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Abstract 

Background:  Advancements in metagenomics sequencing allow the study of microbial communities directly from 
their environments. Metagenomics binning is a key step in the species characterisation of microbial communities. 
Next-generation sequencing reads are usually assembled into contigs for metagenomics binning mainly due to the 
limited information within short reads. Third-generation sequencing provides much longer reads that have lengths 
similar to the contigs assembled from short reads. However, existing contig-binning tools cannot be directly applied 
on long reads due to the absence of coverage information and the presence of high error rates. The few existing 
long-read binning tools either use only composition or use composition and coverage information separately. This 
may ignore bins that correspond to low-abundance species or erroneously split bins that correspond to species with 
non-uniform coverages. Here we present a reference-free binning approach, LRBinner, that combines composition 
and coverage information of complete long-read datasets. LRBinner also uses a distance-histogram-based clustering 
algorithm to extract clusters with varying sizes.

Results:  The experimental results on both simulated and real datasets show that LRBinner achieves the best binning 
accuracy in most cases while handling the complete datasets without any sampling. Moreover, we show that bin-
ning reads using LRBinner prior to assembly reduces computational resources required for assembly while attaining 
satisfactory assembly qualities.

Conclusion:  LRBinner shows that deep-learning techniques can be used for effective feature aggregation to sup-
port the metagenomics binning of long reads. Furthermore, accurate binning of long reads supports improvements 
in metagenomics assembly, especially in complex datasets. Binning also helps to reduce the resources required for 
assembly. Source code for LRBinner is freely available at https://github.com/anuradhawick/LRBinner.
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Introduction
Metagenomics binning is an important area of study in 
metagenomics analysis. Broadly, metagenomics enables 
the study of microbial genetic material directly from the 
source environment [1]. This eliminates the necessity of 
lab culturing thus revealing the microbial content of an 

environment as it is without culturing biases. Metagen-
omics binning is one key problem in metagenom-
ics studies that facilitates the clustering of sequences 
into different taxonomic groups. Mainly there are two 
approaches to address this problem; (1) reference-based 
binning and (2) reference-free binning. Reference-based 
binning tools (e.g., Kraken [2], Centrifuge [3] and Kaiju 
[4]) bin sequences based on similarity by comparing with 
a database of known reference genomes and thus face 
challenges when the reference database is unavailable 
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or incomplete. At present, reference-free binning tools 
have been gaining popularity over reference-based bin-
ning tools, especially in discovering novel or rare species 
in complex metagenomics datasets. While Next-Gen-
eration Sequencing (NGS) technologies produce short 
reads, existing reference-free binning tools typically 
rely on longer contigs that are assembled from short 
reads and contain richer information for binning. Ref-
erence-free binning tools (e.g., MetaBAT [5, 6], MaxBin 
[7, 8], BMC3C [9], BusyBeeWeb [10, 11], SolidBin [12], 
MetaProb2 [13] and VAMB [14], etc.) bin contigs based 
on their composition and coverage information, without 
using any reference database. For example, a recent work 
VAMB [14] introduced the use of deep variational auto-
encoders to perform reference-free unsupervised binning 
of contigs incorporating both the composition and cov-
erage information. VAMB then uses an iterative medoid 
clustering algorithm which extracts clusters (bins) in a 
local search fashion. Thanks to the accurate composi-
tion and coverage information of contigs, reference-free 
approaches show promising results in binning contigs 
from metagenomics assemblies.

With the advent of Third Generation Sequencing 
(TGS) technologies such as Pacific Biosciences (PacBio) 
and Oxford Nanopore Technologies (ONT), reads 
obtained are much longer than NGS reads (>10kbp). 
Therefore, more information becomes available in the 
reads themselves to support direct reads binning. How-
ever, contig-binning tools cannot be directly applied to 
bin long reads (by treating them as contigs) because there 
is no coverage information available for each long read. 
Moreover, while certain contig-binning tools make use of 
single-copy marker genes to estimate the number of bins 
in the sample, the high error rates of long reads and the 
varying coverages of different species make it infeasible 
to derive accurate estimations. Furthermore, datasets 
containing raw long reads are much larger in size com-
pared to typical datasets containing contigs, and hence, 
demand more scalable reference-free binning tools. 
Recently, a long-read binning tool named, MetaBCC-LR 
[15] was introduced to bin error-prone long reads. While 
MetaBCC-LR shows very promising results in binning 
long reads, it still suffers from accuracy and scalability 
issues, especially in complex metagenomics datasets. 
Firstly, MetaBCC-LR uses the composition and cover-
age information of long reads in a separate manner (i.e., 
in two different stages). This can result in the ignorance 
of bins for species with low abundance and incorrect bin 
split for species with non-uniform composition or cover-
age. Secondly, due to its scalability issue, MetaBCC-LR 
has to employ a sampling strategy to work on a subset of 
reads for large datasets, which affects its overall binning 
accuracy. MetaBCC-LR [15] showed that concatenation 

