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Abstract 

Background: Pattern matching is a key step in a variety of biological sequence analysis pipelines. The FM-index is a 
compressed data structure for pattern matching, with search run time that is independent of the length of the data-
base text. Implementation of the FM-index is reasonably complicated, so that increased adoption will be aided by the 
availability of a fast and flexible FM-index library.

Results: We present AvxWindowedFMindex (AWFM-index), a lightweight, open-source, thread-parallel FM-index 
library written in C that is optimized for indexing nucleotide and amino acid sequences. AWFM-index introduces a 
new approach to storing FM-index data in a strided bit-vector format that enables extremely efficient computation 
of the FM-index occurrence function via AVX2 bitwise instructions, and combines this with optional on-disk storage 
of the index’s suffix array and a cache-efficient lookup table for partial k-mer searches. The AWFM-index performs 
exact match count and locate queries faster than SeqAn3’s FM-index implementation across a range of comparable 
memory footprints. When optimized for speed, AWFM-index is ∼2–4x faster than SeqAn3 for nucleotide search, and 
∼2–6x faster for amino acid search; it is also ∼ 4x faster with similar memory footprint when storing the suffix array in 
on-disk SSD storage.

Conclusions: AWFM-index is easy to incorporate into bioinformatics software, offers run-time performance param-
eterization, and provides clients with FM-index functionality at both a high-level (count or locate all instances of a 
query string) and low-level (step-wise control of the FM-index backward-search process). The open-source library is 
available for download at https://github.com/TravisWheelerLab/AvxWindowFmIndex.
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Background
String pattern matching is the problem of counting or locat-
ing occurrences of a query text pattern P within a large 
database text T. While not limited to the analysis of biologi-
cal sequences, string pattern matching is integral to many 
tasks in bioinformatics, including mapping sequence reads 
to a reference genome [1, 2], taxonomic classification [3, 4], 
sequencing error correction [5], and seeding for sequence 
alignments [6–8].

The need for high-throughput pattern matching in bioin-
formatics has motivated myriad approaches including hash-
ing, lookup tables, suffix arrays [9], and compressed suffix 
array data structures such as the FM-index [10]. Use of the 
FM-index across bioinformatic applications is due to its fast 
performance and low memory footprint. Unfortunately, its 
adoption is likely limited by the lack of an optimized and 
lightweight FM-index library; the only robust, currently 
maintained FM-index implementation we are aware of is 
found in the SeqAn3 library [11]. Here, we present a light-
weight, open-source library called AvxWindowedFMindex 
(hereafter shortened to AWFM-index), which enables opti-
mized string pattern matching over nucleotide or amino acid 
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sequence datasets with significantly faster performance than 
SeqAn3’s library.

AWFM-index achieves significant performance gains 
through multiple algorithmic and data structure changes 
over a traditional FM-index implementation. Rather than 
storing the database text T in ascii symbols or as a range of 
integral values representing the symbols in T, AWFM-index 
stores bit-compressed symbols strided over 256-bit (AVX2) 
vectors that can be efficiently reduced with a low number 
of bitwise SIMD instructions. A table of k-mer seed ranges 
makes it possible to skip an early portion of the search com-
putation for every query. Collections of multiple k-mers are 
queried in a thread-parallel manner, with good parallel scal-
ing performance. AWFM-index is an open-source library 
written in C, with a simple API to facilitate easy integration 
into bioinformatics tools.

Data structure background
Suffix array
The suffix array [9] is a classic data structure that supports 
efficient determination of the count and locations of all 
occurrences of a query pattern P within a database sequence 
T. Given a text T that ends with a special sentinel symbol ‘$’ 
(defined as a symbol in the text’s alphabet � that otherwise 
does not occur in T, and is the smallest symbol in � ), a suffix 
array SA is a permutation of integers [0..|T| − 1] , such that 
the suffix of T beginning at position SA[i] is lexicographically 
smaller than the suffix denoted by SA[j] if and only if i < j.

Because a suffix array lexicographically orders the suffixes 
of T, all indices of a given substring of T can be found in a 
contiguous range of elements in the suffix array. This fact is 
the key to the suffix array’s fast search, as it enables counting 
in O

(

|P| log |T|
)

 time through binary search across the suffix 
array, and locating in O

(

|P| log |T| + k
)

 time for k instances 
of the pattern. Without any data compression techniques, 
suffix arrays generally require 4 bytes of per symbol for 
sequences < 4GB long, or 8 bytes per symbol for sequences 
≥ 4GB.

Numerous efficient algorithms have been devised to 
quickly construct a suffix array from text T. The optimal 
asymptotic performance for suffix array construction is 
O(|T|) [12], but the O

(

|T| log |T|
)

 complexity divsufsort [13] 
is commonly used because of its excellent speed as an in-
memory suffix sorter for genome-scale inputs; AWFM-index 
utilizes libdivsufsort [14] for suffix array construction.

Burrows‑Wheeler transform
The Burrows-Wheeler transform (BWT) is a reversible text 
transform that was originally proposed for lossless data com-
pression [15]. Given a text T and a associated suffix array SA, 
a BWT is defined as the transformation:

In other words, each element in the BWT holds the symbol 
directly preceding the suffix denoted at that element’s index 
in the suffix array. This is effectively the last column in a table 
of sorted rotations of T (see Fig 1), and is easily computed 
from a suffix array on T.

In order to reduce the memory footprint of a BWT, it is 
often losslessly compressed in some way. Strided bit vectors 
are commonly used as compressed BWT implementations, 
especially as a wavelet tree [16]. Wavelet trees are an attrac-
tive implementation, as they allow for lossless data compres-
sion approaching the empirical entropy of the text. For our 
implementation, we opted instead to use a new (and simpler) 
strided bit vector format that, along with precise symbol rep-
resentations, enables efficient vector-parallel computation of 
the occurrence function.

