
Wickramarachchi and Lin ﻿
Algorithms for Molecular Biology (2022) 17:14
https://doi.org/10.1186/s13015-022-00221-z

RESEARCH

Binning long reads in metagenomics
datasets using composition and coverage
information
Anuradha Wickramarachchi and Yu Lin* 

Abstract 

Background:  Advancements in metagenomics sequencing allow the study of microbial communities directly from
their environments. Metagenomics binning is a key step in the species characterisation of microbial communities.
Next-generation sequencing reads are usually assembled into contigs for metagenomics binning mainly due to the
limited information within short reads. Third-generation sequencing provides much longer reads that have lengths
similar to the contigs assembled from short reads. However, existing contig-binning tools cannot be directly applied
on long reads due to the absence of coverage information and the presence of high error rates. The few existing
long-read binning tools either use only composition or use composition and coverage information separately. This
may ignore bins that correspond to low-abundance species or erroneously split bins that correspond to species with
non-uniform coverages. Here we present a reference-free binning approach, LRBinner, that combines composition
and coverage information of complete long-read datasets. LRBinner also uses a distance-histogram-based clustering
algorithm to extract clusters with varying sizes.

Results:  The experimental results on both simulated and real datasets show that LRBinner achieves the best binning
accuracy in most cases while handling the complete datasets without any sampling. Moreover, we show that bin-
ning reads using LRBinner prior to assembly reduces computational resources required for assembly while attaining
satisfactory assembly qualities.

Conclusion:  LRBinner shows that deep-learning techniques can be used for effective feature aggregation to sup-
port the metagenomics binning of long reads. Furthermore, accurate binning of long reads supports improvements
in metagenomics assembly, especially in complex datasets. Binning also helps to reduce the resources required for
assembly. Source code for LRBinner is freely available at https://github.com/anuradhawick/LRBinner.

Keywords:  Metagenomics binning, Long reads, Machine learning, Clustering

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Metagenomics binning is an important area of study in
metagenomics analysis. Broadly, metagenomics enables
the study of microbial genetic material directly from the
source environment [1]. This eliminates the necessity of
lab culturing thus revealing the microbial content of an

environment as it is without culturing biases. Metagen-
omics binning is one key problem in metagenom-
ics studies that facilitates the clustering of sequences
into different taxonomic groups. Mainly there are two
approaches to address this problem; (1) reference-based
binning and (2) reference-free binning. Reference-based
binning tools (e.g., Kraken [2], Centrifuge [3] and Kaiju
[4]) bin sequences based on similarity by comparing with
a database of known reference genomes and thus face
challenges when the reference database is unavailable

Open Access

Algorithms for
Molecular Biology

*Correspondence: yu.lin@anu.edu.au

School of Computing, Australian National University, Canberra, Australia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-022-00221-z&domain=pdf

Page 2 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14

or incomplete. At present, reference-free binning tools
have been gaining popularity over reference-based bin-
ning tools, especially in discovering novel or rare species
in complex metagenomics datasets. While Next-Gen-
eration Sequencing (NGS) technologies produce short
reads, existing reference-free binning tools typically
rely on longer contigs that are assembled from short
reads and contain richer information for binning. Ref-
erence-free binning tools (e.g., MetaBAT [5, 6], MaxBin
[7, 8], BMC3C [9], BusyBeeWeb [10, 11], SolidBin [12],
MetaProb2 [13] and VAMB [14], etc.) bin contigs based
on their composition and coverage information, without
using any reference database. For example, a recent work
VAMB [14] introduced the use of deep variational auto-
encoders to perform reference-free unsupervised binning
of contigs incorporating both the composition and cov-
erage information. VAMB then uses an iterative medoid
clustering algorithm which extracts clusters (bins) in a
local search fashion. Thanks to the accurate composi-
tion and coverage information of contigs, reference-free
approaches show promising results in binning contigs
from metagenomics assemblies.

With the advent of Third Generation Sequencing
(TGS) technologies such as Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT), reads
obtained are much longer than NGS reads (>10kbp).
Therefore, more information becomes available in the
reads themselves to support direct reads binning. How-
ever, contig-binning tools cannot be directly applied to
bin long reads (by treating them as contigs) because there
is no coverage information available for each long read.
Moreover, while certain contig-binning tools make use of
single-copy marker genes to estimate the number of bins
in the sample, the high error rates of long reads and the
varying coverages of different species make it infeasible
to derive accurate estimations. Furthermore, datasets
containing raw long reads are much larger in size com-
pared to typical datasets containing contigs, and hence,
demand more scalable reference-free binning tools.
Recently, a long-read binning tool named, MetaBCC-LR
[15] was introduced to bin error-prone long reads. While
MetaBCC-LR shows very promising results in binning
long reads, it still suffers from accuracy and scalability
issues, especially in complex metagenomics datasets.
Firstly, MetaBCC-LR uses the composition and cover-
age information of long reads in a separate manner (i.e.,
in two different stages). This can result in the ignorance
of bins for species with low abundance and incorrect bin
split for species with non-uniform composition or cover-
age. Secondly, due to its scalability issue, MetaBCC-LR
has to employ a sampling strategy to work on a subset of
reads for large datasets, which affects its overall binning
accuracy. MetaBCC-LR [15] showed that concatenation

of coverage and composition features causes inaccuracies
in clustering as the TSNE dimension reduction considers
the input to be a single vector. More recently, VAMB [14]
showed that for the contig coverage (computed from read
alignments) can be combined with its composition suc-
cessfully using deep learning followed by iterative medoid
clustering. However, neither read alignments nor itera-
tive medoid clustering are suitable to handle long-read
datasets because long reads are typically orders of mag-
nitude more than contigs. In addition, binning of long
read datasets requires novel algorithms to detect clusters
of vastly varying sizes (hundreds to millions of reads per
species), which is different from the contig-binning sce-
narios (few hundreds of contigs per species [16]). There-
fore, it is persistently demanding better approaches to bin
massive long-read datasets accurately and efficiently. The
requirement is further supported by the advent of PacBio
HiFi technology [17] which produces accurate and mas-
sive long-read datasets in metagenomics studies.