of coverage and composition features causes inaccuracies 
in clustering as the TSNE dimension reduction considers 
the input to be a single vector. More recently, VAMB [14] 
showed that for the contig coverage (computed from read 
alignments) can be combined with its composition suc-
cessfully using deep learning followed by iterative medoid 
clustering. However, neither read alignments nor itera-
tive medoid clustering are suitable to handle long-read 
datasets because long reads are typically orders of mag-
nitude more than contigs. In addition, binning of long 
read datasets requires novel algorithms to detect clusters 
of vastly varying sizes (hundreds to millions of reads per 
species), which is different from the contig-binning sce-
narios (few hundreds of contigs per species [16]). There-
fore, it is persistently demanding better approaches to bin 
massive long-read datasets accurately and efficiently. The 
requirement is further supported by the advent of PacBio 
HiFi technology [17] which produces accurate and mas-
sive long-read datasets in metagenomics studies.

In this paper, we present LRBinner to bin TGS long 
reads without using any reference databases. LRBinner 
combines the composition and coverage features and 
eliminates the need to sub-sample large datasets. More 
specifically, LRBinner uses a variational auto-encoder 
to obtain lower dimensional representations by simul-
taneously incorporating both composition and coverage 
information of the complete dataset, which was initially 
presented in contigs binning tool, VAMB [14]. LRBinner 
further uses a distance-histogram-based clustering algo-
rithm that can capture confident clusters of varying sizes. 
LRBinner finally assigns unclustered reads to obtained 
clusters using their statistical profiles. The experimental 
results of LRBinner compared against other baselines 
show that LRBinner achieves better binning results on 
both simulated and real datasets. Moreover, we show that 
binning long reads by LRBinner prior to assembly helps 
to improve genome fraction of assemblies while reducing 
the memory consumption for metagenomics assembly.

Methods
LRBinner consists of three main steps; (1) learning lower 
dimensional latent representations of composition and 
coverage, (2) clustering the latent representations and (3) 
obtaining complete clusters. The complete workflow for 
LRBinner is demonstrated in Fig. 1. In the following sec-
tions, we will explain these three steps in details.

Step 1
LRBinner uses two typical binning features of metagen-
omic sequences, composition and coverage. The compo-
sition and coverage of each long read is represented as 
trimer frequency vectors and k-mer coverage histograms 
[15], respectively.
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Computing composition vectors
Previous studies show that different species demonstrate 
unique genomic patterns [18, 19] and thus can be used 
in composition-based metagenomics binning. Oligonu-
cleotide frequency vectors are one such genomic rep-
resentation that can be used in metagenomics binning. 
Small k-mer sizes (k varying from 3-7) have been used 
in the past to discriminate assembled contigs of differ-
ent origins [6, 8, 10, 20, 21] and 3-mers have been used 
in metagenomics binning of error-prone long reads [15] 
which shows that trinucleotide frequency vectors provide 
stable binning despite the noise level exist in TGS reads. 
Therefore in LRBinner, we utilise k=3 by default which 
results in trinucleotide composition vectors. For each 
long read, we count the frequencies of all 64 3-mers in 
this read and merge the reverse complements to form a 
vector of 32 dimensions. The resulting vector is then nor-
malised by the total number of 3-mers observed in the 
read. We refer to this trimer frequency vector as VT.

