
Mun et al. Algorithms for Molecular Biology (2023) 18:2
https://doi.org/10.1186/s13015-023-00225-3

SOFTWARE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Pangenomic genotyping with the marker
array
Taher Mun1, Naga Sai Kavya Vaddadi1 and Ben Langmead1*

Abstract

We present a new method and software tool called rowbowt that applies a pangenome index to the problem of
inferring genotypes from short-read sequencing data. The method uses a novel indexing structure called the marker
array. Using the marker array, we can genotype variants with respect from large panels like the 1000 Genomes Project
while reducing the reference bias that results when aligning to a single linear reference. rowbowt can infer accurate
genotypes in less time and memory compared to existing graph-based methods. The method is implemented in the
open source software tool rowbowt available at https:// github. com/ alshai/ rowbo wt.

Keywords Sequence alignment, Indexing, Genotyping

Introduction
Given DNA sequencing reads from a donor individual,
genotyping is the task of determining which alleles the
individual has at polymorphic sites. Genotyping from
sequencing data, sometimes using low-coverage sequenc-
ing data together with genotype imputation, is a common
task in human genetics [1] and agriculture [2]. In contrast
to variant calling, genotyping is performed with respect
to a catalog of known polymorphic sites. For instance,
genotyping of a human can be performed with respect to
the 1000 Genomes Project call set, which catalogs posi-
tions, alleles and allele frequencies for tens of millions of
sites [3].

Many existing genotypers start by aligning reads to a
single linear reference genome, e.g. the human GRCh38
reference [4]. Because this reference is simply one exam-
ple of an individual’s genome, genotyping is subject to
reference bias, the tendency to make mistakes in places
where the donor differs genetically from the reference.

This was shown in studies of archaic hominids [5], HLA
genotypes [6] and structural variants [7]. A similar bias
exists for methods that extract polymorphic sites along
with genomic context, and search for these sequences
in the reads [8, 9]. In particular, the bias remains if the
flanking sequences are extracted from the reference and
so contain only reference alleles.

Reference bias can be reduced by using a pangenome
reference instead of a single linear reference. A pange-
nome can take various forms; it can be (a) a generating
graph for combinations of alleles, (b) a small collection of
linear references indexed separately, or (c) a larger collec-
tion of linear reference indexed together in a compressed
way. Pangenome graphs (option a) and small collections
of linear references (option b) have been studied in recent
literature [10–14].

Two existing methods that use pangenome graphs are
BayesTyper [15] and PanGenie [16]. BayesTyper
works by matching k-mers extracted from the input reads
to k-mers stored in a de Bruijn graph representing known
polymorphisms and their surrounding contexts. After
tallying this evidence, BayesTyper calls genotypes
based on a generative model. PanGenie uses a graph
built from haplotypes, collapsed so that variants become
bubbles. PanGenie then scans the reads and tallies
k-mers that appear in the graph. It then makes genotype

*Correspondence:
Ben Langmead
langmea@cs.jhu.edu
1 Department of Computer Science, Johns Hopkins University, Baltimore,
MD, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00225-3&domain=pdf
https://github.com/alshai/rowbowt

Page 2 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

calls based on the tallies of how often read k-mers match
to k-mers along the alternate paths that make up the dis-
tinct REF and ALT alleles.

Variant graphs like the ones used by BayesTyper and
PanGenie are effective for genotyping, but have draw-
backs when the goal is to reduce reference bias. First,
haplotype information might be removed when adding
variants to the graph, or might be included in the graph
but not considered during the read mapping process.
This can cause graph-based tools to consider many extra-
neous haplotype paths through the graph during geno-
typing, increasing running time. Second, variant graphs
can grow exponentially—in terms of the number of paths
through the graph—as variants are added, leading to a
rapid increase in resource usage and likelihood of ambig-
uous alignments.

We sought a way to reduce reference bias by indexing
and querying many linear references at once while keep-
ing index size and query time low. Such an approach can
take full advantage of linkage disequilibrium information
in the panel, allowing no recombination events except
those occurring in the panel. This avoids mapping ambi-
guity from spurious recombination events between poly-
morphic sites [10].

