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Abstract 

Background: Phylogenetic reconstruction is one of the paramount challenges of contemporary bioinformatics. A 
subtask of existing tree reconstruction algorithms is modeled by the Small ParSimony problem: given a tree T and an 
assignment of character-states to its leaves, assign states to the internal nodes of T such as to minimize the parsimony 
score, that is, the number of edges of T connecting nodes with different states. While this problem is polynomial-time 
solvable on trees, the matter is more complicated if T contains reticulate events such as hybridizations or recombina-
tions, i.e. when T is a network. Indeed, three different versions of the parsimony score on networks have been pro-
posed and each of them is NP-hard to decide. Existing parameterized algorithms focus on combining the number c of 
possible character-states with the number of reticulate events (per biconnected component).

Results: We consider the parameter treewidth t of the underlying undirected graph of the input network, presenting 
dynamic programming algorithms for (slight generalizations of ) all three versions of the parsimony problem on size-n 
networks running in times ctnO(1) , (3c)tnO(1) , and 6tcnO(1) , respectively. Our algorithms use a formulation of the tree-
width that may facilitate formalizing treewidth-based dynamic programming algorithms on phylogenetic networks 
for other problems.

Conclusions: Our algorithms allow the computation of the three popular parsimony scores, modeling the evolution-
ary development of a (multistate) character on a given phylogenetic network of low treewidth. Our results subsume 
and improve previously known algorithm for all three variants. While our results rely on being given a “good” tree-
decomposition of the input, encouraging theoretical results as well as practical implementations producing them are 
publicly available. We present a reformulation of tree decompositions in terms of “agreeing trees” on the same set of 
nodes. As this formulation may come more natural to researchers and engineers developing algorithms for phylo-
genetic networks, we hope to render exploiting the input network’s treewidth as parameter more accessible to this 
audience.
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Treewidth
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Introduction
Molecular phylogenetic reconstruction consists in infer-
ring a well-founded evolutionary scenario of a set of 
species from molecular data  [1]. An evolutionary sce-
nario, also called a phylogeny, is usually represented 

by a directed tree with a unique source called root. In a 
phylogeny, the tips of the tree are associated to extant 
species for which we have data, and each internal node 
represents an extinct species giving rise to new species—
a speciation. Therefore, each internal node represents the 
hypothetical ancestor of all species below it, and the root 
models the lowest common ancestor of all the species at 
the tips.
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Parsimony on trees
In this paper, molecular data consists of a set of molec-
ular sequences (e.g. DNA or protein sequences) of the 
same length (one sequence per species). This kind of data 
can be seen as a matrix  M of n  sequences, each having 
m  characters (exhibiting one of c  possible states) where 
Mi,j corresponds to the state of the jth character exhib-
ited by the ith  species. There are several methods to 
reconstruct well-founded phylogenies from matrices of 
characters [1]. They are all based on the idea of retrieving 
similarities among species by comparing the states taken 
by these species at the different characters of M. Here, 
we will focus on parsimony methods. The main hypoth-
esis of these methods is that character changes are not 
frequent. Thus, the phylogenies that best explain the data 
are those requiring the fewest evolutionary changes, i.e. 
the ones having the optimal parsimony score, formally 
defined in “Parsimony”. The problem of finding the opti-
mal parsimony score for a given phylogeny T with respect 
to an n×m matrix on a finite set of c character states is 
called the Small Parsimony problem and can be solved 
in O(n ·m · c)  time  [2] since each column in the matrix 
can be analyzed independently in linear time. When T 
is unknown, the problem of finding the phylogeny mini-
mizing the parsimony score is called the Big Parsimony 
problem. This latter is known to be NP-hard and numer-
ous heuristic techniques for it are known [1].

Parsimony on networks
When the evolution of the species of interest include, in 
addition to speciations, reticulate events such as hybridi-
zations or recombinations, a single species may inherit 
from multiple direct ancestors. In this case, the phylog-
enies are no longer represented by rooted trees but by 
rooted DAGs [3] called networks. When scoring a given 
network, three very different definitions of the parsi-
mony score have been proposed: the hardwired  [4], the 
softwired  [5, 6], and the parental parsimony score  [7]. 
Roughly, the hardwired score takes into account all edges 
of the given network (characters are inherited from all 
parents), the softwired score takes only the edges of any 
“switching” (each character is inherited from one parent), 
and the parental score allows embedding lineages into 
the network (each allele of a character is inherited from 
one parent). See “Parsimony” for details and Fig. 1 for an 
example. While these definitions coincide for trees, they 
give rise to three different small parsimony problems for 
networks.

When tracing mutually dependent characters (e.g. dif-
ferent genomic locations in a same non-recombinant 
region) on networks, we also have to make sure that 
dependent characters are inherited from the same par-
ent (some columns of the matrix have to use the same 

“switching”/“embedding”). To avoid dealing with this 
problem, the small parsimony problems on networks 
have been studied predominantly under the assump-
tion of independent genomic locations. This boils down 
to having m = 1 since each column of the matrix can be 
analyzed independently (as is the case for the small par-
simony problem on trees). Another popular restriction is 
to consider binary networks, in which the root has out-
degree  2, tips have indegree  1, and internal nodes have 
either indegree 1 and outdegree 2 (speciations) or inde-
gree 2 and outdegree 1 (reticulations).

The hardwired small parsimony problem has been 
proven NP-hard and APX-hard whenever the number 
of states that a character can take, denoted  c, is strictly 
greater than  2, and polynomial-time solvable for binary 
characters  [8]. A polynomial-time 1.35-approxima-
tion for all  c and a 12

11-approximation for  c = 3 have 
been proposed  [8]. Additionally, the problem has been 
shown fixed-parameter tractable (FPT) in the parsimony 
score  [8, 2p · O(min(q

2
3 ,
√
z) · q)  time], and in  c + r  [9, 

O(n · cr+2) time], where n, q, z are the number of leaves, 
vertices and edges in the phylogenetic network and p and 
r are the hardwired parsimony score and the number of 
reticulate events in the network.

The softwired small parsimony problem is also NP-
hard and APX-hard  [8, 10] for binary characters, and 
not FPT in the parsimony score (it is NP-hard to decide 
if the softwired parsimony score is 1). Also, it has been 
shown that, for any constant ǫ > 0 , no n1−ǫ approxima-
tion can be computed in polynomial time, unless P = NP . 
On the positive side, the problem is FPT in c + r  [6, 8, 
O(2r · n · c)  time] and c + ℓ  [8, 11, O(2ℓ · c2 · q · z)  time], 
where ℓ is the maximum number of reticulations over all 
biconnected components of the network (also called the 
level of the network).

Unsurprisingly, the parental small parsimony problem 
has also been proven NP-hard, even for very restricted 
classes of networks, but it is FPT both with respect 
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Fig. 1 Example for parsimony scores of a network (in gray). Black 
edges participate in the score (solid = score 0, dotted = score 1). For 
the hardwired score (left), all edges of the network are considered. 
For the softwired score (2 possible trees: middle), only edges of any 
switching are considered. For the parental score (4 possible trees: 
middle & right), a tree is inscribed in the network
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to c + r and with respect to c + ℓ  [12, O((2c)r+2 · q) and 
O((2c)ℓ+3 · q) time].

In this paper, we consider the case of independent char-
acters, showing that the three variants of the small parsi-
mony problem on networks are fixed-parameter tractable 
with respect to c + t (running in time O(T + ct+1 · z) , 
O(T + ct · (3t · c · q + z)) , and O(T + 6t·c · 4t·log(c) · z) ), 
provided that a width-t tree-decomposition of the input 
network  N can be computed in T  time (this is the case 
for  t equaling the treewidth of N and T ∈ 2O(k2)  [13]). 
Our proofs are constructive in the sense that a dynamic 
programming algorithm is provided for each version of 
the problem. The main strength of our algorithms lies in 
their parameterization, since the treewidth can be arbi-
trarily small, even for growing values of ℓ . An implication 
of parameterizing by the treewidth is that our algorithms 
run in polynomial time even on classes of networks on 
which previously known algorithms require exponential 
time1 while our algorithms run in polynomial time on all 
classes of networks that were previously known to allow 
for polynomial-time algorithms. Hence, our algorithms 
can potentially be orders of magnitude faster than the 
state-of-the-art solutions. Moreover, our formulations 
are not limited to binary networks and they can take into 
account polymorphism as well as external information 
controlling the states that ancestral species may take.

Treewidth for phylogenetic networks
The treewidth of a graph can roughly be described as a 
measure of “tree-likeness” and it ranks among the small-
est of such parameters  [14] (in particular, the treewidth 
can be seen to be smaller than the level  ℓ on any net-
work). Together with the fact that it facilitates the design 
of dynamic programming algorithms, this explains 
the enormous popularity the treewidth received in the 
parameterized complexity community  [15, 16]. Start-
ing with the groundbreaking work of Bryant and Lager-
gren  [17] (using the celebrated result of Courcelle  [18]), 
treewidth also gained traction with researchers studying 
algorithms for phylogenetics-related problems (surveyed 
in  [19]). While this yielded some algorithms parameter-
ized by the treewidth of the display graph of multiple 
trees (the result of “gluing” all trees at their leaves), we are 
not aware of any algorithms parameterized by the tree-
width of the input network. In an attempt to facilitate the 
use of this parameter in future work, we dedicate Sect. 
“An alternative formulation of treewidth” to presenting 
a “phylogenetics-friendly” formulation by representing 

tree-decompositions of the input network as a rooted 
tree Ŵ on the same vertex set as the network. In particu-
lar, this formulation generalizes our previously consid-
ered parameter “scanwidth” [20], which can be seen as a 
variant of treewidth that takes directness into account. 
While we expected scanwidth-based dynamic program-
ming formulations to be easier and more straight-for-
ward than their treewidth-counterparts, this comes at the 
cost of the scanwidth being potentially arbitrarily larger 
than the treewidth. Intuitively speaking, we expect scan-
width dynamic programming to be easier since phyloge-
netic networks exhibit a “natural flow of information”: 
most often, we know everything about the leaves, but 
the more we approach the root, the more information 
has to be inferred from the lower parts. In contrast to the 
scanwidth-layout, tree-decompositions disregard edge 
directions and, thereby, this “natural flow”. Thus, while 
using the scanwidth allows for more naïve and intuitive 
dynamic programming formulations, using the treewidth 
requires more care and ingenuity.

Since we will suppose that a (not necessarily optimal) 
tree-decomposition of the input network is given in 
the input, let us discuss the current state-of-the-art for 
computing good decompositions. Optimal decomposi-
tions are indeed very hard to compute, with even the 
best-known parameterized algorithm being considered 
impractical (see survey  [15]). This gloomy cloud has, 
however, two silver linings: First, if we do not insist on 
optimality, then we can use a recently published algo-
rithm to compute 2-approximated tree-decompositions 
in 2O(k)nO(1) time [21]. We will state our results in a way 
that allows plugging-in any algorithm that computes or 
approximates tree decompositions. Second, with devel-
opment driven by recent instances of the PACE chal-
lenge  [22], more practical exact algorithms to compute 
tree decompositions are now available as well  [23]. 
Herein, the running times of Tamaki’s implementa-
tion  [23] are hard to predict and show erratic behavior 
even for fixed graph size. As expected, however, exam-
ples for high running times occur only for instances with 
high treewidth, that is, for “highly tangled” networks (see 
Fig. 2 for two select examples). This hints towards some 
hidden properties of the input networks that govern the 
complexity of treewidth computations As we expect “nat-
ural networks” to be only moderately tangled, we think 
that existing algorithms, exact and approximative, are 
currently well-enough developed to deal with real world 
phylogenetic networks in reasonable timeframes. Indeed, 
we would welcome efforts similar to those made for the 
treewidth to also be made for the previously discussed 
scanwidth, which is also hard to compute [20].

For ease of presentation, the three main proofs (cor-
rectness of the dynamic programming formulations) are 

1 For example, networks whose “worst” biconnected component is equal to 
the result of glueing two copies of the same n-leaf tree at corresponding leaves 
are known to have treewidth two, but level at least n− 1.
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given as high-level sketches and their more detailed and 
formal versions can be found in the appendix.

Preliminaries
Mappings
For any x and y, we define δ (x, y) to be 0 if x = y and 1, 
otherwise, and we abbreviate 1− δ (x, y) =: δ (x, y) . 
We further abbreviate δ (φ(x),φ(y)) as δ φ(x, y) for 
any function φ . We may denote a pair (x, y) as x → y if 
it is referring to an assignment of y to x by some func-
tion and as xy if it refers to an arc in a network. We 
sometimes use the name of a function  φ : X → Y  to 
refer to its set of pairs {x → y | φ(x) = y} and we let 
φ |Z := {(x → y) ∈ φ | x ∈ Z} denote the restriction of φ 
to Z. We say φ(x) = ⊥ to indicate that φ is not defined for 
x. We denote the result of forcing φ(x) = y (whether or 
not x is mapped by φ ) as

Finally, for sets Z, X and Y ⊆ X and functions φ and ψ , 
we write ψ � φ (and say that ψ is a subfunction of φ ) if (a) 
φ : X → Z and ψ : Y → Z and ψ(x) ≤ φ(x) for all x ∈ Y  , 
or (b) φ : X → 2Z and ψ : Y → Z and ψ(x) ∈ φ(x) 
for all x ∈ Y  , or (c) φ : X → 2Z and ψ : Y → 2Z and 
ψ(x) ⊆ φ(x) for all x ∈ Y .

φ[x → y] :=
{

φ ∪ {x → y} ifφ(x) = ⊥
(φ \ {x → φ(x)})[x → y] otherwise

Graphs and phylogenetic networks
In this work, we consider directed acyclic graphs (DAGs) 
N that may have a unique source ρN called root. If the 
sinks (aka leaves) of N are labeled, we call N a phyloge-
netic network. We refer to the nodes and directed edges 
(arcs) of N by V(N) and A(N), respectively. The under-
lying undirected graph of N is the undirected graph on 
node-set V(N) that contains an edge {u, v} if and only if 
N contains the arc (u, v). As we do not deal with mixed 
graphs, we use the term uv to refer to the arc from u to 
v or the undirected edge between u and v, depending on 
the context. We refer to the edge-set of an undirected 
graph G as E(G).

We denote the set of nodes of a DAG N with in-degree 
at least two by R(N) and we call such nodes reticula-
tions. If R(N ) = ∅ , then N is called a tree. The result of, 
for each v ∈ R(N ) removing all but one of its incom-
ing arcs is called a switching of N and S(N ) denotes the 
set of all switchings of N (observe that all switchings 
are spanning trees). For each v ∈ V (N ) , we denote the 
successors (or “children”) of v in N by SuccN (v) and its 
predecessors (or “parents”) by PredN (v) . If N contains 
a directed u-w-path, then we say that w is a descendant 
of u and u is an ancestor of w (denoted as w ≤N u and 
w <N u if u  = w ). A set Z ⊆ V (N ) such that u �<N w and 
w �<N u for all u,w ∈ Z is called an anti-chain in N. The 
induced subgraph N[Z] of a set Z ⊆ V (N ) is the result of 

Fig. 2 Tamaki’s tree-decomposer [23] has a harder time with the right, more tangled instance (50 nodes, 175 edges, treewidth 25 computed in 79s) 
than with the larger instance on the left (465 nodes, 1004 edges, treewidth 9 computed in 0.5s), illustrating that tangledness is a more important 
factor than size. Indeed, both instances display a tangledness that already exceeds what we expect to see in real-world phylogenetic networks. The 
instances are ex065 (right) and ex011 (left) of the PACE2017 challenge [22]
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removing all nodes x ∈ V (N ) \ Z from N (together with 
their incident arcs) and, for any v ∈ V (N ) , the network 
Nv := N [{w | w ≤N v}] is called the subnetwork rooted 
at v.

An alternative formulation of treewidth
In this section, we give an alternative definition of the 
treewidth, which allows to tackle the small parsimony 
problem for networks in a simpler and more intuitive 
way. Note that this alternative definition is known in the 
FPT community (Dendris et al. [24] call it the “support” 
of a vertex with respect to an ordering while, when refer-
ring to Arnborg [25]) and Mescoff et al. [26], call it “tree 
vertex separation”). However, since in these works its 
connection to treewidth is mostly touched in passing, we 
felt the need to prove it explicitly here.

Since tree decompositions are agnostic to edge direc-
tions, all results in this section are stated for undirected 
graphs  G instead of networks  N,. Keeping in mind that 
the framework is to be applied to phylogenetic networks, 
all examples will be made with DAGs while, for the sake 
of versatility, all results are stated for undirected graphs. 
The reader may simply ignore the edge directions in the 
examples as all undirected graphs will be underlying 
undirected graphs of some DAGs.

For a linear ordering σ of the nodes of an undirected 
graph G and any x ∈ V (G) , we write y ≤σ x for all nodes 
y preceeding  x in σ (including x itself ) and let  σ [1..x] 
denote the restriction of σ to these nodes. We write 
x
G,σ
� y if x and y are connected in G[σ [1..x]] (see Fig. 3 for 

an example). Note that G,σ
� is a partial order on V(G). We 

consider nodes outside σ [1..v] that have an edge to the 

parts of σ [1..v] that are connected to v in G[σ [1..v]] . We 
denote these nodes by ZWσ

v  and their number by zwσ
v .