Computing coverage vectors
While an all-vs-all alignment of long reads may provide 
coverage information for each long read, it is usually too 
time-consuming to perform the quadratic number of 
pairwise alignments on large scale long-read datasets. 
Given a sufficiently large k, the frequency of a k-mer is 
defined as the number of occurrences of this k-mer in 
the entire dataset. Long reads from high-abundance spe-
cies tend to contain k-mers with higher frequencies com-
pared to long reads from low-abundance species. Hence, 
a k-mer frequency vector can be computed for each long 
read to represent coverage information without perform-
ing alignments [15] to represent read coverage. In order 
to obtain such coverage histograms, we first compute 
the k-mer counts of all long reads in the entire dataset by 
DSK [22] (the default value of k=15). The counts are then 
indexed in memory by encoding each nucleotide in 2 bits 
as per the encoding (i.e., A=00, C=01, T=10 and G=11) 
[22]. The resulting index is in the form (ki, coverage(ki)) 
(as key, value pairs), where coverage(ki) is the number of 
occurrences of the k-mer ki in the entire dataset. Now 
for each k-mer ki of a read, we obtain the frequency from 
the index. These frequencies are then used to build a 
normalised histogram, VC . We chose a preset bin width 
( bin_width ) for the histogram and obtain a vector of bins 

dimensions. By default we set bin_width = 10 and bins = 
32 . All the k-mers with counts exceeding the histogram 
limits are added into the last index of the histogram. 
We also normalise the histogram by the total number of 
k-mers observed in the read.

Obtaining latent representations
For each long read, its coverage ( VC ) and composition 
( VT ) vectors are concatenated to form a single vector V 
of 64 dimensions. We use a variational auto-encoder to 
obtain lower dimensional latent representations. The 
key motivation for using a variational auto-encoder is to 
combine coverage and composition features in an effec-
tive way. Previous work shows that a simple concatena-
tion of coverage and composition vectors made TSNE 
less effective [15]. This is mainly because TSNE does not 
attempt to learn how to effectively combine composition 
and coverage features, but rather sticks with the spatial 
distances on concatenated features. However, the vari-
ational auto-encoder is able to learn lower dimensional 
representations by combining both composition and cov-
erage features through a deep neural network.

Our implementation of the variational auto-encoder 
consists of two hidden-layers in the encoder and decoder. 
Each layer uses batch normalisation and dropout with p 
= 0.1 during the training phase. For each input vector V, 
the auto-encoder learns a latent representation VL

i  , where 
VL
i ∼ N (µi, σi) . The latent representation consists of 8 

dimensions. Each layer in the encoder and decoder con-
tains 128 neurons. Similar to previous studies [14], we 
use LeakyRELU (leaky rectified linear unit function) for µ 
and softplus function for σ layers. Note that µ and σ rep-
resent neural network layers intended to learn the lower 
dimensional means and standard deviations of each 
read’s distribution. We use the weighted sum of recon-
struction error E (Eq.  1, where Vin and Vout represents 
the inputs and the outputs of the auto-encoder. Note that 
they are the same for an auto-encoder) and Kullback-Lei-
bler divergence [14, 23] DKL (Eq.2) as the loss function. 
Ecov and Ecom represent reconstruction errors of cover-
age and composition respectively. Eq. 3 demonstrates the 
complete loss function used.

(1)E =
∑

(Vin − Vout)
2

(See figure on next page.)
Fig. 1  Overall workflow of LRBinner. (Step 1) The feature vectors of composition and coverage information are computed from long reads. 
Composition vectors are the normalized k-mer counts where as the coverage vectors are the normalized k-mer counts histograms for each read. 
The feature vectors are input into a variational auto-encoder to obtain low-dimensional latent representations. Note that variational auto-encoders 
learn a lower dimensional representation while learning to reconstruct the original. (Step 2) Sample a seed point (read) in the latent space. Use this 
seed to estimate a confident cluster (bin) that contains this seed point. Step 2 is iterated until there are no seed points. (Step 3) The unclustered 
points are assigned to the clusters using a statistical model. Note that the 2-dimensional representation of points is only for the illustration purpose
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Here we set wcov = 0.1 , wcom = 1 and wkld = 1/500 as deter-
mined empirically using simulated data. The decoder 
output was obtained through LeakyRELU activation in 
order to reconstruct the scaled positive inputs. We train 
the auto-encoder with read batches of size 10,240 for 200 
epochs. Finally, we obtain the predicted latent means 
of the input data from the encoder for clustering. Each 
point in the latent mean corresponds to the relevant read 
in the original input.

