
Fernández‑Baca and Liu ﻿
Algorithms for Molecular Biology (2021) 16:22
https://doi.org/10.1186/s13015-021-00201-9

RESEARCH

Testing the agreement of trees with internal
labels
David Fernández‑Baca*  and Lei Liu 

Abstract 

Background:  A semi-labeled tree is a tree where all leaves as well as, possibly, some internal nodes are labeled with
taxa. Semi-labeled trees encompass ordinary phylogenetic trees and taxonomies. Suppose we are given a collection
P = {T1, T2, . . . , Tk} of semi-labeled trees, called input trees, over partially overlapping sets of taxa. The agreement
problem asks whether there exists a tree T  , called an agreement tree, whose taxon set is the union of the taxon sets
of the input trees such that the restriction of T to the taxon set of Ti is isomorphic to Ti  , for each i ∈ {1, 2, . . . , k} . The
agreement problems is a special case of the supertree problem, the problem of synthesizing a collection of phyloge‑
netic trees with partially overlapping taxon sets into a single supertree that represents the information in the input
trees. An obstacle to building large phylogenetic supertrees is the limited amount of taxonomic overlap among the
phylogenetic studies from which the input trees are obtained. Incorporating taxonomies into supertree analyses can
alleviate this issue.

 Results:  We give a O(nk(
∑

i∈[k] di + log2(nk))) algorithm for the agreement problem, where n is the total number
of distinct taxa in P , k is the number of trees in P , and di is the maximum number of children of a node in Ti .

Conclusion:  Our algorithm can aid in integrating taxonomies into supertree analyses. Our computational experience
with the algorithm suggests that its performance in practice is much better than its worst-case bound indicates.

Keywords:  Phylogenetic tree, Taxonomy, Agreement, Algorithm

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
In the agreement problem, we are given a collection
P = {T1, T2, . . . , Tk} of rooted phylogenetic trees with
partially overlapping taxon sets. P is called a profile and
the trees in P are the input trees. The question is whether
there exists a tree T whose taxon set is the union of the
taxon sets of the input trees such that Ti is isomorphic
to the restriction of T to the taxon set of Ti , for each
i ∈ {1, 2, . . . , k} . If such a tree T exists, then we call T an
agreement tree for P and say that P agrees; otherwise, P
disagrees.

Here we study a generalization of the agreement prob-
lem, where the internal nodes of the input trees may also
be labeled. These labels represent higher-order taxa; that

is, the labels stand for sets of taxa that may nest within
each other. Thus, for example, an input tree may contain
the taxon Glycine max (soybean) nested within a subtree
whose root is labeled Fabaceae (the legumes), containing
several other taxa, such as Pisum sativum (pea) and Med-
icago sativa (alfalfa). The Fabaceae subtree might itself
be nested within a subtree whose root is labeled Angio-
spermae (flowering plants). Note that leaves themselves
may be labeled by higher-order taxa. For example, the
Fabaceae subtree may contain a leaf labeled Phaseolus,
representing the bean genus. Taxonomies are examples
of internally labeled trees. A taxonomy groups organ-
isms according to a system of taxonomic rank (e.g., fam-
ily, genus, and species). Two well-known taxonomies are
the NCBI taxonomy [23] and the Angiosperm taxonomy
[25].

Open Access

Algorithms for
Molecular Biology

*Correspondence: fernande@iastate.edu
Department of Computer Science, Iowa State University, Ames, IA, USA

http://orcid.org/0000-0002-8563-3637
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00201-9&domain=pdf

Page 2 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22

We present a O(nk(
∑

i∈[k] di + log2(nk))) algorithm
for the agreement problem for trees with internal labels,
where n is the total number of distinct taxa in P , k is the
number of trees in P , and, for each i ∈ {1, 2, . . . , k} , di is
the maximum number of children of a node in Ti . Our
algorithm outputs an agreement supertree for the input
trees if such a tree exists; if there is no agreement super-
tree, the algorithms reports this fact and terminates.

Previous work
Ng and Wormald [18] gave the first explicit polynomial-
time algorithm for the agreement problem for ordinary
rooted phylogenetic trees (i.e., trees without internal
labels)1. To our knowledge, the fastest algorithm for this
problem runs in O(n2k) time, where n is the number of
distinct taxa in P [11].

The aforementioned algorithms are indebted to Aho
et al.’s Build algorithm [1], a relative of the agreement
problem, the compatibility problem. The input to the
compatibility problem is a profile P = {T1, T2, . . . , Tk}
of rooted phylogenetic trees with partially overlapping
taxon sets. The question is whether there exists a tree T
whose taxon set is the union of the taxon sets of the input
trees such that each input tree Ti can be obtained from
the restriction of T to the taxon set of Ti through edge
contractions. If such a tree T exists, we refer to T as a
compatible tree for P and say that P is compatible; other-
wise, P is incompatible.

Compatibility is a less stringent requirement than
agreement: any profile that agrees is compatible, but the
converse is not true. The compatibility problem for ordi-
nary phylogenetic trees is solvable in O(MP log2MP)
time, where MP is the total number of nodes and edges
in the trees of P [10]. Note that MP = O(nk).

Compatibility and agreement reflect two distinct
approaches to dealing with multifurcations; i.e., non-
binary nodes, also known as polytomies. Suppose that
node v is a multifurcation in some input tree of P and
that ℓ1 , ℓ2 , and ℓ3 are taxa in three distinct subtrees of
v. In an agreement tree for P , these three taxa must be
in distinct subtrees of some node in the agreement tree.
In contrast, a compatible tree for P may contain no such
node, since a compatible tree is allowed to “refine” the
multifurcation at v—that is, group two out of ℓ1 , ℓ2 , and
ℓ3 separately from the third. Thus, compatibility treats
multifurcations as “soft” facts; agreement treats them as
“hard” facts [17]. Both viewpoints can be valid, depend-
ing on the circumstances.

The need for agreement trees to respect the multifur-
cations in the input trees appears to make testing for
agreement harder than testing for compatibility. Indeed,
to handle agreement, a costly re-merging step must be
added to Build . In this step, certain sets of the taxon
partition generated by Build are re-combined to reflect
multifurcations [11, 18]. Similar issues are faced when
testing consistency of triples and fans [16]. The situa-
tion is more complex for internally labeled trees, because
internal nodes with the same label, but in different trees,
may jointly imply multifurcations, even if all input trees
are binary.

The agreement and compatibility problems are funda-
mental special cases of the supertree problem, the prob-
lem of synthesizing a collection of phylogenetic trees
with partially overlapping taxon sets into a single super-
tree that represents the information in the input trees [2,
5, 20, 26]. The original supertree methods were limited
to input trees where only the leaves are labeled (that is,
ordinary phylogenetic trees), but there has been increas-
ing interest in incorporating internally labeled trees in
supertree analysis, motivated by the desire to incorporate
taxonomies in these analyses. Taxonomies provide struc-
ture and completeness that can be hard to obtain oth-
erwise [14, 19, 21], offering a way to circumvent one of
the obstacles to building comprehensive phylogenies: the
limited taxonomic overlap among different phylogenetic
studies [22].

Although internally labeled trees, and taxonomies in
particular, are not, strictly speaking, phylogenies, they
have many of the same mathematical properties as phy-
logenies. Both phylogenies and internally labeled trees
are X-trees (also called semi-labeled trees) [6, 24]. Never-
theless, algorithmic results for compatibility and agree-
ment of internally labeled trees are scarce, compared
to those for ordinary phylogenies. To our knowledge,
the first algorithm for testing compatibility of internally
labeled trees is in [8] (see also [4]). The fastest known
algorithm for the problem runs in O(MP log2MP) time
[9]. We are unaware of any previous algorithms for the
agreement problem for internally labeled trees.

Organization of the paper
In the next section (“Preliminaries”), we provide formal
definitions of rooted X-trees and agreement, as well as
a characterization of agreement in terms of lowest com-
mon ancestors. We also introduce the display graph,
which has a central role in our agreement algorithm. The
subsequent section (“Decomposing a Profile”) studies the
decomposability properties of profiles that agree. These
properties allow us to reduce an agreement problem on
a profile into independent agreement problems on sub-
profiles, leading to the agreement algorithm presented

1  These authors refer to what we term “agreement” as “compatibility”. What
we call “compatibility”, they call “weak compatibility”.

Page 3 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22 	

in the section titled “Constructing an agreement sub-
tree”. We report our computational experiences with an
implementation of our algorithm in the section titled
“Experiments”.

Note
This paper is an extended version of conference paper
[13]. The present version contains proofs and has a new
section describing our computational experience with an
implementation of our algorithm.

Preliminaries
For each positive integer r, [r] denotes the set {1, . . . , r}.

Graphs and trees
Let G be a graph. V(G) and E(G) denote the node and
edge sets of G. Let U be a subset of V(G). The subgraph
of G induced by U is the graph whose vertex set is U and
whose edge set consists of all of the edges in E(G) that
have both endpoints in U. We write G \U to denote the
graph obtained by deleting from G the nodes in U, along
with their incident edges.

Let u and v be two nodes in V(G). Node v is reachable
from u if there exists a path from u to v. The connected
components of G are the equivalence classes of nodes
under the “is reachable from” relation. Let U and W be
two subsets of V(G). We say that U and W are discon-
nected if no node in W is reachable from a node in U.