Definition 1 Let σ be a linear order of the nodes of an 
undirected graph G and let v ∈ V (G) . Then,

We abbreviate zw(σ ) := maxv zw
σ
v  and zw(G) := minσ zw(σ ) 

and we refer to the transitive reduction of the directed 
graph (V (G), {uv ∈ V (G)2 | uG,σ

� v}) as the canonical tree 
Ŵσ of σ for G (we will see below that Ŵσ is a rooted tree; 
see Fig. 3).

In the following, we say that a rooted tree Ŵ on V(G) 
agrees with an undirected graph  G if, for all uv ∈ E(G) 
either u <Ŵ v or v <Ŵ u . We also extend the definition 
of G,σ

� to such trees by writing uG,Ŵ
� v if u and v are con-

nected in G[Ŵu] . In analogy to Definition 1, G,Ŵ
� gives rise 

to a set YWŴ
v  containing the nodes “above” v in Ŵ that 

have a edge in G to a node “below” v in Ŵ.

Definition 2 (see Fig. 3) Let G be an undirected graph 
and let Ŵ agree with G. For each v ∈ V (G) , we define

Then, we abbreviate yw(Ŵ) := maxv yw
Ŵ
v  and yw(G) :

= minŴ yw(Ŵ).

Note that the path P resulting from traversing σ from 
right to left is a rooted tree agreeing with G. However, 
yw(P) is expected to be large for this choice. Indeed, we 

ZWσ
v : = {u >σ v | ∃w∈σ [1..v]uw ∈ E(G) ∧ v

G,σ
� w}

and zwσ
v := |ZWσ

v |.

YWŴ
v := {u >Ŵ v | ∃w≤Ŵvuw ∈ E(G)} and ywŴ

v
:= |YWŴ

v |.

Fig. 3 Example of a network N (left) with a linear order σ of its nodes (below) as well as their canonical tree Ŵσ (right) whose arcs are not drawn (the 
arcs of N are drawn in their stead). Reticulations are black, leaves are boxes. For the first (wrt. σ ) reticulation x, the set V(Ŵσ

x ) is marked (gray area) and 
equals σ [1..x] in this example. Further, the arcs in Ax(N) are dotted and the nodes in YWŴ

x = ZWσ
x  are gray pentagons. Note that x

N,σ
� ρN but neither 

ρN
N,σ
� x (since x /∈ σ [1..ρN] ) nor z

N,σ
� x (since x is not weakly connected to z in N[σ [1..z]])
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can show that the most “refined” trees Ŵ have the smallest 
yw(Ŵ).

Lemma 1 Let Ŵ and Ŵ′ be rooted trees agreeing with 
an undirected graph G and let ≤Ŵ′ be a subset of ≤Ŵ,  
that is, x ≤Ŵ′ y ⇒ x ≤Ŵ y for all x, y ∈ V (G). Then, 
yw(Ŵ′) ≤ yw(Ŵ).

Proof Let x ∈ V (G) and let y ∈ YWŴ′
x  , that is, y >Ŵ′ x 

and there is some z ≤Ŵ′ x with yz ∈ E(G) . Since ≤Ŵ 
is a superset of ≤Ŵ′ , we have y >Ŵ x ≥ z , implying  
y ∈ YWŴ

x . �

The following lemma proves a number of interesting 
properties relating σ and Ŵσ such as Ŵσ being a rooted 
tree whose descendant relation is a refinement of ≤σ , cul-
minating in the equality of ZWσ

x and YWŴσ
x  for all x.

Lemma 2 Let σ be a linear order of the nodes of a con-
nected undirected graph  G and let Ŵσ be its canonical 
tree. Then, 

(a) for each u and v with v ≤Ŵσ u , we have v ≤σ u,
(b) for each u, v ∈ V (G) , we have v ≤Ŵσ u if and only if 

u
G,σ
� v,

(c) Ŵσ is connected,
(d) Ŵσ is rooted at the last vertex r of σ,
(e) Ŵσ is a tree,
(f) for all uv ∈ E(G) with v <σ u , we have v <Ŵσ u,
(g) Ŵσ agrees with G, and
(h) YWŴσ

x = ZWσ
x for all x ∈ V (G).

(i) For each arc xy ∈ A(Ŵσ ) , Ŵσ
y  contains a neighbor of 

x in G.
(j) Each x ∈ V (G) has at most as many children in Ŵσ 

as it has neighbors in G.

Proof (a), (b): We show for all vertices  w on a u-v-
path p in Ŵσ that w ≤σ u and uG,σ

� w . The base case w = u 
holds trivially. For the induction step, let q preceed w in p. 
Since Ŵσ contains the arc qw, Definition 1 implies q G,σ

� w 
and, since q ≤σ u by induction hypothesis, w ≤σ q ≤σ u 
and uG,σ

� w . For the reverse direction of (b), note that, by 
Definition 1, uv is an arc of the DAG of which Ŵσ is the 
transitive reduction.

(c),(d): Since G is connected, each x ∈ V (G) has an r-x-
path in G = G[σ [1..r]] , implying r G,σ

� x . Thus, (b) implies 
that Ŵσ is connected and rooted at r.

(e): To prove that Ŵσ is a tree, assume there is a vertex 
x ∈ V (G) with two distinct parents y and z in Ŵσ . With-
out loss of generality, let y <σ z . By (b), y G,σ

� x and z G,σ
� x , 

implying that σ [1..y] contains a y-x-path py in G and 
σ [1..z] contains a z-x-path pz in G. Since σ [1..y] � σ [1..z] 
the concatenation of pz with (the reverse) of py is a path 

in G whose nodes are in σ [1..z] . Thus, z G,σ
� y , implying 

y ≤Ŵσ z and, since zx ∈ A(Ŵσ ) , this contradicts Ŵσ being 
a transitive reduction.

(f ): Note that uG,σ
� v , implying v ≤Ŵσ u by (b).

(g): For each uv ∈ E(G) , either u <σ v , implying 
u ≤Ŵσ v , or v <σ u , implying v ≤Ŵσ u (both by (f )).

(h) “ ⊆ ”: Let x ∈ V (G) and let y ∈ YWŴσ
x  . By Definition 

2, y >Ŵσ x (implying y >σ x by (a)) and there is some 
z ≤Ŵσ x (implying z ≤σ x by (a)) with yz ∈ E(G) . Then, 
by (b), x G,σ

� z . But then, y ∈ ZWσ
x by Definition 1.

(h) “ ⊇ ”: Let x ∈ V (G) and let y ∈ ZWŴσ
x  , that is, x <σ y 

and there is some z ∈ σ [1..x] with x G,σ
� z and yz ∈ E(G) . 

Then, z ≤σ x <σ y . By (b), z ≤Ŵσ x and, by (f ), z ≤Ŵσ y . 
Thus, as Ŵσ is a tree (by (e)), x and y are not unrelated 
in Ŵσ . Moreover, y �σ x implies y �Ŵσ x by (b) and, 
thus, x <Ŵσ y . Together with z ≤Ŵσ x and yz ∈ E(G) , this 
implies y ∈ YWŴσ

x .
(i) By (b), G contains an x-y-path p whose vertices are 

in σ [1..x] and, thus, x G,σ
� v for all vertices v on p. We show 

u ≤Ŵσ y for all u on p except x, starting with the obvious 
y ≤Ŵσ y . Then, this implies that the second vertex on p, 
which is a neighbor of x in G, is in Ŵσ

y  . Let v ≤Ŵσ y be a 
vertex on p and let u be the predecessor of v in p. If u = x 
then we are done, so suppose u  = x . Further, by (f ), either 
u <σ

Ŵ v ≤σ
Ŵ y , implying the claim directly, or v <σ

Ŵ u , 
implying that u is on an x-v-path in Ŵσ . By (e) there is 
only one such path and it starts with (x, y, . . .) and, since 
u  = x , this implies u ≤σ

Ŵ y.
(j) is immediate from (i) combined with (e). �

In order to show that zw(G) and yw(G) coincide, we 
need to “normalize” some aspects of the structure of 
agreeing trees. To this end, we use the following opera-
tion on rooted trees which can be interpreted as con-
tracting a set of unwanted nodes upwards. Formally, for a 
rooted tree T and for X ⊂ V (T ) that does not contain the 
root r of T, we let T ↑ X denote the result of (1) replacing 
each arc uv with uv ∩ X = {u} with the arc wv where w is 
the lowest ancestor of u that is not in X, and (2) removing 
all nodes in X from T. Note that T ↑ X may have strictly 
larger out-degree than T, but does not create new ances-
tor-descendant relations.

Observation 1 Let T be a tree, let X ⊆ V (T ) not contain 
its root, and let u, v ∈ V (T ↑ X) with u ≤T↑X v . Then, 
u ≤T v.

Lemma 3 Let Ŵ be a rooted tree agreeing with an undi-
rected graph G. Then, there is some rooted tree Ŵ∗ agreeing 
with G such that yw(Ŵ∗) ≤ yw(Ŵ) and, for all u, v ∈ V (G) 
with v ≤Ŵ∗ u, we have uG,Ŵ∗

� v.
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Proof Let u ∈ V (G) such that .  
We will modify Ŵ into Ŵ′ with yw(Ŵ′) ≤ yw(Ŵ) such that 
Ŵ′ agrees with G and the relation ≤Ŵ′ is a strict subset of 
≤Ŵ. To this end, note that u has a parent w in Ŵ as, other-
wise, G[Ŵu] = G , implying X = ∅ . Then, Ŵ′ results from 
Ŵ by (see Fig. 4) 

1. replacing Ŵ by Ŵ ↑ (Ŵu \ X) and
2. dangling Ŵu ↑ X from w.

First, we show that Ŵ′ agrees with G. To this end, let 
xy ∈ E(G) and let x and y be unrelated in Ŵ′ . If neither 
x nor y are in Ŵu then, by construction of Ŵ′ , they are 
also unrelated in Ŵ , contradicting that Ŵ agrees with G. 
So, without loss of generality, suppose x ≤Ŵ u . Since 
xy ∈ E(G) and Ŵ is a tree agreeing with G, we thus know 
that u and y are not unrelated in Ŵ . If u <Ŵ y , then w ≤Ŵ y 
and, thus, x ≤Ŵ′ y . Thus, suppose y ≤Ŵ u . Clearly, if 
x, y ∈ X or x, y /∈ X , then x and y are also unrelated in Ŵ , 
contradicting its agreement with G. Thus, without loss of 
generality, suppose x ∈ X and y /∈ X , that is,  and 
u
G,Ŵ
� y , contradicting xy ∈ E(G).
Second, we show that ≤Ŵ′ is a strict subset of ≤Ŵ . To 

this end, let xy ∈ A(Ŵ′) and assume towards a contra-
diction that y �<Ŵ x . Clearly, if x �Ŵ′ w , then xy ∈ A(Ŵ) 
contradicting y �<Ŵ x . Further, if x = w , then either 
y ∈ X or y is a child of w in Ŵ , all of which imply y <Ŵ x . 
Thus, x <Ŵ′ w . Since xy ∩ X = {x} or xy ∩ X = {y} con-
tradicts xy ∈ A(Ŵ′) , we have x, y ∈ X or x, y /∈ X . But 
then, y <Ŵ x by Observation 1. Thus, ≤Ŵ′ is a subset of 
≤Ŵ and it is strict since we have v ≤Ŵ u and v �Ŵ′ u for 
all v ∈ X �= ∅.

Third, yw(Ŵ′) ≤ yw(Ŵ) follows by Lemma 1. �

Lemma 4 Let Ŵ be a tree agreeing with a graph G and 
let p be a non-empty path in G. Then, p contains a unique 
maximum u with respect to Ŵ, that is, v ≤Ŵ u for all verti-
ces v of p.

Proof Let x on p be maximal with respect to Ŵ (that 
is, for all z on p, we have x �<Ŵ z ) and assume towards a 
contradiction that there is another vertex y  = x on p that 
is maximal w.r.t. Ŵ . Without loss of generality, let x pre-
cede y in p and let pxy denote the unique x-y-subpath of 
p. Since y �Ŵ x , there is an edge  st ∈ E(G) on pxy with 
s ≤Ŵ x and t �Ŵ x . Hence, t �Ŵ s . Further, s �Ŵ t since, 
otherwise, the unique t-s-path in Ŵ contains x, contra-
dicting its maximality. But then Ŵ does not agree with G.
 �

Lemma 5 Let G be a graph. Then, zw(G) = yw(G).

Proof “≥ ”: Let σ be an ordering of V(G) such that  
zw(σ ) = zw(G) . By Lemma 2(h), we have zw(σ ) =

yw(Ŵσ) for the canonical extension tree Ŵσ of σ . Thus, 
zw(G) = zw(σ ) = yw(Ŵσ) ≥ yw(G).

“≤ ”: Let Ŵ be some rooted tree agreeing with G such that 
yw(Ŵ) = yw(G) . By Lemma 3, we may assume

Let σ be any ordering of V(G) obtained by repeatedly 
picking and removing any leaf of Ŵ. �

Claim 1 For each u, v ∈ V (G) , we have u ≤Ŵ v if and 
only if v G,σ

� u.

(1)∀u,v∈V (G)u ≤Ŵ v ⇒ v
G,Ŵ
� u.

Fig. 4 Example for the construction of Ŵ′ (middle) from Ŵ (left) in Lemma 3. Repeated application yields Ŵ∗ (right), for which v ≤Ŵ∗ u ⇒ u
G,Ŵ∗
� v . 

The rooted trees Ŵ , Ŵ′ , and Ŵ∗ are drawn with thick, gray lines. Thin, black lines are edges of G. For the indicated node u, the black nodes are in X, that 
is, they are below u in Ŵ but not connected to u in G[Ŵu]
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Proof First, note that all nodes below v in Ŵ are chosen 
before v, so Ŵv ⊆ σ [1..v].

“⇒ ”: Let u ≤Ŵ v , that is, u ∈ Ŵv , implying u ≤σ v . By (1), 
v is connected to u in G[Ŵv] and, as Ŵv ⊆ σ [1..v] , also in 
G[σ [1..v]].
“⇐ ”: Let p be a v-u-path in G[σ [1..v]] . By Lemma 4, p 
has a unique maximum w in Ŵ . Hence, v ≤Ŵ w and, by 
“ ⇒ ”, we have v ≤σ w . Since p lives entirely in G[σ [1..v]] , 
that is, V (p) ⊆ σ [1..v] , we also have w ≤σ v . Thus, v = w 
and, since u ∈ V (p) , we have u ≤Ŵ w = v by maximality 
of w. �

To prove the lemma, we show YWŴ
x ⊇ ZWσ

x for each 
x ∈ V (G) . Let y ∈ ZWσ

x , that is y >σ x and there is 
some z ∈ σ [1..x] with yz ∈ E(G) and x G,σ

� z . By Claim 1, 
z ≤Ŵ x . Further, as yz ∈ E(G) and Ŵ agrees with G, y and z 
are not unrelated in Ŵ and, since z ≤Ŵ x , neither are x and 
y. Since y <Ŵ x implies y <σ x by Claim 1, contradicting 
y >σ x , we conclude x <Ŵ y . Together with z ≤Ŵ x and 
yz ∈ E(G) , this implies y ∈ YWŴ

x .
Having shown that the notion of zw(G) and yw(G) are 

equivalent, we can now turn our attention to the tree-
width. In particular, we introduce (nice) tree-decomposi-
tions and use their properties to show that the treewidth 
of any undirected graph G equals yw(G).

Definition 3 (see Fig. 5) Let G be an undirected graph 
and let T be a rooted tree whose vertices are associated to 
subsets of V(G) by a function B : V (T ) → 2V (G) such that 

(a) for each uv ∈ E(G) , there is some x ∈ V (T ) with 
u, v ∈ B(x) and

(b) for each v ∈ V (G) , the nodes x ∈ V (T ) with 
v ∈ B(x) are weakly connected in T.

We call (T, B) a tree decomposition of G and its width is  
tw(T ,B) := maxx∈V (T ) twx(T ,B) with twx(T ,B) := |B(x)| − 1 . 
We call tw(G) := minT ,B tw(T ,B) the treewidth of G.
We call (T, B) nice if T is binary and all x ∈ V (T ) fall into 
one of the following categories

“leaf”: x is a leaf of T and B(x) = ∅,
“root”: x is the root of T and B(x) = ∅,
“introduce v”: x has a single child y in T and B(y) =
B(x)− v,
“forget  v”: x has a single child y in T and B(x) =
B(y)− v,
“join”: x has two children y and z and B(x) =
B(y) = B(z).

As stated at the beginning of the section, recall that, 
while tree decompositions are defined for undirected 

graphs, we may talk about tree decompositions of DAGs, 
meaning tree decompositions of their underlying undi-
rected graphs. Note that all graphs  G have a nice tree 
decomposition with |V (T )| ∈ O(tw(G) · |G|) and width 
tw(G)  [27]. Further, since all bags of (T,  B) containing a 
vertex v of G are connected, we can observe the following.

Observation 2 Let (T, B) be a nice tree decomposition 
for an undirected graph G and let v ∈ V (G) . Then, T con-
tains a single “forget v”-node x and y <T x for all y with 
v ∈ B(y).

Proposition 1 Let G be an undirected graph. Then, 
yw(G) = tw(G). Further, given a tree decomposition (T, B) 
for G, we can compute a tree Ŵ agreeing with G such that 
yw(Ŵ) = tw(T ,B) in linear time.

Proof “≤ ”: Let (T,  B) be a nice tree decomposition 
for G of width  tw(G) and let F ⊂ V (T ) denote the set 
of all “forget”-nodes in T (noting that F contains the 
root of T). We define Ŵ as the transitive reduction of 
(F ,>T ∩(F × F)).2 Note that u ≤Ŵ v ⇐⇒ u ≤T v for all 
u, v ∈ F  and, by Observation 2, V (Ŵ) = F = V (G).