Step 2
In this step, we perform clustering of the latent means 
learnt by the variational auto-encoder. The complete 
clustering algorithm of LRBinner is illustrated in Fig.  2. 
Similar to previous studies [14], we use the cosine dis-
tance as the distance measure for clustering. Note that 
cosine distance between point a and b in latent space VL 
is defined as d(a,  b)= VL

a ·VL
b

||VL
a ||||VL

b ||
 . Given a point a, a dis-

tance histogram Ha can be generated by computing the 
pairwise distances between a and all other points and 
setting the bin width as � ( � = 0.005 in our experiments). 
We define peak as the index of the first maximal of the 
distance histogram Ha . Similarly, the valley is defined as 
the index of the first minimal after the peak in the dis-
tance histogram Ha . Refer to the top right figure in Fig. 2 
for an example of the peak and valley in a distance 
histogram.

As shown in VAMB [14], a point with smaller valley-
to-peak ratio H[valley]/H[peak] is more likely to be the 
medoid of a cluster, where H[valley] and H[peak] are 
the number of points corresponding to the valley and 
peak in the distance histogram H, respectively. There-
fore, VAMB randomly samples points, searches within 
a distance of 0.05 (up to 25 neighbouring points) and 
moves to another point if H[valley]/H[peak] can be fur-
ther reduced. This step is iterated until a local minimal 
point of H[valley]/H[peak] is inferred as a proper cluster 
medoid and then the corresponding cluster is extracted 
by removing points within a distance �× valley of the 
distance histogram. However, clusters of long reads are 

(2)
DKL(latent|prior) =−

∑ 1

2
(1+ ln(σ )− µ2 − σ)

(3)Total Loss =wcovEcov + wcomEcom + wkldDKL

orders of magnitude larger than clusters of contigs, thus 
mere local search of a cluster medoid may be inefficient. 
Furthermore, while most contig clusters consist of hun-
dreds of points per species [16], the long-read clusters 
vary in size drastically (from hundreds of points to mil-
lions of points), which demand for a more flexible search 
strategy rather than sampling points within a fixed radius 
and up to a fixed number of neighbours. Hence, we 
design the following strategy to dynamically extract clus-
ters of varying sizes. Our algorithm consists of two steps; 
(1) from a seed point to a candidate cluster and (2) from a 
candidate cluster to a confident cluster.

From a seed point to a candidate cluster
A point s is called a seed point if its valley-to-peak ratio 
Hs[valley]/Hs[peak] < 0.5 in its distance histogram Hs . 
Initially, LRBinner randomly picks a seed point s from 
the entire dataset and obtains its distance histogram Hs . 
Note that a distance histogram demonstrates a candi-
date cluster. This candidate cluster consists of the points 
within the distance �× valley in Hs , referred to as can-
didate cluster points. Compared to the seed point, some 
candidate cluster points may have lower valley-to-peak 
ratio that results in more confident clusters. However, the 
number of candidate cluster points may vary significantly 
depending on the size of the ground-truth clusters. In the 
next section, we will show how to use sampling strategies 
to find a confident cluster from a candidate cluster.

From a candidate cluster to a confident cluster
Given a candidate cluster, we sample 10% of candidate 
cluster points (up to 1,000 points) to compare their cor-
responding distance histograms. For each point p in 
candidate cluster points, we compute the valley-to-peak 
ratio Hp[valley]/Hp[peak] in its corresponding distance 
histogram Hp . We chose a point x from the sample with 
the minimum H[valley]/H[peak] value and extract a con-
fident cluster which consists of points within a distance 
�× valley of the distance histogram Hx . In contrast 
with the iterative medoid search in VAMB [14], this 
approach takes advantage of the rough estimation of the 
candidate cluster from a seed point and thus allows us to 
dynamically and efficiently discover clusters with vary-
ing sizes. This process is iterated until no further candi-
date clusters or seed points are observed. Please refer to 