A tree is an acyclic connected graph. All trees here
are assumed to be rooted. For a tree T, r(T) denotes the
root of T. Suppose u, v ∈ V (T) . Then, u is an ancestor
of v in T, denoted u ≤T v , if u lies on the path from v to
r(T) in T. If u ≤T v , then v is a descendant of u. Node u
is a proper ancestor of v, denoted u <T v , if u ≤T v and
u = v . We write u ‖T v if neither u ≤T v nor v ≤T u . If
{u, v} ∈ E(T) and u ≤T v , then u is the parent of v and v
is a child of u.

Consider any x ∈ V (T) . We write parentT (x) and
ChT (x) to denote the parent of x and the set of children
of x, respectively. The subtree of T rooted at x, denoted
T(x), is the subtree of T consisting of all y ∈ V (T) such
that x ≤T y . We say that node x is a multifurcation if
|ChT (x)| > 2.

We extend the child notation to subsets of V(T) in the
natural way: for U ⊆ V (T) , ChT (U) =

⋃
u∈U ChT (u) .

Thus, if U = ∅ , ChT (U) = ∅.
Let T be a tree and suppose U ⊆ V (T) . The lowest com-

mon ancestor of U in T, denoted LCAT (U) , is the unique
smallest upper bound of U under ≤T . A node x ∈ U is
a minimal node of T in U if for all y ∈ U  , either x ‖T y
or x ≤T y . Note that a set U may have multiple minimal
nodes and that for any x ∈ V (T) , x = LCAT (V (T (x))
and x is the unique minimal node of T(x) in V(T(x)).

Rooted X‑trees
Throughout the paper, X denotes a set of labels (that
is, taxa, which may be, for instance, species or fami-
lies of species). A rooted X-tree (or X-tree, for short),
also known as a semi-labeled tree, is a pair T = (T ,φ)
where T is a rooted tree and φ is a mapping from X to
V(T) such that, for every node v ∈ V (T) with at most
one child, v ∈ φ(X) . X is the label set of T and φ is the
labeling function of T  . For every node v ∈ V (T) , φ−1(v)
denotes the (possibly empty) subset of X whose ele-
ments map into v; these elements as the labels of v. If
φ−1(v) �= ∅ , then v is labeled; otherwise, v is unlabeled.
For U ⊆ V (T) , we write φ−1(U) to denote

⋃
u∈U φ−1(u).

By definition, every leaf in an X-tree is labeled, and
any node, including the root, that has a single child
must be labeled. Nodes with two or more children may
be labeled or unlabeled. An X-tree T = (T ,φ) is singu-
larly labeled if every node in T has at most one label; T
is fully labeled if every node in T is labeled.

X-trees generalize ordinary phylogenetic trees (also
known as phylogenetic X-trees [24]). An ordinary phy-
logenetic tree is a semi-labeled tree T = (T ,φ) where
r(T) has at least two children and φ is a bijection from X
into leaf set of T (thus, internal nodes are not labeled).

Let T = (T ,φ) be an X-tree. For each u ∈ V (T) ,
X(u) denotes the set of all labels in T(u); that is,
X(u) =

⋃
v:u≤T v

φ−1(v) . X(u) is called a cluster of T.
Cl(T) denotes the set of all clusters of T  . We extend
the cluster notation to sets of nodes as follows. Let U
be a subset of V(T). Then, X(U) =

⋃
v∈U X(v) . If U = ∅ ,

then X(U) = ∅.
Suppose Y ⊆ X for an X-tree T = (T ,φ) .

The restriction of T to Y, denoted T |Y  , is
the semi-labeled tree whose cluster set is
Cl(T |Y) = {W ∩ Y : W ∈ Cl(T) andW ∩ Y �= ∅}.
Intuitively, T |Y is obtained from the minimal rooted
subtree of T that connects the nodes in φ(Y) by sup-
pressing all vertices v such that v /∈ φ(Y) and v has only
one child.

Let T = (T ,φ) be an X-tree and T ′ = (T ′,φ′) be
an X ′-tree such that X ′ ⊆ X . T agrees with T ′ if
Cl(T ′) = Cl(T |X ′) . It is well known that the clusters of
a tree determine the tree, up to isomorphism [24, The-
orem 3.5.2]. Thus, T agrees with T ′ if T ′ and T |X ′ are
isomorphic.

Profiles and agreement
Throughout the rest of this paper, P denotes a set
{T1, T2, . . . , Tk} such that, for each i ∈ [k] , Ti = (Ti,φi) is
an Xi-tree for some label set Xi (Fig. 1). We refer to P as
a profile, and to the trees in P as input trees. We write XP
to denote

⋃
i∈[k] Xi.

Page 4 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22

A profile P agrees if there is an XP-tree T that agrees
with each of the trees in P . If T exists, we refer to T as an
agreement tree for P . See Fig. 2.

Given a subset Y of XP , the restriction of P
to Y, denoted P|Y  , is the profile defined as
P|Y = {T1|Y ∩ X1, T2|Y ∩ X2, . . . , Tk |Y ∩ Xk}.

Lemma 1  Suppose a profile P has an agreement tree T
. Then, for any Y ⊆ XP , T |Y is an agreement tree for P|Y .

Proof  Consider any i ∈ [k] . Since T agrees with Ti ,
A ∈ Cl(Ti) if and only if A ∈ Cl(T |Xi) . Thus, for any
Y ⊆ XP , if Yi = Y ∩ Xi , then A ∩ Yi ∈ Cl(Ti|Yi) if and
only if A ∩ Y ∈ Cl(T |Yi) . The lemma follows.

We can convert a profile P containing trees that are not
fully labeled into an equivalent profile P ′ of fully-labeled
trees as follows. For each i ∈ [k] , let li be the number of
unlabeled nodes in Ti . Create a set X ′ of n′ =

∑
i∈[k] li

labels such that X ′ ∩ XP = ∅ . For each i ∈ [k] and each
v ∈ V (Ti) such that φ−1

i (v) = ∅ , make φ−1
i (v) = {ℓ} ,

where ℓ is a distinct element from X ′ . We refer to P ′ as
the profile obtained by adding distinct new labels to P .
See Fig. 1.

The proof of the next result is analogous to that of [8,
Lemma 3.4].

Lemma 2  Let P ′ be the profile obtained by adding dis-
tinct new labels to P. Then, P agrees if and only if P ′
agrees. Further, if T is an agreement tree for P ′, then T is
also an agreement tree for P.

Proof  Let P ′ = {T ′
1 , T

′
2 , . . . , T

′
k } . For each i ∈ [k] , let X ′

i
be the set of new labels added to Ti to obtain T ′

i  . By def-
inition, if T is an agreement tree for P ′ , then, for each
i ∈ [k] , A ∈ Cl(T ′

i) if and only if A ∈ Cl(T |(Xi ∪ X ′
i)) . To

prove the lemma, it suffices now to show that, for each
i ∈ [k] , A ∈ Cl(T ′

i) if and only if A ∩ Xi ∈ Cl(Ti) . We omit
the details. �

�

From this point forward, we make the following
assumption.

Assumption 1  For each i ∈ [k] , Ti is fully and singularly
labeled.

Lemma 2 implies that no generality is lost in assum-
ing that all trees in P are fully labeled. Note that even if
the trees in P are singularly labeled, a tree that agrees
with P is not necessarily singularly labeled. See Fig. 2.

By Assumption 1, for each i ∈ [k] , there is a bijection
between the labels in Xi and the nodes of V (Ti) . (As
noted earlier, however, if T = (T ,φ) is an agreement
tree for P , then φ is not in general a bijection between
XP and V(T).) For this reason, we will often refer to
nodes of the input trees by their labels. In particular,
given a label ℓ ∈ Xi , we write Xi(ℓ) to denote Xi(φi(ℓ))
(the cluster of Ti at the node labeled ℓ ), ChTi(ℓ) to
denote φi(ChTi(φi(ℓ)) (the labels of children of ℓ in Ti ),
and ChTi(A) to denote φ−1

i (ChTi(φi(A)) , for A ⊆ Xi.
The following characterization of agreement general-

izes a result in [11].

Lemma 3  Let P be a profile and T = (T ,φ) be an XP

-tree. Then, T is an agreement tree for P if and only if for
each i ∈ [k] and each label a ∈ Xi ,

Fig. 1  A profile P = {T1,T2,T3,T4} . The letters are the original labels; grey numbers are labels added to make the trees fully labeled. We use this
profile as a running example throughout the paper

Fig. 2  An agreement tree for P . Although all input trees are
singularly labeled, the agreement tree is not

Page 5 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22 	

	(E1)	 φ(a) = LCAT (Xi(a)),
	 (E2)	 for each label b ∈ ChTi(a) , φ(a) <T φ(b) , and
	(E3)	 for every two distinct labels b, c ∈ ChTi(a) , there

exist distinct nodes u, v ∈ ChT (φ(a)) such that
φ(b) ∈ XP(u) and φ(c) ∈ XP(v).

Proof  (If) Suppose that φ satisfies conditions (E1)–
(E3). To prove that T agrees with Ti , we show that
Cl(Ti) = Cl(T |Xi).

First, we show that Cl(Ti) ⊆ Cl(T |Xi) by argu-
ing that Xi(a) = XP(φ(a)) ∩ Xi , for each a ∈ Xi . By
(E1), Xi(a) ⊆ XP(φ(a)) . Now, suppose that there
is a label b ∈ XP(φ(a)) ∩ Xi such that b /∈ Xi(a) .
Let c = LCATi(Xi(a) ∪ {b}) . Then, since b /∈ Xi(a) ,
Xi(a) ⊂ Xi(c) . Hence, c <Ti a and, by (E2), φ(c) <T φ(a) .
Thus, (i) there exist distinct labels d, d′ ∈ ChT1(c)
such that a ∈ Xi(d) and b ∈ Xi(d

′) . but (ii) since
a, b ∈ XP(φ(a)) ∩ Xi , there is a single child u of ChP(c)
such that a, b ∈ XP(v) , contradicting condition (E3).