First, we show that Ŵ agrees with G. To this end, 
let uv ∈ E(G) and let fu, fv ∈ F  denote the unique 
“forget  u” and “forget  v”-nodes in T, which are dis-
tinct since T is nice. By Definition 3(a), there is a 
node q ∈ V (T ) with u, v ∈ B(q) and, by Observation 2, 

Fig. 5 The tree decomposition (Ŵ, B) for the network N given in 
Fig. 3 constructed in the “ ≥”-part of Lemma 1. Leaves are represented 
by boxes instead of their names. Note that (Ŵ, B) is not a nice tree 
decomposition

2 Intuitively, Ŵ can be obtained from T by contracting all nodes in V(T ) \ F 
onto their respective parents and identifying all nodes  x ∈ F with the ver-
tex v ∈ V(G) \ B(x) of G that is forgotten in x.
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q <T fu, fv . Thus, fu and fv are not unrelated in T and, 
thus, neither in Ŵ.

Second, we show for all v ∈ Ŵ and the unique “for-
get v”-node  fv in T that YWŴ

v ⊆ B(fv) . Let u ∈ YWŴ
v  , that 

is, u >Ŵ v and there is some w ≤Ŵ v such that uw ∈ E(G) 
(note that w  = u but w = v is possible). Let fu and fw 
be the unique “forget  u” and “forget  w”-nodes in T, 
which are distinct since T is nice. Then, w ≤Ŵ v <Ŵ u 
and, since fu, fw ∈ F  , we also have fw ≤T fv <T fu . 
Since uw ∈ E(G) , Definition 3(a) implies that there is 
a node  q of T with u,w ∈ B(q) and, by Observation 2, 
q <T fu, fw . Then, by Definition 3(b), u ∈ B(x) for all x 
with q ≤T x <T fu and, since q <T fw ≤T fv <T fu , we 
have u ∈ B(fv) . As u was chosen arbitrary, we conclude 
YWŴ

v ⊆ B(fv) . Hence, yw(G) ≤ |YWŴ
v | ≤ |B(fv)| and, 

since fv has a child  x with B(x) = B(fv) ∪ {v} , we know 
|B(fv)| = |B(x)| − 1 ≤ tw(T ,B) = tw(G).

“≥ ”: Let Ŵ be a tree with yw(Ŵ) = yw(G) that agrees 
with G. For all u ∈ V (G) , we define B(u) := YWŴ

u ∪ {u} 
and show that (Ŵ,B) is a tree-decomposition for G noting 
that its width is yw(Ŵ) = yw(G) (see example in Fig. 5).

First, to prove Definition 3(a), let uv ∈ E(G) . Since Ŵ 
agrees with G, either u <Ŵ v or v <Ŵ u . Without loss of 
generality, suppose the latter. Then, u ∈ YWŴ

v  by Defini-
tion 2 (using w = v ), implying that uv ∈ B(v).

Second, let u, v ∈ V (G) be distinct such that u ∈ B(v) =
YW

Ŵ
v ∪ {v} , implying u ∈ YWŴ

v  since u  = v . By Defini-
tion 2, there is some w ≤Ŵ v such that uw ∈ E(G) and 
v <Ŵ u , implying that Ŵ contains a unique u-v-path p. To 
show Definition 3(b), it suffices to prove u ∈ B(x) for all 
x ∈ V (p) (since v has been chosen arbitrarily, a path with 
these properties exists for all v′ with u ∈ B(v′) , so they all 
contain the node u and are, thus, connected). For x = u 

this follows by definition of B(u). Otherwise, x <Ŵ u since 
x ∈ V (p) . But then, w ≤Ŵ v ≤Ŵ x <Ŵ u and uw ∈ E(G) , 
implying u ∈ YWŴ

x ⊆ B(x). �

Parsimony
Notation Large parts of this work are in context of a rooted 
tree Ŵ on the node set V(N) of a given phylogenetic net-
work N (see Fig. 6). Specifically for the tree Ŵ , we permit 
ourselves to abbreviate V (Ŵx) to Ŵx to increase readability. 
In such context, we additionally define the following sets 
for any nodes y, z ∈ V (N ) : Pred↑yN (z) := PredN (z) ∩ Ŵy 
and Pred

↓y
N (z) := PredN (z) \ Ŵy denote the respec-

tive predecessors of z in N that are or are not 
in  Ŵy . Likewise, Succ

↑y
N (z) := SuccN (z) ∩ Ŵy and 

Succ
↑y
N (z) := SuccN (z) \ Ŵy denote the respective suc-

cessors of z in N that are or are not in Ŵy – note that the 
arrow in the notation indicates the direction of the 
arc between z and the members of the set when draw-
ing Ŵ top-down. If z = y , we drop y and simply write 
Pred

↓
N (z) , Pred

↑
N (z) , Succ

↑
N (z) , and Succ

↑
N (z) . We 

also abbreviate Pred
↓
N (z) ∩ R(G) =: PredR↓N (z) and  

Succ
↑
N (z) ∩ R(G) =: SuccR↑N (z) as well as Pred↓

N
(z) \ R(G) =:

Pred
T↓
N

(z) and Succ
↑
N (z) \ R(G) =: SuccT↑

N (z) . All 
these functions generalize to sets Z ⊆ V (N ) (for exam-
ple, PredN (Z) :=

⋃

z∈Z PredN (z) \ Z ). Further, for 
any X ⊆ V (N ) , we define the sets of arcs of N

(a) from a node  u ∈ X to any ancestor of u in Ŵ as 
A
↑
X (N ) := {uw ∈ A(N ) | u ∈ X ∧ u <Ŵ w} and

(b) to a node  u ∈ X from any ancestor of u in Ŵ as 
A
↓
X (N ) := {uw ∈ A(N ) | w ∈ X ∧ w <Ŵ u}.

Fig. 6 A tree Ŵ is depicted in gray and some arcs of N are depicted in black. Recall that t is the number of children of x and Zi :=
⋃

1≤j≤i Ŵvj . 
Note that x ∈ Succ

↑
N(Z2) \ Succ

↑
N(Ŵx) since x is an ancestor of a node of Ŵv2 in N. Note that x is a reticulation of N with parents y (drawn) and z 

(not drawn) with y <Ŵ v2 <Ŵ x <Ŵ z . Thus, z ∈ Pred
↓
N(x) but y ∈ Pred

↑v2
N (x) ⊆ Pred

↑
N(x) . Finally, note that YWŴ

x = Pred
↓
N(Ŵx) ∪ Succ

↑
N(Ŵx) and 

⋃

i≤t YW
Ŵ
vi
⊆ YWŴ

x ⊎ {x}
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For brevity, we abbreviate AX (N ) := A
↑
X (N ) ∪ A

↓
X (N ) , 

A
↑
v (N ) := A

↑
Ŵv
(N ) , A↓

v (N ) := A
↓
Ŵv
(N ) , and Av(N ) := AŴv

(N ).
Introduction to Parsimony Given states of a character, 

observed in extant species, as well as a species phylogeny, 
the small parsimony problem asks to infer states of the 
same character for all ancestral species such as to mini-
mize the “parsimony score” of this assignment. This prob-
lem comes in three flavors called “hardwired”, “softwired”, 
and “parental” parsimony. Throughout this section, let 
C be a fixed finite set (a “character”). For convenient use 
of the �-relation, let C be an anti-chain (that is, for each 
x, y ∈ C , we have x ≤ y only if x = y ). Formally, for a phy-
logeny  N and a function φ : V (N ) → 2C , we define the 
hardwired and softwired parsimony score as

The “parental parsimony” is defined using “parental 
trees” but, in this work, we use the equivalent formula-
tion using lineage functions [12].

Definition 4 A lineage function for a phylog-
eny  N is any function  f : V (N ) → 2C . The cost of f is 
cost(f ) :=

∑

v∈V (N ) costf (v) where

Given N and a function φ : V (N ) → 2C , we denote the 
set of all lineage functions  f on N with f � φ as LFN ,φ . 
Finally, the parental parsimony score is

For each of the presented variants, we give a dynamic 
programming formulation using a given tree  Ŵ that 
agrees with the undirected graph G underlying the input 
network and corresponds to Lemma 3, that is, each non-
leaf x of Ŵ has a child v with x ∈ YWŴ

v  . The running time 
of the resulting algorithm will depend on the width yw(Ŵ) 
of Ŵ (recalling that yw(Ŵ) coincides with the treewidth of 
G for optimal Ŵ).

As stated in the introduction, in this paper we focus on 
the case of analyzing a specific position in the genome. 
Since the function φ can associate several states to a same 
leaf, our definition permits to describe polymorphism 
in a population. While in our current formulation the 

par HN (φ) := min
ψ :V (N )→C , ψ�φ

∑

uv∈A(N )

δ ψ(u, v)

par S
N
(φ) := min

ψ : V (N ) → C , ψ � φ

T ∈ S(N )

∑

uv∈A(T )

δ ψ(u, v).

costf (v) : = |f (v) \
�

u∈Pred(v)

f (u)|

+







−1 if v = ρN and |f (v)| = 1

0 if v �= ρN and |f (v)| ≤
�

u∈Pred(v) |f (u)|
∞ otherwise

(2)par PN (φ) := min
f ∈LFN ,φ

cost(f )

algorithms “choose” an optimal state to associate to each 
leaf, the parental parsimony can be easily modified to 
explain all states of each leaf at the end of the run. This 
allows keeping the information on polymorphism in all 
steps of the algorithm (see “Parental parsimony”). Note 
also that φ can associate information to internal nodes, 
thus permitting the user to impose restrictions on the 
states associated to ancestral species.

In the presentation of the dynamic programming, 
a table entry Qy

x[z] means that x and y are consid-
ered fix for this table and z is a variable index. Further, 
tables Qy1

x1 and Qy2
x2 are independent of one another, 

allowing an implementation to forget Qy1
x1 if it is no 

longer needed, even if Qy2
x2 still is. In the following, 

for an anti-chain Y in Ŵ and a class G of subnetworks 
of N, a Y-substitution system of G is a series of sub-
networks  (Ny)y∈Y  of N such that, for all N ′ ∈ G , the 
digraph  (V (N ), (A(N ′) \

⋃

y∈Y Ay(N
′)) ∪

⋃

y∈Y Ay(N
y)) 

is also in G . Roughly, we can “swap out” the arcs in Ay(N
′) 

for Ay(N
y) for each y ∈ Y  without loosing membership in 

G . Note that the Ny are not necessarily distinct, so a triv-
ial Y-substitution system for {N ′} would be (N ′)y∈Y  . The 
formulations are based on the following lemma about 
independent sub-solutions, showing that an optimal 
solution (S,ψ) for a sub-network (of G) “below” an anti-
chain Z in Ŵ is also optimal on any sub-network “below” 
an anti-chain Y in Ŵ that is itself “below” Z (among all 
solutions with ψ ’s behavior on 

⋃

y∈Y YWŴ
y ).

Lemma 6 (see Fig.  7) Let Y ,Z ⊆ V (N ) be anti-chains 
in Ŵ such that Y ⊆

⋃

z∈Z Ŵz. Let G be a class of subnet-
works of N and let S ∈ G and ψ : V (N ) → C such that 
(a) 

∑

z∈Z
∑

uw∈Az(S)
δ ψ(u,w) is minimum among all such 

S and ψ. Let (Sy)y∈Y  be a Y-substitution system for G and 
let ψy : V (N ) → C for each y ∈ Y  such that (b) ψy and ψ 
coincide on YWŴ

y . Then,

Proof Towards a contradiction, assume that the lemma 
is false. We construct ψ∗ : V (N ) → C with

Note that ψ∗ and ψ coincide with ψy on YWŴ
y  for all 

y ∈ Y  . Thus, δ ψ∗(u,w) = δ ψy(u,w) if uw ∈ Ay(S
∗) 

for any y ∈ Y  and δ ψ∗(u,w) = δ ψ(u,w) , otherwise. 
Further, we construct a digraph  S∗ := (V (N ), (A(S)\
⋃

y∈Y Ay(S)) ∪
⋃

y∈Y Ay(S
y)) which is in G since (Sy)y∈Y  

is a Y-substitution system for G . Since all Sy are subnet-
works of N, we know that Ŵ agrees with S∗ . Furthermore, 

∑

y∈Y

∑

uw∈Ay(Sy)

δ ψy(u,w) ≥
∑

y∈Y

∑

uw∈Ay(S)

δ ψ(u,w).

ψ∗(u) =
{

ψy(u) ifu ∈ Ŵy for any y ∈ Y
ψ(u) otherwise
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since Y ⊆
⋃

z∈Z Ŵz , we know that each y ∈ Y  has a z ∈ Z 
with y ≤Ŵ z . Thus,

contradicting optimality of S and ψ (that is, Lemma 6(a)) 
since S∗ ∈ G. �

Hardwired parsimony
To compute the hardwired parsimony score at a node 
v of N, we require knowledge of the character assigned 
to v and its neighbors. For all u ∈ YWŴ

v  , we thus 
“guess” the character ψ(u) assigned to u by an optimal 
assignment. In our dynamic programming, we scan Ŵ 

∑

z∈Z

∑

uw∈Az(S∗)

δ ψ∗(u,w) =
∑

z∈Z

∑

v∈Ŵz

∑

uw∈A{v}(S∗)

δ ψ∗(u,w)

=
∑

z∈Z

∑

v ∈ Ŵz

v /∈
⋃

y∈Y Ŵy

∑

uw∈A{v}(S∗)
δ ψ∗(u,w)+

∑

y∈Y

∑

uw∈A{v}(S∗)
δ ψ∗(u,w)

=
∑

z∈Z

∑

v ∈ Ŵz

v /∈
⋃

y∈Y Ŵy

∑

uw∈Ay(S)

δ ψ(u,w)+
∑

y∈Y

∑

uw∈Ay(Sy)

δ ψy(u,w)

assumption
<

∑

z∈Z

∑

v ∈ Ŵz

v /∈
⋃

y∈Y Ŵy

∑

uw∈A{v}(S)

δ ψ(u,w)+
∑

y∈Y

∑

uw∈Ay(S)

δ ψ(u,w)

=
∑

z∈Z

∑

uw∈Az(S)

δ ψ(u,w)

bottom-up, computing a table entry THW [x,ψ] for each 
x ∈ V (Ŵ) = V (N ) and each ψ : YWŴ

x → C , containing 
the parsimony cost incurred by all arcs in Ax(N ) , assum-

ing that all nodes in YWŴ
x  receive their characters accord-

ing to ψ . Note that Ax(N ) =
⋃

i Avi(N ) ∪ A{x}(N ) , where 
the vi are the children of x in Ŵ . Thus, THW [x,ψ] can be 
calculated as follows.

Definition 5 Let Ŵ be a tree that agrees with N, let 
x ∈ V (N ) and let ψx : YWŴ

x → C with ψx � φ . Let 
v1, v2, . . . , vt denote the children of x in Ŵ ( t = 0 if x is a 
leaf ). Then, we define a table entry

Fig. 7 Lemma 6 proves that any solution (S,ψ) that is optimal on sub-trees rooted at Z in Ŵ must also be optimal (among all solutions with ψ ’s 
behavior on 

⋃

y∈Y YW
Ŵ
y  (gray box on top)) on all sub-trees of Ŵ that are rooted below Z (at Y). That is, no solution (Sy ,ψy) can be better than (S,ψ) on 

the sub-network induced by Ŵy for any y ∈ Y . To prove this, a new solution (S∗ ,ψ∗) is constructed by replacing the sub-solution of (S,ψ) below Y by 
the sub-solutions (Sy ,ψy) below Y 
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Lemma 7 Let x ∈ V (N ) and let ψx : YWŴ
x → C with 

ψx � φ. Let ψ : V (N ) → C with ψx � ψ � φ such that ψ 
minimizes 

∑

uw∈Ax(N ) δ ψ(u,w). Then,

Proof Sketch. For “ ≥ ”, we construct a mapping ψ ′ from 
mappings ψi that are optimal on Avi(N ) among all map-
pings with ψi(x) := cx . This is possible  
since all such ψi coincide with ψ ′ and ψx on YWŴ

x  . By 
induction hypothesis, the cost of ψ ′ on Ax(N ) is 
∑

1≤i≤t T
HW [vi,ψ ′ |YWŴ

vi

] +
∑

uw∈A{x}(N ) δ ψ ′(u,w) .  

Then, “ ≥ ” follows from optimality of ψ on Ax(N ).
For “ ≤ ”, it suffices to show that the cost of ψ on Ax(N ) is 

equal to the result of setting cx := ψ(x) in the right hand 
side of (3) (which is a valid choice for the minimum since 
ψ(x) ∈ φ(x) ). First, the cost of ψ on Avi(N ) is 
THW [vi,ψ |YWŴ

vi

] by independence of sub-solutions and 

the induction hypothesis. Second, the cost of ψ on 
A
↓
{x}(N ) is 

∑

z∈Pred↓
N (x)

δ (cx,ψx(z)) and the cost of ψ on 

A
↑
{x}(N ) is 

∑

z∈Succ↑N (x)
δ (cx,ψx(z)) since ψ and ψx coin-

cide on YWŴ
x . �

In order to solve the hardwired parsimony problem 
given N, φ and Ŵ , all we have to do is compute THW [x,ψx] 
for each x bottom-up in Ŵ and each of the (at most) 
|C||YW

Ŵ
x | many choices of ψx : YWŴ

x → C with ψx � φ . 
Then, by Lemma 7, the hardwired parsimony score of N 
with respect to φ can be read from THW [ρŴ ,∅] . To com-
pute THW , the sum over the children of x for all x ∈ V (N ) 
in (3) can be computed in amortized O(|A(N)|) time and, 
with a bit of bookkeeping, it is possible to maintain the 
value of the second sum in (3) in O(|A(N)|) amortized 
time per choice of ψ . Then the following holds:

Theorem  1 Given a network  N, some φ : V (N ) → 2C 
and a tree Ŵ agreeing with N, the hardwired parsimony score  
of (N ,φ) can be computed in O(|C|yw(Ŵ)+1 · |A(N )|) time.