FM‑index
While the BWT can be viewed as a data-product of a suffix 
array, it can also be used as an alternative method for identi-
fying pattern matches when used in conjunction with a suf-
fix array. Using both data structures, Ferragina and Manzini 
introduced the FM-index [10]. An FM-index constructed 
from a given text T of alphabet � is comprised of the follow-
ing: a suffix array SA, a Burrows-Wheeler Transform B, a 
milestone table described below, and a counts array C where 
C[s] is the count of all symbols in T that are lexicographi-
cally less than or equal to symbol s. Using these data struc-
tures, an FM-index can perform two key query functions 
called Count() and Locate(). The Count() function returns 
the number of occurrences of the query pattern P in O(|P|) 
time. The Locate() function returns the position in T of all k 
instances of P, in expected time O(|P| + k).

(1)BWT(i) =

{

T[SA[i] − 1] if SA[i] �= 0
$ otherwise

Fig. 1 Example of generating a Burrows-Wheeler Transform for a 
given text. A All rotations of the input text ‘banana’, with appended 
sentinel ‘$’ symbol. The position of each rotation is given in the left 
column. B After sorting the rotations, the left column retains the 
original position of each rotation, and is thus the suffix array of the 
text. The final column of this sorted rotation matrix is the BWT. The 
actual rotation matrix need not be stored, or even computed; it is 
represented here as a visual aid
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Exact pattern matching with FM‑index
Search for a pattern P in text T is performed one character at 
a time, beginning with the final character of the pattern and 
moving backwards. To begin, the search process establishes a 
start-pointer and end-pointer [SP..EP] that correspond to the 
range in SA pointing to all occurrences of the final letter of P 
in T (Alg 1). In each successive step, the preceding character 
in P is prepended to the searched string P’, and the range [SP..
EP] is updated (via Alg 2) to correspond to all positions in 
the text T that match the growing suffix, P’. This continues 
until each symbol in P has been processed. SP and EP are 
updated each time a new prefix symbol is added to the query 
using a function called occ() (short for occurrence). The 
occ(s, p) function takes as parameters a symbol s ∈ � − {$} 

and a position p where 0 ≤ p < |T | , and returns the number 
of occurrences of s in B before position p. To avoid unneces-
sary counting over large ranges of B, a milestone table is used 
to store the count S[s, p’] of symbol s preceding regularly 
sampled positions p’. When computing occ(s, p), the closest 
milestone position p’ < p is identified, and the value S[s, p’] is 
added to the count of symbol s between p’ and p. If the inter-
val between milestones is r, the milestones table will require 
(� · ⌊|B|/r⌋ · 8) bytes, assuming 64-bit integers are used to 
store the symbol counts. After the conclusion of Alg 3, the 
range [SP..EP] of the query is the range of positions in the 
suffix array that represent suffixes that begin with pattern P 
(i.e., the locations of P). If at any point of the process SP > EP, 
P is not a substring of T, and the backward search is halted.
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Reducing space requirements by sampling the suffix array
While locating query sequences using an FM-index has 
better complexity scaling than using only a suffix array 
for the same task (O( P  ) for FM-index as opposed to O(
P   log  T  ) for suffix arrays), a naive FM-index requires 
more memory than suffix array alone, since it includes 
the BWT and milestone counts. By down-sampling 
the suffix array [17], the memory footprint of the suffix 
array inside an FM-index can be dramatically reduced 
at the cost of a modest performance hit. A common SA 
sampling strategy is called subscript sampling [18], in 
which a sampling ratio r is chosen, and the sampled SA’ 
is generated from all SA values at positions p where p ≡ 
0 (mod r).

At the conclusion of the backwardSearch algorithm, 
each position in the [SP..EP] range corresponds to a posi-
tion in the full SA, which itself indicates the location of 
an instance of P in T. Under SA down-sampling, only 1/r 
of the positions in [SP..EP] are present in SA’ (i.e., only 
positions p ≡ 0 (mod r) for p in [SP..EP]). For positions 
that are not sampled, the backtracePosition() function 
steps backwards through positions in the original text 
until a position sampled in SA’ is reached, then returns 
the correct position by adding the number of steps that 
were taken to this SA’ value.

A position p in B references some position B[p] in T. 
The backtrace step seeks to walk back in T until finding a 
position sampled by SA’; by construction, this is the char-
acter found at B[p]. Thus, to take one step back in T from 
a current position p, the symbol at p in B is found and 
the symbol is used in the occurrence function to find the 
BWT position of the previous symbol in the original text 
T (Alg 4).

 
Implementation
This manuscript describes an optimized FM-index library 
that is lightweight, easy-to-incorporate, and provides 
clients with FM-index functionality at both a high-level 
(count or locate all instances of a query string) and low-
level (step-wise control of the FM-index backward-search 
process). Here, we present the various strategies that 
contribute to the library’s fast text indexing performance. 
The key innovation is the development of a representa-
tion of BWT sequence data with a strided bit-compressed 
vector format; this is interleaved with milestone data in 
a manner similar to [19]. This format supports efficient 
computation of the most expensive aspect of FM-index 
calculations: the occurrence function.

We begin by describing a specialized bit representation 
for symbols in both nucleotide and amino acid alphabets, 
along with an efficient method testing symbol equal-
ity with such a representation. We then show how this 
symbol representation can be used to compactly store an 
FM index in memory blocks representing 256 symbols 
at a time, and that these blocks can be efficiently pro-
cessed using AVX2 vector instructions. This is followed 
by description of other aspects of the implementation, 
including a partial k-mer query lookup table that allows 
AWFM-index to skip the first few [SP..EP] update steps 
for each query.