Next, we prove that Cl(T |Xi) ⊆ Cl(Ti) . Suppose, to the
contrary, that there is a cluster Y ∈ Cl(T |Xi) \ Cl(Ti) . Let
u = LCAT (Y) ; thus, Y = XP(u) ∩ Xi . Let a = LCATi(Y) .
Then, Y ⊂ Xi(a) . Choose any b ∈ Xi(a) \ Y  ; thus, a ≤Ti b .
Note that b /∈ XP(u) and φ(a) <T u . We have two cases.

	(i)	 a = b . Then, a <Ti b . On the other hand, we have
either φ(a) ≥T φ(b) or φ(a) ‖T φ(b) , contradict-
ing (E2).

	(ii)	 a = b . Then, there exist distinct labels
c1, c2 ∈ ChTi(a) such that Y ∩ Xi(cj) �= ∅
and Y ⊆ Xi(cj) , for j ∈ [2] . By (E1),
φ(a) = LCAT (Xi(a)) . Since φ(a) <T u , there
exists a unique node v ∈ ChT (u) such that
Y ⊂ XP(v) . But then φ(c1) and φ(c2) descend from
the same child, v, of φ(a) , contradicting condition
(E3).

(Only if) Suppose that T agrees with Ti . It is straight-
forward to show that φ must satisfy (E1). Thus, we focus
on conditions (E2) and (E3).
Suppose condition (E2) does not hold. Then, there
exists a label b ∈ ChTi(a) , such that φ(a) ≥T φ(b) . Since
XP(φ(b)) = XP(φ(a)) , we must have φ(a) >T φ(b) . But
then T does not agree with Ti , a contradiction.

Suppose condition (E3) does not hold. Then,
there exist distinct labels c, c′ ∈ ChTi(a) such that
{φ(c),φ(c′)} ⊆ XP(v) , for some v ∈ ChT (φ(a)) . But then
T |Xi contains cluster Y = XP(v) ∩ Xi , which is not in Ti ,
contradicting the assumption that T agrees with Ti . �

Lemma 4  If profile P agrees, then P has an agree-
ment tree T = (T ,φ) such that φ−1(v) �= ∅ for each node
v ∈ V (T).

Proof  Suppose there is a node v ∈ V (T) such that
φ−1(v) = ∅ . Note that v cannot be a leaf. Let u1,u2, . . . ,ud
be the children of v. We use the following fact.

Fact. For each i ∈ [k] , there is at most one j ∈ [d] such
that XP(uj) ∩ Xi �= ∅.Proof  Assume to the con-
trary that there exist distinct j, j′ ∈ [d] such that
W = XP(uj) ∩ Xi �= ∅ and W ′ = XP(uj′) ∩ Xi �= ∅ .
Let c = LCATi(W) and c′ = LCATi(W

′) and let
a = LCATi(W ∪W ′) . Then, c and c′ are in distinct sub-
trees of Ti(a) . By Lemma 3, φ(c) and φ(c′) are in dis-
tinct subtrees of v and v = φ(a) . But this contradicts the
assumption that φ−1(v) = ∅ .

Now, choose any j ∈ [d] . Let T ′ be the tree obtained
by contracting the edge (v,uj) ∈ E(T) . That is, T ′ is
obtained by eliminating edge (v,uj) , deleting uj , and
making ChT ′(v) = ChT (v) ∪ ChT (uj) . Let T ′ = (T ′,φ′) ,
where (φ′)−1(w) = φ−1(w) , if w ∈ V (T) \ {v,uj} , and
(φ′)−1(v) = φ−1(v) ∪ φ−1(uj) . Then, the above fact
implies that, for each i ∈ [k] , Cl(T |Xi) = Cl(T ′|Xi) . That
is, T ′ is also an agreement tree for P . Let T ′′ = (T ′′,φ′′)
be the tree that results from repeating this contraction
operation until it no longer applies. Then, T ′′ satisfies
(φ′′)−1(v) �= ∅ for each node v ∈ V (T ′′) .

The display graph
The display graph of a profile P , denoted HP , is the graph
obtained from the disjoint union of the underlying trees
T1, . . . ,Tk of P by identifying nodes that have the same
label (parallel edges are replaced by a single edge) [7, 9,
10]. See Fig. 3. As we shall see, HP plays a major role in
our agreement algorithm.
HP has O(nk) nodes and edges, and can be constructed

in O(nk) time. By Assumption 1, there is a bijection
between the labels in X and the nodes of HP . Thus, from
this point forward, we refer to the nodes of HP by their
labels.

Decomposing a profile
A position in a profile P is a tuple π = (π1,π2, . . . ,πk)
where πi ⊆ Xi , for each i ∈ [k] . At any given point during
its execution, our agreement algorithm focuses on testing
the agreement of the subprofile of P determined by the
subtrees associated with a specific position.

�

�

Page 6 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22

The initial position for P is the position π init , where,
for each i ∈ [k] , π init

i is a singleton set consisting of the
label of r(Ti) ; i.e., π init

i = φ−1
i (r(Ti)) . In the profile of

Fig. 1, π init = ({1}, {4}, {g}, {6}).
Note that the definition of a position allows for the

existence of i, j ∈ [k] , i = j , such that ℓ ∈ πi , but ℓ /∈ πj ,
even if ℓ ∈ Xi and ℓ ∈ Xj . Thus, for example, in the
profile of Fig. 1, we have g ∈ π init

3  , but g /∈ π init
2  , even

though g appears in trees T3 and T2.
For a position π in P , let XP(π) denote the set of

labels
⋃

i∈[k] Xi(πi) . HP(π) denotes the subgraph of HP
induced by XP(π) . Thus, HP(π

init) = HP.
A position π in P is valid if, for each i ∈ [k],

Thus, if π is valid, then, for each i ∈ [k] such that
Xi ∩ XP(π) �= ∅ , component πi consists of a single label
ℓ such that Ti(ℓ) contains every label in HP(π) that also
belongs to Xi . Clearly, π init is a valid position.

Let π be a valid position. A label ℓ ∈
⋃

i∈[k] πi is
exposed in π if πi = {ℓ} for every i ∈ [k] such that
ℓ ∈ Xi ∩ XP(π) . A set S ⊆

⋃
i∈[k] πi is an exposed subset

in π (exposed subset for short, when π is understood) if
every label ℓ ∈ S is exposed.

Consider the initial position π init of the profile of
Fig. 1. Label 1 is exposed in π init since π init

1 = {1} and
label 1 exists only in T1 . Similarly, labels 4 and 6 are
both exposed. On the other hand, label g is not exposed,
since it appears in trees T2 and T3 , but g /∈ π init

2  , even
though π init

3 = {g}.
We say that a position π has an agreement tree if

P|XP(π) has an agreement tree.

Lemma 5  A profile P has an agreement tree if and only
if there exists an agreement tree for every valid position π
in P.

(1)

πi =

{
{LCATi(Xi ∩ XP(π))}, if Xi ∩ XP(π) �= ∅,
∅, otherwise

Proof  (Only if) Suppose P has an agreement tree T  .
For any valid position π in P , XP(π) ⊆ XP . Thus, by
Lemma 1, T |XP(π) is an agreement tree for π.

(If) Suppose there is an agreement tree for every valid posi-
tion π in P . Then, in particular, there exists an agreement tree
T for the initial position π init of P . Since XP(π

init) = XP , T
must also be an agreement tree for P .

Decomposing a position
In what follows, π denotes a valid position in P . For each
i ∈ [k] such that πi = ∅ , ℓi ∈ Xi denotes the single label
in πi.

Let S be an exposed subset of π . We say that S is nice if
for each connected component W of HP(π) \ S , the posi-
tion πW = (πW

1 ,πW
1 , . . . ,πW

k) defined as follows is valid:

Observe that if S is nice, W = XP(π
W), for each con-

nected component W of HP(π) \ S.

If S is a nice exposed set, we refer to the set
{πW : W is a connected component of HP(π) \ S}
of valid positions as the successor positions of π (with
respect to S).

A good decomposition of π is a pair (S,�) , where S
is a nice exposed subset and � is the collection of suc-
cessor positions of π with respect to π . Note that
XP(π) = S ∪

⋃
π ′∈� XP(π

′) . Note also that we allow S or
� to be empty.

Consider the profile of Fig. 1, whose display graph
is in Fig. 3. Let S = {1} . Figure 4 shows HP(π

init) \ S .
HP(π) \ S has two connected components, W1 = {d} and
W2 = {2, 3, 4, 5, 6, a, b, c, e, f , g , h, i, j, k , l} . Then, by Eq. (2),
the corresponding positions are

�

(2)πW
i = {a : a is a minimal label ofTiinXi ∩W }.

πW1 = ({d}, ∅, ∅, ∅) and πW2 = ({2}, {4}, {g}, {6}).

Fig. 3  Display graph. The display graph HP of the profile of Fig. 1
Fig. 4  A decomposition of π init . HP \ {1} . Each connected
component corresponds to a distinct successor position of π init

Page 7 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22 	

Positions πW1 and πW2 are clearly valid positions. There-
fore, S is nice and (S,�) , where � = {πW1 ,πW2} , is a
good decomposition of π init.