(3)THW [x,ψx] := min
cx∈φ(x)







�

1≤i≤t

THW [vi,ψx[x → cx] |YWŴ
vi

] +
�

z∈Pred↓
N (x)∪Succ↑N (x)

δ (cx,ψx(z))







THW [x,ψx] =
∑

uw∈Ax(N )

δ ψ(u,w)

Proposition 1 lets us turn tree decompositions of 
N into trees Ŵ agreeing with N, allowing us to replace 
yw(Ŵ) by tw(N ) , incurring an additional running time of 
|N | · 2O(tw(N )3) [13].

Corollary 1 Let (N ,φ) be an instance of Hardwired 
Parsimony. Let t ≥ tw(N ) and let T be the time in which 
a width-t tree decomposition of N can be computed. Then, 
the hardwired parsimony score of (N ,φ) can be computed 
in O(T + |C|t+1 · |A(N )|) time.

Softwired parsimony
In contrast to the hardwired parsimony score, where the 
computation of the cost of the incident edges of a node x 
only required knowledge of the characters assigned to 
neighbors of x, computing the softwired score additionally 
requires knowledge of which parent of x remains a parent 
in the sought switching. A table entry TSW [x, . . .] con-
tains the smallest combined cost of all arcs in Ax(S) for a 
switching S of N minimizing this cost. To be able to com-
pute an entry for x ∈ V (N ) , we not only need to “guess” 
ψx but, additionally, some representation of the switch-
ing S. In particular, in S, no child of x may have another 
parent than x. However, since children of x in N may be 
above x in Ŵ , we have to “guess” which children of x in N 
are still children of x in S. Such a guess manifests itself as 
an additional index Rx of the dynamic programming table 
(note that we clearly only have to store this information 
for children of x that are reticulations). Indeed, this infor-
mation has to be stored for all nodes considered below 
x who still have children in YWŴ

x  . Thus, we index our 
DP-table also by a subset Rx ⊆ YWŴ

x ∩ R(N ) containing 
a reticulation r ∈ R(N ) if and only if Ŵx contains a par-
ent v of r and vr is an arc of an optimal switching S for 
N [Ŵx ∪ YWŴ

x ].

Definition 6 Let Ŵ be a tree that agrees with  N, let 
x ∈ V (N ) , let ψx : YWŴ

x → C with ψx � φ , and let 
Rx ⊆ Succ

R↑
N (Ŵx) . Let v1, v2, . . . , vt denote the children of 

x in Ŵ ( t = 0 if x is a leaf in Ŵ ). Then, set
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where

where ψi := ψx[x → cx] |YWŴ
vi

 for all i ≤ t . (Note how 

Q
ψx
x,cx [i,R′] is used to assign the nodes in Rx to the vi (with 

v0 = x ) such that every node in Rx has a parent in some 
Ŵvi).

In the following, for any anti-chain X in Ŵ and all 
Z ⊆

⋃

x∈X YWŴ
x  , let SX→Z(N ) denote the set of all 

switchings S of N with SuccR↑S (X) = Z.

Lemma 8 Let Ŵ be a tree that agrees with N, 
let x ∈ V (N ), let ψx : YWŴ

x → C with ψx � φ,  
and let Rx ⊆ Succ

R↑
N (Ŵx). If SŴx→Rx (N ) = ∅, then 

TSW [x,ψx,R
x = ∞]. Otherwise, let S ∈ SŴx→Rx (N ) 

and ψ : V (N ) → C such that (a) ψx � ψ � φ and (b) 
∑

uw∈Ax(S)
δ ψ(u,w) is minimum among all such S and ψ.  

Then,

Proof Sketch. Let us abbreviate Zi :=
⋃

j≤i V (Ŵvj ) . We 
first show that the table Q does what we expect it to do.

Claim 2 Q
ψx
x,cx [i,R′] =

∑

j≤i

∑

uw∈Avj
(Si)

δ ψi(u,w) for 
optimal Si ∈ SZi→R′ and ψi coincides with ψx[x → cx] on 
⋃

j≤i YW
Ŵ
vj

.

Proof Sketch. For “ ≥ ”, let R∗ ⊆ R′ ∩ Succ
R↑
N (Ŵvi) such that 

equality holds in (5). We consider a switching S′ ∈ SZi→R′ 
constructed from switchings Si−1 ∈ SZi−1→R′\R∗ and 
S∗ ∈ S

Ŵvi
→R∗ as well as a mapping ψ ′ coinciding with 

ψx[x → cx] on 
⋃

j<i YW
Ŵ
vj

 constructed from mappings 
ψi−1 and ψ∗ such that (a) ψi−1 coincides with ψx[x → cx] 
on 

⋃

j<i YW
Ŵ
vj

 , (b) ψ∗ coincides with ψx[x → cx] on YWŴ
vi

 , 
(c) the cost of ψi−1 is optimal on AZi−1(Si−1) and (d) the 
cost of ψ∗ is optimal on Avi(S

∗) . By induction 

(4)

TSW [x,ψx,R
x] := min

cx∈φ(x)
min

R∗⊆Rx∩SuccR↑N (x)

�

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))

+min







Q
ψx
x,cx [t,Rx \ R∗] + min

y∈Pred↓
N (x)

δ (cx,ψx(y)) if Pred
↓
N (x) �= ∅

Q
ψx
x,cx [t, (Rx \ R∗) ∪ ({x} ∩ R(N ))] if Pred

↑
N (x) �= ∅

(5)Qψx
x,cx

[i,R′] :=















min
R∗⊆R′∩SuccR↑N (Ŵvi

)

Q
ψx
x,cx [i − 1,R′ \ R∗] + TSW [vi,ψi,R

∗] if i �= 0

0 if i = 0 and R′ = ∅
∞ otherwise

(6)TSW [x,ψx,R
x] =

∑

uw∈Ax(S)

δ ψ(u,w).

hypotheses, these costs are Q
ψx
x,cx [i − 1,R′ \ R∗] and 

TSW [vi,ψx[x → cx],R
∗] , respectively. Then, “ ≥ ” follows 

by optimality of Si and φi.
For “ ≤ ”, we let R∗ := Succ

R↑
Si
(Ŵvi) and use independ-

ence of sub-solutions and the induction hypotheses to 
show that the cost of φi on AZi−1(Si) is Qψx

x,cx [i − 1,R′ \ R∗] 
and the cost of φi on Avi(Si) is TSW [vi,φi,R∗] . Then, “ ≤ ” 
follows from the fact that R∗ is only one of the possible 
choices for the minimum in (5). �

For “ ≥ ”, let cx ∈ φ(x) and R∗ ⊆ Rx ∩ Succ
R↑
N (x) be such 

that equality holds in (4). We consider a switch-
ing  S′ ∈ SŴx→Rx constructed from switchings St and S∗ 
with St ∈ SZt→Rx\R∗ (if Pred

↓
N (x) �= ∅ ) or 

St ∈ SZt→(Rx\R∗)∪{x} (if x ∈ R(N ) and Pred↑N (x) �= ∅ ), and 
S∗ ∈ S{x}→R∗ , as well as a mapping ψ ′ coinciding with ψx 
on YWŴ

x  constructed from mappings ψt and ψ∗ such that 
(a) ψt coincides with ψx[x → cx] on 

⋃

i≤t YW
Ŵ
vi

 , (b) ψ∗ 
coincides with ψx on YWŴ

x  , (c) ψ∗(x) = cx , (d) the cost of 
ψt is optimal on AZt (St) and (e) the cost of ψ∗ is optimal on 
A{x}(S∗) . Then, the cost of ψ∗ on A

↑
{x}(S

∗) is 
∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r)) , the cost of ψ∗ on A↓
{x}(S

∗) is 

min
y∈Pred↓

N (x)
δ (cx,ψx(y)) if the parent of x in St is above 

x in Ŵ (that is, x /∈ Succ
R↑
St
(Zt) ) and, by the claim above, the 

cost of ψt on AZt (St) is Qψx
x,cx [t, Succ

R↑
St
(Zt)] . Then, as 

S′ ∈ SŴx→Rx , “ ≥ ” follows by optimality of S and φ.
For “ ≤ ”, let cx := φ(x) and let R∗ := Succ

R↑
S (Ŵx) . We use 

independence of sub-solutions and the induction hypoth-
esis to show that the cost of φ on AZt (S) is Qψx

x,cx [t,R′ \ R∗] 
(if x /∈ R(N ) or the parent of x in S is above x in Ŵ ) or 
Q
ψx
x,cx [t, (R′ \ R∗) ∪ {x}] (if x ∈ R(N ) and the parent of x in 

S is in Ŵx ). Further, the cost of ψ on A
↑
{x}(S) is 

∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r)) , the cost of ψ on A↓
{x}(S) is 

min
y∈Pred↓

N (x)
δ (cx,ψx(y)) if the parent of x in S is above 

x in Ŵ . Then, “ ≤ ” follows from the fact that our choices of 
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cx and R∗ are only one of the possible choices for the min-
imum in (4). �

In order to solve the softwired parsimony problem 
given N, φ and Ŵ , all we have to do is compute 
TSW [x,ψx,R

x] for each x bottom-up in Ŵ , each of the (at 
most) |C||YW

Ŵ
x | many choices of ψx : YWŴ

x → C with 
ψx � φ , and each Rx ⊆ Succ

R↑
N (x) ⊆ YWŴ

x ∩ R(N ) . To 
this end, Qψx

x,cx [i,Rx \ R∗] and Qψx
x,cx [i, (Rx \ R∗) ∪ {x}] have 

to be computed for each child  vi of x in Ŵ and each 
R∗ ⊆ Rx ∩ Succ

R↑
N (x) . Then, by Lemma 8, the softwired 

parsimony score of N with respect to φ can be read from 
TSW [ρŴ ,∅,∅] . In the following, let ψx be fix. Then, for 
fix  cx , we can compute Qψx

x,cx [i,R′] for all choices of x, i  
and R′ in O(2|R

′∩SuccR↑N (vi)| +
∑

x∈Ŵ |SuccŴ(x)|)
⊆ O(2|YW

Ŵ
x |+1 + |Ŵ|)  time total. Further, the values of 

min
y∈Pred↓

N (x)
δ (cx,φx(y)) can be pre-computed for all 

x ∈ Ŵ in O(|A(N)|)  time total. Then, to compute 
TSW [x,ψx,R

x] for all x and Rx , we have to check |V(N)| 
choices for x, as well as |φ(x)| ≤ |C|  choices for cx and 
3|Succ

R↑
N (x)| choices for Rx and R∗ ⊆ Rx combined. Alto-

gether, the table TSW can be computed in 
O(|C||YW

Ŵ
x | · (3|YW

Ŵ
x | · |C| · |V (N )| + |A(N )|)) time. The 

computation of Qψx
x,cx in O(2|YW

Ŵ
x | + |A(N )|)  time is 

absorbed by this. For practical purposes, note that esti-
mating |SuccR↑N (x)| ≤ |YWŴ

x | is quite crude and equality 
will almost never be attained. Then, the following result 
holds:

Theorem  2 Given a network  N, φ : V (N ) → 2C 
and a tree  Ŵ agreeing with N, the softwired par-
simony score of (N ,φ) can be computed in 
O(|C|yw(Ŵ) · (3yw(Ŵ) · |C| · |V (N )| + |A(N )|)) time.

Again, we can replace yw(Ŵ) by tw(N ) using Proposi-
tion 1.

Corollary 2 Let (N ,φ) be an instance of Softwired 
Parsimony. Let t ≥ tw(N ) and let T be the time in which 
a width-t tree decomposition of N can be computed. Then, 
the softwired parsimony score of (N ,φ) can be computed 
in O(T + |C|t · (3t · |C| · |V (N )| + |A(N )|)) time.

Parental parsimony
For ease of presentation, we introduce some addi-
tional notation. First, for any a and b, we abbrevi-
ate max{a− b, 0} =: a

.
−b . Let ψ and ψ ′ be functions. 

If ψ maps all items to ∅ or to 0, then we say that ψ is a 
zero-function and we write ψ = −→

0  . We use ψ − ψ ′ 
to denote the function defined on the domain of 

ψ for which (ψ − ψ ′)(x) = ψ(x) if ψ ′(x) = ⊥ and 
(ψ − ψ ′)(x) = ψ(x)− ψ ′(x) , otherwise. This definition 
extends to functions mapping to sets in a natural way.

Each finite-cost lineage function f corresponds to a phy-
logenetic tree “embedded” in N whose branches are called 
lineages (see Fig. 1(right)). For each x ∈ V (N ) , f(x) repre-
sents the set of such lineages passing through x. Each such 
lineage may “choose” a parent among the parents of x in N. 
This models the biological circumstance that a character 
trait may be inherited from any parent. We compute (the 
cost of) an optimal lineage function on N using a tree Ŵ 
that agrees with N. To compute costf (x) , we require 
knowledge of 

∑

y∈Pred(x) |f (y)| as well as 
⋃

y∈Pred(x) f (y) 
(see Definition 4). We partition the predecessors of x over 
which the formula iterates into those above x in Ŵ and 
those below (since Ŵ agrees with N, all predecessors of x in 
N are comparable to y in Ŵ ). For all y ∈ YWŴ

x  , we thus store 

1. the set �(y) := f (y) of lineages in y,
2. the subset ψ(y) of lineages of y that also occur in 

parents (in N) of y that are below x in Ŵ , that is, in 
Pred

↑x
N (y) (such lineages are inherited by y at no 

cost),
3. the total number η(y) of lineages of y that can be 

inherited from parents (in N) of y that are below x in 
Ŵ , that is, from Pred↑xN (y) (cost 0 or 1).

Then, in order to compute an entry TPT [x, �x,ψx, ηx] , we 
“guess” the set U ⊆ φ(x) of lineages passing through x in 
an optimal solution, as well as the set D ⊆ U of lineages 
inherited from nodes in Pred↑N (x) . This allows us to infer 
η(x) = |�(x)|

.
−
∑

r∈Pred↓
N (x)

|�(r)| and ψ(x) := D . Then, 
by Definition 4, the cost incurred by f on x can be com-
puted from 

∑

y∈PredN (x) |f (y)| = η(x)+
∑

y∈Pred↓
N (x)

|�(y)| 
and 

⋃

y∈PredN (x) f (y) = ψ(x) ∪
⋃

y∈Pred↓
N (x)

�(y).
We will compute table entries for x using the already 

computed table entries for the children vi of x in Ŵ . In 
these lookups, we have x ∈ YWŴ

vi
 so, to be consistent 

with the semantics, we have to make sure that 
�(x) = U  , ψ(x) = D , and that all lineages of x that are 
not inherited from Pred↓N (x) can be inherited from 
Pred

↑
N (x) , that is, η(x) = |�(x)|

.
−
∑

r∈Pred↓
N (x)

|�(r)| . 
Further, each child y of x in N may inherit a lineage 
from x and, if y is above x in Ŵ , this has to be regis-
tered by removing the lineages of U from ψ(y) and 
subtracting |U| from η(y) . Finally, the lineages repre-
sented by ψ and η are distributed among the children 
of x in Ŵ using the table Q. In the following, in order to 
avoid treating the case that x = ρN  separately, we 
define ρ(x) := 1− δ (x, ρN ) , that is, ρ(x) = 1 if and 
only if x = ρN .
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Definition 7 Let Ŵ be a tree that agrees with N, let 
x ∈ V (N ) , let �x : YWŴ

x → 2C with �x � φ and let 
ψx � �x . Let {v1, v2, . . . , vt} = SuccŴ(x) ( t = 0 if x is a leaf 
in Ŵ ). Then, set TPT [x, �x,ψx, ηx] to

where Q�
x[i,ψ , η] equals

Note how the table Q�
x distributes the lineage branches 

of x whose parents are in Ŵx among the children of x in Ŵ . 
We show that both TPT  and Q�

x are monotone in ψ and η 
(wrt. �).

