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Abstract 

Background:  A semi-labeled tree is a tree where all leaves as well as, possibly, some internal nodes are labeled with 
taxa. Semi-labeled trees encompass ordinary phylogenetic trees and taxonomies. Suppose we are given a collection 
P = {T1, T2, . . . , Tk} of semi-labeled trees, called input trees, over partially overlapping sets of taxa. The agreement 
problem asks whether there exists a tree T  , called an agreement tree, whose taxon set is the union of the taxon sets 
of the input trees such that the restriction of T  to the taxon set of Ti  is isomorphic to Ti  , for each i ∈ {1, 2, . . . , k} . The 
agreement problems is a special case of the supertree problem, the problem of synthesizing a collection of phyloge‑
netic trees with partially overlapping taxon sets into a single supertree that represents the information in the input 
trees. An obstacle to building large phylogenetic supertrees is the limited amount of taxonomic overlap among the 
phylogenetic studies from which the input trees are obtained. Incorporating taxonomies into supertree analyses can 
alleviate this issue.

 Results:  We give a O(nk(
∑

i∈[k] di + log2(nk))) algorithm for the agreement problem, where n is the total number 
of distinct taxa in P , k is the number of trees in P , and di is the maximum number of children of a node in Ti .

Conclusion:  Our algorithm can aid in integrating taxonomies into supertree analyses. Our computational experience 
with the algorithm suggests that its performance in practice is much better than its worst-case bound indicates.
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Background
In the agreement problem, we are given a collection 
P = {T1, T2, . . . , Tk} of rooted phylogenetic trees with 
partially overlapping taxon sets. P is called a profile and 
the trees in P are the input trees. The question is whether 
there exists a tree T  whose taxon set is the union of the 
taxon sets of the input trees such that Ti is isomorphic 
to the restriction of T  to the taxon set of Ti , for each 
i ∈ {1, 2, . . . , k} . If such a tree T  exists, then we call T  an 
agreement tree for P and say that P agrees; otherwise, P 
disagrees.

Here we study a generalization of the agreement prob-
lem, where the internal nodes of the input trees may also 
be labeled. These labels represent higher-order taxa; that 

is, the labels stand for sets of taxa that may nest within 
each other. Thus, for example, an input tree may contain 
the taxon Glycine max (soybean) nested within a subtree 
whose root is labeled Fabaceae (the legumes), containing 
several other taxa, such as Pisum sativum (pea) and Med-
icago sativa (alfalfa). The Fabaceae subtree might itself 
be nested within a subtree whose root is labeled Angio-
spermae (flowering plants). Note that leaves themselves 
may be labeled by higher-order taxa. For example, the 
Fabaceae subtree may contain a leaf labeled Phaseolus, 
representing the bean genus. Taxonomies are examples 
of internally labeled trees. A taxonomy groups organ-
isms according to a system of taxonomic rank (e.g., fam-
ily, genus, and species). Two well-known taxonomies are 
the NCBI taxonomy [23] and the Angiosperm taxonomy 
[25].
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We present a O(nk(
∑

i∈[k] di + log2(nk))) algorithm 
for the agreement problem for trees with internal labels, 
where n is the total number of distinct taxa in P , k is the 
number of trees in P , and, for each i ∈ {1, 2, . . . , k} , di is 
the maximum number of children of a node in Ti . Our 
algorithm outputs an agreement supertree for the input 
trees if such a tree exists; if there is no agreement super-
tree, the algorithms reports this fact and terminates.

Previous work
Ng and Wormald [18] gave the first explicit polynomial-
time algorithm for the agreement problem for ordinary 
rooted phylogenetic trees (i.e., trees without internal 
labels)1. To our knowledge, the fastest algorithm for this 
problem runs in O(n2k) time, where n is the number of 
distinct taxa in P [11].

The aforementioned algorithms are indebted to Aho 
et  al.’s Build algorithm [1], a relative of the agreement 
problem, the compatibility problem. The input to the 
compatibility problem is a profile P = {T1, T2, . . . , Tk} 
of rooted phylogenetic trees with partially overlapping 
taxon sets. The question is whether there exists a tree T  
whose taxon set is the union of the taxon sets of the input 
trees such that each input tree Ti can be obtained from 
the restriction of T  to the taxon set of Ti through edge 
contractions. If such a tree T  exists, we refer to T  as a 
compatible tree for P and say that P is compatible; other-
wise, P is incompatible.

Compatibility is a less stringent requirement than 
agreement: any profile that agrees is compatible, but the 
converse is not true. The compatibility problem for ordi-
nary phylogenetic trees is solvable in O(MP log2MP) 
time, where MP is the total number of nodes and edges 
in the trees of P [10]. Note that MP = O(nk).

Compatibility and agreement reflect two distinct 
approaches to dealing with multifurcations; i.e., non-
binary nodes, also known as polytomies. Suppose that 
node v is a multifurcation in some input tree of P and 
that ℓ1 , ℓ2 , and ℓ3 are taxa in three distinct subtrees of 
v. In an agreement tree for P , these three taxa must be 
in distinct subtrees of some node in the agreement tree. 
In contrast, a compatible tree for P may contain no such 
node, since a compatible tree is allowed to “refine” the 
multifurcation at v—that is, group two out of ℓ1 , ℓ2 , and 
ℓ3 separately from the third. Thus, compatibility treats 
multifurcations as “soft” facts; agreement treats them as 
“hard” facts [17]. Both viewpoints can be valid, depend-
ing on the circumstances.

The need for agreement trees to respect the multifur-
cations in the input trees appears to make testing for 
agreement harder than testing for compatibility. Indeed, 
to handle agreement, a costly re-merging step must be 
added to Build . In this step, certain sets of the taxon 
partition generated by Build are re-combined to reflect 
multifurcations [11, 18]. Similar issues are faced when 
testing consistency of triples and fans [16]. The situa-
tion is more complex for internally labeled trees, because 
internal nodes with the same label, but in different trees, 
may jointly imply multifurcations, even if all input trees 
are binary.

The agreement and compatibility problems are funda-
mental special cases of the supertree problem, the prob-
lem of synthesizing a collection of phylogenetic trees 
with partially overlapping taxon sets into a single super-
tree that represents the information in the input trees [2, 
5, 20, 26]. The original supertree methods were limited 
to input trees where only the leaves are labeled (that is, 
ordinary phylogenetic trees), but there has been increas-
ing interest in incorporating internally labeled trees in 
supertree analysis, motivated by the desire to incorporate 
taxonomies in these analyses. Taxonomies provide struc-
ture and completeness that can be hard to obtain oth-
erwise [14, 19, 21], offering a way to circumvent one of 
the obstacles to building comprehensive phylogenies: the 
limited taxonomic overlap among different phylogenetic 
studies [22].

Although internally labeled trees, and taxonomies in 
particular, are not, strictly speaking, phylogenies, they 
have many of the same mathematical properties as phy-
logenies. Both phylogenies and internally labeled trees 
are X-trees (also called semi-labeled trees) [6, 24]. Never-
theless, algorithmic results for compatibility and agree-
ment of internally labeled trees are scarce, compared 
to those for ordinary phylogenies. To our knowledge, 
the first algorithm for testing compatibility of internally 
labeled trees is in [8] (see also [4]). The fastest known 
algorithm for the problem runs in O(MP log2MP) time 
[9]. We are unaware of any previous algorithms for the 
agreement problem for internally labeled trees.

Organization of the paper
In the next section (“Preliminaries”), we provide formal 
definitions of rooted X-trees and agreement, as well as 
a characterization of agreement in terms of lowest com-
mon ancestors. We also introduce the display graph, 
which has a central role in our agreement algorithm. The 
subsequent section (“Decomposing a Profile”) studies the 
decomposability properties of profiles that agree. These 
properties allow us to reduce an agreement problem on 
a profile into independent agreement problems on sub-
profiles, leading to the agreement algorithm presented 

1  These authors refer to what we term “agreement” as “compatibility”. What 
we call “compatibility”, they call “weak compatibility”.
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in the section titled “Constructing an agreement sub-
tree”. We report our computational experiences with an 
implementation of our algorithm in the section titled 
“Experiments”.

Note
This paper is an extended version of conference paper 
[13]. The present version contains proofs and has a new 
section describing our computational experience with an 
implementation of our algorithm.

Preliminaries
For each positive integer r, [r] denotes the set {1, . . . , r}.

Graphs and trees
Let G be a graph. V(G) and E(G) denote the node and 
edge sets of G. Let U be a subset of V(G). The subgraph 
of G induced by U is the graph whose vertex set is U and 
whose edge set consists of all of the edges in E(G) that 
have both endpoints in U. We write G \U  to denote the 
graph obtained by deleting from G the nodes in U, along 
with their incident edges.