The next result is central to our agreement algorithm.

Lemma 6  Let π be a valid position in a profile P. Then,
π has an agreement tree if and only if there exists a good
decomposition (S,�) of π such that S = ∅ and, for each
position π ′ ∈ � , π ′ has an agreement tree. If such a
good decomposition exists, then π has an agreement tree
T = (T ,φ) where φ−1(r(T)) = S.

Proof  (Only if) Suppose position π has an agree-
ment tree T = (T ,φ) (thus, T is an XP(π)-tree). Let
S = φ−1(r(T)) . By Lemma 4, we can assume that S = ∅ .
Note that every label ℓ ∈ S must be in

⋃
i∈[k] πi . Further,

ℓ must be exposed in π . Indeed, if ℓ is not exposed, there
exists an i ∈ [k] such that πi = {ℓ′} , where ℓ′ <Ti ℓ , so
ℓ /∈ φ−1(r(T)) , a contradiction.

If T consists of a single node u = r(T) , then we must
have S =

⋃
i∈[k] πi = XP(π) . Then, (S, ∅) is trivially a

good decomposition of π.

Now, suppose ChT (r(T)) = {v1, v2, . . . , vd} , where d ≥ 1 .
For each j ∈ [d] , let T (j) = T |XP(vj) . By Lemma 1, T (j) is
an agreement tree for P|XP(vj) . For each i ∈ [k] and each
j ∈ [d] such that Xi ∩ XP(vj) �= ∅ , let

Thus, ℓ(j)i is the root of Ti|
(
Xi ∩ XP(vj)

)
.

For each j ∈ [d] , define a position π(j) , where, for each
i ∈ [k],

Let � = {π(1),π(2), . . . ,π(d)} . By construction, for
each j ∈ [d] , π(j) satisfies Eq. (1), so π(j) is valid. Since
XP(vj) = XP(π

(j)) , T (j) is an agreement tree for π(j).

For any j′ ∈ [d] such that j′ �= j, XP(π
(j)) and XP(π

(j′))
are disconnected in HP(π) \ S, since every path
between the two sets must go through a label in S.
Note, however, that XP(π

(j)) may contain multiple
connected components of HP(π) \ S . For each con-
nected component W of HP(π

(j)) , let T (j,W) = T (j)|W
and let π(j,W) be the position where π(j,W)

i = π
(j)
i ∩W  ,

for each i ∈ [k] . Then, T (j,W) is an agreement tree for
π(j,W).

ℓ
(j)
i = LCATi(Xi ∩ XP(vj)).

π
(j)
i =

{{
ℓ
(j)
i

}
if Xi ∩ XP(vj) �= ∅

∅ otherwise.

Let � consist of all positions π(j,W) such that j ∈ [d] and
W is a connected component of HP(π

(j)) . Then (S,�) is
a good decomposition of π , where each position in � has
an agreement tree.

(If) Let (S,�) be a good decomposition of π such that
S = ∅ and each position in � has an agreement tree. If
� = ∅ , then we must have S = XP(π) . Further, for each
i ∈ [k] such that πi = ∅ , it must be the case that Ti con-
sists of a single node, labeled by the single label in πi . Let
T be the tree consisting of a single node u = r(T) and let
φ(ℓ) = u , for all u ∈ S . Then, T = (T ,φ) is an agreement
tree for π.

Now suppose � = ∅ . Let � = {π(1),π(2), . . . ,π(d)} . For
each j ∈ [d] , let T (j) = (T (j),φ(j)) be an agreement tree
for π(j) , and let vj be the root of T (j) . Let T = (T ,φ) be the
XP(π)-tree where T is assembled by creating a new node
u and making ChT (u) = {v1, v2, . . . , vd} and, for each
ℓ ∈ XP(π) , φ(ℓ) is defined as

Since (S,�) is a good decomposition,
S ∪

⋃
j∈[k] XP(π

(j)) = XP(π) . Thus, T is an XP(π)-tree.
We prove that T is an agreement tree for π , by showing
that, for each i ∈ [k] , φ satisfies properties (E1)–(E3) of
Lemma 3.

By Lemma 3 every label in Ti|Xi(π
(j)
i) satisfies (E1)–

(E3). For each j ∈ [d] , let ℓi be the label of the root of
Ti|Xi(π

(j)
i) . There are two possibilities:

	(i)	 ℓi ∈ φ−1(u) . Then, each of ℓi ’s children must be in a
distinct subtree of u. Thus, properties (E1)–(E3) are
satisfied.

	(ii)	 ℓi ∈ φ−1(u) . Then, ℓi and all of its children must be
contained in a single subtree, say Tj , of u, and the
claim follows from the fact that φ(j) satisfies prop-
erties (E1)–(E3).

Good partitions
To find a good decomposition of a position π , it is con-
venient to work with partitions of the set of children of
the labels in π . We write ChP(π) to denote the set of all
children of some label in π ; i.e., ChP(π) =

⋃
i∈[k] ChTi(πi)

.

φ(ℓ) =

{
u if ℓ ∈ S

φ(j)(ℓ) if ℓ ∈ XP(π
(j)).

�

Page 8 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22

Let S be an exposed subset of π . The partition of
ChP(π) induced by S, denoted �(S) , is the set consist-
ing of all A ⊆ ChP(π) such that A = ChP(π) ∩W for
some connected component W of HP(π) \ S

Lemma 7  Let S be a subset of the exposed nodes in a
valid position π . S is a nice set for π if and only if for every
set A ∈ �(S) and each a ∈ ∪i∈[k]πi the following holds for
all i ∈ [k] such that ChTi(a) ∩ A �= ∅ .

	(N1)	 If a ∈ S , then |ChTi(a) ∩ A| = 1.
	(N2)	 If a /∈ S , then ChTi(a) ⊆ A.

Proof  Consider any A ∈ �(S) . Let W be the connected
component of HP(π) \ S containing A and let πW be the
position defined by Eq. (2). To prove the lemma, we show
that πW is valid if and only if conditions (N7) and (N7)
hold.

(=⇒ ) Suppose πW is valid.

Consider any label a ∈ S and any i ∈ [k] such that
ChTi(a) ∩ A �= ∅ . Since πW is valid, πW

i = {b} , where
b = LCATi(Xi ∩W) . Thus, b is a minimal label of Ti in
Xi ∩W  , and so b ∈ ChTi(a) . Thus |ChTi(a) ∩W | = 1 ,
and (N7) holds.

Consider any label a ∈
⋃

i∈[k] πi \ S such that
ChTi(a) ∩ A �= ∅ . Then, every node in Ti(a) must lie
inside W and, since π is valid, a is minimal in Xi ∩W  .
Thus, πW

i = πi . Since a remains connected to all its chil-
dren, ChTi(a) ⊆ Aj , and thus (N7) holds.

(⇐= ) Suppose that for every a ∈ ∪i∈[k]πi and every
i ∈ [k] such that ChTi(a) ∩ A �= ∅ , condition (N7) or (N7)
holds, depending on whether or not a ∈ S.

Suppose a ∈ S . Consider any i ∈ [k] such that
ChTi(a) ∩ A �= ∅ . By (N7), A contains only one child
c ∈ ChTi(a) . We claim that c = LCATi(Xi ∩W) . Assume,
to the contrary that W contains another label c′ from
Ti(a) , but c′ /∈ V (Ti(c)) . By (N7), c′ /∈ ChTi(a) . Suppose c′
is some descendant of another child b of a. But b must
also be in W, contradicting (N7). Therefore, c is the mini-
mal label of Ti in Xi ∩W .

Suppose a ∈
⋃

i∈[k] πi \ S . By condition (N7), V (Ti(a))
must be contained in W, and a is the minimal label of Ti
in Xi ∩W because a is the root of Ti(a).

Hence, πW is valid, for each connected component W of
HP(π) \ S . Therefore, S is nice. �

Suppose S is a nice exposed subset in a valid position π
and let A be any set in �(S) . The position associated with
A is the position πA , where, for each i ∈ [k] , πA

i is defined
as follows. If πi = ∅ , then πA

i = ∅ . Otherwise, let a be the
single element in πi . Then,

Consider the profile of Fig. 1, whose display graph is in
Fig. 3. Note that

Let S = {1}. It can be verified that the partition
�(S) = {A,B} of ChP(π init) where

satisfies the conditions of Lemma 7. Thus, S is a nice
exposed subset. Using Eq. (3), we obtain

Observe that (S,�) , where � = {πA,πB} , is precisely the
good decomposition of position π init presented in the
previous section. The next lemma shows that this is not
a coincidence.

Lemma 8  Suppose S is a nice exposed subset of π. Let
� = {πA : A ∈ �(S)}. Then, (S,�) is a good decomposi-
tion of π.

Proof  Let A be any set in �(S) , W be the connected
component of HP(π) \ S that contains A, and πW
be the position defined by Eq. (2). Since S is a nice set,
πW is valid. To prove the lemma it suffices to show that
πA = πW  . Consider each i ∈ [k].

•	 If πi = ∅ , then we have πA
i = πW

i = ∅.
•	 Now, suppose πi = {a} , for some a ∈

⋃
i∈[k] πi.

–	 If a ∈ S , then, by Lemma 7, ChTi(a) ∩ A = {c} , for
some c ∈ ChTi(a) . Then, πA

i = {c} . Since a /∈ W  , c
must be the minimal label of Ti in Xi ∩W  . There-
fore, πA

i = πW
i = {c}.