Bitwise symbol matching
Consider an alphabet � , with each symbol in the alphabet 
encoded using n bits. In order to count the occurrences 
of a query symbol s in a range of symbols in the BWT, 
each symbol in the range must be checked for equality to 
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s. While nearly all CPU architectures contain instructions 
to directly compare two numbers, we explore solutions 
that exploit bitwise operations for comparing symbols. 
Given two symbols s1 , s2 ∈ � , one simple method for 
comparing s1 against s2 is to use a straightforward com-
bination of bitwise operations: (1) for all set bits in s1 , 
the corresponding bits in s2 are ANDed together; (2) for 
all clear bits in s1 , the corresponding bits in s2 are ORed 
together, and then bitwise NOTed. The boolean values 
that result from these actions are then ANDed together. 
The resulting value is true iff s1 = s2 , and can be com-
puted in n bitwise operations, or n-1 operations for the 
case where all bits in s2 are set. By performing bitwise 
operations in this way, symbol equality can be checked 
even in  situations where a direct symbol comparison 

operation is not possible (as is the case when perform-
ing vectorized computations, as described shortly). For 
the purposes of this implementation we consider the fol-
lowing bitwise operations on a and b: AND(a,b) = a&b, 
OR(a,b) = a  b, and ANDNOT(a,b) = (!a)&b to each be 
single bitwise operations, as they are each a single CPU 
instruction within our target instruction set.

In AWFM-index, two alphabets are supported, one for 
nucleotide data, one for amino acid data. Each alphabet 
contains symbols for each of the possible residues (4 for 
nucleotides, 20 for amino acids), a sentinel symbol, and 
an ambiguity symbol, denoted here as X, defined to be 
lexicographically greater than all other symbols in � . 
The resulting alphabets are length 6 and 22 respectively, 
and symbols in each alphabet are represented with ⌈log2
(6)⌉ =3 and ⌈log2(22)⌉ =5 bits. Note that each of these 
alphabets have fewer symbols than the number of pos-
sible values for each of their corresponding bit lengths. 
A naive approach to assigning encodings to the |�| sym-
bols in each alphabet would be to assign them to the inte-
gers [0 .. |�| − 1 ]. Instead, AWFM-index assigns alphabet 
symbol encodings using a strategy that aims to reduce 
the number of bitwise operations needed to compare 
symbols for equality. These encodings are presented in 
Table 1, and explained in the next two sections.

Nucleotide alphabet symbol encodings
Nucleotide symbols are represented by two groups of 
unique 3-bit encodings. Group-1 encodings have 2 of the 
3 bits set, while group-2 encodings have only a single set 
bit. With a group-1 nucleotide query symbol, equality to 
another symbol is determined by ANDing the 2 bits cor-
responding to the set bits of the query. This produces a 
true boolean result if the symbol matches, and precludes 
a true result for any other symbol: (1) any other group 1 
encoding would have a different pair of set bits, so that 
one of the compared bits would not be set, yielding a false 
result from the AND operation; (2) any group-2 symbol 
contains only one set bit, so again the AND operation 
would return false, and (3) since no encodings have more 
than 2 bits set, we can be sure that no other symbol could 
match to our query. Group-2 encodings can be checked 
for equality in 2 bitwise operations by taking the AND-
NOT of the set bit and one of the clear bits, then AND-
NOTing the result with the last clear bit. This strictly 
forces each of the 3 bits to match the query symbol.

Amino acid alphabet symbol encodings
Amino acid symbol encodings are split between 3 groups 
of unique 5-bit encodings. Group-1 encodings are rep-
resented by all 12 possible encodings in which exactly 2 
of the lower 4 bits (bits [0..3]) differ from the most sig-
nificant bit (bit 4). Group-2 encodings are represented 

Table 1 Bit encodings for all nucleotide and amino acid 
symbols, and the number of bitwise operations required to 
check for equality when used as a query symbol

Bit encoding Symbol group # Bitwise Ops 
for comparison

Nucleotide IUPAC code

 A 110 1 1

 G 101

 C 011

 T 001 2 2

 X 010

 $ 100

Amino acid IUPAC code

 A 01100 1 2

 D 00011

 E 00110

 G 11010

 I 11001

 K 11001

 L 11100

 P 01001

 R 10011

 S 01010

 T 00101

 V 10110

 C 10111 2 3

 F 11110

 H 11011

 M 11101

 N 01000

 Q 00100

 W 00001

 Y 00010

 X 11111 3 3

 $ 00000
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by all 8 possible encodings in which exactly 1 of the bits 
in [0..3] differs from bit 4. Group-3 encodings are repre-
sented by all 5 bits being either set or cleared, and denote 
the ambiguity symbol and the sentinel respectively. For a 
group-1 amino acid query symbol, equality can be tested 
in 2 bitwise operations, with the required operations 
depending on the state of bit 4 in the query symbol. If a 
query symbol is in group-1 and its bit 4 is set, one of the 
two bits corresponding to the query’s clear bits is AND-
NOTed with bit 4, then the other clear bit is ANDNOTed 
with the result. If bit 4 is clear for a group-1 symbol, the 
two bits corresponding to the query set bits are ANDed 
together, and the result is ANDNOTed with bit 4. Both of 
these options return true if and only if bit 4 matches the 
query, and the 2 bits that are supposed to differ from bit 4 
in fact do so. Further, if the result is true, it shows that the 
symbol cannot be a group-2 encoding, since more than 1 
bit differs from bit 4. In the same way, it shows that the 
symbol cannot encode for group-3. If the result is true, 
therefore, it cannot encode for any symbols other than 
our query.