Let u and v be two nodes in V(G). Node v is reachable 
from u if there exists a path from u to v. The connected 
components of G are the equivalence classes of nodes 
under the “is reachable from” relation. Let U and W be 
two subsets of V(G). We say that U and W are discon-
nected if no node in W is reachable from a node in U.

A tree is an acyclic connected graph. All trees here 
are assumed to be rooted. For a tree T, r(T) denotes the 
root of T. Suppose u, v ∈ V (T ) . Then, u is an ancestor 
of v in T, denoted u ≤T v , if u lies on the path from v to 
r(T) in T. If u ≤T v , then v is a descendant of u. Node u 
is a proper ancestor of v, denoted u <T v , if u ≤T v and 
u  = v . We write u ‖T v if neither u ≤T v nor v ≤T u . If 
{u, v} ∈ E(T ) and u ≤T v , then u is the parent of v and v 
is a child of u.

Consider any x ∈ V (T ) . We write parentT (x) and 
ChT (x) to denote the parent of x and the set of children 
of x, respectively. The subtree of T rooted at x, denoted 
T(x), is the subtree of T consisting of all y ∈ V (T ) such 
that x ≤T y . We say that node x is a multifurcation if 
|ChT (x)| > 2.

We extend the child notation to subsets of V(T) in the 
natural way: for U ⊆ V (T ) , ChT (U) =

⋃
u∈U ChT (u) . 

Thus, if U = ∅ , ChT (U) = ∅.
Let T be a tree and suppose U ⊆ V (T ) . The lowest com-

mon ancestor of U in T, denoted LCAT (U) , is the unique 
smallest upper bound of U under ≤T . A node x ∈ U  is 
a minimal node of T in U if for all y ∈ U  , either x ‖T y 
or x ≤T y . Note that a set U may have multiple minimal 
nodes and that for any x ∈ V (T ) , x = LCAT (V (T (x)) 
and x is the unique minimal node of T(x) in V(T(x)).

Rooted X‑trees
Throughout the paper, X denotes a set of labels (that 
is, taxa, which may be, for instance, species or fami-
lies of species). A rooted X-tree (or X-tree, for short), 
also known as a semi-labeled tree, is a pair T = (T ,φ) 
where T is a rooted tree and φ is a mapping from X to 
V(T) such that, for every node v ∈ V (T ) with at most 
one child, v ∈ φ(X) . X is the label set of T  and φ is the 
labeling function of T  . For every node v ∈ V (T ) , φ−1(v) 
denotes the (possibly empty) subset of X whose ele-
ments map into v; these elements as the labels of v. If 
φ−1(v) �= ∅ , then v is labeled; otherwise, v is unlabeled. 
For U ⊆ V (T ) , we write φ−1(U) to denote 

⋃
u∈U φ−1(u).

By definition, every leaf in an X-tree is labeled, and 
any node, including the root, that has a single child 
must be labeled. Nodes with two or more children may 
be labeled or unlabeled. An X-tree T = (T ,φ) is singu-
larly labeled if every node in T has at most one label; T  
is fully labeled if every node in T is labeled.

X-trees generalize ordinary phylogenetic trees (also 
known as phylogenetic X-trees [24]). An ordinary phy-
logenetic tree is a semi-labeled tree T = (T ,φ) where 
r(T) has at least two children and φ is a bijection from X 
into leaf set of T (thus, internal nodes are not labeled).

Let T = (T ,φ) be an X-tree. For each u ∈ V (T ) , 
X(u) denotes the set of all labels in T(u); that is, 
X(u) =

⋃
v:u≤T v

φ−1(v) . X(u) is called a cluster of T. 
Cl(T ) denotes the set of all clusters of T  . We extend 
the cluster notation to sets of nodes as follows. Let U 
be a subset of V(T). Then, X(U) =

⋃
v∈U X(v) . If U = ∅ , 

then X(U) = ∅.
Suppose Y ⊆ X for an X-tree T = (T ,φ) . 

The restriction of T  to Y, denoted T |Y  , is 
the semi-labeled tree whose cluster set is 
Cl(T |Y ) = {W ∩ Y : W ∈ Cl(T ) andW ∩ Y �= ∅}. 
Intuitively, T |Y  is obtained from the minimal rooted 
subtree of T that connects the nodes in φ(Y ) by sup-
pressing all vertices v such that v /∈ φ(Y ) and v has only 
one child.

Let T = (T ,φ) be an X-tree and T ′ = (T ′,φ′) be 
an X ′-tree such that X ′ ⊆ X . T  agrees with T ′ if 
Cl(T ′) = Cl(T |X ′) . It is well known that the clusters of 
a tree determine the tree, up to isomorphism [24, The-
orem  3.5.2]. Thus, T  agrees with T ′ if T ′ and T |X ′ are 
isomorphic.

Profiles and agreement
Throughout the rest of this paper, P denotes a set 
{T1, T2, . . . , Tk} such that, for each i ∈ [k] , Ti = (Ti,φi) is 
an Xi-tree for some label set Xi (Fig. 1). We refer to P as 
a profile, and to the trees in P as input trees. We write XP 
to denote 

⋃
i∈[k] Xi.
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A profile P agrees if there is an XP-tree T  that agrees 
with each of the trees in P . If T  exists, we refer to T  as an 
agreement tree for P . See Fig. 2.

Given a subset Y of XP , the restriction of P 
to Y, denoted P|Y  , is the profile defined as 
P|Y = {T1|Y ∩ X1, T2|Y ∩ X2, . . . , Tk |Y ∩ Xk}.

Lemma 1  Suppose a profile P has an agreement tree T
. Then, for any Y ⊆ XP , T |Y  is an agreement tree for P|Y .

Proof  Consider any i ∈ [k] . Since T  agrees with Ti , 
A ∈ Cl(Ti) if and only if A ∈ Cl(T |Xi) . Thus, for any 
Y ⊆ XP , if Yi = Y ∩ Xi , then A ∩ Yi ∈ Cl(Ti|Yi) if and 
only if A ∩ Y ∈ Cl(T |Yi) . The lemma follows. 

We can convert a profile P containing trees that are not 
fully labeled into an equivalent profile P ′ of fully-labeled 
trees as follows. For each i ∈ [k] , let li be the number of 
unlabeled nodes in Ti . Create a set X ′ of n′ =

∑
i∈[k] li 

labels such that X ′ ∩ XP = ∅ . For each i ∈ [k] and each 
v ∈ V (Ti) such that φ−1

i (v) = ∅ , make φ−1
i (v) = {ℓ} , 

where ℓ is a distinct element from X ′ . We refer to P ′ as 
the profile obtained by adding distinct new labels to  P . 
See Fig. 1.

The proof of the next result is analogous to that of [8, 
Lemma 3.4].

Lemma 2  Let P ′ be the profile obtained by adding dis-
tinct new labels to P. Then, P agrees if and only if P ′ 
agrees. Further, if T  is an agreement tree for P ′, then T  is 
also an agreement tree for P.

Proof  Let P ′ = {T ′
1 , T

′
2 , . . . , T

′
k } . For each i ∈ [k] , let X ′

i 
be the set of new labels added to Ti to obtain T ′

i  . By def-
inition, if T  is an agreement tree for P ′ , then, for each 
i ∈ [k] , A ∈ Cl(T ′

i ) if and only if A ∈ Cl(T |(Xi ∪ X ′
i )) . To 

prove the lemma, it suffices now to show that, for each 
i ∈ [k] , A ∈ Cl(T ′

i ) if and only if A ∩ Xi ∈ Cl(Ti) . We omit 
the details. �

�

From this point forward, we make the following 
assumption.

Assumption 1  For each i ∈ [k] , Ti is fully and singularly 
labeled.

Lemma 2 implies that no generality is lost in assum-
ing that all trees in P are fully labeled. Note that even if 
the trees in P are singularly labeled, a tree that agrees 
with P is not necessarily singularly labeled. See Fig. 2.

By Assumption 1, for each i ∈ [k] , there is a bijection 
between the labels in Xi and the nodes of V (Ti) . (As 
noted earlier, however, if T = (T ,φ) is an agreement 
tree for P , then φ is not in general a bijection between 
XP and V(T).) For this reason, we will often refer to 
nodes of the input trees by their labels. In particular, 
given a label ℓ ∈ Xi , we write Xi(ℓ) to denote Xi(φi(ℓ)) 
(the cluster of Ti at the node labeled ℓ ), ChTi(ℓ) to 
denote φi(ChTi(φi(ℓ)) (the labels of children of ℓ in Ti ), 
and ChTi(A) to denote φ−1

i (ChTi(φi(A)) , for A ⊆ Xi.
The following characterization of agreement general-

izes a result in [11].