–	 If a /∈ S , then, by Lemma 7, ChTi(a) ⊆ A . Then,
a ∈ W and, hence, a is the minimal label of Ti in
Xi ∩W  . Therefore, πA

i = πW
i .

Thus, πA = πW as claimed.
Motivated by Lemma 8, we say that a pair (S,�(S))

is a good partition of ChP(π) if the pair (S,�) where
� = {πA : A ∈ �(S)} is a good decomposition of π.

(3)πA
i =

{
ChTi(a) ∩ A if a ∈ S, and
πi if a /∈ S.

ChP(π
init) = {2, d, b, c, g , k , 5, f , i, j, l}.

A = {d} and B = {2, b, c, g , k , 5, f , i, j, l}

πA = ({d}, ∅, ∅, ∅) and πB = ({2}, {4}, {g}, {6}).

�

Page 9 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22 	

Maximal good decompositions
A valid position π may have many possible nice exposed
sets. We are interested in finding a maximal nice exposed
subset; that is, a set S such that S′ ⊆ S , for every nice
exposed subset S′ of π.

Lemma 9  Let π be a valid position in a profile P. Then,
π has a unique maximal nice exposed subset.

To prove Lemma 9, we need an auxiliary result.

Lemma 10  Let S and S′ be two nice exposed subsets of π.
Then S′′ = S ∪ S′ is also a nice exposed subset of π.

Proof  Since S and S′ are exposed subsets, so is S′′ . By
Lemma 7, the result follows from the next fact.

Fact. Consider any set A ∈ �(S′′) and any label
a ∈

⋃
i∈[k] πi . Then, for each i ∈ [k] such that

ChTi(a) ∩ A �= ∅ , |ChTi(a) ∩ A| = 1 if a ∈ S′′ and
ChTi(a) ⊆ A if a /∈ S′′.

There are two cases to consider.

•	 Suppose a ∈ S′′ . Then, either a ∈ S or a ∈ S′ .
Assume without loss of generality that a ∈ S . Set A
is contained in some set in B ∈ �(S) . By Lemma 7,
|ChTi(a) ∩ B| = 1 . Thus, |ChTi(a) ∩ A| ≤ 1 . But
ChTi(a) ∩ A �= ∅ , so |ChTi(a) ∩ A| = 1.

•	 Suppose a /∈ S′′ . Since a /∈ S and a /∈ S′ and
ChTi(a) ∩ A �= ∅ , the connected component of

HP(π) \ S
′′ containing A contains a and thus

ChTi(a) ⊆ A.

Proof of Lemma 9  Suppose, on the contrary, that there
exist at least two distinct maximal nice exposed subsets
S, S′ . By Lemma 10, S′′ = S ∪ S′ is also a nice exposed
subset of π . But S ⊂ S′′ , contradicting the maximality of
S.

Corollary 1  Let π be a valid position in a profile P and
S be the maximal nice exposed subset of π. If π has an
agreement tree, then S = ∅.

Proof  Suppose, on the contrary, that π has an agreement
tree, but S = ∅ . Then, by Lemma 9, every nice exposed
subset in π must be empty. But, by Lemma 6, this implies
that π has no agreement tree, a contradiction. �

Let S be the maximal nice exposed subset in π and � be
the set of successor positions of π with respect to S. We
refer to (S,�) as the maximal good decomposition of π.

Constructing an agreement tree
Algorithm BuildAST(Algorithm 1) takes as input a pro-
file P on a set of labels X and either returns an agreement
tree for P or reports that no such tree exists. BuildAST
assumes the availability of an algorithm Decompose,
to be described later, that, given a valid position π in P ,
returns a maximal good decomposition (S,�) of π.

�

�

Algorithm 1: Testing agreement

Page 10 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22

BuildAST proceeds from the top down, starting from
the initial position π init of P , attempting to construct
an agreement tree for P in a breadth-first manner. Like
other algorithms based on breadth-first search, Build-
AST uses a queue, which stores pairs 〈π , pred〉 where π is
a position in P and pred is a reference to the parent of
the tree node (potentially) to be created for π . At the out-
set, the queue contains only the pair 〈π init,null〉 , corre-
sponding to the root of the agreement tree, which has no
parent.

At each iteration of its outer while loop (lines 3–13),
BuildAST extracts a pair 〈π , pred〉 from its queue and
invokes Decompose to obtain a maximal good decom-
position (S,�) of π . If S = ∅ , then, by Corollary 1, no
agreement tree for π exists. BuildAST reports this fact
(line 7) and terminates.

If S = ∅ , BuildAST creates a tree node r(π) for π ;
r(π) is the tentative root for the agreement tree for π . By
Lemma 6, if π has an agreement subtree, then it has an
agreement tree where φ(ℓ) = r(π) . Lines 10–11 set up
the mapping φ accordingly. Also by Lemma 6, if π has
an agreement tree, then so does each position π ′ ∈ � ;
furthermore, the roots of the trees for each position in
� will be the children of r(π) . Thus, BuildAST adds
�π ′, r(π)� , for each π ′ ∈ � to the queue, to ensure that π ′

is processed at a later iteration and that the root of the
agreement tree constructed for π ′ (if such a tree exists)
has r(π) as its parent (lines 12–13). Therefore, if Buil-
dAST terminates without reporting disagreement ,
the result returned in line 14 is an agreement tree for P .
BuildAST indeed terminates, because there are only
two possibilities at any given iteration: either the algo-
rithm terminates reporting disagreement or (since
S = ∅ ) the maximal good decomposition (S,�) of π has
the property that

⋃
π ′∈� XP(π

′) is a proper subset of
XP(π) . The number of iterations of BuildAST cannot
exceed the total number of nodes in an agreement tree
for P , which is O(n). Thus, we have the following result.

Theorem 1  Given a profile P = {T1, T2, . . . , Tk} , Buil-
dAST returns an agreement tree T for P, if such a tree
exists; otherwise, BuildAST returns disagreement.
The total number of iterations of BuildAST’s outer loop
is O(n).

Finding the maximal good decomposition
Algorithm 2: Computing the maximal good
decomposition.

Page 11 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22 	

Algorithm Decompose (Algorithm 2) computes a
maximal good decomposition of a position π . Through-
out its execution, Decomposemaintains a set S that is
a superset of the maximal nice exposed subset of π and
a partition Ŵ of ChP(π) . We will argue that before and
after every iteration of the while loop of Lines 5–11,
Ŵ = �(S) . We will also show that, after the loop termi-
nates, S is a maximal nice exposed subset. Lines 12–20
use S and �(S) to compute the maximal good decom-
position of π . Next, we describe and analyze Decom-
posein detail.

Lines 2 and 3 of Decomposeinitialize S to contain all
exposed labels in π and K to consist of the indices of
the trees in P that contain the labels in S. Line 11 ini-
tializes Ŵ using HP(π) . We say that a label ℓ ∈ S is bad
if there exist i ∈ K and A ∈ Ŵ such that πi = {ℓ} and
|ChTi(ℓ) ∩ A| ≥ 2 . Intuitively, a label ℓ is bad if ℓ must
be a multifurcation in any agreement tree for P , but at
least two of ℓ ’s children lie in the same set in Ŵ , while
the others lie in different sets.

Lines 5–11 of Decompose construct the maximal
nice exposed subset by deleting bad labels from S and
merging sets in Ŵ accordingly. Conceptually, remov-
ing a bad label from S is equivalent to reinserting it
into the graph. Thus, the union operations in the while
loop of lines 5–11 can be interpreted as reconnecting
bad labels to their children. In the implementation of
Decompose, however, labels and the edges to their
children are only deleted once. To understand why
this is possible, observe that once a label ℓ becomes
exposed in a position π , it remains exposed in every
position where ℓ subsequently appears, until it is finally
deleted from the graph or BuildASTterminates. Thus,
conceptually, at every call to Decomposewhere ℓ is
exposed, lines 2–11 add ℓ to S and delete ℓ from the
graph, but then an iteration of lines 5–11 may possibly
delete ℓ from S and reinsert it into the graph. Instead,
our implementation of Decomposedeletes ℓ only once.
When an iteration of lines 5–11 calls for deleting ℓ
from S, instead of adding ℓ back to the graph, we put
the various components that would have been reunited
into a “virtual” connected component (a similar idea is
used in [11]). We elaborate on our approach in the next
section.

Lemma 11  Let π be a valid position in a profile P and
let S∗ be the maximal nice exposed subset in π. Let Sj and
Ŵj denote the values of S and Ŵ after j iterations of the loop
of Lines 5–11 of Decompose, and r denote the total num-
ber of iterations of the loop. Then, r ≤ k , Ŵj = �(Sj), for
j ∈ {0, 1, . . . , r}, and S0 ⊃ S1 ⊃ S2 ⊃ · · · ⊃ Sr = S∗.

Fig. 5  HP (π init) \ S . The set of exposed labels in π init is S = {1, 4, 6}

Proof  The jth iteration of the loop, j > 1 , removes one
bad label from Sj−1 . Thus, Sj ⊂ Sj−1 . Since |S| ≤ k , the
number of iterations is at most k.

Let us prove that Ŵj = �(Sj) and Sj ⊇ S∗ , for each
j ∈ {0, 1, . . . , r} . Ŵ0 = �(S0) holds by construction and
S0 ⊇ S∗ holds trivially. Now assume that Ŵj−1 = �(Sj−1)
and Sj−1 ⊇ S∗ . Note that Sj = Sj−1 \ {ℓ} , where ℓ is the
bad label chosen in line 6. Since the body of the loop
merges all the sets in Ŵj−1 that contain a child of ℓ , we
have Ŵj = �(Sj) . Furthermore, ℓ cannot be in S∗ , so
Sj ⊇ S∗.

