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Abstract 

We present a new method and software tool called rowbowt that applies a pangenome index to the problem of 
inferring genotypes from short-read sequencing data. The method uses a novel indexing structure called the marker 
array. Using the marker array, we can genotype variants with respect from large panels like the 1000 Genomes Project 
while reducing the reference bias that results when aligning to a single linear reference. rowbowt can infer accurate 
genotypes in less time and memory compared to existing graph-based methods. The method is implemented in the 
open source software tool rowbowt available at https:// github. com/ alshai/ rowbo wt.
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Introduction
Given DNA sequencing reads from a donor individual, 
genotyping is the task of determining which alleles the 
individual has at polymorphic sites. Genotyping from 
sequencing data, sometimes using low-coverage sequenc-
ing data together with genotype imputation, is a common 
task in human genetics [1] and agriculture [2]. In contrast 
to variant calling, genotyping is performed with respect 
to a catalog of known polymorphic sites. For instance, 
genotyping of a human can be performed with respect to 
the 1000 Genomes Project call set, which catalogs posi-
tions, alleles and allele frequencies for tens of millions of 
sites [3].

Many existing genotypers start by aligning reads to a 
single linear reference genome, e.g.  the human GRCh38 
reference [4]. Because this reference is simply one exam-
ple of an individual’s genome, genotyping is subject to 
reference bias, the tendency to make mistakes in places 
where the donor differs genetically from the reference. 

This was shown in studies of archaic hominids [5], HLA 
genotypes [6] and structural variants [7]. A similar bias 
exists for methods that extract polymorphic sites along 
with genomic context, and search for these sequences 
in the reads [8, 9]. In particular, the bias remains if the 
flanking sequences are extracted from the reference and 
so contain only reference alleles.

Reference bias can be reduced by using a pangenome 
reference instead of a single linear reference. A pange-
nome can take various forms; it can be (a) a generating 
graph for combinations of alleles, (b) a small collection of 
linear references indexed separately, or (c) a larger collec-
tion of linear reference indexed together in a compressed 
way. Pangenome graphs (option a) and small collections 
of linear references (option b) have been studied in recent 
literature [10–14].

Two existing methods that use pangenome graphs are 
BayesTyper [15] and PanGenie [16]. BayesTyper 
works by matching k-mers extracted from the input reads 
to k-mers stored in a de Bruijn graph representing known 
polymorphisms and their surrounding contexts. After 
tallying this evidence, BayesTyper calls genotypes 
based on a generative model. PanGenie uses a graph 
built from haplotypes, collapsed so that variants become 
bubbles. PanGenie then scans the reads and tallies 
k-mers that appear in the graph. It then makes genotype 
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calls based on the tallies of how often read k-mers match 
to k-mers along the alternate paths that make up the dis-
tinct REF and ALT alleles.

Variant graphs like the ones used by BayesTyper and 
PanGenie are effective for genotyping, but have draw-
backs when the goal is to reduce reference bias. First, 
haplotype information might be removed when adding 
variants to the graph, or might be included in the graph 
but not considered during the read mapping process. 
This can cause graph-based tools to consider many extra-
neous haplotype paths through the graph during geno-
typing, increasing running time. Second, variant graphs 
can grow exponentially—in terms of the number of paths 
through the graph—as variants are added, leading to a 
rapid increase in resource usage and likelihood of ambig-
uous alignments.

We sought a way to reduce reference bias by indexing 
and querying many linear references at once while keep-
ing index size and query time low. Such an approach can 
take full advantage of linkage disequilibrium information 
in the panel, allowing no recombination events except 
those occurring in the panel. This avoids mapping ambi-
guity from spurious recombination events between poly-
morphic sites [10].

We propose a new structure called the marker array 
that replaces the suffix-array-sample component of the 
r-index with a structure tailored to the problem of col-
lecting genotype evidence. Here we describe the marker 
array structure in detail. We compare its space usage and 
query time to those of the standard r-index and explore 
how accurately both structures are able to capture mark-
ers from a sequencing dataset. Finally, we benchmark 
it using real whole-genome human sequencing data 
and compare it to the BayesTyper and PanGenie 
genotyping tools in terms of both genotyping accuracy 
and computational efficiency. We do this for variants 
genomewide and for variants in genes that are medically 
relevant.

Background
r‑index
The r-index [17] is a compressed repeat-aware text index 
that scales with the non-redundant content of a sequence 
collection. It uses O(r) space where r is the number of 
same-character runs in the Burrows-Wheeler Trans-
form (BWT) of the input text. Past work shows that the 
r-index can efficiently index collections of long-read-
derived human genome assemblies [18] as well as large 
collections of bacterial genomes [19].

While the main contribution of the r-index was its 
strategy for storing and using a sample of the suffix array 
[17], even this sample is large in practice. We propose 
a new marker array structure that replaces the suffix 

array while retaining its ability to deduce when a read-
to-pangenome match provides evidence for a particular 
allele at a polymorphic site. The design of the marker 
array flows from three observations. First, we can save 
space by storing auxiliary information about polymor-
phic sites (“markers”) only at the sites themselves. There 
are often far fewer sites harboring polymorphism than 
there are BWT runs. Second, pangenome suffixes start-
ing with the same allele tend to group together in the suf-
fix array, which can be exploited to compress the marker 
array structure. Third, while a suffix array entry is an off-
set into the pangenome requiring O(log n) bits, a marker 
need only distinguish markers and alleles, and so requires 
just O(logM) bits where M is the number of polymorphic 
sites.