For a group-2 amino acid query symbol, equality can be 
tested in 3 bitwise operations. If bit 4 is set, the bit cor-
responding to the query’s single clear bit is ANDNOTed 
with one of the 3 set bits in [0..3]. The other 2 set bits in 
[0..3] are ANDed together, and the result is ANDed with 
the result of the first operation. If bit 4 is clear, one of the 
3 clear bits in [0..3] is ANDNOTed with the single set bit. 
The remaining 2 clear bits are ORed together, and the 
result is ANDNOTed with the result of the first opera-
tion. Note that we did not check bit 4 in any way; if the 
result is true we can infer the state of bit 4 because no 
encodings exist with 3 bits that differ from bit 4. There-
fore the state of bit 4 must be the opposite of the bit with 
the unique state. We also know that the symbol cannot 
encode for a group-1 or group-3 symbol, because we have 
shown that exactly 1 bit differs from bit 4. Therefore, the 
result is true if and only if the symbol matches the query.

Group-3 comparisons are straightforward. The ambi-
guity symbol is encoded with 5 set bits, and can be com-
pared by ANDing together bits 0 and 1, ANDing bits 2 
and 3, and ANDing the two results. Again, bit 4 does 
not need to be checked because no symbols are repre-
sented by all bits in [0..3] differing from bit 4. Compari-
son against the sentinel symbol is similar, however this 
is never necessary in practice since query strings cannot 
contain the sentinel.

As group-1 encodings require 1 less instruction to 
reduce, this group is used to encode for the 12 most fre-
quent amino acids in the UniProtKB/Swiss-Prot database 
[20] and group-2 encodings represent the 8 least frequent 
amino acids. The reason for this choice is that the more-
common amino acids will likely be queried more often, 

and therefore should be represented by encodings that 
require the fewest instructions.

Strided bit vector data format
The previous section described a bitwise method for 
comparing a single symbol encoding against a query 
symbol. AWFM-index employs this bitwise comparison 
strategy in the context of Single Instruction, Multiple 
Data (SIMD) parallelization. Specifically, AWFM-index 
uses AVX2 instructions to perform the bitwise opera-
tions on vectors of 256 symbols in parallel, effectively 
comparing up to 256 symbols from the BWT to a single 
query symbol in the same number of bitwise instruc-
tions as comparing a single symbol. The AVX2 instruc-
tion set is an extension of the x86 instruction set that 
performs operations on vectors of 256 bits with a single 
instruction. AWFM-index uses 3 AVX2 intrinsic instruc-
tions (_mm256_and_si256, _mm256_or_si256, and 
_mm256_andnot_si256) to implement the bitwise opera-
tions for comparing symbol encodings, as described ear-
lier. Through precise, interleaved layout of the BWT and 
milestone data, AWFM-index finds all matches to a query 
symbol in ≤ 4 instructions, and computes the occurrence 
function with a few extra steps.

In the AWFM-index, the BWT sequence is broken up 
into windows of 256 symbols; each window represents a 
range [i..i+255], where i ≡ 0 (mod 256), and is comprised 
of 3 sections: (1) multiple contiguous 256-bit AVX2 vec-
tors that store the 256 symbols in a strided bit-vector 
format (see Fig 2, and text below), (2) an array of 8-byte 
milestone occurrence counts containing the count of 
symbol s in B[0..i-1], for each symbol in the alphabet 
except the sentinel, and (3) a padding section to ensure 
that all strided bit vectors align to 32-byte boundaries 
necessary for AVX2 SIMD instructions. By interleaving 

Fig. 2 The 5 AVX2 vectors that comprise a nucleotide BWT window. 
The milestone counts for A, C, G, and T are stored in vector 0. Vector 
1 contains the milestone for the ambiguity symbol ‘X’ and a 24 byte 
padding section to align the bit vectors to the 32 byte alignment 
necessary for AVX2 instructions. Vectors 2-4 contain the bits 
representing the symbols in the window
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the milestone counts with the BWT data, both the mile-
stone count and the symbol bit vectors can be brought 
into cache in the same memory request. The milestone 
section of the window contains five (5) 8-byte values for 
nucleotide windows, or twenty-one (21) 8-byte values for 
amino acid windows. Since the milestone sections are 
aligned to a 32 byte (256 bit) memory boundary, a 24 byte 
padding (for both nucleotide and amino acid alphabets) 
ensures that the strided bit-vector section also aligns to a 
32 byte boundary.

As a BWT window denotes a contiguous range of 256 
symbols from the BWT, a straightforward approach to 
storing symbols would be to represent each symbol with 
one byte as raw ASCII character values. For small alpha-
bets, modern FM-index implementations prefer to use 

some form of bit-compressed representation, such as 
representing nucleotide symbols with 2 bits [1] (though 
this approach does not support ambiguity symbols, and 
special handling is required for the sentinel symbol). 
AWFM-index adjusts this bit-compression strategy to 
better leverage SIMD parallelization in computing the 
occurrence function. The symbols in the BWT are strided 
over the window’s bit-vectors, with one vector for bit-0 of 
all 256 symbols, another vector for bit-1, and so on (gen-
erally: bit n of bit-vector m of a given window represents 
the m-th bit of the n-th symbol in the window). Includ-
ing the milestone values and the padding, nucleotide data 
takes up 5 AVX2 vectors for each 256 symbol window, 
and thus requires 5 bits per symbol in the original text. 
Similarly, amino acid windows take up 11 AVX2 vectors, 
and so require 11 bits per symbol.