We claim that, for each j ∈ {0, 1, . . . , r} , each
ℓ ∈

⋃
i∈[k] πi \ Sj , there is an A ∈ Ŵj such that

ChP(ℓ) ⊆ XP(A) . This is true by construction for j = 0 ,
and the body of the while loop ensures that this remains
true throughout the execution of the algorithm.

At termination of the while loop, Sr contains no bad
labels. Thus, Ŵr = �(Sr) satisfies the conditions of
Lemma 7 with respect to Sr . Thus, (S,�(Sr)) is a good
partition of ChP(π).

When the loop of lines 5–11 terminates, Sr is a maximal
nice exposed subset in π . By Lemma 9, Sr must be the
maximal exposed subset, S∗ .

Lines 12–20 of Decomposeuse Eq. (3) to con-
struct the good decomposition (S,�) of π , where
� = {πA : A ∈ �(S)} . Thus, by Lemma 8, we have the
following.

Lemma 12  Decompose returns the maximal good
decomposition of π.

Figure 5 shows the graph HP(π
init) \ S , from

which we conclude that, in line 11 of Decompose,
Ŵ = �(S) = {A1,A2,A3,A4} , where A1 = {2, b, c} ,
A2 = {d} , A3 = {f , k , 5, g , i, j} , A4 = {l}.

�

Page 12 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22

The while loop of lines 5–11 examines each label in set
S to identify a bad label. Label 4 is bad, since π2 = {4} and
|ChT2(4) ∩ A1| = |{b, c}| ≥ 2 . Label 6 is also bad, since
π4 = {6} and |ChT4 (6) ∩ A3| = |{i, j}| ≥ 2.

Let us assume that label 6 is processed first. The
body of the while loop replaces sets A3,A4 ∈ Ŵ with
their union to yield Ŵ = �(S) = {A1,A2,B} , where
B = A3 ∪ A4 = {f , k , 5, g , i, j, l} . After this iteration,
S = {1, 4}.

In the next iteration, label ℓ = 4 triggers the union of
sets A1 and B, resulting in Ŵ = �(S) = {A2,B

′} , where
B′ = A1 ∪ B , and S = {1} . After this iteration, S contains
no bad labels. Thus, by Lemma 11, S is the maximal nice
exposed subset.

The union operations in the while loop can be inter-
preted as virtually reconnecting the bad labels—labels
4 and 6 in the example—to their children. Figure 6 uses
dotted lines to represent such virtual reconnections. Each
virtually connected component contains all the labels in
precisely one of the sets of the collection Ŵ in the minimal
good partition (S,Ŵ) of ChP(π init) . As mentioner earlier,
however, for efficiency our algorithm does not actually
reconnect deleted labels.

The virtually connected components are also
related to the positions in the (maximal) good
decomposition of ChP(π

init) . Consider the itera-
tion of Lines 13–20 of Decompose that processes set
A = {2, b, c, f , k , 5, g , i, j, l} ∈ Ŵ . As explained earlier,
the inner for all loop (lines 15–19) implements Eq. (3)
to construct πA . The virtually reconnected labels cor-
respond to the indices i ∈ [k] such that πA

i = π init
i  . In

particular, iterations 2 and 4 of the inner for all loop set
πA
2 = π init

2 = {4} and πA
4 = π init

4 = {6} , respectively.

Analysis
Before we analyze BuildAST’s running time, we need to
specify some implementation details.

•	 We assume that we use the data structure of Holm
et al. [15], known as HDT, to maintain the connected

components of HP , as nodes and edges are removed
from it.

•	 Let ℓ be any label in XP and let
J (ℓ) = {i ∈ [k] : ℓ ∈ Xi} . For i ∈ J (ℓ) , we say that ℓ
is unseen in tree i if BuildAST has not yet reached
a position π , such that ℓ ∈ πi . BuildAST main-
tains a list ℓ.unseen containing all i ∈ [k] such that
ℓ is unseen in tree i. Initially, ℓ.unseen = J (ℓ) .
The first time BuildAST reaches a position π such
that ℓ ∈ πi for some i ∈ [k] , index i is removed from
ℓ.unseen . Label ℓ is exposed when ℓ.unseen = ∅.

•	 For each π in BuildAST’s queue, the
set ChP(π) is stored as a sparse array
((i, ChTi(πi)) : i ∈ [k] and ChTi(πi)) �= ∅) . This ena-
bles Decompose to access the parts of ChP(π)
associated with each input tree separately. We use
this representation of ChP(π) to build similar rep-
resentations of the sets in the partition Ŵ of ChP(π)
produced from HP(π) \ S in line 11 of Decom-
pose.

•	 For each label a ∈ ChP(π) , we maintain a mapping
that returns, in O(1) time, the set A ∈ Ŵ containing
a. During the execution of Decompose’s while loop,
sets in Ŵ may be merged, and representations of these
merged sets must be produced and the mapping
from ChP(π) to Ŵ must be modified.

Lemma 13  The total time needed to maintain the dis-
play graph throughout the entire execution of BuildAST
is O(nk log2(nk)).

Proof  Initializing HDT for HP takes O(nk log(nk)) time.
Each subsequent connectivity query and edge and node
deletion takes O(log2(nk)) amortized time [15].

After the HDT data structure is initialized, no more edge
or vertex insertions are performed. Edge deletions take
place only in Line 11 of Decompose. There, HP(π) \ S
is computed by successively deleting the edges from each
label ℓ ∈ S to ChP(ℓ) , and then deleting ℓ itself. Some
of these deletions may have already been performed for
some ancestor position of π , where ℓ was also exposed.
We refer to such an exposed label as old. Labels that are
exposed for the first time in π are new. We only need to
delete edges from each new label ℓ in π , and then delete
ℓ itself; the old labels are skipped. Therefore, each vertex
and edge of HP is deleted at most once. The total number
of vertex and edge deletions over the entire execution of
BuildAST is thus O(nk) . The time to perform all these
deletions is O(nk log2(nk)).

Fig. 6  ”Virtual” reconnections. The graph HP (π init) \ S of Fig. 5 after
virtually reconnecting labels 4 and 6

Page 13 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22 	

The while loop of lines 5–11 of Decompose merges the
child sets collected in the set Ŵ′ constructed in Line 8. As
discussed in the proof of Lemma 15, this is done without
modifying the display graph. �

In the following results, di denotes the maximum num-
ber of children of a node in tree Ti , for each i ∈ [k].

Lemma 14  Excluding the time needed to maintain
the display graph, Lines 2, 3, and 11 of Decompose
take O(nk log(nk)) time over the entire execution of
BuildAST.

Proof  To build sets S and K in lines 2 and 3 , we do
the following for each i ∈ [k] such that πi = ∅ . Suppose
πi = {ℓ} . If i ∈ ℓ.unseen , we delete i from ℓ.unseen . If
ℓ.unseen becomes empty, then ℓ is exposed. Suppose
π has a parent position π∗ . Then, exposed label ℓ ∈ πi
is new if πi = π∗

i  . This step takes O(k) time per call to
Decomposeand O(nk) over the entire execution of
BuildAST.

To construct Ŵ in line 11, we need to obtain W ∩ ChP(π)
for each connected component W of HP(π) \ S . We can
do this in O(nk log nk) time, over the entire execution of
BuildAST, using the technique of scanning the smaller
component, which has been used for compatibility testing
[11, 12]. Next, we outline the technique.

Let Sold and Snew denote the old and new labels in S at
the beginning of an execution of Decompose; thus,
S = Sold ∪ Snew . The labels of Sold and their incident
edges have already been deleted. Assume that we know
W ∩ ChP(π) for each connected component W of
HP(π) \ Sold . We consider each node in Snew in succes-
sion, deleting its incident edges one at a time. Suppose
an edge deletion breaks a component W into two com-
ponents W1 and W2 , and assume we know W ∩ ChP(π) .
We determine whether a label in W ∩ ChP(π) ends
up in W1 or W2 (thereby obtaining W1 ∩ ChP(π) and
W2 ∩ ChP(π) ) as follows.

Assume without loss of generality that the smaller of W1
and W2 is W1 . We initialize A = ∅ and scan the labels
of W1 . When we scan a label ℓ in W1 , if ℓ ∈ ChP(π) , we
add ℓ to A and update ℓ ’s child mapping to this smaller
connected component. After all edge deletions are com-
pleted, W1 ∩ ChP(π) = A . The set W2 ∩ ChP(π) con-
sists of all labels of W ∩ ChP(π) that were not moved to
A. Since a label can be in a smaller component at most
log2(nk) times and there are O(nk) labels, the total time
spent in this process over all deletions performed over
the entire execution of BuildASTis O(nk log(nk)) . �

Lemma 15  Decompose’s while loop takes
O(k

∑
i∈[k] di) time.

Proof  By Lemma 11 the while loop iterates O(k) times.
We complete the proof by showing that each iteration
takes O(

∑
i∈[k] di) time.

Line 11 of Decomposecomputes HP(π) \ S by deleting
at most

∑
i∈[k] di edges from HP(π) . Therefore,

For each set A ∈ Ŵ , we maintain a count, initialized to 0.
By Inequality (4), the total time to initialize the counts is
O(

∑
i∈K di) per iteration. To search for a bad label, for

each i ∈ K  , we scan each a ∈ ChTi(πi) , and increase the
count of the set A to which a belongs. If the count for any
set A ∈ Ŵ exceeds one, then ℓ ∈ πi is a bad label and the
search ends.