Methods
Preliminaries
Consider a string S of length n from ordered alphabet � , 
with operator ≺ denoting lexicographical order. Assume 
S’s last character is lexicographically less than the others. 
Let F be an array of S’s characters sorted lexicographically 
by the suffixes starting at those characters, and let L be 
an array of S’s characters sorted lexicographically by the 
suffixes starting immediately after them. The list L is the 
Burrows-Wheeler Transform [20] of S, abbreviated BWT.

The BWT can function as an index of S [21]. Given a 
pattern P of length m < n , we seek the number and loca-
tion of all occurrences of P in S. If we know the range 
BWT(S)[i..j] occupied by characters immediately preced-
ing occurrences of a pattern Q in S, we can compute the 
range BWT(S)[i′..j′] containing characters immediately 
preceding occurrences of cQ in S, for any character c ∈ � , 
since

The FM Index is a collection of data structures for exe-
cuting such queries efficiently. It consists of an array C 
storing |{h : S[h] ≺ c}| for each character c, plus a rank 
data structure for BWT(S) , e.g.  a wavelet tree, that can 
quickly tally the occurrences of a character c up to a posi-
tion of BWT . To locate the offsets of occurrences of P in 
S, the FM-index can additionally include some form of 
S’s suffix array. The suffix array SA is an array parallel to 
F containing the offsets of the characters in F. To save 
space, the FM-index typically keeps only a sample of SA , 
e.g. a subset spaced regularly across SA or across S.

Let T = {T0,T1, . . . ,Tn} be a collection of n similar 
texts where T0 is the reference sequence, and T1, . . . ,Tn 

(1)
i′ = |{h : S[h] ≺ c}| + |{h : BWT(S)[h] = c, h < i}|.

(2)
j′ = |{h : S[h] ≺ c}| + |{h : BWT(S)[h] = c, h ≤ j}| − 1.
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are alternative sequences. In the scenarios studied here, a 
Ti represents a human haplotype sequence, with all chro-
mosomes concatenated, and T0 represents the GRCh38 
primary assembly of the human genome. Each Ti with 
i > 0 is an alternate haplotype taken either from the 1000 
Genomes project call set [3] or from the HGSVC pro-
ject [22, 23], each with chromosomes concatenated in 
the same order as T0’s. We use the terms “haplotype” and 
“genome” interchangeably here.

We assume that all the Ti ’s are interrelated through a 
multiple alignment, e.g. as provided in a Variant Call For-
mat (VCF) file. The multiple alignment is a matrix with 

genomes in rows and columns representing genomic off-
sets. The elements are either bases or gaps. We call a col-
umn consisting of identical bases and lacking any gaps a 
uniform column. Any other column is a polymorphic col-
umn. Figure 1 illustrates a multiply-aligned collection of 
haplotypes and the concatenated text T.

Marker array
Let the “marker array” M be an array parallel to the con-
catenated sequence T marking positions that fall in a 
polymorphic column in the multiple alignment. Each ele-
ment of M is a tuple recording the offset i with respect 

Fig. 1 Top left: A multiple alignment for a collection of alternate haplotypes (H1–H9), and a reference sequence (R). Marked bases are in bold and 
alternate alleles are colored. Middle left: The text T, formed by concatenating rows of the multiple alignment (eliding gaps). Bottom left: The edit 
table E, with alternate-allele coloring. Right: A partial illustration of the marker array in relation to SA , the relevant suffixes themselves (truncated to 
fit), and the BWT . Colors and bolding highlight where marked bases and alternate alleles end up in the suffixes
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to T0 where the polymorphism begins, as well as the edit 
operation describing how the sequence differs from the 
reference at this locus. Distinct edit operations are given 
distinct integer identifiers, which are decoded using a 
separate table E. Identifier 0 is the null operation, denot-
ing that the reference allele appears without edits. For 
example, say E = {1 : X → C} , where X → C denotes a 
substitution that replaces the reference base with C. Then 
a marker array record m = (500, 0) marks a locus with no 
edit with respect to reference position T0[500] . A record 
m′ = (500, 1) denotes that a substitution changes that 
base at T0[500] to a C. An example is shown in Fig. 1 (bot-
tom left).

Consecutive substitutions are collapsed into a single 
edit in the E table. Insertions and deletions (“indels” for 
short) are treated somewhat differently; the offset car-
rying the “mark” is the one just preceding the indel (just 
to its left) in the multiple alignment. Importantly, the 
mark covers exactly one position in the genome, even 
if the insertion/deletion spans many bases. The marked 
position must come to the left of the indel to ensure 
that suffixes starting at the marked position include the 
allele itself. In the multiple alignment in Fig. 1 (top left), 
for example, a deletion with respect to R occurs in the 
fourth-from-left column, but the marked position is in 
the third-from-left column.

The marker array MA is a permutation of M such that 
marks appear in suffix-rank order:

Definition 1 The marker array MA is the mapping such 
that MA[i] = M[SA[i]].

Thanks to suffix-rank order, identical M[i] ’s are often 
grouped into runs in MA , as seen in Fig. 1 (right).