Lemma 3  Let P be a profile and T = (T ,φ) be an XP

-tree. Then, T  is an agreement tree for P if and only if for 
each i ∈ [k] and each label a ∈ Xi , 

Fig. 1  A profile P = {T1,T2,T3,T4} . The letters are the original labels; grey numbers are labels added to make the trees fully labeled. We use this 
profile as a running example throughout the paper

Fig. 2  An agreement tree for P . Although all input trees are 
singularly labeled, the agreement tree is not
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	(E1)	 φ(a) = LCAT (Xi(a)),
	 (E2)	 for each label b ∈ ChTi(a) , φ(a) <T φ(b) , and
	(E3)	 for every two distinct labels b, c ∈ ChTi(a) , there 

exist distinct nodes u, v ∈ ChT (φ(a)) such that 
φ(b) ∈ XP(u) and φ(c) ∈ XP(v).

Proof  (If) Suppose that φ satisfies conditions (E1)–
(E3). To prove that T  agrees with Ti , we show that 
Cl(Ti) = Cl(T |Xi).

First, we show that Cl(Ti) ⊆ Cl(T |Xi) by argu-
ing that Xi(a) = XP(φ(a)) ∩ Xi , for each a ∈ Xi . By 
(E1), Xi(a) ⊆ XP(φ(a)) . Now, suppose that there 
is a label b ∈ XP(φ(a)) ∩ Xi such that b /∈ Xi(a) . 
Let c = LCATi(Xi(a) ∪ {b}) . Then, since b /∈ Xi(a) , 
Xi(a) ⊂ Xi(c) . Hence, c <Ti a and, by (E2), φ(c) <T φ(a) . 
Thus, (i) there exist distinct labels d, d′ ∈ ChT1(c) 
such that a ∈ Xi(d) and b ∈ Xi(d

′) . but (ii) since 
a, b ∈ XP(φ(a)) ∩ Xi , there is a single child u of ChP(c) 
such that a, b ∈ XP(v) , contradicting condition (E3).

Next, we prove that Cl(T |Xi) ⊆ Cl(Ti) . Suppose, to the 
contrary, that there is a cluster Y ∈ Cl(T |Xi) \ Cl(Ti) . Let 
u = LCAT (Y ) ; thus, Y = XP(u) ∩ Xi . Let a = LCATi(Y ) . 
Then, Y ⊂ Xi(a) . Choose any b ∈ Xi(a) \ Y  ; thus, a ≤Ti b . 
Note that b /∈ XP(u) and φ(a) <T u . We have two cases. 

	(i)	 a  = b . Then, a <Ti b . On the other hand, we have 
either φ(a) ≥T φ(b) or φ(a) ‖T φ(b) , contradict-
ing (E2).

	(ii)	 a = b . Then, there exist distinct labels 
c1, c2 ∈ ChTi(a) such that Y ∩ Xi(cj) �= ∅ 
and Y  ⊆ Xi(cj) , for j ∈ [2] . By (E1), 
φ(a) = LCAT (Xi(a)) . Since φ(a) <T u , there 
exists a unique node v ∈ ChT (u) such that 
Y ⊂ XP(v) . But then φ(c1) and φ(c2) descend from 
the same child, v, of φ(a) , contradicting condition 
(E3).

(Only if) Suppose that T  agrees with Ti . It is straight-
forward to show that φ must satisfy (E1). Thus, we focus 
on conditions (E2) and (E3).
Suppose condition (E2) does not hold. Then, there 
exists a label b ∈ ChTi(a) , such that φ(a) ≥T φ(b) . Since 
XP(φ(b))  = XP(φ(a)) , we must have φ(a) >T φ(b) . But 
then T  does not agree with Ti , a contradiction.

Suppose condition (E3) does not hold. Then, 
there exist distinct labels c, c′ ∈ ChTi(a) such that 
{φ(c),φ(c′)} ⊆ XP(v) , for some v ∈ ChT (φ(a)) . But then 
T |Xi contains cluster Y = XP(v) ∩ Xi , which is not in Ti , 
contradicting the assumption that T  agrees with Ti . �

Lemma 4  If profile P agrees, then P has an agree-
ment tree T = (T ,φ) such that φ−1(v) �= ∅ for each node 
v ∈ V (T ).

Proof  Suppose there is a node v ∈ V (T ) such that 
φ−1(v) = ∅ . Note that v cannot be a leaf. Let u1,u2, . . . ,ud 
be the children of v. We use the following fact.

Fact. For each i ∈ [k] , there is at most one j ∈ [d] such 
that XP(uj) ∩ Xi �= ∅.Proof   Assume to the con-
trary that there exist distinct j, j′ ∈ [d] such that 
W = XP(uj) ∩ Xi �= ∅ and W ′ = XP(uj′) ∩ Xi �= ∅ . 
Let c = LCATi(W ) and c′ = LCATi(W

′) and let 
a = LCATi(W ∪W ′) . Then, c and c′ are in distinct sub-
trees of Ti(a) . By Lemma  3, φ(c) and φ(c′) are in dis-
tinct subtrees of v and v = φ(a) . But this contradicts the 
assumption that φ−1(v) = ∅ . 

Now, choose any j ∈ [d] . Let T ′ be the tree obtained 
by contracting the edge (v,uj) ∈ E(T ) . That is, T ′ is 
obtained by eliminating edge (v,uj) , deleting uj , and 
making ChT ′(v) = ChT (v) ∪ ChT (uj) . Let T ′ = (T ′,φ′) , 
where (φ′)−1(w) = φ−1(w) , if w ∈ V (T ) \ {v,uj} , and 
(φ′)−1(v) = φ−1(v) ∪ φ−1(uj) . Then, the above fact 
implies that, for each i ∈ [k] , Cl(T |Xi) = Cl(T ′|Xi) . That 
is, T ′ is also an agreement tree for P . Let T ′′ = (T ′′,φ′′) 
be the tree that results from repeating this contraction 
operation until it no longer applies. Then, T ′′ satisfies 
(φ′′)−1(v) �= ∅ for each node v ∈ V (T ′′) . 

The display graph
The display graph of a profile P , denoted HP , is the graph 
obtained from the disjoint union of the underlying trees 
T1, . . . ,Tk of P by identifying nodes that have the same 
label (parallel edges are replaced by a single edge) [7, 9, 
10]. See Fig. 3. As we shall see, HP plays a major role in 
our agreement algorithm.
HP has O(nk) nodes and edges, and can be constructed 

in O(nk) time. By Assumption  1, there is a bijection 
between the labels in X and the nodes of HP . Thus, from 
this point forward, we refer to the nodes of HP by their 
labels.

Decomposing a profile
A position in a profile P is a tuple π = (π1,π2, . . . ,πk) 
where πi ⊆ Xi , for each i ∈ [k] . At any given point during 
its execution, our agreement algorithm focuses on testing 
the agreement of the subprofile of P determined by the 
subtrees associated with a specific position.

�

�
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The initial position for P is the position π init , where, 
for each i ∈ [k] , π init

i  is a singleton set consisting of the 
label of r(Ti) ; i.e., π init

i = φ−1
i (r(Ti)) . In the profile of 

Fig. 1, π init = ({1}, {4}, {g}, {6}).
Note that the definition of a position allows for the 

existence of i, j ∈ [k] , i  = j , such that ℓ ∈ πi , but ℓ /∈ πj , 
even if ℓ ∈ Xi and ℓ ∈ Xj . Thus, for example, in the 
profile of Fig.  1, we have g ∈ π init

3  , but g /∈ π init
2  , even 

though g appears in trees T3 and T2.
For a position π in P , let XP(π) denote the set of 

labels 
⋃

i∈[k] Xi(πi) . HP(π) denotes the subgraph of HP 
induced by XP(π) . Thus, HP(π

init) = HP.
A position π in P is valid if, for each i ∈ [k],

Thus, if π is valid, then, for each i ∈ [k] such that 
Xi ∩ XP(π) �= ∅ , component πi consists of a single label 
ℓ such that Ti(ℓ) contains every label in HP(π) that also 
belongs to Xi . Clearly, π init is a valid position.

Let π be a valid position. A label ℓ ∈
⋃

i∈[k] πi is 
exposed in π if πi = {ℓ} for every i ∈ [k] such that 
ℓ ∈ Xi ∩ XP(π) . A set S ⊆

⋃
i∈[k] πi is an exposed subset 

in π (exposed subset for short, when π is understood) if 
every label ℓ ∈ S is exposed.

Consider the initial position π init of the profile of 
Fig.  1. Label 1 is exposed in π init since π init

1 = {1} and 
label 1 exists only in T1 . Similarly, labels 4 and 6 are 
both exposed. On the other hand, label g is not exposed, 
since it appears in trees T2 and T3 , but g /∈ π init

2  , even 
though π init

3 = {g}.
We say that a position π has an agreement tree if 

P|XP(π) has an agreement tree.

Lemma 5  A profile P has an agreement tree if and only 
if there exists an agreement tree for every valid position π 
in P.