Next, we consider the time taken by the body of the while
loop. Retrieving K ′ in Line 7 takes constant time. By Ine-
quality (4) and the fact that we have constant-time access
to mappings, building Ŵ′ in line 8 takes O(

∑
i∈K ′ di)

time as follows. We scan each label ℓ ∈ ChTi(πi) for
each i ∈ [k] and retrieve the set A ∈ Ŵ that contains ℓ
using the mapping from ChP(π) to Ŵ . The process takes
O(

∑
i∈[k] di) time per call to Decompose.

To compute the union of the sets in Ŵ′ in line 9, we start
by initializing B to the empty set. We then successively
consider each A ∈ Ŵ′ . At each step, we append every
child label ℓ from a non-empty entry in the representa-
tion of A to the corresponding entry in B, and change the
mapping of ℓ to B. Given our representation of the sets in
Ŵ , this process takes O(

∑
i∈[k] di) time in each iteration of

the while loop.

Updating Ŵ in Line 10 requires removing every A ∈ Ŵ′
from Ŵ and then adding B. The time spent on updates
is O(|Ŵ′|) , which is O(

∑
i∈K ′ di) . Finally, updating S in

Line 11 takes constant time and updating K takes O(|K ′|)
time.

Theorem 2  BuildAST can be implemented to run in
O(nk(

∑
i∈[k] di + log2(nk))) time, where n is the number

of distinct taxa in P , k is the number of trees in P, and di
is the maximum number of children of tree Ti, for i ∈ [k].

Proof  First, consider the total time spent on lines 2–11
of Decomposeover the entire execution of Buil-
dAST. By Lemmas 13 and 14 , the total time spent

(4)|Ŵ| ≤
∑

i∈[k]

di.

�

Page 14 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22

on lines 2–11 is O(nk log2(nk)) . BuildASTspends
O(nk

∑
i∈[k] di) time on lines 5–11 of Decomposesince,

by Theorem 1, Decompose is invoked O(n) times and,
by Lemma 15, each invocation spends O(k

∑
i∈[k] di)

on those lines. Thus, lines 2–11 of Decomposetake
O(nk(

∑
i∈[k] di + log2(nk))) time over the entire execu-

tion of BuildAST.

Next, consider the foreach loop of lines 13–20. For each
set A ∈ Ŵ considered in that loop, Decomposeconstructs
the successor position πA in O(k) time. Since BuildAST
generates O(n) positions, the total time spent on the loop
over the entire execution of BuildAST is O(nk) . This
time is dominated by the time spent on lines 2–11. �

Experiments
Here we present our experimental results with a C++
implementation of BuildAST. Our source code is avail-
able on Github (https://​github.​com/​resea​rchGit/​Agree​
mentT​esting).

As in earlier work [12], we consider two variants of
BuildAST. BuildAST(1) uses the original version of
the HDT data structure, which involves level promotion.
BuildAST(0) uses a much simpler variant of HDT where
level promotion is disallowed. (For a description of level
promotion, see [15].) In [12] we showed that the simplified
graph connectivity data structure outperforms the more
complex data structure in the context of tree compatibility.

We performed our experiments on a machine with a
6-core i7 processor and 16 GB memory.

Real data
We tested our program on three real profiles.

•	 Spider profile: From Figure 1 of [3]; consists of two
input trees with a total of 24 labels.

•	 Strepsirrhini profile: Studied in [4]; consists of four
input trees with a total of 100 labels.

•	 Phocidae profile: Studied in [3]; contains 15 input
trees with 43 labels.

Our program correctly constructs an agreement tree for
the Spiders profile and correctly reports that the other
two profiles disagree. Since the three real profiles are
small, the running times are negligible, whether we use
BuildAST(0) or BuildAST(1).

On the Phocidae profile, our program terminates
immediately after processing the initial position. Indeed,
the display graph of this profile has a complex structure,
with several areas of disagreement. For the Strepsir-
rhini profile, we identified a single position of the display

graph that causes disagreement. Figure 7 shows the
region of the display graph corresponding to this posi-
tion. The region involves taxa from two of the four input
trees, colored red and black in the figure. The roots of
the corresponding subtree in the black tree is Galagoini-
daea, while for the red tree it is an internal node, origi-
nally unlabeled, to which we have assigned the artificial
label 1. The conflict arises because taxa Otolemur, Go.
moholi, and Gs. demidoff are involved in a multifurca-
tion in the red tree, whereas in the black tree the first two
taxa are contained in a subtree that does not contain the
third. Because of this, after Decomposeinitializes set S
to {Galagoinidaea, 1} , its while loop deletes both labels
from S, leaving S = ∅.

Simulated data
Real profiles, like those considered in the previous sec-
tion, rarely agree. On such profiles, BuildAST tends to
terminate quickly, without processing the input trees in
their entirety. To test BuildAST’s running time on a wide
range of profiles with varying numbers of taxa and trees, we
devised an input generator that produces profiles that agree.

Experimental setup
Given integers D and m, the input generator produces
a seed tree T seed with m labeled nodes, where inter-
nal nodes have D children, and where each level except
the last is completely filled. Thus, when D = 2 , the seed
tree is a complete binary tree. To generate a profile of k
trees, we first create a collection of k subsets of labels,
Y1,Y2, . . . ,Yk . Each subset is obtained by choosing a
random number of labels from the set of used labels
(the ones chosen so far) and unused labels from the
seed tree. From the collection of subsets, we produce a

Fig. 7  The part of display graph of the Strepsirrhini profile that leads
to disagreement. The black tree and the red tree are subtrees of tree
b and tree a, respectively, of Figure 1 in [4]

https://github.com/researchGit/AgreementTesting
https://github.com/researchGit/AgreementTesting

Page 15 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22 	

profile P = {T seed|A1, T
seed|A2, . . . , T

seed|Ak} . Note that
T seed|Ai may contain unlabeled nodes, because certain
labels in Ai may have a lowest common ancestor in T seed
that is not in Ai . We assign such nodes new labels; by
Lemma 2, this does not affect agreement.

The reported times are the averages over 30 trials.
Times are given in seconds and plotted as a function of
MP , the product of the number of taxa and the number
of trees; i.e., MP = n · k . Unless stated otherwise, the
times reported are for BuildAST(0).

Experiment 1: Fixed number of input trees
In the first set of experiments, we fix the number of input
trees at k = 100 . Since it is difficult to control n, the num-
ber of taxa, we instead vary the number of labels m in the
seed trees from 100 to 1000 with increments of 100. The
number of taxa n falls within a range that depends on D.
We consider D = 2, 3 and 10; the respective ranges of n
are [1135, 10875], [922, 8701] and [517, 5491].

Figure 8 shows our results for D ∈ {2, 3, 10} . In all
cases, the running time appears to be nearly linear in the
number of taxa. This is partly because

∑
i∈[k] di = k · D

is fixed. Thus the term O(nk
∑

i∈[k] di) in the time bound
of Theorem 2 becomes linear in n. In theory, then, the
O(nk log2(nk)) dominates the running time. In prac-
tice, however, the impact of this term appears to be less
significant than the worst-case bound indicates. This
seems due to the fact, previously observed in [12], that
maintaining dynamic graph connectivity (the source of
the polylogarithmic factor) is relatively easy on display
graphs.

Figure 9 compares the running times of BuildAST(1)
and BuildAST(0) against the theoretical time bound

for input trees with degree D = 3 . The curves show
that BuildAST performs well in practice and that
BuildAST(0) outperforms BuildAST(1) . The latter
observation is similar to what we noted in [12].

Experiment 2: Varying the number of input trees
In the second set of experiments, we varied the number
of input trees k from 20 to 200 with increments of 20,
while keeping the number of taxa in the seed trees fixed
at m = 500.

Figure 10 shows that when D equals 2 or 3, the running
time grows sub-linearly at the outset, and then becomes
nearly linear. In contrast, when D = 10 , the running time

Fig. 8  Running times for trees of degree D = 2, 3, 10 in profiles with
k = 100 input trees

Fig. 9  Theoretical running time versus empirical running time with
and without edge promotions for k = 100 and trees with degree
D = 3

Fig. 10  Running times for profiles of degrees 2, 3, and 10, with k
varying from 20 to 200

Page 16 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22

curve is nearly linear. A possible explanation for these
observations centers on the degree to which Decom-
pose’s while loop contributes to the overall work. When
D = 10 , the input generator produces few bad labels.
Thus, the while loop contributes little to the total time.
When D = 2 or 3, we observe a larger number of bad
labels. Since the number of trees k and degree D are
small, maintaining graph connectivity initially dominates
the total time, but, as the number of trees increases, the
while loop again starts to dominate. Thus, one would
expect that the running time would be closer to linear
for larger numbers of trees. Figure 11, where we extend
the number of input trees k to 300, suggests that this is
indeed the case. Figure 11, also shows that, as in our first
set of experiments, there is no advantage to using level
promotion in HDT.

Discussion
Theorem 2 implies that BuildAST performs well if the
sum of the maximum out-degrees is small relative to the
number of taxa. In fact, our experiments indicate that
BuildAST is faster in practice than Theorem 2 suggests.
The reason is that the proof of the theorem assumes the
unlikely scenario where every edge deletion performed
in constructing HP(π) \ S in Decompose generates a
new component and that most of these components are
remerged in the Decompose’s while loop.