Lemma 9 Let x ∈ V (N ), let i ∈ N, let � : YWŴ
x → 2C, 

let η, η′ : YWŴ
x → N, and let ψ ,ψ ′ : YWŴ

x → 2C such that 
ψ ′ � ψ � � and 

−→
0 [x → ρ(x)] � η′ � η. Then,

Proof Sketch. The lemma can be proved by induction on 
the height of x in Ŵ and the value of i. If x is a leaf, then 
Q�
x[0,ψ , η] is finite only if ψ = −→

0  and η = −→
0 [x → ρ(x)] , 

implying the second inequality. For monotony of TPT  , 
fix the sets D ⊆ U ⊆ φ(x) for which the minimum in the 
formula of TPT [x, �,ψ , η] is attained. Then, by monot-
ony of Q�

x , replacing ψ by ψ ′ and η by η′ in this formula 
does not increase its value and this value is at most 
TPT [x, �,ψ ′, η′] since it is obtained for one of several 
possible choices for D and U. If x is not a leaf in Ŵ then 
monotonicity of Q�

x[i, . . .] is implied by monotonicity 
of Q�

x[i − 1, . . .] and monotonicity of TPT [v, . . .] for the 
children v of x. Finally, monotonicity of TPT  follows from 
monotonicity of Q�

x as in the induction base. �

(7)

min
D ⊆ U ⊆ φ(x)

U �= ∅

Q�xx→U
x



t,ψx

�

x → D
∀
y∈Succ↑N (x)

y → ψx(y) \ U

�

, ηx





x → |U |
.
−
�

u∈Pred↓
N (x)

|�x(u)|

∀
y∈Succ↑N (x)

y → ηx(y)
.
−|U |









+

�

�

�

�

�

�

�

U \






D ∪

�

u∈Pred↓
N (x)

�x(u)







�

�

�

�

�

�

�

(8)















min
ψ ′�ψ |

YWŴ
vi

min
η′�η|

YWŴ
vi

Q
�
x[i − 1,ψ − ψ ′, η − η′] + T

PT [vi, � |
YWŴ

vi

,ψ ′, η′] if i > 0

−ρ(x) if i = 0 and ψ = −→
0 and η = −→

0 [x → ρ(x)]
∞ otherwise

T
PT [x, �,ψ ′, η′] ≤ T

PT [x, �,ψ , η] and Q
�
x[i,ψ

′, η′] ≤ Q
�
x[i,ψ , η]

Lemma 10 Let Ŵ be a tree agreeing with N, let x ∈ V (N ),  
let ψx, �x : YWŴ

x → 2c and ηx : YWŴ
x → N. Let f minimize 

cost(f ) among all lineage functions in LFN ,φ such that, for 
all w ∈ YWŴ

x  , �x(w) = f (w) , ψx(w) = f (w) ∩
⋃

u∈Pred↑x
N (w)

f (u), 
and ηx(w) ≤

∑

u∈PredN↑x(w) |f (u)|. If there are no such f, 

then TPT [x, �x,ψx, ηx = ∞]. Otherwise,

Proof Sketch. Let us abbreviate Zi :=
⋃

j≤i V (Ŵvj ) . We 
first show that the table Q does what we expect it to do.

Claim 3 Let �,ψ : YWŴ
x ∪ {x} → 2C and 

η : YWŴ
x ∪ {x} → N such that ψ � � � φ . Let fi ∈ LFN ,φ 

have minimum cost on ⋃
j≤i

Ŵvj
 among all lineage functions 

for N that, for all w ∈
⋃

j≤i
YW

Ŵ
vj
 , satisfy (a) �(w) = fi(w) ,  

(b) ψ(w) = fi(w) ∩
⋃

j≤i

⋃

u∈Pred
↑vj
N (w)

fi(u) , and (c) 

η(w) ≤
∑

j≤i

∑

u∈Pred
↑vj
N (w)

|fi(u)| Then, Q�
x[i,ψ , η] =

∑

j≤i
∑

u∈Ŵvj
costfi(u).

Proof Sketch. For “ ≥ ”, let ψ ′ � ψ |YWŴ
vi

 and η′ � η |YWŴ
vi

 

such that equality holds in (8). Let fi−1 ∈ LFN ,φ mini-
mize 

∑

j<i

∑

u∈Ŵvj
costfi−1

(u) among all lineage functions 
satisfying (a)–(c) for i − 1 . Let f ∗ ∈ LFN ,φ minimize 
∑

u∈Ŵvi
costf ∗(u) among all lineage functions that, for all 

w ∈ YWŴ
vi

 , satisfy �(w) = f ∗(w) , ψ ′(w) = f
∗(w) ∩

⋃

u∈
Pred

↑vi
N

(w)f ∗(u) and η′(w) =
∑

u∈Ŵvi

|f ∗(u)| . By induction 
hypotheses, the cost of fi−1 on Zi is Q�

x[i − 1,ψ − ψ ′
, η − η′] 

TPT [x, �x,ψx, ηx] =
∑

z≤Ŵx

costf (z)
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and the cost of f ∗ on Ŵvi is TPT [vi, � |YWŴ
vi

,ψ ′, η′] . From 

fi−1 and f ∗ , we construct a lineage function  f ′ ∈ LFN ,φ 
whose cost on Zi is ∑j<i

∑

u∈Ŵvj
costfi−1

(u)+
∑

u∈Ŵvi
costf ∗ (u) . 

Then, “ ≥ ” follows by optimality of fi on Zi.
For “ ≤ ”, let ψ ′ and η′ be such that, for all w ∈ YWŴ

vi
 , we 

have ψ ′(w) = fi(w) ∩
⋃

u∈Pred↑vi
N (w)

fi(u) ⊆ ψ(w) and 

η′(w) =
∑

u∈Pred↑vi
N (w)

|fi(u)| . By independence of sub-
solutions, fi is optimal on Zi−1 and on Ŵvi so, by induction 
hypotheses, the cost of fi on Zi−1 is 
Q�
x[i − 1,ψ − ψ ′, η − η′] and the cost of fi on Ŵvi is 

TPT [vi, � |YWŴ
vi

,φ′, η′] . Since ψ ′ and η′ are only one of the  

possible choices for the minimum in (8), “ ≤ ” follows. �

For “ ≥ ”, let D ⊆ U ⊆ φ(x) such that equality holds in 
(7). We construct a lineage function  f ′ that assigns 
f ′(x) = U and such that the lineages of D are inherited 
from parents of x (in N) that are below x in Ŵ . To this end, 
we ask the dynamic programming table for the cost of a 
lineage function that is optimal on Zt and such that 1. 
ψ ′(x) = D (lineages in D are inherited from parents of x 
in Ŵx ) 2. ψ ′(w) = ψ ′(w) \U  for all w ∈ Succ

↑
N (x) (chil-

dren of x in YWŴ
x  no longer need to inherit the lineages in 

U from Ŵx ) 3. η′(x) = |U |
.
−
∑

u∈Pred↓
N (x)

|�x(u)| (x needs 
to inherit |U| lineages in total: |�x(u)| come from every 
parent u of x in YWŴ

x  while the rest has to be inherited 
from Ŵx ) and 4. η′(w) = ηx(w)

.
−|U | for all w ∈ Succ

↑
N (x) 

(children of x in YWŴ
x  can inherit a maximum of |U| line-

ages from x). Since the functions �
′ := �x[x → U ] , 

ψ ′ := ψx

[

x → D,∀
u∈Succ↑N (x)

w → ψx(w) \U
]

 and 
η′ := ηx

[

x → |U |
.
−
∑

u∈Pred↓
N (x)

|�x(u)|,∀
u∈Succ↑N (x)

w →

ηx(w)
.

−|U |
]

 satisfy the conditions of Claim 3, the optimal 
cost of such a lineage function  f ′ on Zt is Q�

x[t,ψ ′, η′] . 
Further, the cost of f ′ on x is the number of lineages in U 
that is not inherited “for free” from parents of x, that is, 
|U \ (D ∪

⋃

u∈Pred↓
N (x)

�x(u))| . Then, “ ≥ ” follows by opti-
mality of f on Ŵx.

For “ ≤ ”, let U := f (x) and let D := U ∩
⋃

u∈Pred↑
N (x)

f (x) 
be the set of lineages of U that are inherited from parents of 
x in N that are below x in Ŵ . By independence of sub-solu-
tions, f is optimal on Zt so, by Claim 3, its cost on Zt is 
Q�
x[t,ψ ′, η′] where ψ ′ := ψx[. . .] and η′ := ηx[. . .] are 

defined as in (7) and its cost on x is |f (x) \ (
⋃

u∈Pred↑
N (x)

f (x)

∪
⋃

u∈Pred↓
N (x)

f (x))| = |U \ (D ∪
⋃

Pred
↓
N (x)

f (x))| . Then, 
“ ≤ ” follows from the fact that U and D are only one of the 
possible choices for the minimum in (7). �

To solve the parental parsimony problem given N, φ 
and Ŵ , we compute TPT [x, �x,ψx, ηx] for each x bot-
tom-up in Ŵ , each ψx, �x : YWŴ

x → 2C with 
ψx � �x � φ and each ηx : YWŴ

x → {0, . . . , |C|} (by Def-
inition 7, no value larger than |C| ever enters ηx and 
all modifications to ηx decrease the mapped-to val-
ues). To this end, Q�

x[i,ψ , η] is computed for each x, i, 
� , ψ , and η by making at most 2|C|·|YW

Ŵ
x | · |C||YW

Ŵ
x | 

queries to Qψx
x,cx and TPT  . As there are O(|A(N)|) valid 

combinations of x and i, the table Q can be computed 
in O(|A(N )| · 3|C|·yw(N )

· |C|
yw(N )

· 2|C|·ywN
· |C|

yw(N ))

= O(|A(N )| · 6|C|·yw(N )|
· 4yw(N )·log |C|)  time. Further, 

computing each TPT [x, �x,ψx, ηx] requires testing 
3|φ(x)| ≤ 3|C| choices for D ⊆ U ⊆ φ(x) and computing 
|U \ (D ∪

⋃

u∈Pred↓
N (x)

�x(u))| in O(|C|)  time (we 
precompute 

⋃

u∈Pred↓
N (x)

�x(u) for each fix  x and �x ). 
Thus, the table TPT  can be computed in 
O(3|C|·yw(N ) · (|C|yw(N )+1 · 3|C| + |A(N )|))  time, which 
is dominated by the construction of Q.

Theorem  3 Given a network  N, φ : V (N ) → 2C 
and a tree  Ŵ agreeing with N, the paren-
tal parsimony score of (N ,φ) can be computed in 
O(6yw(Ŵ)·|C| · 4yw(Ŵ)·log |C| · |A(N )|) time.

Again, we can replace yw(Ŵ) by tw(N ) using Proposi-
tion 1.

Corollary 3 Let (N ,φ) be an instance of Parental Par-
simony. Let t ≥ tw(N ) and let T be the time in which a 
width-t tree decomposition of N can be computed. Then, 
the parental parsimony score of (N ,φ) can be computed in 
O(T + 6t·|C| · 4t·log |C| · |A(N )|) time.

Note that the parental parsimony setting supports 
assigning multiple states of a character to a single spe-
cies, thereby modeling species carrying multiple alleles 
of a single gene. By forcing D ⊆ U = φ(x) instead of 
D ⊆ U ⊆ φ(x) if x is a leaf, we can trivially modify our 
dynamic programming to explain multiple character 
states in extant species.

Corollaries  1, 2 and 3 give the running times of our 
algorithms as depending on the treewidth of N. The 
state-of-the-art solutions for Hardwired Parsi-
mony, Softwired Parsimony and Parental Par-
simony have the following respective running times: 
O(|C|r+2|V (N )|)  [9], O(2ℓ|C|2|V (N )||A(N )|)  [8] and 
O(|2C |ℓ+3|V (N )|)  [12]. Since the scanwidth of N is 
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potentially much smaller than its level  ℓ  [28], and the 
treewidth of N is smaller than its scanwidth [20], we have 
tw(N )− 1 ≤ ℓ ≤ r . Thus, we expect that there will be 
several cases where our algorithms will be faster than the 
current best-known ones.

Discussion
In this paper, we focused on the small version of the 
parsimony problem for networks given a specific posi-
tion in the genome. When markers can be assumed to 
be independent, as it is the case when a certain distance 
is preserved between genomic locations included in the 
matrix, each position can be analyzed separately, and the 
parsimony score of a network w.r.t. the matrix is simply 
the sum of the parsimony scores of the network for each 
genomic location. Thus, the algorithms presented here 
can be easily expanded to several independent genomic 
locations. Moreover, our formulations are defined for 
networks that are not necessarily binary, can account for 
polymorphism and can impose restrictions on ancestral 
states. As discussed above, our algorithms can be orders 
of magnitude faster than the state-of-the-art solutions. 
A comparison of the reticulation number, the level, the 
scanwidth and the treewidth for practically relevant 
classes of networks would thus be an interesting project 
for future work.

Our results are slightly overshadowed by the fact that 
optimal tree decompositions are very hard to compute. 
However, practical exact and approximative algorithms 
are available today and we expect them do perform well, 
as phylogenetic networks can be expected to only be 
moderately tangled.

paper by Bachoore and Bodlaender [29], considering tree 
decompositions minimizing a weight function over the 
bags.

The ability to fast-score phylogenetic networks under 
the parsimony framework could be a big help in design-
ing likelihood-based heuristics or bayesian methods to 
infer networks from independent markers  [28, 30] by 
providing fast heuristics to compute the initial networks 
with which to start the likelihood or bayesian search, or 
to design fast local-search techniques.

In the future, we would like to tackle the small parsi-
mony problem for several dependent genomic locations 
(e.g. a gene). Little is known for this problem, except that 
it stays NP-hard even for binary characters on level-1 
networks [31] and that it is fixed-parameter tractable in 
the number of reticulations of the network [6]. Another 
important direction would be to study the big parsi-
mony problem, which is currently wide open, even lack-
ing a consensus of the definition of optimality [6, 32–34].

Appendix
Lemma 7 Let x ∈ V (N ) and let ψx : YWŴ

x → C with 
ψx � φ. Let ψ : V (N ) → C with ψx � ψ � φ such that ψ 
minimizes 

∑

uw∈Ax(N ) δ ψ(u,w). Then,

Proof The proof is by induction on the height of x in Ŵ . 
For the induction base, suppose that x is a leaf in Ŵ and 
note that Ax(N ) = A{x}(N ) in this case. Then, (3) simpli-
fies to

Since ψ(x) ∈ φ(x) , we know that ψ(x) participates in the 
minimum in (9), implying the “ ≤”-direction. For the “ ≥”- 
direction, assume that THW [x,ψx] <

∑

uw∈Ax(N ) δ ψ (u,w) . 
By (9), there is some cx  = ψ(x) with cx ∈ φ(x) and 
∑

uw∈Ax(N ) δ ψx[x→cx](u,w) <
∑

uw∈Ax(N ) δ ψ(u,w). Since 
cx ∈ φ(x) , we still have ψx � ψx[x → cx] � φ , contradict-
ing optimality of ψ on Ax(N ). For the induction step, sup-
pose that t > 0 and consider both directions separately.

THW [x,ψx] =
∑

uw∈Ax(N )

δ ψ(u,w)

(9)

THW [x,ψx] = min
cx∈φ(x)

�

z∈Pred↓
N (x)∪Succ↑N (x)

δ (cx,ψx(z))

= min
cx∈φ(x)







�

zx∈A↓
x (N )

δ (cx,ψx(z))+
�

xz∈A↑
x (N )

δ (cx,ψx(z))







= min
cx∈φ(x)

�

uw∈Ax(N )

δ ψx[x→cx](u,w)

Furthermore, closer inspection of our dynamic pro-
gramming formulations (most prominently Defini-
tion 6) unveils that their computation is faster when the 
maximum number of reticulations in each bag is small. 
Thus, it would be interesting to be able to compute tree 
decompositions in which this quantity is low, to the point 
where one could improve running time of the algorithm 
by sacrificing optimality of the decomposition in favor 
of reducing this “reticulation density”. Research in this 
direction is, to the best of our knowledge, limited to a 
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“≤ ”: Let i ≤ t , and let ψi := ψ |
YW

Ŵ
vi

= ψx[x → ψ(x)] |
YW

Ŵ
vi

. 
Then, by Lemma 6 (with Z = {x} , Y = {vi} , G = {N } and 
(Sy)y∈Y = (N )y∈Y  ), optimality of ψ on Ax(N ) implies 
optimality of ψi on Avi(N ) . Thus, we can use the induc-
tion hypothesis on THW [vi,ψi] . Since ψ(x) participates 
in the minimum of (3),

“≥ ”: Assume towards a contradiction that the lemma is 
false, that is, “<” holds. By (3), there is some cx ∈ φ(x) 
such that

Since cx ∈ φ(x) , we can extend ψx[x → cx] to V(N) with-
out violating φ , that is, there are functions 
ψ ′ : V (N ) → C with ψx[x → cx] � ψ ′ � φ . Among 
them, let ψ ′ minimize 

∑

i≤t

∑

uw∈Avi
(N ) δ ψ ′(u,w) . By 

Lemma 6 (with Z = SuccŴ(x) , Y = {vi} , G = {N } , and 
(Sy)y∈Y = (N )y∈Y  ), ψ ′ also minimizes 
∑

uw∈Avi
(N ) δ ψ ′(u,w) for all 1 ≤ i ≤ t . Thus, the induc-

tion hypothesis applies to THW [vi,ψx[x → cx] |YWŴ
vi

] for 

all i. Then,

THW [x,ψx]
(3)
≤

∑

1≤i≤t

THW [vi,ψi] +
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ (ψ(x),ψx(z))

IH=
∑

1≤i≤t

∑

uw∈Avi
(N )

δ ψ(u,w)+
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ ψ(x, z)

=
∑

uw∈Ax(N )

δ ψ(u,w)

(10)

T
HW [x,ψx] =

∑

1≤i≤t

T
HW [vi,ψx[x → cx] |YWŴ

vi

]

+
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ (cx,ψx(z))

THW [x,ψx]
(10)=

∑

1≤i≤t

THW [vi,ψx[x → cx] |YWŴ
vi

] +
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ (cx,ψx(z))

IH=
∑

1≤i≤t

∑

uw∈Avi
(N )

δ ψ ′(u,w)+
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ (cx,ψx(z))

ψx=ψ ′|
YWŴ

x=
∑

1≤i≤t

∑

uw∈Avi
(N )

δ ψ ′(u,w)+
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ ψ ′(x, z)

=
∑

uw∈Ax(N )

δ ψ ′(u,w)

Since, by assumption, THW [x,ψx] is strictly less than the 
cost of ψ on Ax(N ) , we conclude that the cost of ψ ′ on 
Ax(N ) is strictly less than that of ψ , contradicting opti-
mality of ψ. �

Lemma 8 Let Ŵ be a tree that agrees with N, let x ∈ V (N ),  
let ψx : YWŴ

x → C with ψx � φ, and let Rx ⊆ Succ
R↑
N (Ŵx).  

