is replaced by “−”, as it is same as the reverse complement of suf (lab(up)) . When sp = 0, sc = 0 (shown in C), pre(lab(uc)) is replaced with “−”, as 
it is the same as the reverse complement of pre(lab(up)) . When sp = 0, sc = 1 (shown in D), suf (lab(uc)) is replaced with “ + ”, as it is the same as 
pre(lab(up))
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if for every ei , side(ui−1, ei) = 1 and side(ui, ei) = 0 ; 
intuitively, the path uses edges like in a directed graph. 
The spelling of a normalized path p is defined as 
spell(p) = lab(u0)⊙ · · · ⊙ lab(un) . If P is a set of normal-
ized paths, then spell(P) =

⋃
p∈P spell(p).

Unitigs and the compacted de Bruijn graph
A path in dbG(K) is a unitig if all its vertices have in- and 
out-degrees of 1, except that the first vertex can have any 
in-degree and the last vertex can have any out-degree. A 
single vertex is also a unitig. A unitig is maximal if it is 
not a sub-path of another unitig. It was shown in [31] that 
if dBG(K) is not a cycle, then the set of maximal unitigs 
forms a unique decomposition of the vertices in dBG(K) 
into vertex-disjoint paths. The bidirected compacted de 
Bruijn graph of K, denoted by cdBG(K), is the overlap-
closed bidirected DNA graph where the vertices are the 
maximal unitigs of dBG(K), and the labels of the vertices 
are the spellings of the unitigs. In practice, this graph can 
be efficiently constructed from K using the BCALM2 tool 
[31, 32].

Spanning out‑forest
Given a directed graph D, an out-tree is a subgraph in 
which every vertex except one, called the root, has in-
degree one, and, when the directions on the edges are 
ignored, is a tree. An out-forest is a collection of vertex-
disjoint out-trees. An out-forest is spanning if it covers all 
the vertices of D.

Path covers and UST‑compress
A vertex-disjoint normalized path cover � of cdBG(K) 
is a set of normalized paths such that every vertex is in 
exactly one path and no path visits a vertex more than 
once; we will sometimes use the shorter term path 
cover to mean the same thing. There is a close relation-
ship between SPSS representations of K and path covers, 
shown in [26]. In particular, a path cover � induces the 
SPSS spell(�) . An example of a path cover is one where 
every vertex of cdBG(K) is in its own path, and the corre-
sponding SPSS is the set of all maximal unitig sequences. 
Figures 1 and 2 show examples of path covers. The num-
ber of paths in � (denoted as |�| ) and the weight of the 
induced SPSS is closely related:

This relationship also translates to the number of edges 
in � ; by its definition, the number of edges in � is simply 
the number of vertices in cdBG(K) minus |�|.

The idea of our previous algorithm UST-Compress [26] 
is to find a path cover �UST with as many edges as pos-
sible. Having more edges reduces the number of paths, 
which in turn reduces the weight of the corresponding 

(2.1)weight(spell(�)) = |K | + |�|(k − 1)

SPSS and the size of the final compressed output. We can 
understand this intuitively as follows. Edges in cdBG(K) 
connect unitigs whose endpoints have the same (k − 1)

-mer (after accounting for reverse complements). For 
every edge we add to our path cover, we glue these two 
unitigs and remove one duplicate instance of the (k − 1)

-mer from the corresponding SPSS. Note however that 
�UST does not remove all duplicate (k − 1)-mers from 
the SPSS, because � can only have two edges incident 
on a vertex, one from each side, and hence a unitig can 
only be glued at most twice. If a unitig has edges to more 
than two other unitigs, then some of the adjacent unit-
igs would include the duplicate (k − 1)-mer in the SPSS. 
The idea of our paper is to exploit the redundancy due to 
those remaining edges an thus further reduce the size of 
the representation.