In this paper, we present LRBinner to bin TGS long
reads without using any reference databases. LRBinner
combines the composition and coverage features and
eliminates the need to sub-sample large datasets. More
specifically, LRBinner uses a variational auto-encoder
to obtain lower dimensional representations by simul-
taneously incorporating both composition and coverage
information of the complete dataset, which was initially
presented in contigs binning tool, VAMB [14]. LRBinner
further uses a distance-histogram-based clustering algo-
rithm that can capture confident clusters of varying sizes.
LRBinner finally assigns unclustered reads to obtained
clusters using their statistical profiles. The experimental
results of LRBinner compared against other baselines
show that LRBinner achieves better binning results on
both simulated and real datasets. Moreover, we show that
binning long reads by LRBinner prior to assembly helps
to improve genome fraction of assemblies while reducing
the memory consumption for metagenomics assembly.

Methods
LRBinner consists of three main steps; (1) learning lower
dimensional latent representations of composition and
coverage, (2) clustering the latent representations and (3)
obtaining complete clusters. The complete workflow for
LRBinner is demonstrated in Fig. 1. In the following sec-
tions, we will explain these three steps in details.

Step 1
LRBinner uses two typical binning features of metagen-
omic sequences, composition and coverage. The compo-
sition and coverage of each long read is represented as
trimer frequency vectors and k-mer coverage histograms
[15], respectively.

Page 3 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14 	

Computing composition vectors
Previous studies show that different species demonstrate
unique genomic patterns [18, 19] and thus can be used
in composition-based metagenomics binning. Oligonu-
cleotide frequency vectors are one such genomic rep-
resentation that can be used in metagenomics binning.
Small k-mer sizes (k varying from 3-7) have been used
in the past to discriminate assembled contigs of differ-
ent origins [6, 8, 10, 20, 21] and 3-mers have been used
in metagenomics binning of error-prone long reads [15]
which shows that trinucleotide frequency vectors provide
stable binning despite the noise level exist in TGS reads.
Therefore in LRBinner, we utilise k=3 by default which
results in trinucleotide composition vectors. For each
long read, we count the frequencies of all 64 3-mers in
this read and merge the reverse complements to form a
vector of 32 dimensions. The resulting vector is then nor-
malised by the total number of 3-mers observed in the
read. We refer to this trimer frequency vector as VT.

Computing coverage vectors
While an all-vs-all alignment of long reads may provide
coverage information for each long read, it is usually too
time-consuming to perform the quadratic number of
pairwise alignments on large scale long-read datasets.
Given a sufficiently large k, the frequency of a k-mer is
defined as the number of occurrences of this k-mer in
the entire dataset. Long reads from high-abundance spe-
cies tend to contain k-mers with higher frequencies com-
pared to long reads from low-abundance species. Hence,
a k-mer frequency vector can be computed for each long
read to represent coverage information without perform-
ing alignments [15] to represent read coverage. In order
to obtain such coverage histograms, we first compute
the k-mer counts of all long reads in the entire dataset by
DSK [22] (the default value of k=15). The counts are then
indexed in memory by encoding each nucleotide in 2 bits
as per the encoding (i.e., A=00, C=01, T=10 and G=11)
[22]. The resulting index is in the form (ki, coverage(ki))
(as key, value pairs), where coverage(ki) is the number of
occurrences of the k-mer ki in the entire dataset. Now
for each k-mer ki of a read, we obtain the frequency from
the index. These frequencies are then used to build a
normalised histogram, VC . We chose a preset bin width
( bin_width ) for the histogram and obtain a vector of bins

dimensions. By default we set bin_width = 10 and bins =
32 . All the k-mers with counts exceeding the histogram
limits are added into the last index of the histogram.
We also normalise the histogram by the total number of
k-mers observed in the read.

Obtaining latent representations
For each long read, its coverage ( VC ) and composition
( VT ) vectors are concatenated to form a single vector V
of 64 dimensions. We use a variational auto-encoder to
obtain lower dimensional latent representations. The
key motivation for using a variational auto-encoder is to
combine coverage and composition features in an effec-
tive way. Previous work shows that a simple concatena-
tion of coverage and composition vectors made TSNE
less effective [15]. This is mainly because TSNE does not
attempt to learn how to effectively combine composition
and coverage features, but rather sticks with the spatial
distances on concatenated features. However, the vari-
ational auto-encoder is able to learn lower dimensional
representations by combining both composition and cov-
erage features through a deep neural network.