A marker query for pattern string q returns all m ∈ M 
overlapped by an occurrence of q in T. We can begin to 
answer this query using backward search (Eq.  1) with 
P = q , giving the maximal SA range [i..j] such that q is a 
prefix of the suffixes in the range. Having computed [i..j], 
we know that {MA[i], ...,MA[j]} contain markers over-
lapped by q’s leftmost character. To recover the markers 
overlapped by the rest of q’s characters, two approaches 
can be considered, detailed in the following subsections. 
The FL approach recovers the overlapped markers in a 
straightforward way but uses O(|q| · occ) time, where 
occ is the number of times q occurs in T. The heuristic 
backward-search approach requires only O(|q|) time but 
is not fully sensitive, i.e. it can miss some overlaps.

FL approach
Say [i..j] is the maximal SA range such that all rows have 
q as a prefix. We can perform a sequence of FL steps, 

starting from each row x ∈ [i..j] . An FL step is the inverse 
of an LF step. That is, if we write an LF mapping step in 
terms of a rank query

where S.rankc(i) denotes the number of occurrences of 
c in S up to but not including offset i, then an FL step 
inverts this using a select query

where S.selectc(i) returns the offset of the i + 1th occur-
rence of c in S, i.e.  the c of rank i. Whereas LF takes a 
leftward step with respect to T, FL takes a rightward step.

By starting in each row x ∈ [i..j] and performing a 
sequence of |q| − 1 FL steps for each, we can visit each 
offset of T overlapped by an occurrence of q. Checking 
MA[k] at each step, where k is the current row, tells us 
which marker is overlapped, if any. This is slow in prac-
tice, both because it requires O(|q|(j − i + 1)) FL steps 
in total, and because each step requires a select query, 
which is more costly in practice than a rank query.

Heuristic backward‑search approach with smearing
Say we perform a backward search starting with the 
rightmost character of q. At each step we are consid-
ering a range [i..j] of SA having a suffix of q as a prefix. 
Using i and j, we can query MA[i..j] . However, this tells us 
instances where a suffix of q overlaps a marker, whereas 
our goal is to find where the whole query q overlaps a 
marker. If we report overlaps involving trivially short suf-
fixes of q, many would be false positives. We propose to 
allow but reduce the number of such false positives by 
augmenting MA:

Definition 2 The augmented marker array MA
w is a 

multimap such that MA
w
[i] = [M[SA[i]],M[SA[i] + 1], ...,

M[SA[i] + w]]

That is, MA
w[i] is a (possibly empty) list containing 

markers overlapping any of the positions T [i..i + w] . We 
call this a “smeared” marker array, since the marks are 
extended (smeared) to the left by w additional positions. 
Note that a length-w extension can overlap one or more 
other marked variants to the left. For this reason, MA

w 
must be a multimap, i.e. it might associate up to w mark-
ers with a given position.

Using MA
w , we adjust the backward-search strategy so 

that instead of querying MA at each step, we query MA
w 

every w steps. If w is large enough—e.g.  longer than the 
length at which we see random-chance matches—we 
can avoid many false positives. More space is required 

(3)i′ = |{h : S[h] ≺ c}| + BWT.rankBWT[i](i),

(4)i =BWT.selectF [i′](i
′ − |{h : S[h] ≺ F [i′]}|),
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to represent MA
w compared to MA since it is less sparse. 

However, we expect MA
w to remain run-length com-

pressible for the same reason that MA is.

Genotyping a read
Given a sequencing read, we would like to extract as 
much genotype information as possible while minimiz-
ing computational cost and false-positive genotype evi-
dence. Here we give a heuristic algorithm (Algorithm 1) 
that handles entire sequencing reads, querying MA

w 
during the backward-search process as proposed in the 

previous section. The algorithm proceeds right to left 
through the read, growing the match by one character if 
possible. When we can no longer grow the match (i.e. the 
range [i..j] becomes empty), we reset the range to the all-
inclusive range [0..|T | − 1] and restart the matching pro-
cess at the next character. We use the term “extension” to 
refer to a consecutive sequence of steps that successfully 
extend a match. Note that this is a heuristic algorithm 
that does not exhaustively find all half-MEMs between 
the read and the index, as the MONI algorithm does [24].
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As discussed above, the algorithm only checks the 
marker array every w steps (line 14). As an additional 
filter, the algorithm only performs a marker-array query 
when the current suffix-array range size is no larger than 
the number of haplotypes in the index ( Nh ). A range 
exceeding that size indicates that we are seeing more 
than one distinct match in at least one haplotype, mean-
ing that the evidence is ambiguous.

The algorithm tallies evidence as it goes (line 18), but 
might later choose to ignore that evidence if certain 
conditions are not satisfied (lines 10 and 27). For exam-
ple, if the evidence has a conflict—i.e. one match indi-
cates a reference allele at a site but another match found 
during the same extension finds an alternate allele at 
that site—then all the evidence is discarded for that 
extension. Similarly, evidence from an extension is dis-
carded if the tallied sites span multiple chromosomes. 
Finally, evidence from extensions failing to match at 
least 80 bp of the read (adjustable with --min-seed-
length option) is discarded.