ESS‑compress
Main algorithm
Our starting point is a set of canonical k-mers K, the 
graph cdBG(K), and a vertex-disjoint normalized path 
cover � of cdBG(K) returned by UST.1 To develop the 
intuition for our algorithm, we first consider a simple 
example (Fig.  1A). In this example, we see a vertex-dis-
joint path cover � composed of two paths, ψp and ψc . 
There is an edge between an internal vertex (=unitig2) up 
of ψp and the initiator vertex uc of ψc . Such an edge is an 
example of an absorption edge. ESS-Compress constructs 
an enriched string representation of K, as shown in the 
figure. The basic idea is that up and uc share a common 
(k − 1)-mer (i.e. GT). We can cut out this common por-
tion from the string representing uc and replace it with 
a special marker character “+”. We can then include uc 
inside of the representation of up by surrounding uc with 
brackets. The marker character “+′′ is a placeholder for 
the k − 1 nucleotides right before the opening bracket. 
To decompress the enriched string, we first replace the 
marker to get TCGT​[GTAA​]T and then cleave out the 
bracketed string to get {TCGTT ,GTAA} . This exactly 
recovers the SPSS representation of ψp and ψc.

Formally, we say that an edge in cdBG(K) is an absorp-
tion edge iff (1) it connects two unitigs up and uc , on two 
distinct paths ψp and ψc , respectively, (2) up is an internal 
vertex, and (3) uc is an initiator vertex. We refer to up and 

1  Though we did not explain it in [26], UST always returns normalized paths. 
It flips any vertex that is in the wrong orientation on its path, by reverse com-
plementing its label, without affecting anything else.
2  Note that the vertices of this graph (i.e. cdBG(K)) correspond to maximal 
unitigs in the non-compacted graph (i.e. dBG(K)). We will generally use 
“vertex” and “unitig” interchangeably, to refer to a vertex in cdBG(K). We 
never use “unitig” to refer to a type of path in cdBG(K).
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ψp as parents and uc and ψc as children; we also say that 
ψp and up absorb ψc and uc.3

Figure  1B–D shows the other cases, corresponding to 
the possible orientation of the absorption edge. The logic 
is the same, but we need to introduce a second marker 
character “−′′ that is a placeholder for the reverse com-
plement of the last k − 1 characters right before the 
opening bracket. In each of these cases, we add 3 extra 
characters (two brackets and one marker) and remove 
k − 1 nucleotide characters. Note that, expanding the 
alphabet has its inherent cost, but even after taking that 

into account, we get lower number of characters than 
SPSS representation when k > 4.

Next, observe that a single parent path can absorb 
multiple children paths, as illustrated in  Fig.  2A. Also, 
observe that a single parent unitig can absorb more than 
one child path, as shown in  Fig.  2B. As in the previous 
example, we save k − 1− 3 = k − 4 characters for every 
absorbed edge.

These absorptions can be recursively combined, as 
shown in Fig. 2C. Because we require a parent unitig to 
be an internal vertex and a child unitig to be an initiator 
vertex, the same unitig cannot be both parent and child. 
Therefore, ESS-Compress can construct a representation 
recursively, without any conflicts. The recursion tree is 
reflected in the nesting structure of the brackets in the 
enriched string.

Panel (A) Panel (B)

Panel (C)

Fig. 2  More complex absorption examples. In A, one path absorbs multiple paths. In B, one unitig up absorbs multiple paths. In C, one path ( ψ1 ) 
absorbs another ( ψ2 ) which itself absorbs another ( ψ3 ). This is a recursive absorption, showing how a path can be both a child and a parent

3  In our code, we actually allow a slightly broader definition of absorption. In 
particular, we also allow an edge to be absorbing if up is an initiator and sp = 1 , 
or if up is an initiator and |lab(up)| ≥ 2k − 2 . For the sake of simplicity, we do 
not consider this edge case in the paper.
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However, we must be careful to avoid cycles in the 
recursion. We define the absorption digraph DA as the 
directed graph whose vertex set is the set of paths � and 
an edge (ψp → ψc) if ψp absorbs ψc . For every edge in 
DA , we also associate the corresponding bidirected edge 
between up and uc in cdBG(K). We would like to select 
a subset of edges F along which to perform absorptions, 
so as to avoid cycles in DA and to make sure a path can-
not be absorbed by more than one other path. We would 
also try to choose as many edges as possible, since each 
absorption saves k − 4 characters. To achieve these goals, 
ESS-Compress defines F as a spanning out-forest in DA 
with the maximum number of edges. We postpone the 
algorithm to find F to Sect. "Algorithm to choose absorp-
tion edges".