Fig. 2  Illustration of the clustering algorithm. First, we select a seed point and compute a histogram using the distances to every other point. Then, 
we derive a candidate cluster by observing the peak of the histogram. Note that this cluster is only an estimation for the chosen point’s cluster. 
Sample points from the candidate cluster and choose a point with the minimum valley-to-peak ratio. Extract points before the valley to form a 
confident cluster. Valley-to-peak ratio is an indicator of density which is the highest at cluster centre. Note that the 2D representation of points is only 
for the illustration purposes

(See figure on next page.)
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Implementation Section for detailed information. The 
resulting clusters are depicted as detected clusters in 
Fig.  1. Note that few reads still remain unclustered due 
to the noise present in composition and coverage vectors 
of error-prone long reads and we will show how to assign 
them to existing bins in the next section.

Step 3
Obtaining final bins
Once all the clusters have been yielded, the points that 
are sparsely located are left aside. However, such points 

could have the potential to improve the downstream 
assembly processes. Hence, we assign such points to 
the detected clusters using the statistical model from 
MetaBCC-LR [15]. For each cluster Ck the mean µC

k  , 
µT
k  and standard deviation σC

k  , σT
k  is computed using 

the coverage and composition vectors; VC and VT 
respectively.

Table 1  Comparison of binning results of BuseBeeWeb, MetaBCC-LR and LRBinner

The best performance values and bin estimations are highlighted in bold text

Dataset Actual no. of bins Evaluation criteria MetaBCC-LR LRBinner

Sim-8 8 Precision 90.78% 99.14%
Recall 96.18% 99.14%
F1 score 93.40 % 99.14%
Bins detected 13 8

Sim-20 20 Precision 82.97% 90.53%
Recall 81.95% 88.23%
F1 score 82.46% 89.36%
Bins detected 29 18

Sim-50 50 Precision  82.23% 91.92%
Recall 70.56% 77.03%
F1 score 75.95% 83.82%
Bins detected 32 31

Sim-100 100 Precision 90.50% 82.60%

Recall 84.54% 92.78%
F1 score 88.54% 87.39%

Bins detected 89 63

ZymoEVEN 10 Precision 72.41% 91.26%
Recall 92.97% 75.36%

F1 score 81.41% 82.55%
Bins detected 8 17

MSA-1003 10 Precision 93.69% 95.30%
Recall 95.50% 95.99%
F1 score 94.59% 95.64%
Bins detected 14 10

SRX9569057 17 Precision 80.94 80.47%

Recall 85.82 90.68%
F1 score 83.31 85.27%
Bins detected 23 16

SRX9569058 17 Precision 70.18% 73.72%
Recall 86.63% 91.03%
F1 score 77.54% 81.46%
Bins detected 37 22

SRX9569059 17 Precision 66.69% 79.70%
Recall 73.76% 91.25%
F1 score 70.05% 85.08%
Bins detected 16 20
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Finally the unclustered reads are assigned to the cluster 
Ci using a maximum likelihood computed using Eq.  4. 
The assignment of reads is performed such that Eq. 5 is 
maximised. VC

l  and VT
l  are the coverage histogram and 

trimer frequency vectors of the unclustered read l.

Experimental setup
Datasets
We evaluated LRBinner using several simulated and real 
datasets containing long reads. Detailed information 
about the datasets and constituent species are tabulated 
in the Additional file 1: Tables S1 and S2.

Simulated datasets
We simulated four datasets using SimLoRD [24] to evalu-
ate the performance of our method. The datasets consist 
of 8, 20, 50 and 100 species. These datasets are named as 
Sim-8, Sim-20, Sim-50 and Sim-100 respectively. We set 

(4)PDF(v̄, µ̄, σ̄ ) =
|v̄|
∏

j

1
√
2πσj

e
−

(xj−µj )
2

2σ2j

(5)

Ci = argmax
i

{

PDF(VC
l ,µC

i , σ
C
i )× PDF(VT

l ,µT
i , σ

T
i )

}

the average read length to be 5,000bp with default error 
model of SimLoRD (insertion probability=0.11, deletion 
probability=0.04 and substitution probability=0.01).

Real datasets
In order to evaluate LRBinner, we used several real data-
sets with known ground-truth references. To determine 
the origins of the reads in these datasets, the reads were 
mapped to the respective reference species using Mini-
map2 [25]. The information about the datasets are as 
follows.