(1)

πi =

{
{LCATi(Xi ∩ XP(π))}, if Xi ∩ XP(π) �= ∅,
∅, otherwise

Proof  (Only if) Suppose P has an agreement tree T  . 
For any valid position π in P , XP(π) ⊆ XP . Thus, by 
Lemma 1, T |XP(π) is an agreement tree for π.

(If) Suppose there is an agreement tree for every valid posi-
tion π in P . Then, in particular, there exists an agreement tree 
T  for the initial position π init of P . Since XP(π

init) = XP , T  
must also be an agreement tree for P . 

Decomposing a position
In what follows, π denotes a valid position in P . For each 
i ∈ [k] such that πi  = ∅ , ℓi ∈ Xi denotes the single label 
in πi.

Let S be an exposed subset of π . We say that S is nice if 
for each connected component W of HP(π) \ S , the posi-
tion πW = (πW

1 ,πW
1 , . . . ,πW

k ) defined as follows is valid:

Observe that if S is nice, W = XP(π
W ), for each con-

nected component W of HP(π) \ S.

If S is a nice exposed set, we refer to the set 
{πW : W is a connected component of HP(π) \ S} 
of valid positions as the successor positions of π (with 
respect to S).

A good decomposition of π is a pair (S,�) , where S 
is a nice exposed subset and � is the collection of suc-
cessor positions of π with respect to π . Note that 
XP(π) = S ∪

⋃
π ′∈� XP(π

′) . Note also that we allow S or 
� to be empty.

Consider the profile of Fig.  1, whose display graph 
is in Fig.   3. Let S = {1} . Figure  4 shows HP(π

init) \ S . 
HP(π) \ S has two connected components, W1 = {d} and 
W2 = {2, 3, 4, 5, 6, a, b, c, e, f , g , h, i, j, k , l} . Then, by Eq. (2), 
the corresponding positions are

�

(2)πW
i = {a : a is a minimal label ofTiinXi ∩W }.

πW1 = ({d}, ∅, ∅, ∅) and πW2 = ({2}, {4}, {g}, {6}).

Fig. 3  Display graph. The display graph HP of the profile of Fig. 1
Fig. 4  A decomposition of π init . HP \ {1} . Each connected 
component corresponds to a distinct successor position of π init
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Positions πW1 and πW2 are clearly valid positions. There-
fore, S is nice and (S,�) , where � = {πW1 ,πW2} , is a 
good decomposition of π init.

The next result is central to our agreement algorithm.

Lemma 6  Let π be a valid position in a profile P. Then, 
π has an agreement tree if and only if there exists a good 
decomposition (S,�) of π such that S  = ∅ and, for each 
position π ′ ∈ � , π ′ has an agreement tree. If such a 
good decomposition exists, then π has an agreement tree 
T = (T ,φ) where φ−1(r(T )) = S.

Proof  (Only if) Suppose position π has an agree-
ment tree T = (T ,φ) (thus, T  is an XP(π)-tree). Let 
S = φ−1(r(T )) . By Lemma 4, we can assume that S  = ∅ . 
Note that every label ℓ ∈ S must be in 

⋃
i∈[k] πi . Further, 

ℓ must be exposed in π . Indeed, if ℓ is not exposed, there 
exists an i ∈ [k] such that πi  = {ℓ′} , where ℓ′ <Ti ℓ , so 
ℓ /∈ φ−1(r(T )) , a contradiction.

If T consists of a single node u = r(T ) , then we must 
have S =

⋃
i∈[k] πi = XP(π) . Then, (S, ∅) is trivially a 

good decomposition of π.

Now, suppose ChT (r(T )) = {v1, v2, . . . , vd} , where d ≥ 1 . 
For each j ∈ [d] , let T (j) = T |XP(vj) . By Lemma 1, T (j) is 
an agreement tree for P|XP(vj) . For each i ∈ [k] and each 
j ∈ [d] such that Xi ∩ XP(vj) �= ∅ , let

Thus, ℓ(j)i  is the root of Ti|
(
Xi ∩ XP(vj)

)
.

For each j ∈ [d] , define a position π(j) , where, for each 
i ∈ [k],

Let � = {π(1),π(2), . . . ,π(d)} . By construction, for 
each j ∈ [d] , π(j) satisfies Eq. (1), so π(j) is valid. Since 
XP(vj) = XP(π

(j)) , T (j) is an agreement tree for π(j).

For any j′ ∈ [d] such that j′ �= j, XP(π
(j)) and XP(π

(j′)) 
are disconnected in HP(π) \ S, since every path 
between the two sets must go through a label in S. 
Note, however, that XP(π

(j)) may contain multiple 
connected components of HP(π) \ S . For each con-
nected component W of HP(π

(j)) , let T (j,W ) = T (j)|W  
and let π(j,W ) be the position where π(j,W )

i = π
(j)
i ∩W  , 

for each i ∈ [k] . Then, T (j,W ) is an agreement tree for 
π(j,W ).

ℓ
(j)
i = LCATi(Xi ∩ XP(vj)).

π
(j)
i =

{{
ℓ
(j)
i

}
if Xi ∩ XP(vj) �= ∅

∅ otherwise.

Let � consist of all positions π(j,W ) such that j ∈ [d] and 
W is a connected component of HP(π

(j)) . Then (S,�) is 
a good decomposition of π , where each position in � has 
an agreement tree.

(If) Let (S,�) be a good decomposition of π such that 
S  = ∅ and each position in � has an agreement tree. If 
� = ∅ , then we must have S = XP(π) . Further, for each 
i ∈ [k] such that πi  = ∅ , it must be the case that Ti con-
sists of a single node, labeled by the single label in πi . Let 
T be the tree consisting of a single node u = r(T ) and let 
φ(ℓ) = u , for all u ∈ S . Then, T = (T ,φ) is an agreement 
tree for π.

Now suppose �  = ∅ . Let � = {π(1),π(2), . . . ,π(d)} . For 
each j ∈ [d] , let T (j) = (T (j),φ(j)) be an agreement tree 
for π(j) , and let vj be the root of T (j) . Let T = (T ,φ) be the 
XP(π)-tree where T is assembled by creating a new node 
u and making ChT (u) = {v1, v2, . . . , vd} and, for each 
ℓ ∈ XP(π) , φ(ℓ) is defined as

Since (S,�) is a good decomposition, 
S ∪

⋃
j∈[k] XP(π

(j)) = XP(π) . Thus, T  is an XP(π)-tree. 
We prove that T  is an agreement tree for π , by showing 
that, for each i ∈ [k] , φ satisfies properties (E1)–(E3) of 
Lemma 3.

By Lemma  3 every label in Ti|Xi(π
(j)
i ) satisfies (E1)–

(E3). For each j ∈ [d] , let ℓi be the label of the root of 
Ti|Xi(π

(j)
i ) . There are two possibilities: 

	(i)	 ℓi ∈ φ−1(u) . Then, each of ℓi ’s children must be in a 
distinct subtree of u. Thus, properties (E1)–(E3) are 
satisfied.

	(ii)	 ℓi  ∈ φ−1(u) . Then, ℓi and all of its children must be 
contained in a single subtree, say Tj , of u, and the 
claim follows from the fact that φ(j) satisfies prop-
erties (E1)–(E3).

Good partitions
To find a good decomposition of a position π , it is con-
venient to work with partitions of the set of children of 
the labels in π . We write ChP(π) to denote the set of all 
children of some label in π ; i.e., ChP(π) =

⋃
i∈[k] ChTi(πi)

.

φ(ℓ) =

{
u if ℓ ∈ S

φ(j)(ℓ) if ℓ ∈ XP(π
(j)).

�



Page 8 of 17Fernández‑Baca and Liu ﻿Algorithms for Molecular Biology           (2021) 16:22 

Let S be an exposed subset of π . The partition of 
ChP(π) induced by S, denoted �(S) , is the set consist-
ing of all A ⊆ ChP(π) such that A = ChP(π) ∩W  for 
some connected component W of HP(π) \ S

Lemma 7  Let S be a subset of the exposed nodes in a 
valid position π . S is a nice set for π if and only if for every 
set A ∈ �(S) and each a ∈ ∪i∈[k]πi the following holds for 
all i ∈ [k] such that ChTi(a) ∩ A �= ∅ . 

	(N1)	 If a ∈ S , then |ChTi(a) ∩ A| = 1.
	(N2)	 If a /∈ S , then ChTi(a) ⊆ A.

Proof  Consider any A ∈ �(S) . Let W be the connected 
component of HP(π) \ S containing A and let πW  be the 
position defined by Eq. (2). To prove the lemma, we show 
that πW  is valid if and only if conditions (N7) and (N7) 
hold.

(=⇒ ) Suppose πW  is valid.

Consider any label a ∈ S and any i ∈ [k] such that 
ChTi(a) ∩ A �= ∅ . Since πW  is valid, πW

i = {b} , where 
b = LCATi(Xi ∩W ) . Thus, b is a minimal label of Ti in 
Xi ∩W  , and so b ∈ ChTi(a) . Thus |ChTi(a) ∩W | = 1 , 
and (N7) holds.