The high-level pseudo-code of ESS-Compress is shown 
in Algorithm  1 and illustrated in  Fig.  3. The recursive 
algorithm to create the enriched representation using F 
as a guide is shown in Algorithm 2. It follows the intui-
tion we just developed. It starts from the paths that will 
not be absorbed (i.e. the roots in F). For a path ψp , it first 
computes the enriched representations of all the child 
paths (Lines 3–9). It then integrates them into the appro-
priate locations of spell(ψp) (Lines 10–14). It then uses a 
marker to replace the redundant sequence in the spelling 
of ψp , with respect to ψp ’s own parent (Lines 17–31). To 
decide which marker to use, it receives as a parameter the 
absorption edge eD that was used to absorb ψp.

Decompression is done by a recursive algorithm 
DEC that takes as input an enriched string x and 
a (k − 1)-mer called markerReplacement. Initially, 
DEC is called independently on every enriched string 
x ∈ ESS-Compress(K ) , with markerReplacement = null . 
We call the characters of x which are not enclosed within 
brackets outer. The brackets themselves are not consid-
ered outer characters. DEC first replaces any occurrence 
of an outer “+′′ (respectively, “−′′ ) with markerReplace-
ment (respectively, the reverse complement of marker-
Replacement). It then outputs all the outer characters 
as a single string. Then, for every top-level open/close 
bracket pair in x, it calls DEC recursively on the sequence 
in between the brackets, and passes as markerReplace-
ment the rightmost k − 1 outer characters to the left of 
the open bracket.

Algorithm to choose absorption edges
Let D be any directed graph and consider the prob-
lem of finding a spanning out-forest with the maximum 
number of edges. We call this the problem of finding 
an edge-maximizing spanning out-forest. This problem 
is a specific instance of the maximum weight out-forest 
problem [33], which allows for weights to be placed on 
the edges. As we show in this section, there is an optimal 
algorithm for our problem that is simpler than the algo-
rithm for arbitrary weights described in [33].

Fig. 3  Visual overview of the steps in Algorithm 1
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Our algorithm first decomposes D into strongly con-
nected components, and builds SC(D), the strongly con-
nected component digraph of D. In SC(D), the vertices 
are the strongly connected components of D, and there 
is an edge from component c1 to c2 if there is an edge in 
D from some vertex in c1 to some vertex in c2 . For every 
component that is a source in SC(D), we pick an arbitrary 
vertex from it (in D) and put it into a “starter” set. Then, 
we perform a depth-first search (DFS) traversal of D, but 
whenever we start a new tree, we initiate it with a ver-
tex from the starter set, if one is available. We remove the 
vertex from the starter set once it is used to initiate a tree. 
We then output the DFS forest F.

We will prove that F is a spanning out-forest of D with 
the maximum number of edges.

Lemma 3.1  (Correctness of edge-maximizing spanning 
out-forest algorithm) Let D be a directed graph, let F be 
the spanning out-forest returned by our algorithm run 
on D, and let nsc be the number of source components in 
SC(D). Then, the number of out-trees in F is nsc and this 
is the smallest possible for any spanning out-forest. Also, 
the number of edges in F is the maximum possible for any 
spanning out-forest.

Proof  Consider any spanning out-forest of D. If it has 
less than nsc out-trees, then by the pigeonhole principle, 
there are two source components c1 and c2 with vertices 
v1 and v2 , respectively, belonging to the same out-tree. 
This is a contradiction, since c1 and c2 are source compo-
nents and hence there cannot be a path between them. 
Hence, any spanning out-forest must have at least nsc 
out-trees. Now, consider F. Every vertex in D is reachable 
from one of the vertices in the starter set, by its construc-
tion. There are nsc starter vertices, so F will have at most 
nsc out-trees. Since any spanning out-forest must have at 
least nsc out-trees, F will have nsc out-trees and it will be 
the minimum achievable. Also, in any spanning out-for-
est, the number of edges is the number of vertices minus 
the number of out-trees; hence F will have the the maxi-
mum number of edges of any spanning out-forest.�  �

The weight of the ESS‑compress representation
In this section, we derive a formula for the weight of the 
ESS-Compress representation and explore the potential 
benefits of some variations of ESS-Compress.