SIMD occurrence calculation
To compute the occurrence function occ(s, p) for symbol 
s and position p, the milestone occurrence count is taken 
from the appropriate section in the BWT window. Then, 
positions in the BWT window matching symbol s are 
identified and captured into a 256-bit vector such that bit 
n is set if and only if the n-th position in the window rep-
resents symbol s, here called an occurrence vector. This 
occurrence vector is generated by using AVX2 SIMD 
instructions to implement a bitwise comparison across 
all 256 symbols in the window, with bitwise instruc-
tions described in the previous section (see Fig 3). Once 
the occurrence vector has been generated, a bitmask is 
applied to clear all bits after position p; this ensures that 
no positions after p are counted in the final occurrence 
count. The set bits in each of the 4 quad-words in the 
occurrence vector are then counted with _popcnt64() 
intrinsic instructions, and the results are summed with 
the corresponding milestone count to compute the final 
occurrence count. Multiple strategies of generating a 
population count of the occurrence vector were tested, 
and summing the results of the 4 _popcnt64() instruc-
tions was found to outperform other SIMD vector pop-
counting techniques (e.g., [21]).

Manual prefetching
While the computation to update the BWT range is 
minimal, the unpredictable nature of each subsequent 
position p given to the occurrence function creates a 
performance bottleneck in reading data from memory. 
Given a sufficiently large BWT, every occurrence call will 
result in a memory read request for cache lines that will 
almost certainly not be in cache, except for pathological 
case queries like ‘AAA AAA A’, or if SP and EP land in the 
same BWT window. To ease the performance hit caused 
by this random access, AWFM-index employs manual 

Fig. 3 Examples of creating an occurrence bit vector from the 
strided BWT bit vectors. a An example of the bit vectors in a BWT 
window. Each bit vector is 256 bits wide representing 256 symbols, 
but only the first 8 positions are shown for brevity. By performing 
bitwise operations on these bit vectors an occurrence vector can 
be generated where a set bit indicates the presence of the queried 
symbol at the bit’s position in the window. b Creating an occurrence 
bit vector for Group 1 amino acid ‘A’ in 2 SIMD operations. c Creating 
an occurrence bit vector for Group 2 amino acid ‘H’ in 3 SIMD 
operations
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data prefetching using the _mm_prefetch() SSE instruc-
tion as soon as the location of the memory address for 
the next occurrence function is known. The updates to SP 
and EP are also staggered such that after SP is updated, a 
prefetch request is generated for the following SP, and the 
update to EP begins while the new SP memory prefetch 
request is being serviced.

Accelerated search with a K‑mer lookup table
Traditionally, searching an FM-index involves updat-
ing the [SP, EP] pair for every symbol in the given query. 
AWFM-index uses a pre-computed lookup table with 
a modest memory footprint to skip a sizable portion 
these [SP, EP] updates. When the AWFM-index is built, 
a parameter k is selected, and a table is allocated to store 
the [SP, EP] pair for every length-k string over alphabet 
� (except the ambiguity and sentinel symbols, which are 
excluded because neither are found in query strings). 
This table of k-mer ranges consumes 16 · (|�| − 2)k 
bytes in memory, and memoizing prefix ranges enables 
O((|�| − 2)k) construction time. If a query pattern P is at 
least length k, the [SP,EP] range for the length-k suffix of 
P is found in the k-mer lookup table, effectively skipping 
the first k updates to the [SP,EP] range. Then, the query 
proceeds as normal, querying for symbols until the entire 
query has been completed, or the range is invalid. If the 
query string length is less than k, the range is resolved 
without using the k-mer table. The recommended val-
ues of k are 12 for nucleotide indices (268MB table size) 
and 5 for amino indices (51MB table size) as they strike 
a balance between memory footprint and performance 
benefit. Other values may be selected by the library client 
depending on expected factors such as expected query 
lengths and available system memory.

API and thread‑parallel search
The core API for AWFM-index includes the locate() 
and count() functions, which each accept as arguments 
(1) the AWFM-index data structure, (2) a collection of 
query sequences, and (3) a number of threads used to 
parallelize search. Parallelization is achieved using simple 
OpenMP 1.0 pragmas, as each query in the collection is 
data-independent with respect to the other queries in the 
collection. Given a collection Q of query sequences, the 
collection is implicitly divided into batches of 4 queries, 
resulting in a total of ⌈|Q|/4⌉ batches. The user-specified 
number of threads are then used to parallelize the search 
across the collection of batches. When a thread begins to 
compute the results for a batch of queries, it begins by 
finding [SP, EP] range in the k-mer lookup table that rep-
resents the final k symbol suffix for each of the 4 queries. 
Then, each query in the batch is extended until either 
the SA range of the query has been fully resolved, or has 

failed due to SP > EP. If the parallel locate() function is 
used, the location of each instance of each query string 
is found via the SA backtracking method described ear-
lier. We chose 4 for the batch size so that each thread can 
work on a group of contiguous queries and to hide the 
cost of thread management, but not such a large batch 
that cache eviction becomes a performance concern. We 
tried multiple values for the batch size, but since most 
small batch sizes performed similarly, 4 was an essentially 
arbitrary choice.

The AWFM-index API also includes non-parallelized 
functions for initializing a SA range, extending que-
ries with additional individual prefix symbols, back-
tracing to the most recently sampled SA position, and 
looking up the original position using the suffix array. 
These functions allow a client to implement custom FM-
index applications based on the internal components of 
AWFM-index, for example for inexact pattern matching.