Consider any label a ∈
⋃

i∈[k] πi \ S such that 
ChTi(a) ∩ A �= ∅ . Then, every node in Ti(a) must lie 
inside W and, since π is valid, a is minimal in Xi ∩W  . 
Thus, πW

i = πi . Since a remains connected to all its chil-
dren, ChTi(a) ⊆ Aj , and thus (N7) holds.

(⇐= ) Suppose that for every a ∈ ∪i∈[k]πi and every 
i ∈ [k] such that ChTi(a) ∩ A �= ∅ , condition (N7) or (N7) 
holds, depending on whether or not a ∈ S.

Suppose a ∈ S . Consider any i ∈ [k] such that 
ChTi(a) ∩ A �= ∅ . By (N7), A contains only one child 
c ∈ ChTi(a) . We claim that c = LCATi(Xi ∩W ) . Assume, 
to the contrary that W contains another label c′ from 
Ti(a) , but c′ /∈ V (Ti(c)) . By (N7), c′ /∈ ChTi(a) . Suppose c′ 
is some descendant of another child b of a. But b must 
also be in W, contradicting (N7). Therefore, c is the mini-
mal label of Ti in Xi ∩W .

Suppose a ∈
⋃

i∈[k] πi \ S . By condition (N7), V (Ti(a)) 
must be contained in W, and a is the minimal label of Ti 
in Xi ∩W  because a is the root of Ti(a).

Hence, πW  is valid, for each connected component W of 
HP(π) \ S . Therefore, S is nice. �

Suppose S is a nice exposed subset in a valid position π 
and let A be any set in �(S) . The position associated with 
A is the position πA , where, for each i ∈ [k] , πA

i  is defined 
as follows. If πi = ∅ , then πA

i = ∅ . Otherwise, let a be the 
single element in πi . Then,

Consider the profile of Fig.  1, whose display graph is in 
Fig. 3. Note that

Let S = {1}. It can be verified that the partition 
�(S) = {A,B} of ChP(π init) where

satisfies the conditions of Lemma  7. Thus, S is a nice 
exposed subset. Using Eq. (3), we obtain

Observe that (S,�) , where � = {πA,πB} , is precisely the 
good decomposition of position π init presented in the 
previous section. The next lemma shows that this is not 
a coincidence.

Lemma 8  Suppose S is a nice exposed subset of π. Let 
� = {πA : A ∈ �(S)}. Then, (S,�) is a good decomposi-
tion of π.

Proof  Let A be any set in �(S) , W be the connected 
component of HP(π) \ S that contains A, and πW  
be the position defined by Eq. (2). Since S is a nice set, 
πW  is valid. To prove the lemma it suffices to show that 
πA = πW  . Consider each i ∈ [k].

•	 If πi = ∅ , then we have πA
i = πW

i = ∅.
•	 Now, suppose πi = {a} , for some a ∈

⋃
i∈[k] πi.

–	 If a ∈ S , then, by Lemma 7, ChTi(a) ∩ A = {c} , for 
some c ∈ ChTi(a) . Then, πA

i = {c} . Since a /∈ W  , c 
must be the minimal label of Ti in Xi ∩W  . There-
fore, πA

i = πW
i = {c}.

–	 If a /∈ S , then, by Lemma  7, ChTi(a) ⊆ A . Then, 
a ∈ W  and, hence, a is the minimal label of Ti in 
Xi ∩W  . Therefore, πA

i = πW
i .

Thus, πA = πW  as claimed. 
Motivated by Lemma  8, we say that a pair (S,�(S)) 

is a good partition of ChP(π) if the pair (S,�) where 
� = {πA : A ∈ �(S)} is a good decomposition of π.

(3)πA
i =

{
ChTi(a) ∩ A if a ∈ S, and
πi if a /∈ S.

ChP(π
init) = {2, d, b, c, g , k , 5, f , i, j, l}.

A = {d} and B = {2, b, c, g , k , 5, f , i, j, l}

πA = ({d}, ∅, ∅, ∅) and πB = ({2}, {4}, {g}, {6}).

�
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Maximal good decompositions
A valid position π may have many possible nice exposed 
sets. We are interested in finding a maximal nice exposed 
subset; that is, a set S such that S′ ⊆ S , for every nice 
exposed subset S′ of π.

Lemma 9  Let π be a valid position in a profile P. Then, 
π has a unique maximal nice exposed subset.

To prove Lemma 9, we need an auxiliary result.

Lemma 10  Let S and S′ be two nice exposed subsets of π. 
Then S′′ = S ∪ S′ is also a nice exposed subset of π.

Proof  Since S and S′ are exposed subsets, so is S′′ . By 
Lemma 7, the result follows from the next fact.

Fact. Consider any set  A ∈ �(S′′) and any label 
a ∈

⋃
i∈[k] πi . Then, for each i ∈ [k] such that 

ChTi(a) ∩ A �= ∅ , |ChTi(a) ∩ A| = 1 if a ∈ S′′ and 
ChTi(a) ⊆ A if a /∈ S′′.

There are two cases to consider.

•	 Suppose a ∈ S′′ . Then, either a ∈ S or a ∈ S′ . 
Assume without loss of generality that a ∈ S . Set A 
is contained in some set in B ∈ �(S) . By Lemma 7, 
|ChTi(a) ∩ B| = 1 . Thus, |ChTi(a) ∩ A| ≤ 1 . But 
ChTi(a) ∩ A �= ∅ , so |ChTi(a) ∩ A| = 1.

•	 Suppose a /∈ S′′ . Since a /∈ S and a /∈ S′ and 
ChTi(a) ∩ A �= ∅ , the connected component of 

HP(π) \ S
′′ containing A contains a and thus 

ChTi(a) ⊆ A.

Proof of Lemma 9  Suppose, on the contrary, that there 
exist at least two distinct maximal nice exposed subsets 
S, S′ . By Lemma  10, S′′ = S ∪ S′ is also a nice exposed 
subset of π . But S ⊂ S′′ , contradicting the maximality of 
S. 

Corollary 1  Let π be a valid position in a profile P and 
S be the maximal nice exposed subset of π. If π has an 
agreement tree, then S  = ∅.

Proof  Suppose, on the contrary, that π has an agreement 
tree, but S = ∅ . Then, by Lemma  9, every nice exposed 
subset in π must be empty. But, by Lemma 6, this implies 
that π has no agreement tree, a contradiction. �

Let S be the maximal nice exposed subset in π and � be 
the set of successor positions of π with respect to S. We 
refer to (S,�) as the maximal good decomposition of π.

Constructing an agreement tree
Algorithm BuildAST(Algorithm 1) takes as input a pro-
file P on a set of labels X and either returns an agreement 
tree for P or reports that no such tree exists. BuildAST 
assumes the availability of an algorithm Decompose, 
to be described later, that, given a valid position π in P , 
returns a maximal good decomposition (S,�) of π.

�

�

Algorithm 1: Testing agreement
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BuildAST proceeds from the top down, starting from 
the initial position π init of P , attempting to construct 
an agreement tree for P in a breadth-first manner. Like 
other algorithms based on breadth-first search, Build-
AST uses a queue, which stores pairs 〈π , pred〉 where π is 
a position in P and pred is a reference to the parent of 
the tree node (potentially) to be created for π . At the out-
set, the queue contains only the pair 〈π init,null〉 , corre-
sponding to the root of the agreement tree, which has no 
parent.

At each iteration of its outer while loop (lines  3–13), 
BuildAST extracts a pair 〈π , pred〉 from its queue and 
invokes Decompose to obtain a maximal good decom-
position (S,�) of π . If S = ∅ , then, by Corollary  1, no 
agreement tree for π exists. BuildAST reports this fact 
(line 7) and terminates.

If S  = ∅ , BuildAST creates a tree node r(π) for π ; 
r(π) is the tentative root for the agreement tree for π . By 
Lemma 6, if π has an agreement subtree, then it has an 
agreement tree where φ(ℓ) = r(π) . Lines  10–11 set up 
the mapping φ accordingly. Also by Lemma  6, if π has 
an agreement tree, then so does each position π ′ ∈ � ; 
furthermore, the roots of the trees for each position in 
� will be the children of r(π) . Thus, BuildAST adds 
�π ′, r(π)� , for each π ′ ∈ � to the queue, to ensure that π ′ 

is processed at a later iteration and that the root of the 
agreement tree constructed for π ′ (if such a tree exists) 
has r(π) as its parent (lines 12–13). Therefore, if Buil-
dAST terminates without reporting disagreement , 
the result returned in line 14 is an agreement tree for P . 
BuildAST indeed terminates, because there are only 
two possibilities at any given iteration: either the algo-
rithm terminates reporting disagreement or (since 
S  = ∅ ) the maximal good decomposition (S,�) of π has 
the property that 

⋃
π ′∈� XP(π

′) is a proper subset of 
XP(π) . The number of iterations of BuildAST cannot 
exceed the total number of nodes in an agreement tree 
for P , which is O(n). Thus, we have the following result.