Page 8 of 14Rahman et al. Algorithms Mol Biol           (2021) 16:10 

Theorem 3.2  Let K be a set of canonical k-mers, and let 
� be a vertex-disjoint normalized path cover of cdBG(K) 
that is used by ESS-Compress(K ) . Let nsc be the number 
of sources in the strongly connected component graph of 
the absorption graph DA . Let X be the solution returned by 
ESS-Compress(K ) . Then

Proof  If we unroll the recursion of ESS-Compress, 
then there are exactly |�| runs of Spell-Path-Enrich, 
one for each ψ ∈ � . For each call, we let nψ be the 
number of characters in the returned string that are 
added non-recursively (i.e. everything except ins0 and 

weight(X) = |K | + 3|�| + nsc(k − 4)

ins1 ). Considering the structure of the recursion and 
accounting for characters in this way, we have that 
weight(X) =

∑
ψ∈� nψ.

Prior to marker replacement (Line  17, the non-
recursive part of x is spell(ψ) ). When ψ is a root in 
the absorption forest F, then the marker absorption 
stage is not executed and so nψ = |spell(ψ)| . Other-
wise, the marker absorption phase (Lines  17 to  31) 
removes k − 1 characters, adds 1 new marker char-
acter, and adds two new bracket characters. Hence, 
nψ = |spell(ψ)| − (k − 1)+ 3 = |spell(ψ)| − (k − 4) . By 
Lemma 3.1, F contains nsc roots. Hence,

weight(X) =
∑

ψ∈�

nψ =
∑

ψ is a root

|spell(ψ)| +
∑

ψ is not a root

(|spell(ψ)| − (k − 4))

=
∑

ψ∈�

|spell(ψ)| − (k − 4)(|�| − nsc) = |K | + 3|�| − nsc(k − 4)
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The last equality follows by applying Eq. (2.1) from Sect. 
"Preliminaries". � �

We can use Theorem  3.2 to better understand ESS-
Compress. The weight depends on the choice of � . The 
� returned by UST has, empirically, almost the minimum 
|�| possible [26]. This (almost) minimizes the 3|�| term 
in Theorem  3.2. However, this may not necessarily lead 
to the lowest total weight, because there is an interplay 
between � and nsc , as follows. Let � ′ be a vertex-disjoint 
normalized path cover with |� ′| > |�| . Its paths are 
shorter, on average, than �’s. There may now be edges 
of cdBG(K) that become absorption edges, that were not 
with � . For example, an edge between two unitigs which 
are internal in � is not, by our definition, an absorption 
edge. With the shorter paths in � ′ , one of these unitigs 
may become an initiator vertex, making the edge absorb-
ing. This may in turn improve connectivity in DA and 
decrease nsc , counterbalancing the increase in |� ′| . Nev-
ertheless, ESS-Compress does not consider alternative 
path covers and always uses the one returned by UST.

Another aspect of ESS-Compress that could be 
changed is the definition of absorption edge. We restrict 
absorption edges to be between an initiator unitig and 
an internal unitig; however, one could in principle also 
define ways to absorb between an endpoint unitig and 
an internal unitig, or between two internal unitigs. This 
could potentially decrease nsc by increasing the number 
of absorption edges, though it would likely need more 
complicated and space-consuming encoding schemes.

How much could be gained by modifying the path 
cover and the absorption rules that ESS-Compress uses? 
We can answer this by observing that nsc cannot be less 
than C, the number of connected components of the 
undirected graph underlying cdBG(K). At the same time, 
in [26] we gave an algorithm to compute an instance-spe-
cific lower bound β on the number of paths in any vertex-
disjoint path cover. Putting this together, we conclude 
that regardless of which path cover is used and which 
subset of cdBG(K) edges are allowed to be absorbing, 

the weight of a ESS-Compress representation cannot be 
lower than:

As we will see in the results, the weight of ESS-Compress 
is never more than 2% higher than this lower bound, 
which is why we did not pursue these other possible opti-
mizations to ESS-Compress. We note, however, that the 
above is not a general lower bound and does not rule out 
the possibility of lower-weight string set representations 
that beat ESS-Compress.

ESS‑Tip‑compress: a simpler alternative
ESS-Compress is designed to achieve a low compres-
sion size but can require a large memory stack due to its 
recursive structure. The memory during compression 
and decompression is proportional to the depth of this 
stack, which is the depth of the out-forest F. If F were to 
be more shallow, then the memory would be reduced. In 
this section, we describe ESS-Tip-Compress, a simpler, 
faster, and lower-memory technique that can be used 
when compression speed/memory are prioritized. It is 
centered on dead-end vertices in the compacted graph, 
which usually correspond to tips in the uncompacted 
dBG and are typically due to sequencing errors, end-
points of transcripts, or coverage gaps. ESS-Tip-Com-
press is based on the observation that a large chunk of the 
graph is dead-end vertices (at least for sequencing data), 
and limiting absorption to only them can yield much of 
the benefits of a more sophisticated algorithm.