Our implementation of the variational auto-encoder
consists of two hidden-layers in the encoder and decoder.
Each layer uses batch normalisation and dropout with p
= 0.1 during the training phase. For each input vector V,
the auto-encoder learns a latent representation VL

i  , where
VL
i ∼ N (µi, σi) . The latent representation consists of 8

dimensions. Each layer in the encoder and decoder con-
tains 128 neurons. Similar to previous studies [14], we
use LeakyRELU (leaky rectified linear unit function) for µ
and softplus function for σ layers. Note that µ and σ rep-
resent neural network layers intended to learn the lower
dimensional means and standard deviations of each
read’s distribution. We use the weighted sum of recon-
struction error E (Eq. 1, where Vin and Vout represents
the inputs and the outputs of the auto-encoder. Note that
they are the same for an auto-encoder) and Kullback-Lei-
bler divergence [14, 23] DKL (Eq.2) as the loss function.
Ecov and Ecom represent reconstruction errors of cover-
age and composition respectively. Eq. 3 demonstrates the
complete loss function used.

(1)E =
∑

(Vin − Vout)
2

(See figure on next page.)
Fig. 1  Overall workflow of LRBinner. (Step 1) The feature vectors of composition and coverage information are computed from long reads.
Composition vectors are the normalized k-mer counts where as the coverage vectors are the normalized k-mer counts histograms for each read.
The feature vectors are input into a variational auto-encoder to obtain low-dimensional latent representations. Note that variational auto-encoders
learn a lower dimensional representation while learning to reconstruct the original. (Step 2) Sample a seed point (read) in the latent space. Use this
seed to estimate a confident cluster (bin) that contains this seed point. Step 2 is iterated until there are no seed points. (Step 3) The unclustered
points are assigned to the clusters using a statistical model. Note that the 2-dimensional representation of points is only for the illustration purpose

Page 4 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14

0.15 0.20 0.12...

0.33 0.11 0.01...

0.22 0.10 0.02...

0.15 0.20 0.12...

0.33 0.11 0.01...

0.22 0.10 0.02...

Composition
Vectors

Coverage
Vectors

VL N(μ,σ)

Long Reads

Concatenated
Vectors

Latent
Representation

L 1 ... L N L N ... L 1

Pick Another Seed Point

Assign Unclustered
Reads Using

Statistical Profiles

Seed Point Extract Cluster

Step 1

Step 2

Step 3

Detected Clusters

Unclustered
Points

Complete Bins

Read 1

Read 2

Read 3

Seed

σ

μ

Fig. 1  (See legend on previous page.)

Page 5 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14 	

Here we set wcov = 0.1 , wcom = 1 and wkld = 1/500 as deter-
mined empirically using simulated data. The decoder
output was obtained through LeakyRELU activation in
order to reconstruct the scaled positive inputs. We train
the auto-encoder with read batches of size 10,240 for 200
epochs. Finally, we obtain the predicted latent means
of the input data from the encoder for clustering. Each
point in the latent mean corresponds to the relevant read
in the original input.

Step 2
In this step, we perform clustering of the latent means
learnt by the variational auto-encoder. The complete
clustering algorithm of LRBinner is illustrated in Fig. 2.
Similar to previous studies [14], we use the cosine dis-
tance as the distance measure for clustering. Note that
cosine distance between point a and b in latent space VL
is defined as d(a, b)= VL

a ·VL
b

||VL
a ||||VL

b ||
 . Given a point a, a dis-

tance histogram Ha can be generated by computing the
pairwise distances between a and all other points and
setting the bin width as � ( � = 0.005 in our experiments).
We define peak as the index of the first maximal of the
distance histogram Ha . Similarly, the valley is defined as
the index of the first minimal after the peak in the dis-
tance histogram Ha . Refer to the top right figure in Fig. 2
for an example of the peak and valley in a distance
histogram.

As shown in VAMB [14], a point with smaller valley-
to-peak ratio H[valley]/H[peak] is more likely to be the
medoid of a cluster, where H[valley] and H[peak] are
the number of points corresponding to the valley and
peak in the distance histogram H, respectively. There-
fore, VAMB randomly samples points, searches within
a distance of 0.05 (up to 25 neighbouring points) and
moves to another point if H[valley]/H[peak] can be fur-
ther reduced. This step is iterated until a local minimal
point of H[valley]/H[peak] is inferred as a proper cluster
medoid and then the corresponding cluster is extracted
by removing points within a distance �× valley of the
distance histogram. However, clusters of long reads are

(2)
DKL(latent|prior) =−

∑ 1

2
(1+ ln(σ)− µ2 − σ)

(3)Total Loss =wcovEcov + wcomEcom + wkldDKL

orders of magnitude larger than clusters of contigs, thus
mere local search of a cluster medoid may be inefficient.
Furthermore, while most contig clusters consist of hun-
dreds of points per species [16], the long-read clusters
vary in size drastically (from hundreds of points to mil-
lions of points), which demand for a more flexible search
strategy rather than sampling points within a fixed radius
and up to a fixed number of neighbours. Hence, we
design the following strategy to dynamically extract clus-
ters of varying sizes. Our algorithm consists of two steps;
(1) from a seed point to a candidate cluster and (2) from a
candidate cluster to a confident cluster.

From a seed point to a candidate cluster
A point s is called a seed point if its valley-to-peak ratio
Hs[valley]/Hs[peak] < 0.5 in its distance histogram Hs .
Initially, LRBinner randomly picks a seed point s from
the entire dataset and obtains its distance histogram Hs .
Note that a distance histogram demonstrates a candi-
date cluster. This candidate cluster consists of the points
within the distance �× valley in Hs , referred to as can-
didate cluster points. Compared to the seed point, some
candidate cluster points may have lower valley-to-peak
ratio that results in more confident clusters. However, the
number of candidate cluster points may vary significantly
depending on the size of the ground-truth clusters. In the
next section, we will show how to use sampling strategies
to find a confident cluster from a candidate cluster.