The running time of BuildAST can be further
improved to O(nk(

∑
i∈[k] di + log2(nk)/ log log(nk)))

using the graph connectivity data structure of reference
[27]. It is not clear, however, that the latter data structure

is practical. In fact, the experiments we present here and
in our previous work [12] suggest that data structures
much simpler than HDT (and, therefore, than [27]) per-
form well in practice. These experimental results sug-
gest that a more effective way to speed up BuildAST in
practice would be to improve the efficiency with which
Decompose deals with bad labels.

If profile P agrees, BuildASTreturns an agreement
tree T with the property that the set of labels mapped to
each node in T is a maximal nice exposed subset. How-
ever, that P may have other agreement trees that do not
have this property. For example, consider the profile P
shown in Fig. 12. Given P as input, BuildASTreturns
the agreement tree shown in Fig. 13. The tree shown in
Fig. 2 (which, as we saw, is an agreement tree for the pro-
file of Fig. 1) is also an agreement tree for P , but the set
of labels that map to the root of the tree is not maximal.
One open question is whether it is possible to enumer-
ate all agreement trees in time polynomial per agree-
ment tree. A natural way to do this would be to modify
Decomposeto enumerate all nice exposed subsets of π
—not just the maximal one—efficiently. This is equivalent
to Ng and Wormald’s approach to enumerating all agree-
ment trees for a profile of leaf-labeled trees [18].
BuildAST can be modified to run in O(nk log2(nk))

time for profiles P where the input trees are all binary and
solely leaf-labeled. For such profiles, |A ∩ ChTi(πi)| ≤ 2 ,
for A ∈ Ŵ and i ∈ [k] in a position π of P . Labels
a, a′ ∈ ChTi(πi) are either in the same set A or in different
sets A,A′ where A,A′ ∈ Ŵ . In the first case, ℓ ∈ πi must

Fig. 11  Running times with and without edge promotion for trees of
degree 3, with k varying from 20 to 300

Fig. 12  A profile P ′ = {T ′
1 ,T

′
2 ,T

′
3 ,T

′
4 } . P

′ is obtained from profile P
of Fig. 1 by removing taxon c from T2

Fig. 13  One possible agreement tree for profile P ′ of Fig. 12

Page 17 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology (2021) 16:22 	

be bad. Bad labels can then be detected earlier in Line 11
and directly removed from S. Thus, we can skip Decom-
pose’s while loop. Hence, maintaining graph connectiv-
ity would dominate the performance of BuildAST.

Conclusions
BuildAST enables users to deal with hard polytomies.
In applications, we may encounter both hard and soft
polytomies. It would be interesting to modify Buil-
dAST to handle a mixture of both types polytomies, as
appropriate.

Abbreviation
HDT: The dynamic graph connectivity data structure of Holm, de Lichtenberg,
and Thorup [15].

Acknowledgements
The reviewers provided many insightful comments that helped to improve
the manuscript. The authors thank Vincent Berry and Charles Semple for
providing the Strepsirrhini profile studied in [3]. DFB thanks the College of
Liberal Arts and Science, Iowa State University, for its support through the Dale
D. Grosvenor Chair.

Authors’ contributions
LL developed the algorithms, with assistance from DFB, his dissertation advi‑
sor. LL implemented the algorithms and conducted the experiments, under
DFB’s supervision. DFB and LL jointly wrote the paper. Both authors read and
approved the final manuscript.

Funding
Not applicable.

 Availability of data and materials
The code used to generate the artificial datasets analyzed in our experiments
is in our Github repository. The Strepsirrhini data set was obtained from the
authors of [4]. The other two real data sets are publicly available.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 29 April 2021 Accepted: 13 November 2021

References
	1.	 Aho Alfred V, Sagiv Yehoshua, Szymanski Thomas G, Ullman Jeffrey D.

Inferring a tree from lowest common ancestors with an application to the
optimization of relational expressions. SIAM J Comput. 1981;10(3):405–21.

	2.	 Baum BR. Combining trees as a way of combining data sets for phylo‑
genetic inference, and the desirability of combining gene trees. Taxon.
1992;41:3–10.

	3.	 Berry V, Bininda-Emonds OR, Semple C. Amalgamating source trees with
different taxonomic levels. Syst Biol. 2012;62(2):231–49.

	4.	 Berry V, Semple C. Fast computation of supertrees for compatible phylog‑
enies with nested taxa. Syst Biol. 2006;55(2):270–88.

	5.	 Bininda-Emonds ORP, editor. Phylogenetic Supertrees: Combining Infor‑
mation to Reveal the Tree of Life, vol. 4. Series on Computational Biology.
Berlin: Springer; 2004.

	6.	 Bordewich M, Evans G, Semple C. Extending the limits of supertree meth‑
ods. Anna Comb. 2006;10:31–51.

	7.	 Bryant D, Lagergren J. Compatibility of unrooted phylogenetic trees is
FPT. Theor Comput Sci. 2006;351:296–302.

	8.	 Daniel P, Semple C. Supertree algorithms for nested taxa. In: Bininda-
Emonds ORP, editor. Phylogenetic supertrees: combining information to
reveal the Tree of Life. Dordrecht: Kluwer; 2004. p. 151–71.

	9.	 Deng Y, Fernández-Baca D. An efficient algorithm for testing the compat‑
ibility of phylogenies with nested taxa. Algorithms Mol Biol. 2017;12:7.

	10.	 Deng Y, Fernández-Baca D. Fast compatibility testing for rooted phyloge‑
netic trees. Algorithmica. 2018;80(8):2453–77.

	11.	 Fernández-Baca D, Guillemot S, Shutters B, Vakati S. Fixed-parameter
algorithms for finding agreement supertrees. SIAM J Comput.
2015;44(2):384–410.

	12.	 Fernández-Baca D, Liu L. Tree compatibility, incomplete directed perfect
phylogeny, and dynamic graph connectivity: an experimental study.
Algorithms. 2019;12(3):53.

	13.	 Fernández-Baca D, Liu L. Testing the agreement of trees with internal
labels. In: Zhipeng C, Ion M, Giri N, Pavel S, Xuan G, editors. Bioinformatics
research and applications. Cham: Springer; 2020. p. 127–39.

	14.	 Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill
LM, Crandall KA, Deng J, Drew BT, Gazis R, Gude K, Hibbett DS, Katz LA,
Laughinghouse IV HD, McTavish EJ, Midford PE, Owen CL, Reed RH,
Reesk JA, Soltis DE, Williams T, Cranston KA. Synthesis of phylogeny
and taxonomy into a comprehensive tree of life. Proc Natl Acad Sci.
2015;112(41):12764–9.

	15.	 Holm J, de Lichtenberg K, Thorup M. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. J ACM. 2001;48(4):723–60.

	16.	 Jansson J, Lingas A, Rajaby R, Sung W-K. Determining the consistency of
resolved triplets and fan triplets. In International Conference on Research
in Computational Molecular Biology, pages 82–98. Springer, 2017.

	17.	 Maddison WP. Reconstructing character evolution on polytomous clad‑
ograms. Cladistics. 1989;5:365–77.

	18.	 Ng MP, Wormald NC. Reconstruction of rooted trees from subtrees.
Discrete Appl Math. 1996;69(1–2):19–31.

	19.	 Page RM. Taxonomy, supertrees, and the tree of life. In: Bininda-Emonds
OR, editor. Phylogenetic supertrees: combining information to reveal the
tree of life. Dordrecht: Kluwer; 2004. p. 247–65.

	20.	 Ragan MA. Phylogenetic inference based on matrix representation of
trees. Mol Phylogenet Evol. 1992;1:53–8.

	21.	 Redelings BD, Holder MT. A supertree pipeline for summarizing
phylogenetic and taxonomic information for millions of species. PeerJ.
2017;5:e3058.

	22.	 Sanderson MJ. Phylogenetic signal in the eukaryotic tree of life. Science.
2008;321(5885):121–3.

	23.	 Sayers EW, et al. Database resources of the National Center for Biotech‑
nology Information. Nucleic Acids Res. 2009;37(Database issue):D5–15.

	24.	 Semple C, Steel M. Phylogenetics. Oxford: Oxford Lecture Series in Math‑
ematics. Oxford University Press; 2003.

	25.	 The Angiosperm Phylogeny Group. An update of the Angiosperm Phy‑
logeny Group classification for the orders and families of flowering plants:
APG IV. Bot J Linnean Soc. 2016;181:1–20.

	26.	 Warnow T. Supertree construction: opportunities and challenges. Techni‑
cal Report arXiv:​1805.​03530, ArXiV, May 2018.

	27.	 Wulff-Nilsen C. Faster deterministic fully-dynamic graph connectivity.
In: Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’13, pages 1757–1769, Philadelphia, PA, USA,
2013. Society for Industrial and Applied Mathematics.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://arxiv.org/abs/1805.03530

	Testing the agreement of trees with internal labels
	Abstract
	Background:
	 Results:
	Conclusion:

	Background
	Previous work
	Organization of the paper
	Note

	Preliminaries
	Graphs and trees
	Rooted X-trees
	Profiles and agreement
	The display graph

	Decomposing a profile
	Decomposing a position
	Good partitions
	Maximal good decompositions

	Constructing an agreement tree
	Finding the maximal good decomposition
	Analysis

	Experiments
	Real data
	Simulated data
	Experimental setup
	Experiment 1: Fixed number of input trees
	Experiment 2: Varying the number of input trees

	Discussion
	Conclusions
	Acknowledgements
	References