First, we find a vertex-disjoint normalized path cover 
� that is forced to have each dead-end vertex in its own 
dedicated path (i.e. its path only contains the vertex 
itself ). This can be done easily by running UST on the 
graph obtained from cdBG(K) by removing all dead-end 
vertices. Next, we select the absorption forest F as fol-
lows. For each dead-end vertex v, we identify a non-dead-
end vertex u which is connected to v via an edge e. In the 
rare case that such a u does not exist, we skip v. Other-
wise, we add (u → v) to F. We can assume without loss of 
generality that side(u, e) = 1− side(v, e) because if that 

(3.1)|K | + 3β + C(k − 4)

Table 1  Dataset characteristics

Dataset Source Read 
length (bp)

# Reads # Distinct 31-mers # unitigs % Dead-end 
unitigs (%)

% Isolated 
unitigs (%)

R. sphaeroides GAGE [37] 101 2,050,868 5,908,467 442,681 47 8

Human RNA-seq SRR957915 101 49,459,840 101,017,526 7,665,682 4 13

Gingiva metagenome SRS014473 101 55,419,548 101,872,420 5,678,516 36 15

Soybean RNA-seq SRR11458718 125 83,594,116 111,206,789 3,659,969 28 12

Tongue metagenome SRS011086 101 81,664,789 165,159,726 11,358,233 37 11

Whole human ERR174310 101 207,579,467 2,319,022,432 51,094,913 14 18
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is not the case, than we can replace lab(v) by its reverse 
complement and thereby change the side to which e is 
incident. For any paths that remain uncovered by F, we 
add them as roots of their own tree. Finally, we run a 
slightly modified version of Spell-Path-Enrich, using this 
� and this F.

We modify Spell-Path-Enrich as follows. First, observe 
that F has max depth of 2 vertices. Hence, the parenthe-
sis generated by Spell-Path-Enrich are never nested. Sec-
ond, observe that the marker value is always “+′′ , because 
side(u, e) = 1− side(v, e) for all absorption edges in F. 
These observations allow us to reduce the number of 
extra characters we need for each absorption down to 2, 
instead of 3 (we omit the implementation details).

Empirical results
We evaluated our methods on one small bacterial data-
set, two metagenomic datasets from NIH human micro-
biome project, reads from whole human genome, and 
RNA-seq reads from both human and plant (Table 1). To 
obtain the set of k-mers K from these datasets, we ran 
the DSK k-mer-counter [22] with k = 31 and filtered out 
low-frequency k-mers ( < 5 for whole human genome and 
< 2 for the other datasets). We then constructed cdBG(K) 
using BCALM2. The last three columns in Table 1 show 
the properties of the graph: number of vertices, num-
ber of dead-end vertices and total percentage of isolated 
vertices. We ran all our experiments single-threaded on 

a server with an Intel(R) Xeon(R) CPU E5-2683 v4 @ 
2.10 GHz processor with 64 cores and 512 GB of mem-
ory. We used /usr/bin/time to measure time and 
memory. Detailed steps to reproduce our experiments 
are available at https://​github.​com/​medve​devgr​oup/​
ESSCo​mpress/​tree/​master/​exper​iments.

The output of our tools was compressed with MFC. 
Note that MFC is not optimized for non-nucleotide 
characters, but such characters are rare in our string sets 
( < 0.1 bits per k-mer). We compared our tools against 
four other approaches. The first is UST-Compress, which 
we showed in our previous work to outperform other 
disk compressors [26]. The second is to strip the read 
FASTA files of all non-sequence information and com-
press them using MFC. The third is to simply write one 
distinct k-mer per line to a file and compress it using 
MFC. The fourth is the BOSS method, as implemented 
in [34]. BOSS is a succinct implementation of a de Bruijn 
graph [35]. Though it is designed to answer membership 
queries, it also achieved the closest compression size to 
UST-Compress in our previous study [26]. As in [26], we 
compressed BOSS’s binary output using LZMA. We con-
firmed the correctness of all evaluated tools, including 
our own, on the datasets.