•	 Reads from ZymoEVEN Mock Microbial Commu-
nity with Oxford nanopore reads from NCBI Acces-
sion Number ERR3152364 [26]. We removed shorter 
reads (less than 1000bp) and reads that did not align 
with any of the reference species in the mock com-
munity for evaluation purposes.

•	 Reads from ATCC MSA-1003 Mock Microbial Com-
munity with PacBio CCS reads from NCBI BioPro-
ject number PRJNA546278 (MSA-1003). For the 
evaluation we used the top 10 species which have 
more than 1% abundance.

Table 2  Comparison of assembled genome fractions, CPU time consumed for assembly and peak memory usage of assembly before 
and after binning the reads

† Genome fraction computed from species with at least 0.1% abundance

The best performance values and bin estimations are highlighted in bold text

Dataset Assembly tool Genome fraction CPU hours Peak memory (GB)

Raw Binned Raw Binned Raw Binned

Sim-8 Wtdbg2 98.80% 98.90% 0.26 0.84 9.28 0.96
MetaFlye 99.90% 99.85% 16.13 11.64 44.12 10.65

Sim-20 Wtdbg2 97.84% 99.19% 0.16 2.28 10.60 0.92
MetaFlye 99.80% 99.75% 19.44 20.28 44.70 11.23

Sim-50 Wtdbg2 97.83% 98.06% 6.03 5.98 15.7 2.68
MetaFlye 99.35% 98.43% 23.03 20.01 64.21 14.58

Sim-100 Wtdbg2 91.70% 93.67% 9.2 9.1 36.16 10.84
MetaFlye 97.68% 98.01% 69.79 59.89 116.11 27.48

ZymoEVEN Wtdbg2 55.17% 58.63% 1.37 1.38 11.07 2.88
MetaFlye 86.51% 86.55% 15.17 13.05 31.67 14.57

MSA-1003† Wtdbg2 67.45% 82.50% 0.31 1.05 23.43 19.61
MetaFlye 91.40% 91.74% 155.96 158.59 62.28 45.38

SRX9569057 Wtdbg2 40.40% 73.02% 0.26 1.56 21.72 3.88
MetaFlye 77.73% 73.68% 122.00 116.20 57.91 26.31

SRX9569058 Wtdbg2 37.51% 80.65% 0.30 1.98 30.79 3.86
MetaFlye 79.16% 79.63% 211.61 212.58 87.62 41.37

SRX9569059 Wtdbg2 41.00% 80.38% 0.26 1.82 25.63 3.80
MetaFlye 79.69% 77.46% 152.64 129.41 62.62 30.56
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•	 PacBio-HiFi reads obtained from NCBI BioProject 
number PRJNA680590. There are 3 read samples 
(NCBI BioSample number SAMN16885726) and 
each sample consists of 21 strains for 17 species as 
follows;

–	 SRX9569057: Standard input library
–	 SRX9569058: Low input library
–	 SRX9569059: Ultra low input library (PCR ampli-

fied sample)

Tools for benchmarking
There is a limited number of tools that support binning of 
long reads. Remind that most contig-binning tools can-
not be directly applied to bin long reads (even for highly 

accurate PacBio HiFi reads) because there is no coverage 
information available for each long read. Hence, in our 
evaluation we benchmark LRBinner against MetaBCC-
LR [15] which support large error prone long-reads. Note 
that, BusyBeeWeb only supports up to 200MB of FASTA 
formatted data. Hence, we omit BusyBeeWeb from our 
evaluations although it can handle a smaller amount of 
long reads for a fair comparison.