Suffix array sampling, in‑memory or on‑disk
The suffix array component of the FM-index is often 
down-sampled to reduce memory requirements. Suffix 
arrays that are sparsely sampled have a smaller memory 
footprint, but require more backtrace steps to deduce 
the actual sequence position during the locate() func-
tion. The AWFM-index library currently supports suffix 
array sampling ratios r that are 1 ≤ r < 256 and utilizes 
a subscript sampling strategy such that every r th entry 
is sampled. AWFM-index provides the option to either 
load the suffix array into memory with the rest of the 
index (default) or leave the suffix array on disk and read 
directly from disk the values necessary to resolve the final 
sequence positions after all SA range elements have been 
backtraced to a sampled SA position. While disk access 
is significantly slower than memory access, on-disk suf-
fix array storage allows for denser sampling, even on sys-
tems with limited memory. For example, in the context of 
the locate() function, using an AWFM-index with a suffix 
array sampling ratio of 1 where the suffix array is left on 
disk results in a single random disk read for each found 
substring, which may be preferable to the large num-
ber of sequential cache misses necessary to backtrace to 
the nearest sampled suffix array position for each found 
substring in a heavily downsampled suffix array. This 
functionality aims to make high performance indexing 
accessible to a wider range of users on personal comput-
ers or laptops with limited memory.

Suffix array minimum bit‑width compression
To reduce memory requirements, AWFM-index stores 
SA values as variable bit-width integers similar to the 
int_vector class of SDSL [22], rather than as simple 
64-bit integers. Given a suffix array S of length n, all 
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values within S are non-negative and less than n. There-
fore, each value can be represented with 

⌈

log2 (n− 1)
⌉

 
bits. Each sample in the suffix array is compressed to this 
many bits, and repacked into a byte array. An individual 
value can then be extracted in constant time back into a 

64-bit integer. Storing the suffix array in this minimum 
bit-width integer array results in a reduction in suffix 
array space requirement of 

⌈

log2 (|T| + 1)
⌉

· ⌊(|T| + 1)/r⌋ 
bits for compression ratio r.

Table 2 Run time for nucleotide locate() and count() function.

A 1 billion nucleotide-long simulated target sequence was indexed with a suffix array sampling ratio of 4. One million length-k nucleotide query sequences were 
sampled from the target, for several values of k

Nucleotide search Count() Time (s) Locate() Time (s)

Query length Hits/query SeqAn3 AWFM Speed‑up SeqAn3 AWFM Speed‑up

20 1.00 4.51 1.15 3.12 6.14 2.37 2.60

18 1.01 3.96 .97 4.07 6.93 1.72 4.04

16 1.23 3.50 1.06 3.29 5.21 2.57 2.02

14 4.73 2.90 .76 3.80 8.61 3.67 2.34

12 60.60 2.85 .18 15.85 42.46 29.65 1.43

11 239.40 1.87 .99 1.90 147.54 106.51 1.39

Table 3 Run time for amino acid locate() and count() functions

A 200 million character-long simulated target amino acid sequence was indexed with a suffix array sampling ratio of 4. One million length-k amino acid query 
sequences were sampled from the target, for several values of k

Amino acid search Count() Time (s) Locate() Time (s)

Query length Hits/query SeqAn3 AWFM Speed‑up SeqAn3 AWFM Speed‑up

10 1.00 4.58 .81 5.66 6.40 1.63 3.92

9 1.00 3.91 .83 4.71 5.97 1.38 4.33

8 1.02 3.39 .60 5.69 5.29 1.46 3.61

7 1.47 2.89 .43 6.77 5.41 1.61 3.36

6 9.00 2.38 .38 6.27 15.35 5.52 2.78

5 137.70 1.81 .08 21.95 167.56 73.42 2.28

4 2339.23 0.49 0.30 1.62 1950.45 904.28 2.16

Table 4 Comparing AWFM and SeqAn3 Locate() performance 
for nucleotide search, across various suffix array compression 
ratios

The target sequence is a 1 billion-character long nucleotide sequence generated 
by the easel tool ‘esl-shuffle’. Query consists of 1 million nucleotide queries of 
length 14 taken from the target sequence. Default k-mer lookup table size of 12 
was used. Time and peak memory were captured with /usr/bin/time

Compression 
ratio

Nucleotide locate()—1Gb

Time (s) Peak memory (Mb)

SeqAn3 AWFM SeqAn3 AWFM

1 4.30 1.07 4007 4535

2 5.20 4.17 2176 2704

4 8.62 4.60 1261 1789

8 13.78 6.26 803 1331

16 24.48 11.90 574 1102Fig. 4 Timings of 1 million nucleotide queries using a partial k-mer 
table of length 1 (blue), and of length 12 (orange). A suffix array 
compression ratio of 4 was used for each index. The performance 
benefits of the partial k-mer table are most obvious in the count() 
function, whereas the performance benefit in the locate() function is 
most notable for longer queries that generate fewer hits (i.e., when 
the number of backtrace steps is relatively small)
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Results
We performed numerous tests to assess the performance 
of AWFM-index relative to the FM-index implementa-
tion inside SeqAn 3.0.3 [11], and to demonstrate the 
impact of AWFM-index parameterization. Unless stated 
otherwise, All tests were run on a system with a 32-core 
Intel Xeon E5-2630 v3 @ 2.40GHz, and 64 GB RAM.