We employ other heuristics to minimize mapping 
time not shown in Algorithm 1. For instance, we avoid 

wasted effort spent querying the wrong read strand. 
Specifically: rowbowt randomly selects an initial 
strand of the read to investigate: forward or reverse 
complement. If an extension from this strand meets the 
minimum seed-length threshold (80 by default), then 
the other strand is not considered and analysis of the 
read is complete. Otherwise, rowbowt then goes on to 
examine the opposite strand of the read.

Sparse marker encoding
We encode the sparse arrays M , MA and MA

w in the 
following way. Say that array A consists of empty and 
non-empty elements. We consider A’s non-empty ele-
ments as falling into one of x maximal runs of identical 

(and non-empty) elements. Our sparse encoding for A 
consists of three structures. S is a length-|A| bit vector 
with 1s at the positions where a run of identical entries 
in A begins, and 0s elsewhere. E is a similar bit vector 
marking the last position of each of the x runs. (This 
variable E is distinct from the E table defined above 
in “Marker Array.”) To find whether an element A[i] is 
non-empty, we can ask whether we are between two 
such marks; that is, A[i] is non-empty if and only if 
S.rank1(i + 1) > E.rank1(i).

X is a length-x array containing the element that is 
repeated in each of A’s non-empty runs, in the order 
they appear in A. If A[i] is not empty, the element 
appearing there is given by X[E.rank1(i)].

When encoding M or MA , the elements of X are simply 
tuples. A complication exists for MA

w , since elements are 
lists of up to w tuples. In this case, we keep an additional 
bit-vector B of size |X| where 1s denote left-hand bound-
aries in X that correspond to runs in A. E and B can be 
used together to access an element in A (Algorithm 2).

Extracting markers from VCF
A Variant Calling Format (VCF) [25] file is used to 
encode a collection of haplotypes with the variants 
arranged in order according to a reference genome. In 
the case of human and other diploid genomes, haplo-
types are grouped as pairs. We refer to such a collection 
of haplotypes as a “panel” and a single haplotype as a 
“panelist.” An VCF entry encodes a variant as a tuple 
consisting of a chromosome, offset, the allele found in 
the reference, the alternate allele found in one or more 
panelists, and a sequence of flags indicating whether 
each panelist has the reference or alternate version. We 
start from a VCF file to determine how to populate the 
marker arrays M , MA and/or MA

w , as well as the edit 
array E.



Page 7 of 17Mun et al. Algorithms for Molecular Biology            (2023) 18:2  

A single element of M is a tuple (r, e), where r is an off-
set in T0 and e is the edit operation describing how the 
sequence differs from the reference. As a practical mat-
ter, we represent these tuples in a different way that more 
closely resembles the corresponding VCF records. Spe-
cifically, a marker is encoded in a 64-bit word divided 
into three fields. First, a 12 bit field identifies the chromo-
some containing the marker. The chromosome ordering 
is given at the beginning of the VCF file in the “header” 
section. For example, if “chr1” is the first chromosome in 
the header, then this chromosome is encoded as 0x000 
(using hexadecimal), and if “chr2” is the second chromo-
some, it is encoded as 0x001. Second is a 54 bit field 
encoding the marker’s offset within the chromosome. 
Third is a 4-bit field storing which version of the variant 
is present, with 0 indicating the reference allele, 1 indicat-
ing the 1st alternate allele, 2 the second alternate allele, 
etc. This 64-bit representation allows for compact storage 
of markers and easier random access to the marker array.

Diploid genotyping
In a diploid genome, it is possible for both alleles to 
occur, i.e. for the genotype to be heterozygous. We use an 
existing approach [26] to compute genotype likelihoods 
considering all possible diploid genotypes: homozygous 
reference (2 reference alleles), homozygous alternate (2 
alternate alleles), or heterozygous (1 reference, 1 alter-
nate). Let g ∈ {0, 1, 2} denote the number of reference-
allele copies at the marked site; e.g.  g = 1 corresponds 
to a heterozygous site and g = 2 to a homozygous ref-
erence site. Let l be the number of times the reference 
allele was observed in the reads overlapping a particular 
marked site and let k be the count of all alleles (reference 
or alternate) observed. Let ǫ be the sequencing error rate. 
We calculate the genotype likelihood as follows, adopting 
equation 2 of [26] while setting the ploidy to 2 and adopt-
ing a global rather than a per-base error rate:

To choose the most likely genotype gmax , we compute:

By default, rowbowt uses ǫ = 0.01.

Implementation details
The code for constructing the marker array is imple-
mented in the pfbwt-f spoftware package, with 
repository at https:// github. com/ alshai/ pfbwt-f. This 
repository also contains an efficient implementation of 
the prefix-free-parse BWT construction algorithm [18]. 

L(g) =
1

2

k

[(2− g)ǫ + g(1− ǫ)]k [(2− g)(1− ǫ)+ gǫ]k−l .

gmax = argmaxg∈{0,1,2}L(g).

This software is written in C++17, uses the open-source 
MIT license, and builds on the Succinct Data Structure 
Library (SDSL) v3.0 [27].

For querying the marker array, we use the rowbowt 
implementation at https:// github. com/ alshai/ rowbo wt. 
This repository contains the open source C++17 imple-
mentation of rowbowt, distributed under the MIT 
license. It is also a library, containing algorithms for 
building and querying indexes containing various struc-
tures discussed here, including the run-sampled suffix 
array, marker array, and others.