We propose a new structure called the marker array
that replaces the suffix-array-sample component of the
r-index with a structure tailored to the problem of col-
lecting genotype evidence. Here we describe the marker
array structure in detail. We compare its space usage and
query time to those of the standard r-index and explore
how accurately both structures are able to capture mark-
ers from a sequencing dataset. Finally, we benchmark
it using real whole-genome human sequencing data
and compare it to the BayesTyper and PanGenie
genotyping tools in terms of both genotyping accuracy
and computational efficiency. We do this for variants
genomewide and for variants in genes that are medically
relevant.

Background
r‑index
The r-index [17] is a compressed repeat-aware text index
that scales with the non-redundant content of a sequence
collection. It uses O(r) space where r is the number of
same-character runs in the Burrows-Wheeler Trans-
form (BWT) of the input text. Past work shows that the
r-index can efficiently index collections of long-read-
derived human genome assemblies [18] as well as large
collections of bacterial genomes [19].

While the main contribution of the r-index was its
strategy for storing and using a sample of the suffix array
[17], even this sample is large in practice. We propose
a new marker array structure that replaces the suffix

array while retaining its ability to deduce when a read-
to-pangenome match provides evidence for a particular
allele at a polymorphic site. The design of the marker
array flows from three observations. First, we can save
space by storing auxiliary information about polymor-
phic sites (“markers”) only at the sites themselves. There
are often far fewer sites harboring polymorphism than
there are BWT runs. Second, pangenome suffixes start-
ing with the same allele tend to group together in the suf-
fix array, which can be exploited to compress the marker
array structure. Third, while a suffix array entry is an off-
set into the pangenome requiring O(log n) bits, a marker
need only distinguish markers and alleles, and so requires
just O(logM) bits where M is the number of polymorphic
sites.

Methods
Preliminaries
Consider a string S of length n from ordered alphabet � ,
with operator ≺ denoting lexicographical order. Assume
S’s last character is lexicographically less than the others.
Let F be an array of S’s characters sorted lexicographically
by the suffixes starting at those characters, and let L be
an array of S’s characters sorted lexicographically by the
suffixes starting immediately after them. The list L is the
Burrows-Wheeler Transform [20] of S, abbreviated BWT.

The BWT can function as an index of S [21]. Given a
pattern P of length m < n , we seek the number and loca-
tion of all occurrences of P in S. If we know the range
BWT(S)[i..j] occupied by characters immediately preced-
ing occurrences of a pattern Q in S, we can compute the
range BWT(S)[i′..j′] containing characters immediately
preceding occurrences of cQ in S, for any character c ∈ � ,
since

The FM Index is a collection of data structures for exe-
cuting such queries efficiently. It consists of an array C
storing |{h : S[h] ≺ c}| for each character c, plus a rank
data structure for BWT(S) , e.g. a wavelet tree, that can
quickly tally the occurrences of a character c up to a posi-
tion of BWT . To locate the offsets of occurrences of P in
S, the FM-index can additionally include some form of
S’s suffix array. The suffix array SA is an array parallel to
F containing the offsets of the characters in F. To save
space, the FM-index typically keeps only a sample of SA ,
e.g. a subset spaced regularly across SA or across S.

Let T = {T0,T1, . . . ,Tn} be a collection of n similar
texts where T0 is the reference sequence, and T1, . . . ,Tn

(1)
i′ = |{h : S[h] ≺ c}| + |{h : BWT(S)[h] = c, h < i}|.

(2)
j′ = |{h : S[h] ≺ c}| + |{h : BWT(S)[h] = c, h ≤ j}| − 1.

Page 3 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

are alternative sequences. In the scenarios studied here, a
Ti represents a human haplotype sequence, with all chro-
mosomes concatenated, and T0 represents the GRCh38
primary assembly of the human genome. Each Ti with
i > 0 is an alternate haplotype taken either from the 1000
Genomes project call set [3] or from the HGSVC pro-
ject [22, 23], each with chromosomes concatenated in
the same order as T0’s. We use the terms “haplotype” and
“genome” interchangeably here.