Evaluation criteria
In our evaluation we report precision (Eq.  6), recall 
(Eq. 7) and F1-score (Eq. 8) of binning. We transform the 
binning result to a matrix a of size K × S , where K 
denotes the number of bins and S denotes the number of 
species. Note that aks denotes the number of reads 
assigned to bin k with ground truth species s. In order to 

Fig. 3  Comparison of bin completeness between MetaBCC-LR and LRBinner for the simulated datasets
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evaluate the quality of binning, we used AMBER [27] to 
obtain the completeness (defined as 

true positivesb
true positivesb+false negativesb

 for each bin b) and contamina-
tion (defined as 1− true positivesb

true positivesb+false positivesb
 for each bin 

b). Furthermore, we assemble the reads before and after 
binning using LRBinner. Metagenomics assemblies were 
performed using wtdbg2 [28] and metaFlye [29]. We 
compare genome fractions, CPU-time and memory 
usage in assembly evaluation. We used MetaQUAST [30] 
to obtain the average genome fraction (average over all 
the reference genomes) for the qualitative evaluation of 
assembled contigs.

(6)Precision =
∑

k maxs{aks}
∑

k

∑

s aks

Results and discussion
We first compare precision, recall, F1 score and the esti-
mated number of bins for binning performance. We fur-
ther present the completeness and contamination results 
of bins produced by different binners. We finally evaluate 
assembly results using genome fraction and recorded the 
resource utilisation for the chosen assembly tools.

(7)Recall =
∑

s maxk{aks}
∑

k

∑

s aks

(8)F1 =2×
Precision× Recall

Precision+ Recall

Fig. 4  Comparison of bin completeness between MetaBCC-LR and LRBinner for the real datasets
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Binning results
We benchmarked the binning performance MetaBCC-
LR and LRBinner using typical metrics for evluating 
binning performance [15]. Table 1 demonstrates the bin-
ning results in terms of precision, recall, F1-score and 
the number of inferred bins. While MetaBCC-LR and 
LRBinner perform in a comparable fashion on simulated 
datasets, LRBinner achieves the best estimation on the 
number of bins with respect to the ground truth for most 
of the datasets. Note that LRBinner improves binning 
results for all the real datasets as indicated by the higher 
F1 scores.

Figures  3 and   4 illustrates the completeness of bins 
produced by MetaBCC-LR and LRBinner, for simulated 
and real datasets respectively. LRBinner has been able 
to produce bins with better average completeness over 
MetaBCC-LR. Figures  5 and  6 also illustrates the con-
tamination levels of bins produced by MetaBCC-LR and 
LRBinner, for simulated and real datasets respectively. 
From the plots it is evident that LRBinner produces 
bins with lower contamination in all datasets except for 
SRX9569059. Note that the dataset SRX9569059 has 
been generated from a PCR amplified sample leading to a 
significant deviation from the original sample abundances 

Fig. 5  Comparison of bin contamination between MetaBCC-LR and LRBinner for the simulated datasets
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in contrast with SRX9569057 and SRX9569058 data-
sets. For example, in SRX9569059, the abundance of 
Faecalibacterium prausnitzii drops from ∼ 16% to ∼ 8% 
whereas the abundance of Fusobacterium nucleatum 
surges from ∼ 4% to ∼ 7% , which may result in contami-
nation of long reads in binning results. Figure 7 illustrates 
completeness and contamination for binning result of 
ZymoEVEN dataset. Both tools have comparable com-
pleteness over bins. LRBinner produce 8 bins with less 
than 20% contamination where as MetaBCC-LR has only 
5 such bins. This observation is likely due to the higher 
error-rate observed among nanopore reads which deviate 

both coverage and composition vectors from the origin 
species. Since coverage and composition are not com-
bined in MetaBCC-LR, it can still perform comparable to 
LRBinner.

Assembly results
We assembled the reads binned by LRBinner to evaluate 
the potential assembly quality changes. For the assembly, 
we chose the two state-of-the-art long-read assemblers 
wtdbg2 [28] and metaFlye [29]. Table  2, demonstrates 
that binning long reads prior to assembly by LRBinner 
improves the genome fraction for all wtdbg2 assemblies 

Fig. 6  Comparison of bin contamination between MetaBCC-LR and LRBinner for the real datasets



Page 13 of 15Wickramarachchi and Lin ﻿Algorithms for Molecular Biology           (2022) 17:14 	

(up to 40%) and maintains comparable genome frac-
tions for metaFlye assemblies. This is not surprising 
as metaFlye is a metagenomics specialised assembler 
in contrast with wtdbg2. For example, in the datasets 
SRX9569057, SRX9569058 and SRX9569059, binning via 
LRBinner enabled wtdbg2 to recover low-abundance spe-
cies which were ignored in the assembly of the entire raw 
dataset, e.g., Methanobrevibacter smithii (from 0 to 96%), 
Saccharomyces cerevisiae (from 0 to 75%) and Candida 
albican (from 0 to 70%). This is because LRBinner allows 
wtdbg2 to estimate more appropriate parameters in each 
bin rather than applying the same parameters across the 
entire dataset.