We did not explore the possibility of replacing UST in 
our pipeline with ProphAsm [36]. ProphAsm is an alter-
native algorithm to compute an SPSS called simplitigs, 
but we showed in [26] that the UST SPSS representation 

Table 2  The weights and sizes of various string set representations

The rightmost column shows the lower bound computed by Eq. (3.1) in Sect. "The weight of the ESS-Compress representation". The weight of ESS-Compress was 
verified to be the same as predicted by Theorem 3.2

Dataset UST ESS-Tip-Compress ESS-Compress Eq. (3.1) lower bound

# strings #char/ k-mer # strings #char/ k-mer # strings #char/ k-mer #char/ k-mer

R. sphaeroides 240,562 2.22 61,909 1.38 36,456 1.29 1.28

Human RNA-seq 4,098,389 2.22 1,834,945 1.60 1,098,938 1.42 1.39

Gingiva metagenome 3,095,476 1.91 1,499,270 1.48 917,388 1.33 1.32

Soybean RNA-seq 1,806,078 1.49 1,137,350 1.32 515,244 1.17 1.17

Tongue metagenome 6,030,814 2.10 2,664,422 1.53 1,327,701 1.33 1.32

Whole human 22,072,219 1.32 21,320,263 1.28 10,321,275 1.15 1.14

Table 3  The compression sizes, as measured in bits per k-mer in the compressed output

All string representations (i.e. not BOSS) are compressed using MFC in the final step. Since BOSS is a binary representation, we use LZMA for the final compression step

Dataset Read FASTA One k-mer per 
line

BOSS UST-Compress ESS-Tip-
Compress

ESS-Compress

R. sphaeroides 45.4 28.4 6.55 3.93 2.90 2.87

Human RNA-seq 45.8 31.7 6.89 4.14 3.43 3.33

Gingiva metagenome 48.0 32.4 10.64 3.76 3.22 3.05

Soybean RNA-seq 43.0 33.1 5.97 2.83 2.66 2.55

Tongue metagenome 48.1 33.3 3.59 4.07 3.32 3.07

Whole human 31.9 48.2 4.65 2.49 2.46 2.40

https://github.com/medvedevgroup/ESSCompress/tree/master/experiments
https://github.com/medvedevgroup/ESSCompress/tree/master/experiments
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Fig. 4  Compression performance of ESS-Compress when varying k and the low-frequency filter threshold, on Human RNA-seq dataset. In the left 
panel, solid lines represent the weight of the ESS-Compress representation, compared against the lower bound, represented by the dashed lines. In 
the right panel, compressed sizes are shown in bits/k-mer

Table 4  Decompression time in seconds

The time is broken down into the portion taken by MFC to decompress the binary file into an enriched string set and the portion taken by our core algorithm to 
decompress the enriched string set into an SPSS. Note that BOSS does not implement decompression (because it is a membership data structure) so it is not included

Dataset UST-Compress ESS-Tip-Compress ESS-Compress

MFC-D MFC-D Core Total MFC-D Core Total

R. sphaeroides 3 2 1 4 2 1 3

Human RNA-seq 40 41 19 60 34 17 51

Gingiva metagenome 37 38 16 54 30 15 45

Soybean 31 33 13 46 29 13 42

Tongue metagenome 62 61 28 89 49 25 74

Whole human 302 337 259 596 303 250 553

Table 5  Peak memory usage for compression and decompression

Decompression takes far less memory than compression, so compression memory is shown in GB and decompression memory in MB. Decompression memory is split 
in the same manner as the running time in Table 4

Dataset Compression (GB) Decompression (MB)

BOSS UST-
Compress

ESS-Tip-
Compress

ESS-Compress UST-Compress ESS-Tip-Compress ESS-Compress

MFC-D MFC-D Core MFC-D Core

R. sphaeroides 2 3 3 3 509 513 3 513 4

Human RNA-seq 4 3 3 6 515 515 3 515 38

Gingiva metagenome 4 2 2 5 515 515 3 515 4

Soybean 4 2 2 3 515 515 3 515 12

Tongue metagenome 4 2 2 9 515 515 3 515 6

Whole human 5 12 11 42 515 515 3 515 735
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is nearly optimal, with only 2–3% difference to the lower 
bound of weight. Since ProphAsm computes the same 
kind of representation, it is impossible for it to improve 
result beyond 2–3%. We also did not compare against 
other k-mer membership data structures because in our 
previous paper [26], we showed that UST-Compress and 
BOSS achieve a better compression ratio on the tested 
datasets.