Speed comparison between AWFM‑index and SeqAn3
A 1 billion base pair nucleotide sequence and a 200 mil-
lion amino acid sequence were generated with the easel 
sequence analysis library [23]. FM-index files were gener-
ated from these sequences for both SeqAn3 and AWFM-
index using the native construction method for each tool. 
Index build times were similar for the two libraries. A 
partial lookup table was pre-computed for all length-12 
(nucleotide) and length-5 (amino acid) k-mers. A col-
lection of 1 million queries of varying lengths were sam-
pled from the original text, and run times for locate() 
and count() functions were captured in Tables  2 and 3. 
Count() calls were typically 2–6x faster with AWFM-
index, while Locate() calls were typically 2–4x faster. See 
Tables  4  and  5 for discussion of AWFM-index’s some-
what larger default memory usage.

Effect of K‑mer lookup table on speed
To gauge the performance gains due to the partial k-mer 
lookup table, Tables 2 and 3 included one row with query 
length shorter than the lookup table. To supplement 
these results, the previous nucleotide benchmark was 
also used to compare AWFM-index performance with a 
minimum size lookup table (k = 1) versus the default rec-
ommended size partial k-mer look table (k = 12). Fig 4 
shows that count() performance is significantly boosted 
by avoiding the first 12 steps of Alg  3. Meanwhile the 

impact on locate() is modest, as run time is dominated by 
the numerous backtrace operations required by the sam-
pled suffix array.

Suffix array sampling impact on speed and memory 
footprint
Tables  4 and  5 compare the performance and memory 
usage of AWFM (in-memory) and SeqAn3 indices over 
a range of SA compression ratios. With more densely-
sampled suffix arrays, the memory footprint differences 
are negligible compared to the performance gains over 
SeqAn3. With sparsely sampled suffix arrays, the BWT 
makes up a large fraction of the stored data structure, 
so that AWFM’s speed gains are accompanied by an 
increased memory requirement. Though SeqAn’s mem-
ory usage is lower than AWFM’s in-memory variant for 
any fixed SA compression ratio (resulting from SeqAn3’s 
use of wavelet trees to store the BWT), AWFM is gener-
ally faster for any given memory footprint.

One mechanism for reducing memory footprint is 
to store the suffix array on disk, treating it as an exter-
nal memory block that is accessed only on an as-needed 
basis. To determine the performance impact of working 
with an on-disk suffix array, tests were performed with 
SA kept either in-memory, on a hard-disk drive (HDD), 
or on a solid-state drive (SSD). Not surprisingly, the per-
formance loss by storing the suffix array on-disk var-
ies depending on whether disk storage uses hard disk 
drives or solid state drives. When stored on solid state 
drives, fully-sampled on-disk suffix arrays outperform in-
memory suffix arrays at suffix array compression ratios 
of approximately 4, while generating a smaller memory 

Table 5 Comparing AWFM and SeqAn3 Locate() performance 
for amino acid search, across various suffix array compression 
ratios

The target sequence is a 200 million-character long amino acid sequence 
generated by the easel tool ‘esl-shuffle’. Query consists of 1 million amino acid 
queries of length 6 taken from the target sequence. Default k-mer lookup table 
size of 5 was used. Time and peak memory were captured with /usr/bin/time

Compression 
ratio

Amino acid locate()—200Mb

Time (s) Peak memory (Mb)

SeqAn3 AWFM SeqAn3 AWFM

1 3.30 0.83 822 1003

2 7.05 2.60 481 661

4 15.37 6.21 310 490

8 34.33 12.95 224 405

16 79.01 27.49 182 362

Table 6 Impact of suffix array compression Suffix array memory 
requirements for various suffix array compression ratios (target 
length = 1 billion), and the time taken to locate() 1 million 
length-14 nucleotide queries for in-memory and on-disk suffix 
arrays

These benchmarks were performed on a system with a Intel(R) Xeon(R) CPU 
E5-2620 v4 @ 2.10 GHz processor. The average number of hits per query was 4.73

Suffix array Locate() time (s)

Compression 
ratio

Suffix array size In‑memory SA SSD SA HDD SA

1 3750 MB 0.67 2.18 8.71

2 1875 MB 1.28 3.44 6.18

4 938 MB 2.41 4.75 6.64

8 469 MB 4.72 6.98 8.40

16 234 MB 9.42 12.34 11.98

32 117 MB 19.00 20.66 21.10

64 59 MB 37.07 39.42 39.58

128 29 MB 75.25 77.14 79.25
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footprint (Table 6). At higher compression ratios, the dif-
ference in performance between in-memory and on-SSD 
indices becomes negligible, since the time spent back-
tracing largely exceeds suffix array lookups. When an 
on-disk SA is stored on a HDD, the fully-sampled SA per-
forms about as well as an in-memory SA with a compres-
sion ratio of 16; similarly to the SSD tests, the difference 
between on-disk and in-memory shrinks as the suffix 
array compression ratio increases. Since no memory is 
used for an on-disk SA, this provides an efficient mecha-
nism for decreasing memory load while retaining speed, 
particularly if SSD storage is available. Wwhen the suffix 
array is uncompressed and left on SSD storage, AWFM 
has a similar memory footprint to a SeqAn index with a 
suffix array compression ratio of 7 (980MB for AWFM, 
923MB for SeqAn3) for a 1 GB nucleotide index, but is 
∼ 4x faster (2.41 s for AWFM, 8.72 s for SeqAn3).

Thread‑parallel performance
We evaluated the speed gains achieved with multi-
threading using the nucleotide benchmark described 
above (1 billion simulated nucleotides), with 1 million 
length-14 query strings. As seen in Fig  5, AWFM-index 

presents ∼35–50% strong scaling efficiency up to 20 
threads, with diminished returns thereafter.