From a candidate cluster to a confident cluster
Given a candidate cluster, we sample 10% of candidate
cluster points (up to 1,000 points) to compare their cor-
responding distance histograms. For each point p in
candidate cluster points, we compute the valley-to-peak
ratio Hp[valley]/Hp[peak] in its corresponding distance
histogram Hp . We chose a point x from the sample with
the minimum H[valley]/H[peak] value and extract a con-
fident cluster which consists of points within a distance
�× valley of the distance histogram Hx . In contrast
with the iterative medoid search in VAMB [14], this
approach takes advantage of the rough estimation of the
candidate cluster from a seed point and thus allows us to
dynamically and efficiently discover clusters with vary-
ing sizes. This process is iterated until no further candi-
date clusters or seed points are observed. Please refer to

Fig. 2  Illustration of the clustering algorithm. First, we select a seed point and compute a histogram using the distances to every other point. Then,
we derive a candidate cluster by observing the peak of the histogram. Note that this cluster is only an estimation for the chosen point’s cluster.
Sample points from the candidate cluster and choose a point with the minimum valley-to-peak ratio. Extract points before the valley to form a
confident cluster. Valley-to-peak ratio is an indicator of density which is the highest at cluster centre. Note that the 2D representation of points is only
for the illustration purposes

(See figure on next page.)

Page 6 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14

Seed
Point

Distance

P

oi
nt

s

Randomly Sample
Points from

Candidate Cluster

peak valley

H[peak]

H[valley]

Distance

P

oi
nt

s

Distance

P

oi
nt

s

Distance

P

oi
nt

s

Cluster with
minimum

H[valley]/H[peak]

Confident Cluster

Fig. 2  (See legend on previous page.)

Page 7 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14 	

Implementation Section for detailed information. The
resulting clusters are depicted as detected clusters in
Fig. 1. Note that few reads still remain unclustered due
to the noise present in composition and coverage vectors
of error-prone long reads and we will show how to assign
them to existing bins in the next section.

Step 3
Obtaining final bins
Once all the clusters have been yielded, the points that
are sparsely located are left aside. However, such points

could have the potential to improve the downstream
assembly processes. Hence, we assign such points to
the detected clusters using the statistical model from
MetaBCC-LR [15]. For each cluster Ck the mean µC

k  ,
µT
k and standard deviation σC

k  , σT
k is computed using

the coverage and composition vectors; VC and VT
respectively.

Table 1  Comparison of binning results of BuseBeeWeb, MetaBCC-LR and LRBinner

The best performance values and bin estimations are highlighted in bold text

Dataset Actual no. of bins Evaluation criteria MetaBCC-LR LRBinner

Sim-8 8 Precision 90.78% 99.14%
Recall 96.18% 99.14%
F1 score 93.40 % 99.14%
Bins detected 13 8

Sim-20 20 Precision 82.97% 90.53%
Recall 81.95% 88.23%
F1 score 82.46% 89.36%
Bins detected 29 18

Sim-50 50 Precision 82.23% 91.92%
Recall 70.56% 77.03%
F1 score 75.95% 83.82%
Bins detected 32 31

Sim-100 100 Precision 90.50% 82.60%

Recall 84.54% 92.78%
F1 score 88.54% 87.39%

Bins detected 89 63

ZymoEVEN 10 Precision 72.41% 91.26%
Recall 92.97% 75.36%

F1 score 81.41% 82.55%
Bins detected 8 17

MSA-1003 10 Precision 93.69% 95.30%
Recall 95.50% 95.99%
F1 score 94.59% 95.64%
Bins detected 14 10

SRX9569057 17 Precision 80.94 80.47%

Recall 85.82 90.68%
F1 score 83.31 85.27%
Bins detected 23 16

SRX9569058 17 Precision 70.18% 73.72%
Recall 86.63% 91.03%
F1 score 77.54% 81.46%
Bins detected 37 22

SRX9569059 17 Precision 66.69% 79.70%
Recall 73.76% 91.25%
F1 score 70.05% 85.08%
Bins detected 16 20

Page 8 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14

Finally the unclustered reads are assigned to the cluster
Ci using a maximum likelihood computed using Eq. 4.
The assignment of reads is performed such that Eq. 5 is
maximised. VC

l and VT
l are the coverage histogram and

trimer frequency vectors of the unclustered read l.

Experimental setup
Datasets
We evaluated LRBinner using several simulated and real
datasets containing long reads. Detailed information
about the datasets and constituent species are tabulated
in the Additional file 1: Tables S1 and S2.

Simulated datasets
We simulated four datasets using SimLoRD [24] to evalu-
ate the performance of our method. The datasets consist
of 8, 20, 50 and 100 species. These datasets are named as
Sim-8, Sim-20, Sim-50 and Sim-100 respectively. We set

(4)PDF(v̄, µ̄, σ̄) =
|v̄|
∏

j

1
√
2πσj

e
−

(xj−µj)
2

2σ2j

(5)

Ci = argmax
i

{

PDF(VC
l ,µC

i , σ
C
i)× PDF(VT

l ,µT
i , σ

T
i)

}

the average read length to be 5,000bp with default error
model of SimLoRD (insertion probability=0.11, deletion
probability=0.04 and substitution probability=0.01).