Another advantage of binning prior to assembly is the 
reduction of the computing resources for assembly. As 
demonstrated in Table  2, the peak-memory usage has 
been drastically reduced in both wtdbg2 (upto 10× ) and 
metaFlye (upto 4× ) assemblies. Note that the CPU time 
is comparable as binning long reads may not lead to sig-
nificant reduction of k-mer indexing cost and the con-
struction and simplification of assembly graphs.

Implementation
In order to restrict the iterative search for clusters, we 
use early termination parameters in our algorithm. We 
stop drawing seed points when the remaining number of 
reads reaches below min_cluster_size (=5000 by default) 
or the number of iterations has passed max_iterations 
(=1000 by default). In order to evaluate the performance 
of with varying size of the composition vectors (k-mer 
size) we executed LRBinner with k=3, k=4 and k=5. 

The resource utilization and performance are shown 
in 1: Tables S3 and S4. The GPU utilization was below 
4GB during all the experiments due to fixed batch size of 
1024 reads. Coverage vectors were fixed at bins = 32 and 
bin_width = 10 . Furthermore, the parameters for training 
auto-encoder, i.e., loss function weights, were empirically 
determined based on the intuition of giving more promi-
nence towards clustering. Hence, we have weighted com-
position more than coverage as composition (computed 
from smaller k-mer sizes) is usually more accurate com-
pared to coverage (estimated from larger k-mer sizes). 
Furthermore, we have weighed the KL-divergence the 
least, to facilitate learning of disentangled representa-
tions enabling clustering.

LRBinner was implemented using C++ and Python 
version 3.7. The deep learning component is imple-
mented using PyTorch [31] and Numpy [32]. We con-
ducted our assemblies on NCI Australia with 2 x 28-core 
Intel Xeon Platinum 8274 (Cascade Lake) 3.2 GHz CPUs 
192GB RAM and binning on Ubuntu 20.04.3 LTS system 
running on AMD Ryzen 9 5950X with 16-core Proces-
sor with 32 threads and 128GB of RAM with NVIDIA 
RTX 3090 GPU with 24GB VRAM. We used 56 threads 
for assembly and 32 threads for binning with GPU 
acceleration.

Conclusion
In this paper, we presented LRBinner, a long read bin-
ner capable of binning error-prone long reads using 
both coverage and composition information. Our work 
extends the use of variational auto-encoders to combine 

Fig. 7  Comparison of bin completeness and contamination between MetaBCC-LR and LRBinner for the real nanopore dataset
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raw features and learn a better latent representation for 
long-read binning. Furthermore, we presented a novel 
clustering strategy that can perform clustering on large 
datasets with varying cluster sizes. Performance of 
LRBinner was evaluated against existing long-read bin-
ners using simulated and real datasets. Our experimental 
results show that LRBinner outperforms state-of-the-art 
long-read binning tools and also improves resource usage 
of downstream assembly.

However, LRBinner still suffers from the following 
limitations. Firstly, it is challenging for LRBinner to dis-
tinguish long reads from similar regions shared between 
different species. Reads from such regions are likely to 
be assigned to any one of the species because LRBinner 
currently does not support overlapped binning. Similar 
to GraphBin2 [33], LRBinner can be extended to detect 
such long reads and improve on the functionality of 
overlapped binning among distinct species. Secondly, 
LRBinner uses the valley-to-peak ratio to find candidate 
clusters which depends on the seed points. We intend 
to extend LRBinner to incorporate cluster scoring tech-
niques such as Silhouette score to automatically find 
best candidate clusters. Thirdly, while the use of LRBin-
ner prior to assembly increases the genome fraction, it 
may also result in a more fragmented assemblies (refer 
to 1: Table S5 in the Additional material). Hence, we are 
keen to explore the possibility of combining binning and 
assembly of long reads simultaneously in the future.
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