Theorem 1  Given a profile P = {T1, T2, . . . , Tk} , Buil-
dAST returns an agreement tree T  for P, if such a tree 
exists; otherwise, BuildAST returns disagreement. 
The total number of iterations of BuildAST’s outer loop 
is O(n).

Finding the maximal good decomposition
Algorithm  2: Computing the maximal good 
decomposition.
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Algorithm Decompose (Algorithm  2) computes a 
maximal good decomposition of a position π . Through-
out its execution, Decomposemaintains a set S that is 
a superset of the maximal nice exposed subset of π and 
a partition Ŵ of ChP(π) . We will argue that before and 
after every iteration of the while loop of Lines   5–11, 
Ŵ = �(S) . We will also show that, after the loop termi-
nates, S is a maximal nice exposed subset. Lines 12–20 
use S and �(S) to compute the maximal good decom-
position of π . Next, we describe and analyze Decom-
posein detail.

Lines 2 and 3 of Decomposeinitialize S to contain all 
exposed labels in π and K to consist of the indices of 
the trees in P that contain the labels in S. Line 11 ini-
tializes Ŵ using HP(π) . We say that a label ℓ ∈ S is bad 
if there exist i ∈ K  and A ∈ Ŵ such that πi = {ℓ} and 
|ChTi(ℓ) ∩ A| ≥ 2 . Intuitively, a label ℓ is bad if ℓ must 
be a multifurcation in any agreement tree for P , but at 
least two of ℓ ’s children lie in the same set in Ŵ , while 
the others lie in different sets.

Lines  5–11 of Decompose construct the maximal 
nice exposed subset by deleting bad labels from S and 
merging sets in Ŵ accordingly. Conceptually, remov-
ing a bad label from S is equivalent to reinserting it 
into the graph. Thus, the union operations in the while 
loop of lines  5–11 can be interpreted as reconnecting 
bad labels to their children. In the implementation of 
Decompose, however, labels and the edges to their 
children are only deleted once. To understand why 
this is possible, observe that once a label ℓ becomes 
exposed in a position π , it remains exposed in every 
position where ℓ subsequently appears, until it is finally 
deleted from the graph or BuildASTterminates. Thus, 
conceptually, at every call to Decomposewhere ℓ is 
exposed, lines  2–11 add ℓ to S and delete ℓ from the 
graph, but then an iteration of lines 5–11 may possibly 
delete ℓ from S and reinsert it into the graph. Instead, 
our implementation of Decomposedeletes ℓ only once. 
When an iteration of lines   5–11 calls for deleting ℓ 
from S, instead of adding ℓ back to the graph, we put 
the various components that would have been reunited 
into a “virtual” connected component (a similar idea is 
used in [11]). We elaborate on our approach in the next 
section.

Lemma 11  Let π be a valid position in a profile P and 
let S∗ be the maximal nice exposed subset in π. Let Sj and 
Ŵj denote the values of S and Ŵ after j iterations of the loop 
of Lines 5–11 of Decompose, and r denote the total num-
ber of iterations of the loop. Then, r ≤ k , Ŵj = �(Sj), for 
j ∈ {0, 1, . . . , r}, and S0 ⊃ S1 ⊃ S2 ⊃ · · · ⊃ Sr = S∗.

Fig. 5  HP (π init) \ S . The set of exposed labels in π init is S = {1, 4, 6}

Proof  The jth iteration of the loop, j > 1 , removes one 
bad label from Sj−1 . Thus, Sj ⊂ Sj−1 . Since |S| ≤ k , the 
number of iterations is at most k.

Let us prove that Ŵj = �(Sj) and Sj ⊇ S∗ , for each 
j ∈ {0, 1, . . . , r} . Ŵ0 = �(S0) holds by construction and 
S0 ⊇ S∗ holds trivially. Now assume that Ŵj−1 = �(Sj−1) 
and Sj−1 ⊇ S∗ . Note that Sj = Sj−1 \ {ℓ} , where ℓ is the 
bad label chosen in line  6. Since the body of the loop 
merges all the sets in Ŵj−1 that contain a child of ℓ , we 
have Ŵj = �(Sj) . Furthermore, ℓ cannot be in S∗ , so 
Sj ⊇ S∗.

We claim that, for each j ∈ {0, 1, . . . , r} , each 
ℓ ∈

⋃
i∈[k] πi \ Sj , there is an A ∈ Ŵj such that 

ChP(ℓ) ⊆ XP(A) . This is true by construction for j = 0 , 
and the body of the while loop ensures that this remains 
true throughout the execution of the algorithm.

At termination of the while loop, Sr contains no bad 
labels. Thus, Ŵr = �(Sr) satisfies the conditions of 
Lemma  7 with respect to Sr . Thus, (S,�(Sr)) is a good 
partition of ChP(π).

When the loop of lines  5–11 terminates, Sr is a maximal 
nice exposed subset in π . By Lemma  9, Sr must be the 
maximal exposed subset, S∗ . 

Lines  12–20 of Decomposeuse Eq. (3) to con-
struct the good decomposition (S,�) of π , where 
� = {πA : A ∈ �(S)} . Thus, by Lemma  8, we have the 
following.

Lemma 12  Decompose returns the maximal good 
decomposition of π.

Figure  5 shows the graph HP(π
init) \ S , from 

which we conclude that, in line  11 of Decompose, 
Ŵ = �(S) = {A1,A2,A3,A4} , where A1 = {2, b, c} , 
A2 = {d} , A3 = {f , k , 5, g , i, j} , A4 = {l}.

�
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The while loop of lines 5–11 examines each label in set 
S to identify a bad label. Label 4 is bad, since π2 = {4} and 
|ChT2(4) ∩ A1| = |{b, c}| ≥ 2 . Label 6 is also bad, since 
π4 = {6} and |ChT4 (6) ∩ A3| = |{i, j}| ≥ 2.

Let us assume that label 6 is processed first. The 
body of the while loop replaces sets A3,A4 ∈ Ŵ with 
their union to yield Ŵ = �(S) = {A1,A2,B} , where 
B = A3 ∪ A4 = {f , k , 5, g , i, j, l} . After this iteration, 
S = {1, 4}.

In the next iteration, label ℓ = 4 triggers the union of 
sets A1 and B, resulting in Ŵ = �(S) = {A2,B

′} , where 
B′ = A1 ∪ B , and S = {1} . After this iteration, S contains 
no bad labels. Thus, by Lemma 11, S is the maximal nice 
exposed subset.

The union operations in the while loop can be inter-
preted as virtually reconnecting the bad labels—labels 
4 and 6 in the example—to their children. Figure 6 uses 
dotted lines to represent such virtual reconnections. Each 
virtually connected component contains all the labels in 
precisely one of the sets of the collection Ŵ in the minimal 
good partition (S,Ŵ) of ChP(π init) . As mentioner earlier, 
however, for efficiency our algorithm does not actually 
reconnect deleted labels.

The virtually connected components are also 
related to the positions in the (maximal) good 
decomposition of ChP(π

init) . Consider the itera-
tion of Lines  13–20 of Decompose that processes set 
A = {2, b, c, f , k , 5, g , i, j, l} ∈ Ŵ . As explained earlier, 
the inner for all loop (lines  15–19) implements Eq. (3) 
to construct πA . The virtually reconnected labels cor-
respond to the indices i ∈ [k] such that πA

i = π init
i  . In 

particular, iterations 2 and 4 of the inner for all loop set 
πA
2 = π init

2 = {4} and πA
4 = π init

4 = {6} , respectively.

Analysis
Before we analyze BuildAST’s running time, we need to 
specify some implementation details.

•	 We assume that we use the data structure of Holm 
et al. [15], known as HDT, to maintain the connected 

components of HP , as nodes and edges are removed 
from it.

•	 Let ℓ be any label in XP and let 
J (ℓ) = {i ∈ [k] : ℓ ∈ Xi} . For i ∈ J (ℓ) , we say that ℓ 
is unseen in tree i if BuildAST has not yet reached 
a position π , such that ℓ ∈ πi . BuildAST main-
tains a list ℓ.unseen containing all i ∈ [k] such that 
ℓ is unseen in tree i. Initially, ℓ.unseen = J (ℓ) . 
The first time BuildAST reaches a position π such 
that ℓ ∈ πi for some i ∈ [k] , index i is removed from 
ℓ.unseen . Label ℓ is exposed when ℓ.unseen = ∅.

•	 For each π in BuildAST’s queue, the 
set ChP(π) is stored as a sparse array 
((i, ChTi(πi)) : i ∈ [k] and ChTi(πi)) �= ∅) . This ena-
bles Decompose to access the parts of ChP(π) 
associated with each input tree separately. We use 
this representation of ChP(π) to build similar rep-
resentations of the sets in the partition Ŵ of ChP(π) 
produced from HP(π) \ S in line  11 of Decom-
pose.