Real datasets
In order to evaluate LRBinner, we used several real data-
sets with known ground-truth references. To determine
the origins of the reads in these datasets, the reads were
mapped to the respective reference species using Mini-
map2 [25]. The information about the datasets are as
follows.

•	 Reads from ZymoEVEN Mock Microbial Commu-
nity with Oxford nanopore reads from NCBI Acces-
sion Number ERR3152364 [26]. We removed shorter
reads (less than 1000bp) and reads that did not align
with any of the reference species in the mock com-
munity for evaluation purposes.

•	 Reads from ATCC MSA-1003 Mock Microbial Com-
munity with PacBio CCS reads from NCBI BioPro-
ject number PRJNA546278 (MSA-1003). For the
evaluation we used the top 10 species which have
more than 1% abundance.

Table 2  Comparison of assembled genome fractions, CPU time consumed for assembly and peak memory usage of assembly before
and after binning the reads

† Genome fraction computed from species with at least 0.1% abundance

The best performance values and bin estimations are highlighted in bold text

Dataset Assembly tool Genome fraction CPU hours Peak memory (GB)

Raw Binned Raw Binned Raw Binned

Sim-8 Wtdbg2 98.80% 98.90% 0.26 0.84 9.28 0.96
MetaFlye 99.90% 99.85% 16.13 11.64 44.12 10.65

Sim-20 Wtdbg2 97.84% 99.19% 0.16 2.28 10.60 0.92
MetaFlye 99.80% 99.75% 19.44 20.28 44.70 11.23

Sim-50 Wtdbg2 97.83% 98.06% 6.03 5.98 15.7 2.68
MetaFlye 99.35% 98.43% 23.03 20.01 64.21 14.58

Sim-100 Wtdbg2 91.70% 93.67% 9.2 9.1 36.16 10.84
MetaFlye 97.68% 98.01% 69.79 59.89 116.11 27.48

ZymoEVEN Wtdbg2 55.17% 58.63% 1.37 1.38 11.07 2.88
MetaFlye 86.51% 86.55% 15.17 13.05 31.67 14.57

MSA-1003† Wtdbg2 67.45% 82.50% 0.31 1.05 23.43 19.61
MetaFlye 91.40% 91.74% 155.96 158.59 62.28 45.38

SRX9569057 Wtdbg2 40.40% 73.02% 0.26 1.56 21.72 3.88
MetaFlye 77.73% 73.68% 122.00 116.20 57.91 26.31

SRX9569058 Wtdbg2 37.51% 80.65% 0.30 1.98 30.79 3.86
MetaFlye 79.16% 79.63% 211.61 212.58 87.62 41.37

SRX9569059 Wtdbg2 41.00% 80.38% 0.26 1.82 25.63 3.80
MetaFlye 79.69% 77.46% 152.64 129.41 62.62 30.56

Page 9 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14 	

•	 PacBio-HiFi reads obtained from NCBI BioProject
number PRJNA680590. There are 3 read samples
(NCBI BioSample number SAMN16885726) and
each sample consists of 21 strains for 17 species as
follows;

–	 SRX9569057: Standard input library
–	 SRX9569058: Low input library
–	 SRX9569059: Ultra low input library (PCR ampli-

fied sample)

Tools for benchmarking
There is a limited number of tools that support binning of
long reads. Remind that most contig-binning tools can-
not be directly applied to bin long reads (even for highly

accurate PacBio HiFi reads) because there is no coverage
information available for each long read. Hence, in our
evaluation we benchmark LRBinner against MetaBCC-
LR [15] which support large error prone long-reads. Note
that, BusyBeeWeb only supports up to 200MB of FASTA
formatted data. Hence, we omit BusyBeeWeb from our
evaluations although it can handle a smaller amount of
long reads for a fair comparison.

Evaluation criteria
In our evaluation we report precision (Eq. 6), recall
(Eq. 7) and F1-score (Eq. 8) of binning. We transform the
binning result to a matrix a of size K × S , where K
denotes the number of bins and S denotes the number of
species. Note that aks denotes the number of reads
assigned to bin k with ground truth species s. In order to

Fig. 3  Comparison of bin completeness between MetaBCC-LR and LRBinner for the simulated datasets

Page 10 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14

evaluate the quality of binning, we used AMBER [27] to
obtain the completeness (defined as

true positivesb
true positivesb+false negativesb

 for each bin b) and contamina-
tion (defined as 1− true positivesb

true positivesb+false positivesb
 for each bin

b). Furthermore, we assemble the reads before and after
binning using LRBinner. Metagenomics assemblies were
performed using wtdbg2 [28] and metaFlye [29]. We
compare genome fractions, CPU-time and memory
usage in assembly evaluation. We used MetaQUAST [30]
to obtain the average genome fraction (average over all
the reference genomes) for the qualitative evaluation of
assembled contigs.

(6)Precision =
∑

k maxs{aks}
∑

k

∑

s aks

Results and discussion
We first compare precision, recall, F1 score and the esti-
mated number of bins for binning performance. We fur-
ther present the completeness and contamination results
of bins produced by different binners. We finally evaluate
assembly results using genome fraction and recorded the
resource utilisation for the chosen assembly tools.