String set properties
We first measure the weights and sizes of our ESS-
Compress and ESS-Tip-Compress, shown in  Table  2. 
ESS-Compress uses 13–42% less characters than UST. 
ESS-Tip-Compress was worse than ESS-Compress 
(6–13% larger), but still better than UST-Compress 
(3–38% smaller). The lower bound computed by Eq. (3.1) 
is very close to the weight of ESS-Compress (within 
1.7%,  Table  2), indicating that the alternate strategies 
explored in Sect. "The weight of the ESS-Compress rep-
resentation" would not be useful on these datasets.

Compression size
Table 3 shows the final compression sizes, after the string 
sets are compressed with MFC. ESS-Compress outper-
forms the second best tool (which is usually UST-Com-
press) by 4–27%. It outperforms the naive strategies (i.e. 
read FASTA or one k-mer per line) by an order-of-mag-
nitude. Interestingly, it outperforms ESS-Tip-Compress 
by only 1–8%; this can be attributed to the large number 
of dead-end vertices (Table 1).

We observe that our improvement in weight (Table 2) 
does not directly translate to improvement after com-
pression with MFC (Table  3). For ESS-Compress, the 
average improvement in weight over UST is 30% but the 
improvement in bits is 17%. We attribute this to the fact 
that MFC works by exploiting redundant regions, based 
on their context. Thus, the redundant sequence that 

ESS-Compress removes is likely the sequence that was 
more compressible by MFC and hence MFC looses some 
of its effectiveness.

We also verified that ESS-Compress can successfully 
compress datasets of varying k-mer sizes (between 21 
and 71) and low-frequency thresholds (2, 3, and 4). Fig-
ure 4 shows compressed sizes of human RNA-seq data in 
bits/k-mer as well as their weights compared to the lower 
bounds. The weight of ESS-Compress closely matches 
the lower bound across all parameters ( < 2.4% gap), but 
the weight and compression size increase for larger k and 
lower thresholds.

Decompression and compression time and memory
The cost of decompression is important since it is 
incurred every time the dataset is used for analysis. For 
both ESS-Compress and ESS-Tip-Compress, the decom-
pression memory is < 1 GB (Table 5) the time is < 10 min 
for the large whole human dataset and < 1.5 minutes for 
the other datasets (Table 4). Both of these are dominated 
by the MFC portion.

Compression is typically done only once, but the time 
and memory use can still be important in some appli-
cations. Tables 5 and 6 show the compression time and 
memory usage. For UST-Compress, the time is domi-
nated by the cdBG construction step (i.e. BCALM2). For 
ESS-Compress, the time and memory are significantly 
increased beyond that. Here, the advantage of ESS-Tip-
Compress stands out. Its run time is nearly the same as 
UST-Compress, and its memory, while higher than UST-
Compress, is significantly lower than ESS-Compress.

Note that MFC is one of many DNA sequence com-
pressors that can be used with our algorithms. MFC is 
known to achieve superior compression ratios but is 
slower for compression/decompression than other com-
petitors [38]. We recommend using MFC since it was not 

Table 6  Compression time, measured in minutes

The column for BOSS includes the time for k-mer counting the reads using KMC [21], the time to run BOSS construction, and the time to run LZMA. The total time 
in UST-Compress, ESS-Tip-Compress and ESS-Compress include the time to compute cdBG from the reads using BCALM. The time to compute cdBG is same for all 
three. The columns labelled core refer to Algorithm 1. ESS-Tip-Compress core uses the specific instance of Algorithm 1 defined in Sect. "ESS-Tip-Compress: a simpler 
alternative"

Dataset BOSS BCALM UST-Compress ESS-Tip-Compress ESS-Compress

UST MFC Total Core MFC Total Core MFC Total

R. sphaeroides 0.2 0.4 0.1 0.1 1 0.1 0.0 1 0.2 0.0 1

Human RNA-seq 4.0 6.6 1.6 0.8 9 1.3 0.7 9 5.0 0.6 12

Gingiva metagenome 4.3 5.5 1.2 0.7 7 1.0 0.7 7 3.4 0.6 10

Soybean 5.7 9.6 0.8 0.6 11 0.7 0.7 11 2.4 0.5 13

Tongue metagenome 7.4 8.7 1.6 0.8 11 1.9 1.1 12 7.6 0.9 17

Whole human 95 106 11 7 124 10 6 122 40 7 152
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the time or memory bottleneck during compression, in 
our datasets.