Results
We evaluated the efficiency and accuracy of our marker-
array method for compiling genotype evidence. We first 
generated multiple series of rowbowt indexes covering 
various settings for three parameters: the window size w 
for the smeared marker array MA

w , the number of hap-
lotypes indexed, and the minimum allele frequency for 
marked alleles. The rowbowt index consisted of three 
components: the run-length encoded BWT, the run-sam-
pled suffix array, and the marker array. While we built the 
sampled suffix array for these experiments, the stand-
ard marker-array-based method in rowbowt does not 
require this array.

We generated indexes for collections of 200, 400, 800, 
or 1000 human chromosome-21 haplotypes from the 
1000 Genomes Phase 3 reference panel [3] based on the 
GRCh37 reference. We generated two sets of indexes: 
one where the marker array marks all polymorphic 
sites regardless of frequency (denoted “ AF > 0”), and 
another where the marker array marks only those sites 
where the less common allele occurs in greater than 1% 
of haplotypes, i.e. has allele frequency over 1% (denoted 
“ AF > 0.01”). In all cases, the marker array window size 
w was set to 19. Each haplotype collection was drawn 
from a random subset of 500 individuals from the 1000 
Genomes Phase 3 panel. The AF > 0 panel of 500 hap-
lotypes contained 1,  097,  388 polymorphic sites. The 
AF > 0.01 panel of the same haplotypes contained 
193, 438 polymorphic sites with allele frequency over 1%. 
We also included the GRCh37 reference sequence, con-
sisting of all reference alleles, in each collection, corre-
sponding to the reference sequence called T0 above.

We generated a series of indexes with window size 
w ∈ {13, 15, 17, 19, 21, 23, 25} . We generated two such 
series: one with no minimum allele frequency ( AF > 0 ) 
and another with a 1% minimum frequency ( AF > 0.01 ). 
Each index was over the same set of 100 haplotypes.

Index size
We measured the size of the three main components 
of the rowbowt index: the augmented marker array, 

https://github.com/alshai/pfbwt-f
https://github.com/alshai/rowbowt
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the run-length encoded BWT (RLE BWT) [28] and the 
run-sampled suffix array (“r-index SA”) [17]. Figure  2 
plots this measurement for collections of 200, 400, 800 
and 1000 haplotypes for both AF > 0 and AF > 0.01 . 
All grow linearly with the number haplotypes grows, 
as expected. For AF > 0 , the augmented marker array 
is consistently larger than the run-sampled suffix array 
(“r-index SA”). For AF > 0.01 , the augmented marker 
array is much smaller, approaching the size of the RLE 
BWT. The AF > 0 array is larger because it contains pol-
ymorphic sites with infrequent alleles; about 85% of the 
marked sites in the AF > 0 array have allele frequency 
under 1%. Further, rare alleles are less likely to form long 

runs in the augmented marker array, negatively affecting 
run-length compression.

In the right portion of Fig. 2, the RLE BWT and r-index 
SA have constant size because the w parameter does not 
affect those data structures. In the left portion of Fig. 2, 
showing size as a function of number of haplotypes, the 
augmented marker array is almost always larger than 
the r-index SA for AF > 0 as opposed to AF > 0.01 , 
except at w = 13 . The slope of the array size is smaller for 
AF > 0.01 than for AF > 0.

Overall, both the value of w and the number of hap-
lotypes in the index cause the augmented marker array 
to increase in size, but the inclusion of rare alleles ( < 1% 
allele frequency) has the largest effect on its size.

Fig. 2 Left: Size of rowbowt data structures as a function of the 
number of haplotypes indexed, and with w = 19 . “Marker array” 
refers to the augmented marker array, MA

w . Right: Size of rowbowt 
data structures as a function of the “smearing” window size w, with 
number of haplotypes fixed at 100. Separate results are shown for 
when there is no minimum allowed allele frequency ( AF > 0 ) and 
when the minimum frequency is 1% ( AF > 0.01)

Fig. 3 Mean time over 10 trials of aligning 10,000 simulated reads 
from HG01498 against the augmented marker array (marker) and 
the r-index suffix array (locate). Experiments are repeated for marker 
collections including all alleles ( AF > 0 ) and for alleles having 
frequency at least 1% ( AF > 0.01 ). Left: The experiment is repeated 
for various window sizes w, and for 100 haplotypes. Right: The 
experiment is repeated for different numbers of indexed haplotypes, 
with w = 19
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Query time
We next measured query time for the augmented marker 
array strategy versus the locate-query strategy which 
uses the run-sampled suffix array. 150 bp simulated reads 
of 25x coverage were generated for one haplotype of 
HG01498, an individual that is part of the 1000-Genomes 
panel, but which we excluded from all our indexes. We 
simulated reads using Mason 2 mason_simulator 
[29] with default options.

In the case of the marker-array strategy, we measured 
the time required to analyze the reads using the algo-
rithm described above in “Genotyping a read.” In the case 
of the locate-query strategy, the MA

w query was replaced 
with a two-step process that first performed a locate 
query with respect to the run-sampled suffix array, then 
performed a lookup in the M array. To enable this mode, 
we further augmented the r-index with a representa-
tion of M using the sparse encoding described above. To 
emphasize: the rowbowt strategy does not require the 
run-sampled suffix array or the M array; the MA

w effec-
tively replaces them both.