•	 For each label a ∈ ChP(π) , we maintain a mapping 
that returns, in O(1) time, the set A ∈ Ŵ containing 
a. During the execution of Decompose’s while loop, 
sets in Ŵ may be merged, and representations of these 
merged sets must be produced and the mapping 
from ChP(π) to Ŵ must be modified.

Lemma 13  The total time needed to maintain the dis-
play graph throughout the entire execution of BuildAST 
is O(nk log2(nk)).

Proof  Initializing HDT for HP takes O(nk log(nk)) time. 
Each subsequent connectivity query and edge and node 
deletion takes O(log2(nk)) amortized time [15].

After the HDT data structure is initialized, no more edge 
or vertex insertions are performed. Edge deletions take 
place only in Line 11 of Decompose. There, HP(π) \ S 
is computed by successively deleting the edges from each 
label ℓ ∈ S to ChP(ℓ) , and then deleting ℓ itself. Some 
of these deletions may have already been performed for 
some ancestor position of π , where ℓ was also exposed. 
We refer to such an exposed label as old. Labels that are 
exposed for the first time in π are new. We only need to 
delete edges from each new label ℓ in π , and then delete 
ℓ itself; the old labels are skipped. Therefore, each vertex 
and edge of HP is deleted at most once. The total number 
of vertex and edge deletions over the entire execution of 
BuildAST is thus O(nk) . The time to perform all these 
deletions is O(nk log2(nk)).

Fig. 6  ”Virtual” reconnections. The graph HP (π init) \ S of Fig. 5 after 
virtually reconnecting labels 4 and 6
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The while loop of lines 5–11 of Decompose merges the 
child sets collected in the set Ŵ′ constructed in Line 8. As 
discussed in the proof of Lemma 15, this is done without 
modifying the display graph. �

In the following results, di denotes the maximum num-
ber of children of a node in tree Ti , for each i ∈ [k].

Lemma 14  Excluding the time needed to maintain 
the display graph, Lines  2,  3, and 11 of Decompose 
take O(nk log(nk)) time over the entire execution of 
BuildAST.

Proof  To build sets S and K in lines  2 and 3 , we do 
the following for each i ∈ [k] such that πi  = ∅ . Suppose 
πi = {ℓ} . If i ∈ ℓ.unseen , we delete i from ℓ.unseen . If 
ℓ.unseen becomes empty, then ℓ is exposed. Suppose 
π has a parent position π∗ . Then, exposed label ℓ ∈ πi 
is new if πi  = π∗

i  . This step takes O(k) time per call to 
Decomposeand O(nk) over the entire execution of 
BuildAST.

To construct Ŵ in line 11, we need to obtain W ∩ ChP(π) 
for each connected component W of HP(π) \ S . We can 
do this in O(nk log nk) time, over the entire execution of 
BuildAST, using the technique of scanning the smaller 
component, which has been used for compatibility testing 
[11, 12]. Next, we outline the technique.

Let Sold and Snew denote the old and new labels in S at 
the beginning of an execution of Decompose; thus, 
S = Sold ∪ Snew . The labels of Sold and their incident 
edges have already been deleted. Assume that we know 
W ∩ ChP(π) for each connected component W of 
HP(π) \ Sold . We consider each node in Snew in succes-
sion, deleting its incident edges one at a time. Suppose 
an edge deletion breaks a component W into two com-
ponents W1 and W2 , and assume we know W ∩ ChP(π) . 
We determine whether a label in W ∩ ChP(π) ends 
up in W1 or W2 (thereby obtaining W1 ∩ ChP(π) and 
W2 ∩ ChP(π) ) as follows.

Assume without loss of generality that the smaller of W1 
and W2 is W1 . We initialize A = ∅ and scan the labels 
of W1 . When we scan a label ℓ in W1 , if ℓ ∈ ChP(π) , we 
add ℓ to A and update ℓ ’s child mapping to this smaller 
connected component. After all edge deletions are com-
pleted, W1 ∩ ChP(π) = A . The set W2 ∩ ChP(π) con-
sists of all labels of W ∩ ChP(π) that were not moved to 
A. Since a label can be in a smaller component at most 
log2(nk) times and there are O(nk) labels, the total time 
spent in this process over all deletions performed over 
the entire execution of BuildASTis O(nk log(nk)) . �

Lemma 15  Decompose’s while loop takes 
O(k

∑
i∈[k] di) time.

Proof  By Lemma 11 the while loop iterates O(k) times. 
We complete the proof by showing that each iteration 
takes O(

∑
i∈[k] di) time.

Line 11 of Decomposecomputes HP(π) \ S by deleting 
at most 

∑
i∈[k] di edges from HP(π) . Therefore,

For each set A ∈ Ŵ , we maintain a count, initialized to 0. 
By Inequality (4), the total time to initialize the counts is 
O(

∑
i∈K di) per iteration. To search for a bad label, for 

each i ∈ K  , we scan each a ∈ ChTi(πi) , and increase the 
count of the set A to which a belongs. If the count for any 
set A ∈ Ŵ exceeds one, then ℓ ∈ πi is a bad label and the 
search ends.

Next, we consider the time taken by the body of the while 
loop. Retrieving K ′ in Line 7 takes constant time. By Ine-
quality (4) and the fact that we have constant-time access 
to mappings, building Ŵ′ in line  8 takes O(

∑
i∈K ′ di) 

time as follows. We scan each label ℓ ∈ ChTi(πi) for 
each i ∈ [k] and retrieve the set A ∈ Ŵ that contains ℓ 
using the mapping from ChP(π) to Ŵ . The process takes 
O(

∑
i∈[k] di) time per call to Decompose.

To compute the union of the sets in Ŵ′ in line 9, we start 
by initializing B to the empty set. We then successively 
consider each A ∈ Ŵ′ . At each step, we append every 
child label ℓ from a non-empty entry in the representa-
tion of A to the corresponding entry in B, and change the 
mapping of ℓ to B. Given our representation of the sets in 
Ŵ , this process takes O(

∑
i∈[k] di) time in each iteration of 

the while loop.

Updating Ŵ in Line  10 requires removing every A ∈ Ŵ′ 
from Ŵ and then adding B. The time spent on updates 
is O(|Ŵ′|) , which is O(

∑
i∈K ′ di) . Finally, updating S in 

Line 11 takes constant time and updating K takes O(|K ′|) 
time. 

Theorem  2  BuildAST can be implemented to run in 
O(nk(

∑
i∈[k] di + log2(nk))) time, where n is the number 

of distinct taxa in P , k is the number of trees in P, and di 
is the maximum number of children of tree Ti, for i ∈ [k].

Proof  First, consider the total time spent on lines 2–11 
of Decomposeover the entire execution of Buil-
dAST. By Lemmas  13 and 14 , the total time spent 

(4)|Ŵ| ≤
∑

i∈[k]

di.

�
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on lines   2–11 is O(nk log2(nk)) . BuildASTspends 
O(nk

∑
i∈[k] di) time on lines 5–11 of Decomposesince, 

by Theorem  1, Decompose is invoked O(n) times and, 
by Lemma  15, each invocation spends O(k

∑
i∈[k] di) 

on those lines. Thus, lines  2–11 of Decomposetake 
O(nk(

∑
i∈[k] di + log2(nk))) time over the entire execu-

tion of BuildAST.

Next, consider the foreach loop of lines 13–20. For each 
set A ∈ Ŵ considered in that loop, Decomposeconstructs 
the successor position πA in O(k) time. Since BuildAST 
generates O(n) positions, the total time spent on the loop 
over the entire execution of BuildAST is O(nk) . This 
time is dominated by the time spent on lines 2–11. �

Experiments
Here we present our experimental results with a C++ 
implementation of BuildAST. Our source code is avail-
able on Github (https://​github.​com/​resea​rchGit/​Agree​
mentT​esting).

As in earlier work [12], we consider two variants of 
BuildAST. BuildAST(1) uses the original version of 
the HDT data structure, which involves level promotion. 
BuildAST(0) uses a much simpler variant of HDT where 
level promotion is disallowed. (For a description of level 
promotion, see [15].) In [12] we showed that the simplified 
graph connectivity data structure outperforms the more 
complex data structure in the context of tree compatibility.

We performed our experiments on a machine with a 
6-core i7 processor and 16 GB memory.

Real data
We tested our program on three real profiles.

•	 Spider profile: From Figure  1 of [3]; consists of two 
input trees with a total of 24 labels.

•	 Strepsirrhini profile: Studied in [4]; consists of four 
input trees with a total of 100 labels.

•	 Phocidae profile: Studied in [3]; contains 15 input 
trees with 43 labels.