Discussion
In this paper, we presented a disk compression algorithm 
for k-mer sets called ESS-Compress. ESS-Compress is 
based on the strategy of representing a set of k-mers as 
a set of longer strings with as few total characters as pos-
sible. Once this string set is constructed, it is compressed 
using a generic nucleotide compressor such as MFC. On 
real data, ESS-Compress uses up to 42% less characters 
than the previous best algorithm UST-Compress. After 
MFC compression, ESS-Compress uses up to 27% less 
bits than UST-Compress.

We also presented a second algorithm ESS-Tip-Com-
press. It is simpler than ESS-Compress and does not 
achieve as good of compression sizes. However, the dif-
ference is less than 8% on our data, and it has the advan-
tage of being about twice as fast and using significantly 
less memory during compression. For many users, this 
may be a desirable trade-off.

Our algorithms can also be used to compress informa-
tion associated with the k-mers in K, such as their counts. 
Every k-mer in K corresponds to a unique location in 
the enriched string set. The counts can then be ordered 
sequentially, in the same order as the k-mers appear in 
the string set, and stored in a separate file. This file can 
then be compressed/decompressed separately using a 
generic compressor. After decompression of the enriched 
string set, the order of k-mers in the output SPSS will be 
the same as in the counts file.

We discussed several potential improvements to ESS-
Compress, such as allowing more edges in the compacted 
de Bruijn graph to be absorbing or exploring the space of 
all path covers. We also gave a lower bound to what such 
improvements could achieve and showed they cannot 
gain more than 2% in space on our datasets. This makes 
these improvement of little interest, unless we encounter 
datasets where the gap is much larger.

ESS-Compress works by removing redundant (k − 1)

-mers from the string set, but a more general strategy 
could be to somehow remove ℓ-mer duplicates, for all 
ℓmin ≤ ℓ ≤ k − 1 . Such a strategy would require novel 
algorithms but would still be unable to reduce the charac-
ters per k-mer below one. On our datasets, this amounts 
to at most a 30% improvement in characters, which 
would be further reduced after MFC compression. It is 
also not clear if a 30% improvement in characters is even 
possible, since this kind of strategy would require a more 
sophisticated encoding scheme with more overhead.

Another direction to achieve lower compression sizes 
is to look beyond string set approaches. We observe, for 
example, that the large improvement of ESS-Compress 

compared to UST-Compress, measured in the weight of 
the string set, was significantly reduced when measured 
in bits after MFC compression. This indicates that some 
of the work done by ESS-Compress duplicates the work 
done by MFC on UST, which is itself designed to remove 
redundancy in the input. Thus, generic compressors such 
as MFC could potentially be modified to work directly on 
k-mer sets.

We believe that the biggest opportunity for improv-
ing the two algorithms of this paper are the compression 
time and memory. The time is dominated by the initial 
step of running BCALM2 to find unitigs. It may be possi-
ble to avoid this step by running UST directly on the non-
compacted graph. Such an approach was taken in [28], 
and it would be interesting to see if it ends up improving 
on the memory and run-time of BCALM2. The memory 
usage, on the other hand, can likely be optimized with 
better software engineering. The current implementa-
tion of  Algorithm  2 is done in a memoized bottom-up 
manner. Instead, a top down iterative implementation 
can reduce memory usage by directly writing to disk 
as soon as a vertex is processed. A “max-depth” option 
in  Algorithm  2 could also be used to limit the depth of 
the recursion, thereby controlling memory at the cost of 
the compression ratio.

Another practical extension of ESS-compress is to 
allow the compression of associated information. Each k
-mer, for example, could have an abundance. count asso-
ciated with it. ESS-Compress representation defines an 
ordering on the k-mers. This ordering can be tracked 
through the algorithm and can then be used to sort the 
input associated data in the same order. Then, the asso-
ciated data can be further compressed using LZMA (or 
any suitable compressor) and distributed with the ESS-
Compress representation. The decompression algorithm 
would then similarly track the reordering of k-mers and 
apply the same permutation to the associated data.
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