Prefetch directives
The efficacy of data prefetch directives was analyzed by 
timing nucleotide locate() functions with each prefetch 
hint, and with prefetching directives disabled. Prefetch 
hint directives are used to tell the CPU which lev-
els of cache to store the data in. All prefetching hints 
were shown to improve overall performance by a small 
amount, but non-temporal prefetching (_MM_HINT_
NTA) was shown to be fastest over multiple trials at a 
performance gain of 1.4%. Since the performance dif-
ference is minimal, we consider manual prefetching to 
not be a major contributor to AWFM-index’s overall 
performance.

Discussion
AWFM-index offers good runtime performance rela-
tive to the mature SeqAn3 implementation, at the cost 
of a somewhat elevated memory footprint. Considering 
the now-ubiquitous availability of large memory sys-
tems, we expect that the runtime-memory tradeoff of 
the AWFM-index will be attractive to many developers. 

Fig. 5 Parallel scaling. AWFM-index nucleotide Locate() search times for 1 million length 14 queries, parallelized with varying numbers of threads, 
from single-threaded search up to search using 32 threads against a target of 1 billion nucleotide-long target with a suffix array compression ratio 
of 4. a Increase in speed for the count() command, relative to single-threaded search. b Increase in speed for the locate() command, relative to 
single-threaded search
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Even in low-memory systems, AWFM-index is still able 
to perform well using fully-sampled suffix arrays stored 
on disk, particularly if the index resides on a low-latency 
solid-state drive.

While we expect AWFM-index to be immediately 
applicable in its current form, we note two potential 
enhancements that will improve the future value of the 
library. The first of these is support for bi-directional FM-
index search [24]. The bi-directional FM-index supports 
updates to the range of matching substrings by extend-
ing an existing substring [SP..EP] range with either a suf-
fix or prefix symbol, and achieves this by supplementing 
the data structure with a single additional BWT over the 
reversed sequence T. Adding bi-directional search func-
tionality to the library will improve it’s applicability to 
some special-case pattern matching applications such as 
[25].

The second improvement will extend the performance 
benefit of the k-mer lookup table. As described above, the 
BWT range of a query with the same length as the k-mer 
lookup table (e.g., nucleotide search for a length-12 
query) is identified with a single memory access. Con-
versely, search for a slightly shorter k-mer (e.g., length 
11 nucleotide query) does not use the k-mer lookup 
table, and thus receives no search shortcut (see Table 2, 
Fig 4). Future work on AWFM-index will enable applica-
tion of the k-mer lookup table for queries shorter than 
k. For instance, consider the length-5 nucleotide query 
“CGTAG”, and a lookup table storing all length-7 nucleo-
tide suffixes. Since all suffixes in the BWT are sorted, suf-
fixes that begin with “CGTAG” will be found between (1) 
the start of the range for the k-mer extended with lowest 
rank non-sentinel symbol (here, “CGT AGA A”), inclu-
sively, and (2) the start of the range for the k-mer lexi-
cographically one higher, extended with the lowest rank 
non-sentinel symbol (here, “CGTA TAA”), exclusively. 
However, use of these longer strings as proxies during the 
identification of the BWT range fails to account for the 
possibility of a sentinel symbol, which may introduce a 
non-matching string into the proxy range. Since a BWT 
is guaranteed to only contain a single sentinel symbol at 
the end of the sequence, the last few symbols of the origi-
nal text T can be kept along with the k-mer lookup table, 
and used to remove this matches from a range list. A 
more thorny problem arises when the short query k-mer 
ends with a symbol of the highest rank, non-ambiguity 
symbol (nucleotide T or amino acid Y), as the lookup 
table does not have a higher-rank symbol to use in select-
ing the top end of the range. One way to resolve this is to 
store all ranges in the k-mer table, including those that 
contain ambiguity symbols; however, including the ambi-
guity symbol X increases the table size appreciably, e.g., 
a table of all length-12 nucleotide k-mers takes 16 · 412 = 

268MB, while the same table that also stores ambiguity 
characters takes 16 · 512 = 3.9GB. Other possible solu-
tions to this issue include using the partial k-mer lookup 
table for all queries that don’t end with a nucleotide T or 
amino acid Y as described above, and querying using the 
traditional backwards search for those queries that do. 
Perhaps the simplest solution to this problem involves 
keeping multiple k-mer lookup tables of varying k-mer 
lengths. Since the memory footprint of the table grows 
exponentially with the length of the k-mer, a table made 
from shorter k-mers will use much less memory: while an 
index containing a length-12 k-mer table takes 268MB, 
adding a length-10 and a length-6 table would cumula-
tively add only (16 · 410)+ (16 · 46) = 16.8MB of mem-
ory, but would improve runtime for any queries length 
6 to 11. We plan to update AWFM-index to support bi-
directional indexes and using k-mer lookup tables for 
small queries in a future library release.

Conclusion
We have developed AWFM-index to be a lightweight, 
performant, easy-to-use library that simplifies the 
inclusion of fast pattern matching into bioinformat-
ics software. Our implementation leverages a custom 
data layout and SIMD vectorized character comparison 
instructions to produce highly efficient symbol counting 
for nucleotide and amino acid alphabets. Combined with 
a pre-computed k-mer lookup table and out-of-the-box 
parallelism, the result is a library that provides very fast 
locate() and count() queries with little development effort 
in the client. In addition to single-command search for 
full query sequences, the AWFM-index API also exposes 
stepwise iterative search functionality, so that clients can 
exert fine-grained control over FM index search steps, for 
example in support of back-tracking for inexact search as 
used in [1, 2].

Availability and requirements
Project name: AWFM-index library

Project home page: https:// github. com/ Travi sWhee 
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Operating system(s): Unix/Linux
Programming language: C
Other requirements: None
License: BSD-3-Clause
Any restrictions to use by non-academics: None
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