Our program correctly constructs an agreement tree for 
the Spiders profile and correctly reports that the other 
two profiles disagree. Since the three real profiles are 
small, the running times are negligible, whether we use 
BuildAST(0) or BuildAST(1).

On the Phocidae profile, our program terminates 
immediately after processing the initial position. Indeed, 
the display graph of this profile has a complex structure, 
with several areas of disagreement. For the Strepsir-
rhini profile, we identified a single position of the display 

graph that causes disagreement. Figure  7 shows the 
region of the display graph corresponding to this posi-
tion. The region involves taxa from two of the four input 
trees, colored red and black in the figure. The roots of 
the corresponding subtree in the black tree is Galagoini-
daea, while for the red tree it is an internal node, origi-
nally unlabeled, to which we have assigned the artificial 
label 1. The conflict arises because taxa Otolemur, Go. 
moholi, and Gs. demidoff are involved in a multifurca-
tion in the red tree, whereas in the black tree the first two 
taxa are contained in a subtree that does not contain the 
third. Because of this, after Decomposeinitializes set S 
to {Galagoinidaea, 1} , its while loop deletes both labels 
from S, leaving S = ∅.

Simulated data
Real profiles, like those considered in the previous sec-
tion, rarely agree. On such profiles, BuildAST tends to 
terminate quickly, without processing the input trees in 
their entirety. To test BuildAST’s running time on a wide 
range of profiles with varying numbers of taxa and trees, we 
devised an input generator that produces profiles that agree.

Experimental setup
Given integers D and m, the input generator produces 
a seed tree T seed with m labeled nodes, where inter-
nal nodes have D children, and where each level except 
the last is completely filled. Thus, when D = 2 , the seed 
tree is a complete binary tree. To generate a profile of k 
trees, we first create a collection of k subsets of labels, 
Y1,Y2, . . . ,Yk . Each subset is obtained by choosing a 
random number of labels from the set of used labels 
(the ones chosen so far) and unused labels from the 
seed tree. From the collection of subsets, we produce a 

Fig. 7  The part of display graph of the Strepsirrhini profile that leads 
to disagreement. The black tree and the red tree are subtrees of tree 
b and tree a, respectively, of Figure 1 in [4]

https://github.com/researchGit/AgreementTesting
https://github.com/researchGit/AgreementTesting
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profile P = {T seed|A1, T
seed|A2, . . . , T

seed|Ak} . Note that 
T seed|Ai may contain unlabeled nodes, because certain 
labels in Ai may have a lowest common ancestor in T seed 
that is not in Ai . We assign such nodes new labels; by 
Lemma 2, this does not affect agreement.

The reported times are the averages over 30 trials. 
Times are given in seconds and plotted as a function of 
MP , the product of the number of taxa and the number 
of trees; i.e., MP = n · k . Unless stated otherwise, the 
times reported are for BuildAST(0).

Experiment 1: Fixed number of input trees
In the first set of experiments, we fix the number of input 
trees at k = 100 . Since it is difficult to control n, the num-
ber of taxa, we instead vary the number of labels m in the 
seed trees from 100 to 1000 with increments of 100. The 
number of taxa n falls within a range that depends on D. 
We consider D = 2, 3 and 10; the respective ranges of n 
are [1135, 10875], [922, 8701] and [517, 5491].

Figure  8 shows our results for D ∈ {2, 3, 10} . In all 
cases, the running time appears to be nearly linear in the 
number of taxa. This is partly because 

∑
i∈[k] di = k · D 

is fixed. Thus the term O(nk
∑

i∈[k] di) in the time bound 
of Theorem  2 becomes linear in n. In theory, then, the 
O(nk log2(nk)) dominates the running time. In prac-
tice, however, the impact of this term appears to be less 
significant than the worst-case bound indicates. This 
seems due to the fact, previously observed in [12], that 
maintaining dynamic graph connectivity (the source of 
the polylogarithmic factor) is relatively easy on display 
graphs.

Figure 9 compares the running times of BuildAST(1) 
and BuildAST(0) against the theoretical time bound 

for input trees with degree D = 3 . The curves show 
that BuildAST performs well in practice and that 
BuildAST(0) outperforms BuildAST(1) . The latter 
observation is similar to what we noted in [12].

Experiment 2: Varying the number of input trees
In the second set of experiments, we varied the number 
of input trees k from 20 to 200 with increments of 20, 
while keeping the number of taxa in the seed trees fixed 
at m = 500.

Figure 10 shows that when D equals 2 or 3, the running 
time grows sub-linearly at the outset, and then becomes 
nearly linear. In contrast, when D = 10 , the running time 

Fig. 8  Running times for trees of degree D = 2, 3, 10 in profiles with 
k = 100 input trees

Fig. 9  Theoretical running time versus empirical running time with 
and without edge promotions for k = 100 and trees with degree 
D = 3

Fig. 10  Running times for profiles of degrees 2, 3,  and 10, with k 
varying from 20 to 200
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curve is nearly linear. A possible explanation for these 
observations centers on the degree to which Decom-
pose’s while loop contributes to the overall work. When 
D = 10 , the input generator produces few bad labels. 
Thus, the while loop contributes little to the total time. 
When D = 2 or 3, we observe a larger number of bad 
labels. Since the number of trees k and degree D are 
small, maintaining graph connectivity initially dominates 
the total time, but, as the number of trees increases, the 
while loop again starts to dominate. Thus, one would 
expect that the running time would be closer to linear 
for larger numbers of trees. Figure 11, where we extend 
the number of input trees k to 300, suggests that this is 
indeed the case. Figure 11, also shows that, as in our first 
set of experiments, there is no advantage to using level 
promotion in HDT.

Discussion
Theorem 2 implies that BuildAST performs well if the 
sum of the maximum out-degrees is small relative to the 
number of taxa. In fact, our experiments indicate that 
BuildAST is faster in practice than Theorem 2 suggests. 
The reason is that the proof of the theorem assumes the 
unlikely scenario where every edge deletion performed 
in constructing HP(π) \ S in Decompose generates a 
new component and that most of these components are 
remerged in the Decompose’s while loop.

The running time of BuildAST can be further 
improved to O(nk(

∑
i∈[k] di + log2(nk)/ log log(nk))) 

using the graph connectivity data structure of reference 
[27]. It is not clear, however, that the latter data structure 

is practical. In fact, the experiments we present here and 
in our previous work [12] suggest that data structures 
much simpler than HDT (and, therefore, than [27]) per-
form well in practice. These experimental results sug-
gest that a more effective way to speed up BuildAST in 
practice would be to improve the efficiency with which 
Decompose deals with bad labels.

If profile P agrees, BuildASTreturns an agreement 
tree T  with the property that the set of labels mapped to 
each node in T  is a maximal nice exposed subset. How-
ever, that P may have other agreement trees that do not 
have this property. For example, consider the profile P 
shown in Fig.  12. Given P as input, BuildASTreturns 
the agreement tree shown in Fig. 13. The tree shown in 
Fig. 2 (which, as we saw, is an agreement tree for the pro-
file of Fig. 1) is also an agreement tree for P , but the set 
of labels that map to the root of the tree is not maximal. 
One open question is whether it is possible to enumer-
ate all agreement trees in time polynomial per agree-
ment tree. A natural way to do this would be to modify 
Decomposeto enumerate all nice exposed subsets of π
—not just the maximal one—efficiently. This is equivalent 
to Ng and Wormald’s approach to enumerating all agree-
ment trees for a profile of leaf-labeled trees [18].
BuildAST can be modified to run in O(nk log2(nk)) 

time for profiles P where the input trees are all binary and 
solely leaf-labeled. For such profiles, |A ∩ ChTi(πi)| ≤ 2 , 
for A ∈ Ŵ and i ∈ [k] in a position π of P . Labels 
a, a′ ∈ ChTi(πi) are either in the same set A or in different 
sets A,A′ where A,A′ ∈ Ŵ . In the first case, ℓ ∈ πi must 

Fig. 11  Running times with and without edge promotion for trees of 
degree 3, with k varying from 20 to 300

Fig. 12  A profile P ′ = {T ′
1 ,T

′
2 ,T

′
3 ,T

′
4 } . P

′ is obtained from profile P 
of Fig. 1 by removing taxon c from T2

Fig. 13  One possible agreement tree for profile P ′ of Fig. 12
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be bad. Bad labels can then be detected earlier in Line 11 
and directly removed from S. Thus, we can skip Decom-
pose’s while loop. Hence, maintaining graph connectiv-
ity would dominate the performance of BuildAST.

Conclusions
BuildAST enables users to deal with hard polytomies. 
In applications, we may encounter both hard and soft 
polytomies. It would be interesting to modify Buil-
dAST to handle a mixture of both types polytomies, as 
appropriate.

Abbreviation
HDT: The dynamic graph connectivity data structure of Holm, de Lichtenberg, 
and Thorup [15].
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