We repeatedly sampled 10,000 simulated reads and 
recorded the mean query time over 10 trials. As seen 
in Fig.  3 the augmented marker-array method (labeled 
“marker”) was consistently faster than locate method. 
This was true for all allele frequencies and window sizes 
tested. We found that the effect of w and allele-frequency 
cutoff was more pronounced with the larger reference 
panel AF > 0 . For the smaller panel ( AF > 0.01 ), query 
time was mostly invariant to both window size and allele 
frequency.

Genotyping accuracy
We next measured the accuracy of the genotype infor-
mation gathered using the augmented marker array. 
We simulated sequencing reads from one haplotype of 
HG01498 to an average depth of 25-fold coverage. Indi-
vidual HG01498 was excluded from the indexes. As our 
“truth” set for evaluation, we use the variant calls in the 
1000 Genomes project callset for the same haplotype we 
simulated from. For simplicity, this experiment treats the 
genome as haploid. Experiments in the next section will 
account for the diploid nature of human genomes.

A single marked site can have conflicting evidence, due, 
for instance, to mismapped reads or sequencing errors. 
For this evaluation, we make calls simply by finding the 
frequently observed allele at the site. We ignore any 
instances of alleles other than the ones noted in the VCF 
file as the reference and alternate alleles. If the reference 
and alternate alleles have equal evidence, the reference 
allele is called.

We calculate precision and recall according to the fol-
lowing formulas. Here, the positive class consists of 

marked sites that truly have the alternate allele, while the 
negative class consists of marked sites that truly have the 
reference allele. We measure:

where TP stands for True Positive, FN stands for False 
Negative, etc.

Figure 4 shows precision and recall with respect to the 
number of haplotypes in the index and the minimum 
allele frequency of the haplotype collection. We observed 
that the AF > 0.01 indexes generally had better precision 
compared to the AF > 0 indexes, though at the expense 
of recall. Precision and recall generally improve with the 
addition of more haplotypes to the index. The augmented 
marker array has similar recall to the locate procedure 
across all haplotype sizes at the loss of precision. When 

Precision =
TPs

TPs + FPs
Recall =

TPs

TPs + FNs
,

Fig. 4 Precision (left) and recall (right) of the calls made when 
querying 25x simulated reads from HG01498 against the augmented 
marker array (marker) and the r-index (locate). Stratified by minimum 
allowed allele frequency (AF) in the index
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rare variants are removed from the index ( AF > 0.01 ), 
the gap in precision between the marker array and the 
locate procedure lessens. This mild (less than 0.1%) loss 
of precision is expected since algorithm described above 
in “Genotyping reads” is still prone to some false posi-
tives in the earlier part of the extension process.

Diploid genotyping assessment
To assess diploid genotyping accuracy, we used data 
from the Human Genome Structural Variation Consor-
tium (HGSVC) [22, 23]. The HGSVC called both simple 
and complex genetic variants across a panel of 64 human 
genomes. Calls were made with respect to the GRCh38 
primary assembly [4]. For input reads, we subsampled 
reads from a 30-fold average coverage PCR-free read set 
provided by the 1000 Genomes Project [3] (accession 
SRR622457). To create more challenging scenarios for 
the genotypers, we randomly subsampled the read sets 
to make smaller datasets of 0.01, 0.05, 0.1, 0.5, 1, 2 and 
5-fold average coverage.

We assessed four genotyping methods. The first 
(bowtie2+bcftools) used Bowtie 2 [30] v2.4.2 to 
align reads to a standard linear reference genome, then 
used BCFtools v1.13 to call variants (i.e.  genotypes) 
at the marked sites [26]. The second method used the 
graph-based genotyper BayesTyper v1.5. The third 
was PanGenie [16], a pangenome-based genotyper 
for short reads. PanGenie calls genotypes for variants 
that are represented in its index as bubbles in a pange-
nome. PanGenie represents known haplotypes as paths 
through the graph, accounting for these paths during the 
genotyping process. PanGenie takes directed acyclic 
pangenome graph as input, represented as a VCF file 
containing phased genotypes for many samples. PanGe-
nie further requires that the VCF have non-overlapping 
variants. We generated a compliant input VCF using a 
workflow provided by the PanGenie project1 We used 
the “high-gq” quality filter also used in the PanGenie 
study: genotype quality (GQ) ≥ 200 . The fourth method 
assessed was rowbowt.

Prior to applying BayesTyper, we built a Bayes-
Typer-compatible VCF file containing all relevant vari-
ants from the HGSVC haplotype panel. For rowbowt, 
we created a rowbowt index from the genomes in the 
HGSVC haplotype panel. In both cases we excluded 
NA12878’s haplotypes from the panel prior to building 
the index.

When evaluating, we stratified variants by complex-
ity: the “SNV” category includes single-nucleotide 

substitutions, “Indel” includes indels no more than 50bp 
long, and “SV” includes insertion or deletions longer than 
50bp, and “All” includes all variant types. More complex 
structural variants like inversions and chromosomal rear-
rangements are ignored.