(7)Recall =
∑

s maxk{aks}
∑

k

∑

s aks

(8)F1 =2×
Precision× Recall

Precision+ Recall

Fig. 4  Comparison of bin completeness between MetaBCC-LR and LRBinner for the real datasets

Page 11 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14 	

Binning results
We benchmarked the binning performance MetaBCC-
LR and LRBinner using typical metrics for evluating
binning performance [15]. Table 1 demonstrates the bin-
ning results in terms of precision, recall, F1-score and
the number of inferred bins. While MetaBCC-LR and
LRBinner perform in a comparable fashion on simulated
datasets, LRBinner achieves the best estimation on the
number of bins with respect to the ground truth for most
of the datasets. Note that LRBinner improves binning
results for all the real datasets as indicated by the higher
F1 scores.

Figures 3 and 4 illustrates the completeness of bins
produced by MetaBCC-LR and LRBinner, for simulated
and real datasets respectively. LRBinner has been able
to produce bins with better average completeness over
MetaBCC-LR. Figures 5 and 6 also illustrates the con-
tamination levels of bins produced by MetaBCC-LR and
LRBinner, for simulated and real datasets respectively.
From the plots it is evident that LRBinner produces
bins with lower contamination in all datasets except for
SRX9569059. Note that the dataset SRX9569059 has
been generated from a PCR amplified sample leading to a
significant deviation from the original sample abundances

Fig. 5  Comparison of bin contamination between MetaBCC-LR and LRBinner for the simulated datasets

Page 12 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14

in contrast with SRX9569057 and SRX9569058 data-
sets. For example, in SRX9569059, the abundance of
Faecalibacterium prausnitzii drops from ∼ 16% to ∼ 8%
whereas the abundance of Fusobacterium nucleatum
surges from ∼ 4% to ∼ 7% , which may result in contami-
nation of long reads in binning results. Figure 7 illustrates
completeness and contamination for binning result of
ZymoEVEN dataset. Both tools have comparable com-
pleteness over bins. LRBinner produce 8 bins with less
than 20% contamination where as MetaBCC-LR has only
5 such bins. This observation is likely due to the higher
error-rate observed among nanopore reads which deviate

both coverage and composition vectors from the origin
species. Since coverage and composition are not com-
bined in MetaBCC-LR, it can still perform comparable to
LRBinner.

Assembly results
We assembled the reads binned by LRBinner to evaluate
the potential assembly quality changes. For the assembly,
we chose the two state-of-the-art long-read assemblers
wtdbg2 [28] and metaFlye [29]. Table 2, demonstrates
that binning long reads prior to assembly by LRBinner
improves the genome fraction for all wtdbg2 assemblies

Fig. 6  Comparison of bin contamination between MetaBCC-LR and LRBinner for the real datasets

Page 13 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14 	

(up to 40%) and maintains comparable genome frac-
tions for metaFlye assemblies. This is not surprising
as metaFlye is a metagenomics specialised assembler
in contrast with wtdbg2. For example, in the datasets
SRX9569057, SRX9569058 and SRX9569059, binning via
LRBinner enabled wtdbg2 to recover low-abundance spe-
cies which were ignored in the assembly of the entire raw
dataset, e.g., Methanobrevibacter smithii (from 0 to 96%),
Saccharomyces cerevisiae (from 0 to 75%) and Candida
albican (from 0 to 70%). This is because LRBinner allows
wtdbg2 to estimate more appropriate parameters in each
bin rather than applying the same parameters across the
entire dataset.

Another advantage of binning prior to assembly is the
reduction of the computing resources for assembly. As
demonstrated in Table 2, the peak-memory usage has
been drastically reduced in both wtdbg2 (upto 10× ) and
metaFlye (upto 4× ) assemblies. Note that the CPU time
is comparable as binning long reads may not lead to sig-
nificant reduction of k-mer indexing cost and the con-
struction and simplification of assembly graphs.

Implementation
In order to restrict the iterative search for clusters, we
use early termination parameters in our algorithm. We
stop drawing seed points when the remaining number of
reads reaches below min_cluster_size (=5000 by default)
or the number of iterations has passed max_iterations
(=1000 by default). In order to evaluate the performance
of with varying size of the composition vectors (k-mer
size) we executed LRBinner with k=3, k=4 and k=5.

The resource utilization and performance are shown
in 1: Tables S3 and S4. The GPU utilization was below
4GB during all the experiments due to fixed batch size of
1024 reads. Coverage vectors were fixed at bins = 32 and
bin_width = 10 . Furthermore, the parameters for training
auto-encoder, i.e., loss function weights, were empirically
determined based on the intuition of giving more promi-
nence towards clustering. Hence, we have weighted com-
position more than coverage as composition (computed
from smaller k-mer sizes) is usually more accurate com-
pared to coverage (estimated from larger k-mer sizes).
Furthermore, we have weighed the KL-divergence the
least, to facilitate learning of disentangled representa-
tions enabling clustering.

LRBinner was implemented using C++ and Python
version 3.7. The deep learning component is imple-
mented using PyTorch [31] and Numpy [32]. We con-
ducted our assemblies on NCI Australia with 2 x 28-core
Intel Xeon Platinum 8274 (Cascade Lake) 3.2 GHz CPUs
192GB RAM and binning on Ubuntu 20.04.3 LTS system
running on AMD Ryzen 9 5950X with 16-core Proces-
sor with 32 threads and 128GB of RAM with NVIDIA
RTX 3090 GPU with 24GB VRAM. We used 56 threads
for assembly and 32 threads for binning with GPU
acceleration.