If SŴx→Rx (N ) = ∅, then TSW [x,ψx,R
x = ∞]. Other-

wise, let S ∈ SŴx→Rx (N ) and ψ : V (N ) → C such that 
(a) ψx � ψ � φ and (b) 

∑

uw∈Ax(S)
δ ψ(u,w) is minimum 

among all such S and ψ. Then,

Proof Note that arcs that are incoming to tree nodes 
cannot be switched off and, thus, SuccT↑

N (z) = Succ
T↑
S′ (z) 

for all z ∈ V (N ) and all switchings S′ ∈ S(N ) . The proof 
is by induction on the height of x in Ŵ.

Case 1: x is a leaf in Ŵ , that is, t = 0 . First, note that 
Rx ⊆ Succ

R↑
N (x) and no r ∈ Rx ⊆ R(N ) can have all their 

parents in Ŵx = {x} , thus implying Sx→Rx (N ) �= ∅ . 
Next, let y be the predecessor of x in S and note that 
y ∈ Pred

↓
N (x) = PredN (x) . Further, y minimizes δ ψ(y, x) 

among all y ∈ PredN (x) as, otherwise, we can construct 

(6)TSW [x,ψx,R
x] =

∑

uw∈Ax(S)

δ ψ(u,w).
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a new switching S′ ∈ SŴx→Rx (N ) by replacing yx by some 
y′x with y′ ∈ PredN (x) , thereby contradicting (b). Clearly, 
Pred

↑
N (x) = ∅ and Qψx

x,cx [0,Rx \ R∗] �= ∞ only if R∗ = Rx . 
Thus,

and there is some cx ∈ φ(x) such that equality holds if 
ψ(x) = cx . Let ψ∗ := ψ[x → cx] be the result of chang-
ing the assignment of x to cx in ψ and note that ψx � ψ∗ . 
Clearly, we still have S ∈ SŴx→Rx (N ) . Thus,

Case 2: x has children v1 , v2 , ..., vt in Ŵ . Recall that 
we suppose that x ∈

⋃

i≤t YW
Ŵ
vi

 by Lemma 3. For 
all S∗ ∈ S(N ) and all anti-chains Y in Ŵ , abbreviate 
S
Y→

⋃

y∈Y Succ
R↑
S∗ (Ŵy)(N ) =: SY ,S∗(N ) , that is, roughly, the 

set of switchings of N with the same “behavior” as S∗ on Y. 
The proof of Case 2 relies on the independence of partial 
solutions established by Lemma 6 with G = SY ,S∗(N ) . To 
apply Lemma 6, we show that any set of switchings Sy such 
that {SuccR↑Sy (Ŵy) | y ∈ Y } is a partition of 

⋃

y∈Y Succ
R↑
S∗ (Ŵy) 

is a Y-substitution system for SY ,S∗(N ).

Claim 4 Let S∗ ∈ S(N ) and let Y be an anti-chain in Ŵ . For 
each y ∈ Y  , let Sy ∈ S(N ) such that {SuccR↑Sy (Ŵy) | y ∈ Y } is 
a partition of 

⋃

y∈Y Succ
R↑
S∗ (Ŵy) . Let

T
SW [x,ψx,R

x] (4)= min
cx∈φ(x)







�

r∈Rx∪SuccT↑
N (x)

δ (cx,ψx(r))+ min
y∈Pred↓

N (x)

δ (cx,ψx(y))







ψ(x)∈φ(x)
≤

�

r∈Rx∪SuccT↑
N (x)

δ (ψ(x),ψx(r))+ min
yx∈A↓

x (N )

δ (ψ(x),ψx(y))

=
�

xr∈A↑
x (S)

δ ψ(x, r)+
�

yx∈A↓
x (S)

δ ψ(y, x) =
�

uw∈Ax(S)

δ ψ(u,w)

TSW [x,ψx,R
x](4)=

∑

r∈Rx∪SuccT↑
N (x)

δ (cx,ψx(r))+ min
yx∈A↓

x (N )

δ (cx,ψx(y))

ψx�ψ∗
=

∑

xr∈A↑
x (S)

δ ψ∗(x, r)+
∑

yx∈A↓
x (S)

δ ψ∗(y, x)

=
∑

uw∈Ax(S)

δ ψ∗(u,w)
Lemma 8(b)

≥
∑

uw∈Ax(S)

δ ψ(u,w)

S′ :=



V (N ),



A(S∗) \
�

y∈Y
Ay(S

∗)



 ∪
�

y∈Y
Ay(S

y)





Then, S′ ∈ SY ,S∗(N ).

Proof Since {SuccR↑Si (Ŵy) | y ∈ Y } is a parti-
tion of 

⋃

y∈Y Succ
R↑
S∗ (Ŵy) , it is sufficient to show that 

S′ ∈ S(N ) . Towards a contradiction, assume there 

is a node  w ∈ V (N )− ρN that does not have exactly 
one parent in S′ and let u∗ be the parent of w in S∗ . 
Clearly, for each y ∈ Y  , we have w /∈ Ŵy as, otherwise, 
PredS′(w) = PredSy(w) . Further, w ∈

⋃

y∈Y YWŴ
y  as, oth-

erwise, PredS′(w) = PredS∗(w).

First, suppose w has no parent in S′ . Then, 
u∗w ∈

⋃

y∈Y Ay(S
∗) that is, u∗ ∈ Ŵy for some y ∈ Y  , but 

w /∈ Ay(S
y) . But since Sy ∈ S(N ) , we know that w has a 

parent in Sy (which is not u∗ since w /∈ Ay(S
y) ),  

implying that w is a reticulation in N. Thus, 
w ∈ Succ

R↑
S∗ (Ŵy) ⊆

⋃

y′∈Y Succ
R↑
Sy′
(Ŵy′) so there is some 

y′ ∈ Y  with w ∈ Succ
R↑
Sy′
(Ŵy′) (note that y  = y′ is possi-

ble). But then, Sy′ contains an arc uw ∈ Ay′(Sy′) which 
is in S′ by construction, thus contradicting w having 
no parents in S′.

Second, suppose that w has at least two distinct parents 
u and u∗ in S′ and note that, again, w is a reticulation in N. 
Since S∗ is a switching, at least one of them, say u, is such 
that uw ∈

⋃

y∈Y Ay(S
y) . However, since the SuccR↑Sy (Ŵy) 

are disjoint and each Sy is a switching, we cannot have 
u∗w ∈

⋃

y∈Y Ay(S
y) . Thus, u∗w ∈ A(S∗) \

⋃

y∈Y Ay(S
∗) . 

However, since 
⋃

y∈Y Succ
R↑
S∗ (Ŵy) =

⋃

y∈Y Succ
R↑
Sy (Ŵy) , we 
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know that uw ∈ AS∗(Ŵy) for some y ∈ Y  . But then, w has 
two parents in S∗ contradicting S∗ ∈ S(N ). �

In the following, we prove the semantics of the table Qψx
x,cx . 

For all i ≤ t , abbreviate 
⋃

1≤j≤i Ŵvj =: Zi.

Claim 5 Let 1 ≤ i ≤ t , let cx ∈ φ(x) , and let R′ ⊆ R(N ) . 
If SZi→R′(N ) = ∅ , then Qψx

x,cx [i,R′] = ∞ . Otherwise, let 
Si ∈ SZi→R′(N ) and ψi : V (N ) → C such that (a) ψi � φ , 
(b)  ψi coincides with ψx[x → cx] on 

⋃

j≤i YW
Ŵ
vj

 and 
(c) 

∑

j≤i

∑

uw∈Avj
(Si)

δ ψi(u,w) is minimum among all 
such Si and ψi and

Proof The proof is by induction on i, noting that 
ψx[x → cx] |YWŴ

vi

= ψi |YWŴ
v1

 by Claim 5(b).

Case i = 1 : By (5), Q
ψx
x,cx [0,R′ \ R∗] �= ∞ only if 

R∗ = R′ ⊆ Succ
R↑
N (Z1) and TSW [v1,ψ1 |YWŴ

v1

,R∗] �= ∞ . 

However, if SZi→R′(N ) = ∅ then, by induction hypothe-
sis (of the lemma), TSW [v1,ψ1 |YWŴ

v1

,R′] = ∞ and so 

Q
ψx
x,cx [0,R′ \ R∗] = ∞ . Furthermore, S1 , ψ1 , and R′ satisfy 

the conditions of the lemma for v1 , so we can employ the 
induction hypothesis of the lemma. Thus,

Qψx
x,cx

[i,R′] =
∑

j≤i

∑

uw∈Avj
(Si)

δ ψi(u,w)

Q
ψx

x,cx
[1,R′] = 0+ T

SW [v1,ψ1 |YWŴ
v1

,R′]

IH lemma=
∑

uw∈Av1
(S1)

δ ψ1(u,w)

Case i > 1 : First, by (5), Q
ψx
x,cx [i,R′] �= ∞ only if 

Q
ψx
x,cx [i − 1,R′ \ R∗] �= ∞ and TSW [vi,ψi |YWŴ

vi

,R∗] �= ∞ . 

By induction hypotheses (of the claim and the lemma), there 
are switchings Si−1 and S′ of N with SuccR↑Si−1

(Zi−1) = R′ \ R∗ 
and Succ

R↑
S′ (Ŵvi) = R∗ . Now, we construct a digraph 

Si := (V (N ), (A(Si−1 \ Avi(Si−1)) ∪ Avi(S
′)) and show that 

Si ∈ SZi→R′(N ) . Since Succ
R↑
Si
(Zi) = Succ

R↑
Si−1

(Zi−1)

⊎SuccR↑
S′ (Ŵvi

) = (R′ \ R∗) ⊎ R
∗ = R

′ , it is sufficient to show 
that Si can be turned into a switching of N without changing 
Succ

R↑
Si
(Zi) . To this end, suppose that there is a node w  = ρN 

of N that does not have exactly one parent in Si . Since Si−1 
and S′ are switchings, w has parents ui−1 and u′ in Si−1 and 
S′ , respectively. If w has no parent in Si , then 
ui−1w ∈ Avi(Si−1) and u′w /∈ Avi(S

′) and, thus, 
ui−1 ≤Ŵ vi <Ŵ u′ , implying u′ �= ui−1 as well as w ∈ YWŴ

vi
 

and w /∈ R′ . Then, we can just add the arc u′w to Si without 
changing SuccR↑Si (Zi) . If w has at least two parents, then ui−1 
and u′ are both parents of w in Si , that is, ui−1w /∈ Avi(Si−1) 
and u′w ∈ Avi(S

′) and, thus, u′ <Ŵ vi <Ŵ ui−1 , implying 
u′ �= ui−1 as well as w ∈ YWŴ

vi
 and w ∈ R∗ . But then, we can 

remove ui−1w from Si without changing SuccR↑Si (vi) . Repeat-
ing this argument, we can turn Si into a switching of N with 
Succ

R↑
Si
(Zi) = R′ , implying that SZi→R′(N ) �= ∅ . For the 

second part of the claim, we show both inequalities 
separately.

“≤ ”: Let Si ∈ SZi→R
′
(N ) and ψi : V (N ) → C ψi coincides 

with ψx[x → cx] on 
⋃

j≤i YW
Ŵ
vj

 and ∑
j≤i

∑

uw∈A(Si )
vj

δ ψi
(u,w) 

is minimum among all such Si and ψi . Further, let 
R∗ := Succ

R↑
Si
(Ŵvi) . Note that Succ

R↑
Si
(Zi−1) and 

Succ
R↑
Si
(vi) = R∗ are disjoint since Si is a switching, imply-

ing SuccR↑Si (Zi−1) = R′ \ R∗ and, thus, Qψx
x,cx [i − 1,R′ \ R∗] 

and TSW [vi,φi,R∗] are finite by induction hypotheses. 
Then, as R∗ ⊆ R′ ∩ Succ

R↑
N (Ŵvi) , we know that R∗ partici-

pates in the minimum of (5). Thus,

Qψx
x,cx

[i,R′] ≤ Qψx
x,cx

[i − 1,R′ \ R∗] + TSW [vi,ψi |YWŴ
vi

,R∗]

IH claim
IH lemma

≤
∑

j≤i−1

∑

uw∈Avj
(Si)

δ ψi(u,w)+
∑

uw∈Avi
(Si)

δ ψi(u,w)

=
∑

j≤i

∑

uw∈Avj
(Si)

δ ψi(u,w)
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“≥ ”: Clearly, this direction is trivial if Qψx
x,cx [i,R′] is infinite, 

so suppose it is finite. By (5), there is some 
R∗ ⊆ R′ ∩ Succ

R↑
N (Ŵvi) with Q

ψx

x,cx [i,R′] = Q
ψx

x,cx [i − 1,

R
′ \ R∗] + T

SW [vi,ψi |YWŴ
vi

,R
∗] . First, since 

TSW [vi,ψi |YWŴ
vi

,R∗] �= ∞ , the induction hypothesis (of 

the lemma) guarantees that there is some S∗ ∈ S
Ŵvi

→R∗(N ) 
and ψ∗ : V (N ) → C such that (a) ψi |YWŴ

vi

� ψ∗ � φ , (b) 

(S∗,ψ∗) is optimal on Avi(S
∗) , and (c) 

TSW [vi,ψi |YWŴ
vi

,R∗] =
∑

uw∈Avi
(S∗) δ ψ∗(u,w) . Second, 

since Qψx
x,cx [i − 1,R′ \ R∗] �= ∞ , the induction hypothesis 

(of the claim) guarantees that there are 
Si−1 ∈ SZi−1→R′\R∗(N ) and ψi−1 : V (N ) → C such that 
(a) ψi−1 � φ , (b) ψi−1 coincides with ψx[x → cx] on 
⋃

j<i YW
Ŵ
vj

 , (c) 
∑

j<i

∑

uw∈Avj
(Si−1)

δ ψi−1(u,w) is minimal 
among all such Si−1 and ψi−1 , and (d) Qψx

x,cx [i − 1,R
′ \ R∗]

=
∑

j<i

∑

uw∈Avj
(Si−1)

δ ψi−1
(u,w). Finally, we construct a 

new solution S′ by replacing Si by S∗ on Ŵvi and by Si−1 on 
Zi−1 and we use Claim 5(c) to show that the cost of Si is at 
most that of S′ . More formally, let

Since {v1, v2, . . . , vi} is an anti-chain in Ŵ and 
{SuccR↑Si−1

(Zi−1), Succ
R↑
S∗ (Ŵvi)} = {R∗,R′ \ R∗} is a parti-

tion of SuccR↑Si (Zi) = R′ , Claim 4 implies S′ ∈ SZi→R′(N ).  
Further, let ψ ′ : V (N ) → C such that, for all a ∈ A(S′) , 
ψ ′(a) := ψi−1(a) if a ∈ AZi(Si−1) , ψ ′(a) := ψ∗(a) if 
a ∈ Avi(S

∗) , and ψ ′(a) := ψi(a) , otherwise. Note that 
ψ ′ � φ . Further, ψi and ψi−1 coincide on YWŴ

Zi−1
 and, 

thus, ψ ′ and ψi−1 coincide on all nodes touched by 
AZi−1(S

′) = AZi−1(Si−1) . Further, ψi and ψ∗ coincide on 
YWŴ

vi
 and, thus, ψ ′ and ψ∗ coincide on all nodes touched 

by Avi(S
′) = Avi(S

∗) . Thus,

 �

(11)S′ :=



V (N ),



A(Si) \
�

j≤i

Avj (Si)



 ∪
�

j<i

Avj (Si−1) ∪ Avi(S
∗)





Qψx
x,cx

[i,R′] = Qψx
x,cx

[i − 1,R′ \ R∗] + TSW [vi,ψ∗ |YWŴ
vi

,R∗]

(c),(g)=
∑

j<i

∑

uw∈Avj
(Si−1)

δ ψi−1(u,w)+
∑

uw∈Avi
(S∗)

δ ψ∗(u,w)

df.ψ ′,(11)=
∑

j<i

∑

uw∈Avj
(S′)

δ ψ ′(u,w)+
∑

uw∈Avi
(S′)

δ ψ ′(u,w)

=
∑

uw∈AZi
(S′)

δ ψ ′(u,w)
Claim 5(c)

≥
∑

j≤i

∑

uw∈Avj
(Si)

δ ψi(u,w)

Having established the semantics of Qψx
x,cx , we can finish 

proving Case 2 of Lemma 8s. First, consider the case that 
SŴx→Rx (N ) = ∅ and assume that TSW [x,ψx,R

x] �= ∞ . 
By Eq. (4) and Claim 5, there is some cx and 
R∗ ⊆ Rx ∩ Succ

R↑
N (x) such that SZt→Rx\R∗(N ) �= ∅ or 

SZt→(Rx\R∗)∪({x}∪R(N ))(N ) �= ∅ . Let S′ be a switching in 
one of these sets and note that SuccR↑S′ (Ŵx) = Rx \ R∗ . 
If there is some y ∈ Rx \ SuccR↑S′ (Ŵx) , then y ∈ R∗ and 
S′ contains an arc zy for some z /∈ Ŵx , implying that we 
can swap zy for xy in S′ without affecting SuccR↑S′ (Zt) or 
S′ being a switching. Thus, we can assume without loss of 
generality that SuccR↑S′ (Ŵx) = Rx . But then, S′ ∈ SŴx→Rx 
contradicting SŴx→Rx = ∅ . In the following, we thus 
assume that SŴx→Rx �= ∅ and we show both directions of 
the lemma separately.