We analyzed the accuracy of rowbowt ’s diploid gen-
otypes in two ways. First we considered allele-by-allele 
precision and recall, considering the alternate (ALT) 
allele calls to be the positive class. Specifically, every dip-
loid genotype called by a method is considered as a pair 
of individual allele calls. If a given allele call is an alternate 
(ALT) allele and there is at least one ALT allele present in 
the true diploid genotype at that site, it counts as a true 
positive (TP). If the given allele is a reference allele (REF) 
and there is at least one REF allele in the true diploid gen-
otype, this is a true negative (TN). If the given allele is an 
ALT but the true genotype is homozygous REF, we count 
it as a false positive (FP). Finally, if the given allele is REF 
but the true genotype is homozygous ALT, this is a a false 
negative (FN).

Second, we considered precision and recall with 
respect to sites that were either truly heterozygous or 
called heterozygous. If a heterozygous call made by a 
method is truly heterozygous, this was counted as a true 
positive (TP). False positives, false negatives, and true 
negatives are defined accordingly.

As seen in Fig.  5, rowbowt ’s ALT and HET preci-
sion were generally the highest of all the methods across 
all variant categories, though BayesTyper sometimes 
achieved higher ALT/HET precision for indels in the 
higher-coverage datasets and PanGenie had the highest 
HET precision for SNVs and Indels for some coverages. 
At the highest coverage level examined (5-fold), PanG-
enie also achieved similar ALT precision to rowbowt 
on SNVs and Indels. rowbowt dominates on precision 
of SV calls, and also exhibits the best recall for ALTs at 
higher coverage. PanGenie exhibits slightly higher 
recall for HET SVs.

Figure  6 compares the methods on their F1 measure. 
rowbowt achieved the highest F1 scores for ALT and 
HET SNBs. For HET SNV variants, rowbowt had the 
highest F1 score of 0.71, while for ALT SNV variants, the 
F1 was 0.95. In the case of Indel variants, rowbowt pro-
duced the highest F1 score of 0.81 for the ALT class and 
tied with PanGenie for the HET class, with an aggregate 
score of 0.48. Fr SVs, rowbowt had the highest F1 score of 
0.55 in the ALT class and a comparable score of 0.21 in 
the HET class, just below PanGenie ’s score of 0.23.

Diploid genotyping assessment on medically relevant 
genes
We obtained a list of medically relevant autosomal genes, 
collected from medical gene databases by the Genome 

1 The workflow can be found in the pipelines/run-from-callset 
subdirectory of the PanGenie repository.
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Fig. 5 Precision and recall for the four tested genotyping methods, both at the level of individual alleles (ALT precision/recall) and at the level of 
heterozygous variants (HET precision/recall). Note that the bowtie2+bcftools approach is generally unable to align reads across variants in the “SV” 
category, leading to low precision and recall
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in a Bottle (GiaB) project [31]. Among the 5,026 genes 
included are the major MHC Class I genes (HLA-A, 
HLA-B, HLA-C), MHC Class II genes (HLA-DP, HLA-
DQ, HLA-DR) and KIR genes. A complete list including 
coordinates can be found at the CMRG GitHub repo [32].

As seen in Fig. 7, rowbowt ’s performance relative to 
the other methods is very similar for these genes com-
pared to the full set of genes assessed in Fig. 5. As seen in 
Fig. 6, rowbowt generally outperformed other methods 
on F1 score for medically relevant genes. For HET SNV 
variants, rowbowt achieved the highest F1 score of 0.72, 
while for ALT SNV variants, the F1 score was 0.96. In the 

case of Indel variants, rowbowt was the leader with an 
F1 score of 0.82 for the ALT class, and tied with PanG-
enie with a score of 0.47 for the HET class. As for SVs, 
rowbowt had the highest F1 score of 0.56 in the ALT 
class, and a comparable score of 0.19 in the HET class, 
closely following PanGenie ’s score of 0.22.

Computational performance
We compared the time and memory usage of each geno-
typing method, dividing the computations performed 
by each method into a few distinct categories. For each 
phase, we measured both the wall-clock time elapsed and 

Fig. 6 F1 scores across variant types and tools. Computed genomewide (top) and over only those variants in medically relevant autosomal genes 
(bottom)
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Fig. 7 Precision and recall presented as in Fig. 5 but filtered to only the medically relevant autosomal genes, collected from medical gene 
databases by the Genome in a Bottle (GiaB) project
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maximum memory (“maximum resident set”) used. Both 
were measured with the Snakemake tool’s benchmark 
directive [33].

We categorized and benchmarked three distinct types 
of computation. For bowtie2+bcftools, we defined 
the “Alignment” step as the process of using bowtie2 to 
align reads to the linear reference genome. For rowbowt, 
we defined the “Alignment” step as the process of using 
the rb_markers command to genotype the reads using 
the algorithm described in Methods. For the alignment-
free methods PanGenie and BayesTyper, we use the 
term “Pre-genotyping” for the initial phase that includes 
k-mer counting and other index building procedures. In 

the case of BayesTyper, this specifically consists of 
(a) using the KMC3 software [34] to count k-mers in the 
input reads, (b) using the bayestyper makeBloom 
command to convert k-mer counts to Bloom filters for 
each sample, and (c) using the bayestyper clus-
ter command to identify variant clusters. In the case 
of PanGenie, “Pre-genotyping” consists of: (a) read-
ing input files, (b) k-mer counting, (c) path selection, (c) 
determining unique k-mers. Also for PanGenie, the ini-
tial input VCF file must be preprocessed into a new VCF 
file containing additional fields, accounting for about 1 h 
of computation, not included in our measurements.