Conclusion
In this paper, we presented LRBinner, a long read bin-
ner capable of binning error-prone long reads using
both coverage and composition information. Our work
extends the use of variational auto-encoders to combine

Fig. 7  Comparison of bin completeness and contamination between MetaBCC-LR and LRBinner for the real nanopore dataset

Page 14 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14

raw features and learn a better latent representation for
long-read binning. Furthermore, we presented a novel
clustering strategy that can perform clustering on large
datasets with varying cluster sizes. Performance of
LRBinner was evaluated against existing long-read bin-
ners using simulated and real datasets. Our experimental
results show that LRBinner outperforms state-of-the-art
long-read binning tools and also improves resource usage
of downstream assembly.

However, LRBinner still suffers from the following
limitations. Firstly, it is challenging for LRBinner to dis-
tinguish long reads from similar regions shared between
different species. Reads from such regions are likely to
be assigned to any one of the species because LRBinner
currently does not support overlapped binning. Similar
to GraphBin2 [33], LRBinner can be extended to detect
such long reads and improve on the functionality of
overlapped binning among distinct species. Secondly,
LRBinner uses the valley-to-peak ratio to find candidate
clusters which depends on the seed points. We intend
to extend LRBinner to incorporate cluster scoring tech-
niques such as Silhouette score to automatically find
best candidate clusters. Thirdly, while the use of LRBin-
ner prior to assembly increases the genome fraction, it
may also result in a more fragmented assemblies (refer
to 1: Table S5 in the Additional material). Hence, we are
keen to explore the possibility of combining binning and
assembly of long reads simultaneously in the future.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13015-​022-​00221-z.

Additional file 1. Information about datasets. LR_Binner_BMC___Supp_
ESM.pdf. Evaluation of LRBinner for varying composition k-mer sizes.
Extended assembly quality evaluation.

Acknowledgements
This research was undertaken with the assistance of resources and services
from the National Computational Infrastructure (NCI Australia), an NCRIS
enabled capability supported by the Australian Government. Furthermore, as
an extension manuscript, we would like to thank anonymous reviewers from
WABI 2021 and anonymous reviewers of this manuscript for their valuable
input on our manuscript.

Author contributions
All authors contributed to developing LRBinner and writing the paper. AW
implemented LRBinner and performed all the experiments. YL directed the
work. Both authors read and approved the final manuscript.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 31 December 2021 Accepted: 26 June 2022

References
	1.	 Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequenc-

ing of microbial communities. PLOS Comput Biol. 2005. https://​doi.​org/​
10.​1371/​journ​al.​pcbi.​00100​24.

	2.	 Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biol. 2014;15(3):46.

	3.	 Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and
sensitive classification of metagenomic sequences. Genome Res.
2016;26(12):1721–9

	4.	 Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for
metagenomics with Kaiju. Nat Commun. 2016;7:11257.

	5.	 Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accu-
rately reconstructing single genomes from complex microbial communi-
ties. PeerJ. 2015;3:1165.

	6.	 Kang DD, Li F, Kirton E, Thomas A, et al. MetaBAT 2: an adaptive binning
algorithm for robust and efficient genome reconstruction from metagen-
ome assemblies. PeerJ. 2019;7:7359.

	7.	 Wu Y-W, Tang Y-H, Tringe SG, et al. Maxbin: an automated binning
method to recover individual genomes from metagenomes using an
expectation-maximization algorithm. Microbiome. 2014;2(1):26.

	8.	 Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning
algorithm to recover genomes from multiple metagenomic datasets.
Bioinformatics. 2015;32(4):605–7.

	9.	 Yu G, Jiang Y, Wang J, et al. BMC3C: binning metagenomic contigs using
codon usage, sequence composition and read coverage. Bioinformatics.
2018;34(24):4172–9.

	10.	 Laczny CC, Kiefer C, Galata V, et al. BusyBee Web: metagenomic data
analysis by bootstrapped supervised binning and annotation. Nucleic
Acids Res. 2017;45(W1):171–9.

	11.	 Laczny CC, Sternal T, Plugaru V, Gawron P, Atashpendar A, Margossian HH,
Coronado S, Van der Maaten L, Vlassis N, Wilmes P. Vizbin-an application
for reference-independent visualization and human-augmented binning
of metagenomic data. Microbiome. 2015;3(1):1–7.

	12.	 Wang Z, Wang Z, Lu YY, et al. SolidBin: improving metagenome binning
with semi-supervised normalized cut. Bioinformatics. 2019. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btz253.

	13.	 Andreace F, Pizzi C, Comin M. Metaprob 2: metagenomic reads binning
based on assembly using minimizers and k-mers statistics. J Comput Biol.
2021;28(11):1052–62.

	14.	 Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA,
Grønbech CH, Jensen LJ, Nielsen HB, Petersen TN, Winther O, Rasmussen
S. Improved metagenome binning and assembly using deep vari-
ational autoencoders. Nat Biotechnol. 2021. https://​doi.​org/​10.​1038/​
s41587-​020-​00777-4.

	15.	 Wickramarachchi A, Mallawaarachchi V, Rajan V, Lin Y. MetaBCC-LR:
metagenomics binning by coverage and composition for long reads.
Bioinformatics. 2020;36(Supplement 1):3–11. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​btaa4​41.