“≤ ”: Let cx := ψ(x) ∈ φ(x) , let R∗ := Succ
R↑
S (x) , and 

note that R∗ = Succ
R↑
S (x) ⊆ Succ

R↑
S (Ŵx) = Rx . Fur-

ther, let y := PredS(x) be the parent of x in S. Since Ŵ 
agrees with N (and, thus, with S) we know that either 
x <Ŵ y or x >Ŵ y . If x <Ŵ y , that is, y ∈ Pred

↓
N (x) , then 

Succ
R↑
S (Zt) = Succ

R↑
S (Ŵx) \ SuccR↑S (x) = Rx \ R∗ and, by 

Claim 5,

If x >Ŵ y , that is, y ∈ Pred
↑
N (x) , then SuccR↑

S
(Zt) = (R(N )

∩{x}) ∪ (Succ
R↑
S
(Ŵx) \ SuccR↑S (x)) = (R(N ) ∩ {x}) ∪ (Rx \ R∗) 

and, by Claim 5,

(12)

∑

uw∈AZt (S)

δ ψ(u,w)+
∑

uw∈A↓
{x}(S)

δ ψ(u,w)

≥ Qψx
x,cx

[t,Rx \ R∗] + δ ψ(x, y)

≥ Qψx
x,cx

[t,Rx \ R∗] + min
yx∈A↓

{x}(N )

δ (cx,ψ(y))



Page 22 of 31Scornavacca and Weller  Algorithms for Molecular Biology           (2022) 17:15 

Then, since cx and R∗ are valid choices for the minima in 
(4), we have

“≥ ”: Suppose that TSW [x,ψx,R
x] �= ∞ as, otherwise, 

this direction is trivial. We consider each case of the 
minimum in (4) individually (although both cases are 
analogous).

Case 2.1: Pred↓N (x) �= ∅ and there are cx ∈ φ(x) and 
R∗ ⊆ Rx ∩ Succ

R↑
N (x) such that

By Claim 5, there is some S′ ∈ SZt→Rx\R∗(N ) and some 
ψ ′ : V (N ) → C such that (a) ψ ′ � φ , (b) ψ ′ coincides 
with ψx[x → cx] on 

⋃

i≤t YW
Ŵ
vi

 (recall that x ∈
⋃

i≤t YW
Ŵ
vi

 ) 
(c) 

∑

uw∈AZt (S
′) δ ψ ′(u,w) is minimum among all such S′ 

and ψ ′ and

(13)

∑

uw∈AZt
(S)

δ ψ(u,w)+
∑

uw∈A↓
{x}(S)

δ ψ(u,w)

≥ Q
ψx

x,cx
[t, (R(N ) ∩ {x}) ∪ R

x \ R∗]

TSW [x,ψx,R
x]

(4),(12),(13)
≤

∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψ(r))+
∑

uw∈AZt (S)

δ ψ(u,w)+
∑

uw∈A↓
{x}(S)

δ ψ(u,w)

=
∑

xr∈A↑
{x}(S)

δ ψ(x, r)+
∑

uw∈AZt (S)

δ ψ(u,w)+
∑

uw∈A↓
{x}(S)

δ ψ(u,w) =
∑

uw∈Ax(S)

δ ψ(u,w)

(14)

TSW [x,ψx,R
x] =

∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))

+ Qψx
x,cx

[t,Rx \ R∗] + min
y∈Pred↓

N (x)

δ (cx,ψx(y))

(15)Qψx
x,cx

[t,Rx \ R∗] =
∑

uw∈AZt (S
′)

δ ψ ′(u,w)

From S′ we construct a switching S∗ ∈ SŴx→Rx (N ) by 1. 
swapping each arc  zr ∈ A(S′) with r ∈ R∗ for xr (which 
exists in N since R∗ ⊆ Succ

R↑
N (x) ), 2. swapping each 

arc xr ∈ A(S′) with r /∈ Rx for an arc zr with z /∈ Ŵx (which 
exists in N since SŴx→Rx (N ) �= ∅ ), and 3. swapping the 
arc  yx ∈ A

↓
{x}(S

′) with an arc zx ∈ Pred
↓
N (x)× {x} mini-

mizing δ ψ ′(x, z) . Since this operation does not change the 
in-degree of any node, S∗ is still a switching of N and we 
have SuccR↑S∗ (x) = R∗ and AZt (S

′) = AZt (S
∗) by construc-

tion. Thus, SuccR↑S∗ (Zt) = Rx \ R∗ and SuccR↑S∗ (Ŵx) = Rx . 
Altogether,

Case 2.2: Pred↑N (x) �= ∅ and there are cx ∈ φ(x) and 
R∗ ⊆ Rx ∩ Succ

R↑
N (x) such that

Abbreviate R′ := (R(N ) ∩ {x}) ∪ Rx \ R∗ . By Claim 5, 
there is some S′ ∈ SZt→R′(N ) and some ψ ′ : V (N ) → C 
such that (a) ψ ′ � φ , (b) ψ ′ coincides with ψx[x → cx] on 
⋃

i≤t YW
Ŵ
vi

 , (c) 
∑

uw∈AZt (S
′) δ ψ ′(u,w) is minimum among 

all such S′ and ψ ′ and

We construct a switching  S∗ ∈ SŴx→Rx (N ) by 1. swap-
ping each arc  zr ∈ A(S′) with r ∈ R∗ forxr (which 

TSW [x,ψx,R
x](14),(15)=

∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))+
∑

uw∈AZt (S
′)

δ ψ ′(u,w)+ min
y∈Pred↓

N (x)

δ (cx,ψx(y))

=
∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))+
∑

uw∈AZt (S
∗)

δ ψ ′(u,w)+ min
y∈Pred↓

N (x)

δ (cx,ψx(y))

ψx=ψ ′|
YWŴ

x=
∑

xr∈A↑
{x}(S

∗)

δ ψ ′(x, r)+
∑

uw∈AZt (S
∗)

δ ψ ′(u,w)+
∑

yx∈A↓
{x}(S

∗)

δ ψ ′(y, x)

=
∑

uw∈Ax(S∗)

δ ψ ′(u,w)
Lemma 8(b)

≥
∑

uw∈Ax(S)

δ ψ(u,w)

(16)

T
SW [x,ψx,R

x] =
∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))

+ Q
ψx

x,cx
[t, (R(N ) ∩ {x}) ∪ R

x \ R∗]

(17)Qψx
x,cx

[t,R′] =
∑

uw∈AZt (S
′)

δ ψ ′(u,w)
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exists in N since R∗ ⊆ Succ
R↑
N (x) ) and 2. swapping 

each arc  xr ∈ A(S′) with r /∈ Rx for an arc zr with 

z /∈ Ŵx (which exists in N since SŴx→Rx (N ) �= ∅ ). 
Since this operation does not change the in-degree 

of any node, S∗ is still a switching of N and we have 
Succ

R↑
S∗ (x) = R∗ and AZt (S

′) = AZt (S
∗) by construction. 

Thus, SuccR↑S∗ (Zt) = R′ and SuccR↑S∗ (Ŵx) = Rx . Further, 
note that if x is a tree node, then Pred↑N (x) �= ∅ implies 
A
↓
{x}(S

∗) ⊆ A
↓
{x}(N ) = ∅ and, otherwise, x ∈ R′ implying 

A
↓
{x}(S

∗) = ∅ . Altogether,

   �

Lemma 9 Let x ∈ V (N ), let i ∈ N, let � : YWŴ
x → 2C, 

let η, η′ : YWŴ
x → N, and let ψ ,ψ ′ : YWŴ

x → 2C such that 
ψ ′ � ψ � � and 

−→
0 [x → ρ(x)] � η′ � η. Then,

Proof Note that the inequality on Q�
x trivially holds 

if Q�
x[i,ψ , η] = ∞ and, similarly for TPT  . The proof is 

based on the observation that the transformations done 
to ψ and η in Equations (7) and (8) are monotone. 

TSW [x,ψx,R
x](16),(17)=

∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))+
∑

uw∈AZt (S
′)

δ ψ ′(u,w)

=
∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))+
∑

uw∈AZt (S
∗)

δ ψ ′(u,w)

ψx=ψ ′|
YWŴ

x=
∑

xr∈A↑
{x}(S

∗)

δ ψ ′(x, r)+
∑

uw∈AZt (S
∗)

δ ψ ′(u,w)

A
↓
{x}(S

∗)=∅

=
∑

uw∈Ax(S∗)

δ ψ ′(u,w)
Lemma 8(b)

≥
∑

uw∈Ax(S)

δ ψ(u,w)

T
PT [x, �,ψ ′, η′] ≤ T

PT [x, �,ψ , η]
and Q

�
x[i,ψ

′, η′] ≤ Q
�
x[i,ψ , η]

Claim 6 Let U ,D ∈ N . The following functions (acting 
on functions) are montone

Let ψ ,ψ ′ : YWŴ
x → 2C with ψ ′ � ψ . Then, for 

all y ∈ YWŴ
x  , Further, for all y ∈ Succ

↑
N (x) , we have 

f (ψ ′)(y) = ψ ′(y) \ U ⊆ ψ(y) \U = f (ψ)(y).

The proof for gU ,D is completely analogous. �

With Claim 6, we can show that monotonicity of Q�
x 

implies monotonicity of TPT .

Claim 7 Let v1, v2, . . . , vt be the children of x in Ŵ and 
suppose that Q�

x is monotone. Then, TPT  is monotone.

Proof If TPT [x, �,φ, η] �= ∞ , there are D ⊆ U ⊆ φ(x) 
such that the minimum in Equation (7) in Definition 7 is 
attained, that is,

for some constants cU ,D and c∗U ,D that are independant of 
φ and η . Since, by assumption, Q�

x is monotone for all � and 
both fU ,D and gU ,D are monotone by Claim 6, we conclude

fU ,D(ψ) := ψ

�

x → D
∀
y∈Succ↑N (x)

y → ψ(y) \U

�

gU ,D(η) := η





x → |U |
.
−
�

u∈Pred↓
N (x)

|�x(u)|

∀
y∈Succ↑N (x)

y → η(y)
.
−|U |





f (ψ ′)(y) =







D if x = y

ψ ′(y) \ U if y ∈ Succ
↑
N (x)

ψ ′(y) otherwise
�







D if x = y

ψ(y) \U if y ∈ Succ
↑
N (x)

ψ(y) otherwise

= f (ψ)(y)

TPT [x, �,φ, η] = Q�x→U
x [0, fU ,D(φ), gU ,D(η)]+ cU ,D

= Q�
x[0, fU ,D(φ), gU ,D(η)] + c∗U ,D
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Note the last “ ≥ ” since we only know that this par-
ticular value participates in the minimum that forms 
TPT [x, �,ψ ′, η′] , while this minimum may be attained at 
an even smaller value. �

By Claim 7, in order to prove Lemma 9, it is sufficent to 
show that Q�

x is monotone. This proof is by induction on 
the height of x in Ŵ and the value of the first argument i 
of Q�

x.
For the induction base, suppose that x is a leaf of Ŵ and 

note that x has t = 0 children. If Q�
x[0,ψ , η] �= ∞ , we 

have ψ = −→
0  and η = −→

0 [x → ρ(x)] . But then, ψ ′ = ψ 
and η′ = η , implying Q�

x[0,ψ ′, η′] = Q�
x[0,ψ , η].

For the induction step, let x have t children v1, v2, . . . , vt 
and let 0 < i ≤ t . First, let ψ∗ � ψ |YWŴ

vi

 and 

η∗ � η |YWŴ
vi

 be such that the minimum in Equation (8) 

in Definition 7 is attained, that is, Q�
x[i,ψ , η] = Q

�
x[i − 1,

ψ − ψ∗
, η − η∗] + T

PT [vi, � |
YW

Ŵ
vi

,ψ∗
, η∗] . Further, let 

ψ ′∗ and η′∗ be defined as ψ ′∗(y) := ψ ′(y) ∩ ψ∗(y) and 
η′∗(y) := min{η′(y), η∗(y)} . Clearly, ψ ′∗ � ψ ′ and 
ψ ′∗ � ψ∗ and η′∗ � η′ and η′∗ � η∗ . Further, for all y,

so ψ ′ − ψ ′∗ � ψ − ψ∗ and η′ − η′∗ � η − η∗ . Since ψ ′∗ 
and η′∗ participate in the minimum in the definition of 
Q�
x[i,ψ ′, η′],

 �

Lemma 10 Let Ŵ be a tree agreeing with N, let x ∈ V (N ), 
let ψx, �x : YWŴ

x → 2c and ηx : YWŴ
x → N. Let f minimize 

cost(f ) among all lineage functions in LFN ,φ such that, for 
all w ∈ YWŴ

x  , �x(w) = f (w) , ψx(w) = f (w) ∩
⋃

u∈
Pred

↑x
N
(w)f (u), and ηx(w) ≤

∑

u∈PredN↑x(w) |f (u)|. If 

TPT [x, �,ψ , η] ≥ Q�
x[0, fU ,D(ψ), gU ,D(η)] + c∗U ,D

≥ Q�
x[0, fU ,D(ψ

′), gU ,D(η
′)] + c∗U ,D ≥ TPT [x, �,ψ ′, η′]

(18)

(ψ ′ − ψ ′∗)(y) = ψ ′(y) \ (ψ ′(y) ∩ ψ∗(y)) = ψ ′(y) \ ψ∗(y)

⊆ ψ(y) \ ψ∗(y) = (ψ − ψ∗)(y)

(19)

(η′ − η′∗)(y) = η′(y)−min{η′(y), η∗(y)} = η′(y)
.
−η∗(y)

≤ η(y)
.
−η∗(y) = (η − η∗)(y),

Q�
x[i,ψ , η] = Q�

x[i − 1,ψ − ψ∗, η − η∗] + TPT [vi, � |YWŴ
vi

,ψ∗, η∗]

IH ,(18),(19)
≥ Q�

x[i − 1,ψ ′ − ψ ′∗, η′ − η′∗] + TPT [vi, � |YWŴ
vi

,ψ ′∗, η′∗]

≥ Q�
x[i,ψ

′, η′]

there are no such f, then TPT [x, �x,ψx, ηx = ∞]. 
Otherwise,

Proof Note that, if the cost of f is finite, then 
|f (v)| ≤

∑

u∈Pred(v) |f (u)| for all v  = ρN and |f (ρN )| = 1 
by Definition 4. Again, the proof is by induction on the 
height of x in Ŵ.

Case 1: x is a leaf in Ŵ , that is, t = 0 and Pred↑xN (v) ⊆ {x} 
for all v. Then, by Definition 7, TPT [x, �x,ψx, ηx] is finite 
if and only if

and

if and only if (considering the assignments of the above 
modifications of ψx and ηx individually) (a) D = ∅ , (b) 
|U |

.
−
∑

r∈Pred↓
N (x)

|�x(r)| = ρ(x) (c) for each 
y ∈ SuccN (x),

In this case, the table entry is assigned the cost 
|U \

⋃

r∈Pred↓
N (x)

�x(r)| − ρ(x) = |U \
⋃

r∈Pred(x) f (r)| − ρ(x)  . 

If x = ρN , this simplifies to |U | − 1 and, since |f (ρN )| = 1 , 
the cost is minimized by U = f (ρN ) and the table entry 
equals 0 = costf (ρN ) . Thus, in the following, let x  = ρN.

“≤ ”: Since (20) is satisfied for U = f (x) , the minimum 
over all  U is at most the cost when choosing U = f (x) , 
which is |f (x) \

⋃

r∈Pred(x) f (r)| = costf (x)

TPT [x, �x,ψx, ηx] =
∑

z≤Ŵx

costf (z)

ψx

[

x → D
∀
y∈Succ↑N (x)

y → ψx(y) \U

]

= −→
0

ηx





x → |U |
.
−
�

r∈Pred↓
N (x)

|�x(r)|

∀
y∈Succ↑N (x)

y → ηx(y)
.
−|U |



 = −→
0 [x → ρ(x)],

(20)
U ⊇ ψx(y) = f (y) ∩ f (x). and |U | ≥ ηx(y) = |f (x)|
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“≥ ”: Towards a contradiction, assume that there is a U 
satisfying (20) such that T

PT
[x, �x,ψx, ηx] =

|U \
⋃

r∈Pred(x) f (r)| < |f (x) \
⋃

r∈Pred(x) f (r)| = costf (x)  . 
We show that f ′ := f [x → U ] has less overall cost than f, 
contradicting its optimality. Since changing f(x) to U only 
influences the cost of x and its children in N, it suffices to 
consider them. To this end, let y be any child of x in N. 
First, by (b), |f ′(x)| = |U | ≤

∑

r∈PredN (x) |f
′(r)| so 

costf ′(x) = |U \
⋃

r∈PredN (x) f (r)| < costf (x) by assump-

tion. Further, |f ′(y)| = |f (y)| ≤
∑

u∈Pred(y) |f (u)|
≤

∑

u∈Pred(y) |f
′(u)| since |U | ≥ |f (x)| by (20). Finally, for 

each y ∈ SuccN (x),

Case 2: x has children v1, v2, . . . , vt with t ≥ 1 in Ŵ . In the 
following, we abbreviate Yi :=

⋃

j≤i YW
Ŵ
vj

 and 
Zi :=

⋃

j≤i Ŵvj . Further, we call a lineage function  f ′ eligi-
ble with respect to an anti-chain Y in Ŵ and functions �′ , 
ψ ′ , and η′ if, for all w ∈

⋃

y∈Y YWŴ
y  , we have �(w) = f ′(w) , 

ψ ′(w) ⊆ f ′(w) ∩
⋃

y∈Y
⋃

u∈Pred↑y
N (w)

f ′(u) and 

η′(w) ≤
∑

y∈Y
∑

u∈Pred↑y
N (w)

|f (u)| + ρ(w) and the cost 
of f ′ is finite on 

⋃

y∈Y Ŵy . We first show how the table Q�
x 

is used to distribute lineages among the vi.