Fig. 8 Wall clock time and peak memory footprint for each phase of the genotyping workflow for four methods tested
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16 threads were used during the Alignment phase for 
bowtie2+bcftools, rowbowt and PanGenie, while 
32 threads were used for BayesTyper.

For bowtie2+bcftools, we define the Genotyping 
step as the process of using bcftools call to call 
variants from the BAM file output by bowtie2. For 
rowbowt We define the Genotyping phase as the pro-
cess of running the vc_from_markers.py script on 
the output from rb_markers. For BayesTyper, we 
define the genotyping step as the process of running the 
bayesTyper genotype command. PanGenie was 
run by providing 16 threads. Figure 8 shows the time-
taken and peak memory footprint for each method and 
on defined phases.

The Genotype phases for both bowtie2+bcftools 
and rowbowt do not support multi-threading, so a sin-
gle thread was used. For the BayesTyper and Pange-
nome Genotype phases, we used 16 threads.

Figure  8 shows the time taken and peak memory 
footprint for each method and each category. We 
observed that rowbowt was consistently faster than 
the other methods in the Genotyping phase, sometimes 
by a large margin. We also observed that while row-
bowt has a higher memory footprint compared to the 
bowtie2+bcftools method, it uses substantially 
less memory than BayesTyper and PanGenie, the 
other pangenome-based methods. PanGenie has a 
particularly high (>100 gigabyte) memory footprint in 
both the Pre-genotyping and Genotyping steps.

Discussion
We proposed a family of novel marker array structures, 
M , MA and MA

w that, together with a pangenome index 
like the r-index, allow for rapid and memory-efficient 
genotyping with respect to large pan-genome refer-
ences. The augmented marker array is smaller and 
faster to query than the run-sampled suffix array — the 
usual way to establish where matches fall when query-
ing a run-length compressed index — especially when 
we limit the set of markers to just alleles at frequency 
1% or higher. We further showed that the augmented 
marker array can replace the sampled suffix array in 
simple genotyping experiments with moderate sacrifice 
of precision, and that a marker array based genotyping 
method outperforms the graph-based BayesTyper 
method.

Pan-genome indexes allow for rapid analysis of reads 
while reducing reference bias. The indexes used in our 
experiments consisted of many (up to 65) haplotypes, 
with none having a higher priority over the others, except 
in the sense that results were expressed in terms of the 
standard reference. Our approach preserves all linkage 
disequilibrium information. This is in contrast to some 

graph-indexing approaches, which might consider all 
possible combinations of nearby alleles to be “valid,” even 
if most combinations never co-occur in nature.

While we examined only simple structural variants in 
the form of insertions and deletions longer than 50 bp, 
the genotyping method is readily extensible to more 
complex differences as well. Indeed, as long as we can 
mark the base or bases just to the left of the variant, we 
can mark any variant in a way that we can later genotype.

Our method will mark only a single base that is to the 
left of the boundary (“breakpoint”) of a variant. This is 
true whether the variant is large (i.e.  is a large insertion 
or deletion) or small (i.e.  an SNV). We choose to mark 
the base to the left of the boundary rather than the right 
because suffixes starting from the base to the right will be 
unaffected by the REF and ALT alleles; therefore, matches 
spanning that position do not necessarily carry evidence 
for a particular allele. That said, an alternative approach 
would be to consider “suffixes” extending in either direc-
tion—either left-to-right or right-to-left—by additionally 
indexing the reverse of the reference sequences. If both 
forward and reverse versions of the index are available, 
our method can be made more robust by combining 
the evidence obtained from matches spanning both the 
left and right boundaries of the polymorphic variant. In 
the future, it will be important to measure whether the 
increase in index size and genotyping memory footprint 
can justify this refinement.

We also note that our strategy marks only a single 
left-flank base position per variant, even in the case of 
an insertion or deletion where the alleles span different 
numbers of bases. For instance, for an insertion where 
the REF allele is A and the ALT allele is AGG . If we were 
instead to mark both the left-flank base (A in this exam-
ple) and every base within the insertion (the two Gs in the 
ALT allele), we are vulnerable to a bias resulting from the 
fact that there are more opportunities to observe a match 
overlapping the longer allele than the shorter one. With-
out any correction, this artificially inflates the evidence 
from the longer allele. That said, it should be possible to 
correct for the bias, e.g. by penalizing the evidence from 
the longer allele in a length-weighted fashion. In the 
future, it will be important to investigate whether this 
enhanced marking strategy yields an overall improve-
ment in genotyping accuracy.

Since this work first appeared, other groups have pur-
sued related ideas. In particular, we note that the new 
MARIA index is capable list all the distinct columns of 
the multiple alignment overlapped by a match in the 
r-index [35]. Further, that study defines a quantity called 
r′ that captures something similar to the number of dis-
tinct runs we expected to find in the MA or MA

w arrays. 
In the future it will be important to directly relate r′ to the 
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quantities discussed here and to compare the advantages 
and disadvantages of our genotyping-centric approach to 
the more general approach of MARIA.

The rowbowt method can lead to future methods that 
use information about genotypes to build a personal-
ized reference genome, containing exactly the genotyped 
alleles. Alignment to a personalized reference have been 
shown previously to be the best way to reduce reference 
bias, even more effective than the best pangenome meth-
ods [10, 13].
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