	16.	 Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via auto-
mated clustering sequences using information of genomic signatures
and marker genes. Sci Rep. 2016;6:24175. https://​doi.​org/​10.​1038/​srep2​
4175.​27067​514.

	17.	 ...Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT,
Ebler J, Fungtammasan A, Kolesnikov A, Olson ND, Töpfer A, Alonge
M, Mahmoud M, Qian Y, Chin C-S, Phillippy AM, Schatz MC, Myers G,
DePristo MA, Ruan J, Marschall T, Sedlazeck FJ, Zook JM, Li H, Koren S,
Carroll A, Rank DR, Hunkapiller MW. Accurate circular consensus long-
read sequencing improves variant detection and assembly of a human
genome. Nat Biotechnol. 2019;37(10):1155–62. https://​doi.​org/​10.​1038/​
s41587-​019-​0217-9.

	18.	 Abe T, Kanaya S, Kinouchi M, Ichiba Y, Kozuki T, Ikemura T. Informatics for
unveiling hidden genome signatures. Genome Res. 2003;13(4):693–702.

	19.	 Deschavanne PJ, Giron A, Vilain J, Fagot G, Fertil B. Genomic signature:
characterization and classification of species assessed by chaos game
representation of sequences. Mol Biol Evol. 1999;16(10):1391–9.

	20.	 Alneberg J, Bjarnason BS, de Bruijn I, et al. Binning metagenomic contigs
by coverage and composition. Nat Methods. 2014;11:1144.

	21.	 Pellow D, Mizrahi I, Shamir R. Plasclass improves plasmid sequence classi-
fication. PLOS Comput Biol. 2020;16(4):1–9. https://​doi.​org/​10.​1371/​journ​
al.​pcbi.​10077​81.

https://doi.org/10.1186/s13015-022-00221-z
https://doi.org/10.1186/s13015-022-00221-z
https://doi.org/10.1371/journal.pcbi.0010024
https://doi.org/10.1371/journal.pcbi.0010024
https://doi.org/10.1093/bioinformatics/btz253
https://doi.org/10.1093/bioinformatics/btz253
https://doi.org/10.1038/s41587-020-00777-4
https://doi.org/10.1038/s41587-020-00777-4
https://doi.org/10.1093/bioinformatics/btaa441
https://doi.org/10.1093/bioinformatics/btaa441
https://doi.org/10.1038/srep24175.27067514
https://doi.org/10.1038/srep24175.27067514
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1371/journal.pcbi.1007781
https://doi.org/10.1371/journal.pcbi.1007781

Page 15 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology (2022) 17:14 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	22.	 Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory
usage. Bioinformatics. 2013;29(5):652–3.

	23.	 Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat.
1951;22(1):79–86. https://​doi.​org/​10.​1214/​aoms/​11777​29694.

	24.	 Stöcker BK, Köster J, Rahmann S. SimLoRD: simulation of long read data.
Bioinformatics. 2016;32(17):2704–6.

	25.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics. 2018;34(18):3094–100.

	26.	 Nicholls SM, Quick JC, Tang S, Loman NJ. Ultra-deep, long-read nanopore
sequencing of mock microbial community standards. Gigascience.
2019;8(5):043.

	27.	 Meyer F, Hofmann P, Belmann P, Garrido-Oter R, Fritz A, Sczyrba A,
McHardy AC. AMBER: assessment of metagenome BinnERs. GigaScience.
2018. https://​doi.​org/​10.​1093/​gigas​cience/​giy069.

	28.	 Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat
Methods. 2020;17(2):155–8. https://​doi.​org/​10.​1038/​s41592-​019-​0669-3.

	29.	 Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB,
Kuhn K, Yuan J, Polevikov E, Smith TPL, Pevzner PA. Metaflye: scalable
long-read metagenome assembly using repeat graphs. Nat Methods.
2020;17(11):1103–10. https://​doi.​org/​10.​1038/​s41592-​020-​00971-x.

	30.	 Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagen-
ome assemblies. Bioinformatics. 2015;32(7):1088–90.

	31.	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison
M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. Pytorch:
An imperative style, high-performance deep learning library. In: Wallach
H, Larochelle H, Beygelzimer A, d’ Alché-Buc F, Fox E, Garnett R. (eds.)
Advances in Neural Information Processing Systems 32, Curran Associates
Inc, New York. 2019, 8024–8035

	32.	 Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, Cour-
napeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R. Array program-
ming with NumPy. Nature. 2020;585:357–62. https://​doi.​org/​10.​1038/​
s41586-​020-​2649-2.

	33.	 Mallawaarachchi VG, Wickramarachchi AS, Lin Y. Improving metagenomic
binning results with overlapped bins using assembly graphs. Algorithms
Mol Biol. 2021;16(1):1–18.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1093/gigascience/giy069
https://doi.org/10.1038/s41592-019-0669-3
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

	Binning long reads in metagenomics datasets using composition and coverage information
	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	Methods
	Step 1
	Computing composition vectors
	Computing coverage vectors
	Obtaining latent representations

	Step 2
	From a seed point to a candidate cluster
	From a candidate cluster to a confident cluster

	Step 3
	Obtaining final bins

	Experimental setup
	Datasets
	Simulated datasets
	Real datasets

	Tools for benchmarking
	Evaluation criteria

	Results and discussion
	Binning results
	Assembly results

	Implementation
	Conclusion
	Acknowledgements
	References