Claim 8 Let 1 ≤ i ≤ t , Let ηi : Yi → N and 
let �,ψi : Yi → 2C with ψi � � . Let fi minimize 
∑

z∈Zi
costfi(z)− ρ(x) among all lineage functions that 

are eligible with respect to Yi , � , ψi , and ηi . If no such  f 
exists, then Q�

x[i,ψi, ηi] = ∞ . Otherwise,

Proof The proof of the claim is by induction on i.

costf (y) = |f (y) \
⋃

v∈Pred(y)

f (v)| = |f (y) \ (f (x) ∪
⋃

v∈Pred(y)−x

f (v))|

(20)
≥ |f ′(y) \ (U ∪

⋃

v∈Pred(y)−x

f ′(v)))| = costf ′(y)

Q�
x[i,ψi, ηi] =

∑

z∈Zi

costfi(z)− ρ(x).

Case i = 1 : By Definition 7, Q�
x[0,ψ1 − ψ ′, η1 − η′] is 

finite if and only if ψ ′ = ψ1 , η′ = η1 and 
TPT [v1, � |YWŴ

v1

,ψ ′, η′] is finite, that is, by induction 

hypothesis of the lemma, there is a lineage function f ′ 
that is eligible for Y1 , � , ψ1 = ψ ′ and η1 = η′ . Thus, the 
first part of the claim follows. Since ψ1 and η1 are the only 
valid choices for the minima in (8) that result in finite val-
ues, we conclude

since fi is eligible with respect to Y1 , � , ψ1 and η1 and min-
imizes 

∑

z∈Z1
costfi(z)− ρ(x).

Case i > 1 : First, suppose that Q�
x[i,ψi, ηi] �= ∞ . By (8), 

there are ψ ′ � ψi and η′ � ηi such that Q�
x[i − 1,ψi−1,

ηi−1] �= ∞ and TPT [vi, � |YWŴ
vi

,ψ ′, η′] �= ∞ , where 

ψi−1 := ψi − ψ ′ and ηi−1 := ηi − η′ . By induction 
hypotheses, there are functions fi−1 and f ′ such that fi−1 
is eligible with respect to Yi−1 , � , ψi−1 , ηi−1 and f ′ is eligi-
ble with respect to {vi} , � , ψ ′ , η′ . We construct a func-
tion  f ∗ by setting

(Note that the cost of f on N might be ∞ but we will 
see that its cost on Zi is finite). First, we show that f ∗ is 
eligible with respect to Yi , � , ψi , and ηi . To this end, let 
w ∈ YWŴ

y  for any y ∈ Yi . Then, by eligibility of f ′ and fi−1 
and Ŵvj ∩ Ŵvi = ∅ for all j < i , we have

Q�
x[1,ψ1, η1] = −ρ(x)+ TPT [v1, � |YWŴ

v1

,ψ1, η1]
IH lemma=

∑

z∈Z1

costfi(z)− ρ(x)

f ∗(w) :=











f ′(w) ifw ∈ YWŴ
vi
∪ Ŵvi

fi−1(w) ifw ∈
�

y∈Yi−1

�

YWŴ
y ∪ Ŵvj

�

\ YWŴ
vi

C otherwise.
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Finally, the cost of f ∗ on Zi equals the cost of fi−1 on Zi−1 
plus the cost of f ′ on Ŵvi and is, therefore, finite. Thus, f ∗ 
is eligible for Yi , � , ψi and ηi , implying the contraposition 
of the first part of the lemma. For the cost equality, we 
consider both directions separately.

“≤ ”: Let ψ ′ : YWŴ
vi
→ 2C and η′ : YWŴ

vi
→ N be defined 

on YWŴ
vi

 as

f ∗(w) =







f ′(w) = � |YWŴ
vi

(w) = �(w) ifw ∈ YWŴ
vi

f ∗(w) = fi−1(w) = � |�
j<iYW

Ŵ
vj

(w) = �(w) otherwise

ψi(w) = ψi−1(w) ∪ ψ ′(w)

⊆






fi−1(w) ∩

�

y∈Yi−1

�

u∈Pred↑y
N (w)

fi−1(u)






∪






f ′(w) ∩

�

u∈Pred↑vi
N (w)

f ′(u)







= f ∗(w) ∩
�

y∈Yi

�

u∈Pred↑y
N (w)

f ∗(w).

ηi(w) = ηi−1(w)+ η′(w) ≤
�

y∈Yi−1

�

u∈Pred↑y
N (w)

|fi−1(u)| +
�

u∈Pred↑vi
N (w)

|f ′(u)|

=
�

y∈Yi

�

u∈Pred↑y
N (w)

|f ∗(u)|.

ψ ′(w) :=ψi(w) ∩ fi(w) ∩
⋃

u∈Pred↑vi
N (w)

fi(u)

and

Clearly, ψ ′ � ψi |YWŴ
vi

 and η′ � ηi |YWŴ
vi

 . Furthermore, 

define ψi−1 and ηi−1 by, for all w ∈
⋃

y∈Yi−1
YWŴ

y  , setting

η′(w) :=min{ηi(w),
∑

u∈Pred↑vi
N (w)

|fi(u)| + ρ(w)}.

ψi−1(w) := ψi(w)− ψ ′(w) ⊆






f ′(w) ∩

�

y∈Yi

�

u∈Pred↑y
N (w)

f ′(u)






\






f ′(w) ∩

�

u∈Pred↑vi
N (w)

f ′(u)







⊆ f ′(w) ∩
�

y∈Yi−1

�

u∈Pred↑y
N (w)

f ′(u)

and

ηi−1(w) := ηi(w)− η′(w) ≤
∑

y∈Yi

∑

u∈Pred↑y
N (w)

|fi(u)| −
∑

u∈Pred↑vi
N (w)

|fi(u)|

=
∑

y∈Yi−1

∑

u∈Pred↑y
N (w)

|fi(u)|.
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Thus, fi is eligible with respect to Yi−1 , � , ψi−1 and ηi−1 , 
implying

“≥ ”: Let Q�
x[i,ψi, ηi] be finite as, otherwise, “ ≥ ” trivially 

holds. By (8), there are ψ ′ � ψi |YWŴ
vi

 and η′ � ηi |YWŴ
vi

 

such that

Towards a contradiction, assume that this value is strictly 
smaller than 

∑

z∈Zi
costfi(z)− ρ(x) . By the induction 

hypothesis of the lemma, there is a lineage function  f ′ 
that is eligible with respect to {vi} , � , ψ ′ , and η′ with 
TPT [vi, � |YWŴ

vi

,ψ ′, η′] =
∑

z≤Ŵvi
costf ′(z) . Further, by 

Q�
x[i,ψi, ηi]

Def. 7
≤ Q�

x[i − 1,ψi − ψ ′, ηi − η′] + TPT [vi, � |YWŴ
vi

,ψ ′, η′]

Lem. 9
≤ Q�

x[i − 1,ψi−1, ηi−1] + TPT [vi, � |YWŴ
vi

,ψ ′, η′]

IH claim
IH lemma

≤
∑

z∈Zi−1

costfi(z)− ρ(x)+
∑

z≤vi

costfi(z)

=
∑

z∈Zi

costfi(z)− ρ(x)

Q
�
x[i,ψi, ηi] = Q

�
x[i − 1,ψi − ψ ′

, ηi − η′]
+ T

PT [vi, � |
YW

Ŵ
vi

,ψ ′
, η′]

the induction hypothesis of the claim, there is a lineage 
function  fi−1 that is eligible with respect to Yi−1 , � , 
ψi − ψ ′ , and ηi − η′ with Q

�
x[i − 1,ψi − ψ ′

, ηi − η′]

=
∑

z∈Zi−1
costfi−1

(z)− ρ(x) . We construct a lineage 
function f ∗ by setting

By eligibility of fi−1 , fi and f ′ , we know that fi−1 , fi and 
f ∗ coincide with � on 

⋃

y∈Yi−1
YWŴ

y  and f ′ , fi and f ∗ 
coincide with � on YWŴ

vi
 . To contradict optimality of f, it 

thus suffices to show that f ∗ is eligible with respect to Yi , 
� , ψi , and ηi , To this end,note that, for all w ∈

⋃

y∈Yi YW
Ŵ
y  , 

we have

f ∗(w) :=







fi−1(w) ifw ∈ Zi−1

f ′(w) ifw ∈ Ŵvi
fi(w) otherwise

ψi(w) = (ψi − ψ ′)(w) ∪ ψ ′(w)

⊆






�(w) ∩

�

y∈Yi−1

�

u∈Pred↑y
N (w)

fi−1(u)






∪






�(w) ∩

�

u∈Pred↑vi
N (w)

f ′(u)







= f ∗(w) ∩
�

y∈Yi

�

u∈Pred↑y
N (w)

f ∗(u)

as well as

 �

ηi(w) = (ηi − η′)(w)+ η′(w) ≤
∑

y∈Yi−1

∑

u∈Pred↑y
N (w)

|fi−1(u)| +
∑

u∈Pred↑vi
N (w)

|f ′(u)| + ρ(w)

=
∑

y∈Yi

∑

u∈Pred↑y
N (w)

|f ∗(u)| + ρ(w)
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Having established the equality for Q�
x , we can now 

prove the lemma for i > 1 . For the first part, suppose that 
TPT [x, �x,ψx, ηx] �= ∞ . By (7), there are D ⊆ U ⊆ φ(x) 
such that T

PT [x, �x,ψx, ηx] = Q
�xx→U
x [t,ψt , ηt ]

+|U \ (D ∪
⋃

u∈Pred↓
N (x)

�x(u))| , where

By Claim 8, there is a lineage function  ft that is eli-
gible for {vt} , �t := �x[x → U ] , ψt , and ηt . With-
out loss of generality, suppose that ft(w) = �t(w) 
for all w ∈ (YWŴ

x ∪ {x}) \
⋃

y∈Yt YW
Ŵ
y  . In particular, 

ft(x) = �t(x) = U and ft has finite cost on Zt.

ψt := ψx

�

x → D, ∀
w∈Succ↑N (x)

w → ψx(w) \U
�

and

ηt := ηx






x → |U |

.
−

�

u∈Pred↓
N (x)

|�x(u)|, ∀w∈Succ↑N (x)
w → ηx(w)

.
−|U |






.

|ft(x)| >
∑

u∈PredN (x) |ft(u)| . In the first case, 
nt(x) = |U | > 1 , contradicting ηt(x) ≤ ρ(x) . In the sec-
ond case, nt(x) = |U |

.
−
∑

u∈Pred↓
N (x)

|�x(u)| , implying

contradicting ft(x) = U . Further, for each 
w ∈ YWŴ

x \ Succ↑N (x),

|ft(x)| >
∑

u∈PredN (x)

|ft(u)|

=
∑

u∈Pred↓
N (x)

|ft(u)| +
∑

y∈Yt

∑

u∈Pred↑y
N (x)

|ft(u)|

≥
∑

u∈Pred↓
N (x)

|�x(u)| + nt(x) ≥ |U |

ψx(w) = ψt(w) ⊆ ft(w) ∩
⋃

y∈Yt

⋃

u∈Pred↑y
N (w)

ft(u) = ft(w) ∩
⋃

u∈Pred↑x
N (w)

ft(u)

ηx(w) = ηt(w) ≤
∑

y∈Yy

∑

u∈Pred↑y
N (w)

|ft(u)| =
∑

u∈Pred↑x
N (w)

|ft(u)|

and, for each w ∈ Succ
↑
N (x),

ψx(w) ⊆ ψt(w) ∪U ⊆ ft(w) ∩
⋃

y∈Yt

⋃

u∈Pred↑y
N (w)

ft(u) ∪ ft(x) = ft(w) ∩
⋃

u∈Pred↑x
N (w)

ft(u)

ηx(w) ≤ ηt(w)+ |U | ≤
∑

y∈Yy

∑

u∈Pred↑y
N (w)

|ft(u)| + |ft(x)| =
∑

u∈Pred↑x
N (w)

|ft(u)|

Thus, ft is eligible with respect to {x} , �x , ψx and ηx , 
implying the first part of the lemma. For the second part, 
we consider the directions seperately.

We show that ft is eligible with respect to {x} , �x , ψx 
and ηx . First, assume that costft (x) = ∞ , that is, either 
x = ρN and |ft(x)| = |U | > 1 or x  = ρN and 
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“≥ ”: We pick up the definition of ft and show that 
TPT [x, �x,ψx, ηx] ≥

∑

z∈Ŵx
costft (z) . Then, “ ≥ ” follows 

from optimality of f on Ŵx . Indeed,

and, since ψt(x) = D ⊆ ft(x) ∩
⋃

u∈Pred↑x
N (x)

ft(u),

“≤ ”: Let U := f (x) and let D := f (x) ∩
⋃

u∈Pred↑x
N (x)

f (u) ⊆ U . 
Then, |U \ (D ∪

⋃

u∈Pred↓
N (x)

f (u)�x(u))| = costf (x)+ ρ(x) . Fur-
ther, let

TPT [x, �x,ψx, ηx] = Q�xx→U
x [t,ψt , ηt ]+ |U \ (D ∪

⋃

u∈Pred↓
N (x)

�x(u))|

≥
∑

z∈Zt

costft (z)+ |ft(x) \ (
⋃

u∈Pred↑
N (x)

ft(u) ∪
⋃

u∈Pred↓
N (x)

ft(u))|

=
∑

z∈Zt

costft (z)+ costft (x) =
∑

z∈Ŵx

costft (z)

ψt := ψx

�

x → D, ∀
w∈Succ↑N (x)

w → ψx(w) \U
�

and

ηt := ηx






x → |U |

.
−

�

u∈Pred↓
N (x)

|�x(u)|, ∀w∈Succ↑N (x)
w → ηx(w)

.
−|U |






.

We show that f is eligible with respect to Yt , �x , ψt and 
ηt . Then, Q

�xx→D
x [t,ψt , ηt ] =

∑

z∈Zt
costf (z)− ρ(x) 

by Claim 8, implying T
PT [x, �x,ψx, ηx] ≤

∑

z∈Zt
costf (z)− ρ(x)+ costf (x)+ ρ(x) =

∑

z∈Ŵx
costf (z) 

since U and D are valid choices for the minimum in (7).
To see that f is eligible, note that f (w) = �x[x → U ] for 

all w ∈
⋃

y∈Yt YW
Ŵ
y  since 

⋃

y∈Yt YW
Ŵ
y ⊆ YWŴ

x ∪ {x} . Fur-
ther, for the conditions on ψt and ηt , consider three cases 
for nodes in 

⋃

y∈Yt YW
Ŵ
y  . First, if w = x , then

Second, if w ∈
⋃

y∈Yt YW
Ŵ
y ∩ Succ

↑
N (x) , then

as well as

ψt(x) = D = f (x) ∩
⋃

u∈Pred↑x
N (x)

f (u) = f (x) ∩
⋃

y∈Yt

⋃

u∈Pred↑y
N (x)

f (u)

ηt(x) = |U |
.
−

∑

u∈Pred↓
N (x)

|�x(u)| = |f (x)|
.
−

∑

u∈Pred↓
N (x)

|f (u)|
Def. 4
≤

∑

u∈Pred↑
N (x)

|f (u)|

=
∑

y∈Yt

∑

u∈Pred↑
N (x)

|f (u)|

ψt(w) = ψx(w) \ U ⊆ f (w) ∩
⋃

u∈Pred↑x
N (w)

f (u) \ f (x) = f (w) ∩
⋃

u∈Pred↑x
N (w)\{x}

f (u)

= f (w) ∩
⋃

y∈Yt

⋃

u∈Pred↑y
N (w)

f (u)

ηt(w) = ηx(w)
.
−|U | ≤

∑

u∈Pred↑x
N (w)

|f (u)| + ρ(x)
.
−|f (x)|

=
∑

u∈Pred↑x
N (w)\{x}

|f (u)| + |f (x)| + ρ(x)
.
−|f (x)| =

∑

y∈Yt

∑

u∈Pred↑y
N (w)

|f (u)| + ρ(x)
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Otherwise, w ∈
⋃

y∈Yt YW
Ŵ
y \ (Succ↑N (x) ∪ {x}) and we 

have

ψt(w) = ψx(w) ⊆ f (w) ∩
⋃

u∈Pred↑x
N (w)

f (u) = f (w) ∩
⋃

y∈Yt

⋃

u∈Pred↑x
N (y)

f (u)

ηt(w) = ηx(w) ≤
∑

u∈Pred↑x
N (w)

|f (u)| + ρ(x) =
∑

y∈Yt

∑

u∈Pred↑y
N (w)

|f (u)| + ρ(x)
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