We assume that all the Ti ’s are interrelated through a
multiple alignment, e.g. as provided in a Variant Call For-
mat (VCF) file. The multiple alignment is a matrix with

genomes in rows and columns representing genomic off-
sets. The elements are either bases or gaps. We call a col-
umn consisting of identical bases and lacking any gaps a
uniform column. Any other column is a polymorphic col-
umn. Figure 1 illustrates a multiply-aligned collection of
haplotypes and the concatenated text T.

Marker array
Let the “marker array” M be an array parallel to the con-
catenated sequence T marking positions that fall in a
polymorphic column in the multiple alignment. Each ele-
ment of M is a tuple recording the offset i with respect

Fig. 1 Top left: A multiple alignment for a collection of alternate haplotypes (H1–H9), and a reference sequence (R). Marked bases are in bold and
alternate alleles are colored. Middle left: The text T, formed by concatenating rows of the multiple alignment (eliding gaps). Bottom left: The edit
table E, with alternate-allele coloring. Right: A partial illustration of the marker array in relation to SA , the relevant suffixes themselves (truncated to
fit), and the BWT . Colors and bolding highlight where marked bases and alternate alleles end up in the suffixes

Page 4 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

to T0 where the polymorphism begins, as well as the edit
operation describing how the sequence differs from the
reference at this locus. Distinct edit operations are given
distinct integer identifiers, which are decoded using a
separate table E. Identifier 0 is the null operation, denot-
ing that the reference allele appears without edits. For
example, say E = {1 : X → C} , where X → C denotes a
substitution that replaces the reference base with C. Then
a marker array record m = (500, 0) marks a locus with no
edit with respect to reference position T0[500] . A record
m′ = (500, 1) denotes that a substitution changes that
base at T0[500] to a C. An example is shown in Fig. 1 (bot-
tom left).

Consecutive substitutions are collapsed into a single
edit in the E table. Insertions and deletions (“indels” for
short) are treated somewhat differently; the offset car-
rying the “mark” is the one just preceding the indel (just
to its left) in the multiple alignment. Importantly, the
mark covers exactly one position in the genome, even
if the insertion/deletion spans many bases. The marked
position must come to the left of the indel to ensure
that suffixes starting at the marked position include the
allele itself. In the multiple alignment in Fig. 1 (top left),
for example, a deletion with respect to R occurs in the
fourth-from-left column, but the marked position is in
the third-from-left column.

The marker array MA is a permutation of M such that
marks appear in suffix-rank order:

Definition 1 The marker array MA is the mapping such
that MA[i] = M[SA[i]].

Thanks to suffix-rank order, identical M[i] ’s are often
grouped into runs in MA , as seen in Fig. 1 (right).

A marker query for pattern string q returns all m ∈ M
overlapped by an occurrence of q in T. We can begin to
answer this query using backward search (Eq. 1) with
P = q , giving the maximal SA range [i..j] such that q is a
prefix of the suffixes in the range. Having computed [i..j],
we know that {MA[i], ...,MA[j]} contain markers over-
lapped by q’s leftmost character. To recover the markers
overlapped by the rest of q’s characters, two approaches
can be considered, detailed in the following subsections.
The FL approach recovers the overlapped markers in a
straightforward way but uses O(|q| · occ) time, where
occ is the number of times q occurs in T. The heuristic
backward-search approach requires only O(|q|) time but
is not fully sensitive, i.e. it can miss some overlaps.

FL approach
Say [i..j] is the maximal SA range such that all rows have
q as a prefix. We can perform a sequence of FL steps,

starting from each row x ∈ [i..j] . An FL step is the inverse
of an LF step. That is, if we write an LF mapping step in
terms of a rank query

where S.rankc(i) denotes the number of occurrences of
c in S up to but not including offset i, then an FL step
inverts this using a select query

where S.selectc(i) returns the offset of the i + 1th occur-
rence of c in S, i.e. the c of rank i. Whereas LF takes a
leftward step with respect to T, FL takes a rightward step.

By starting in each row x ∈ [i..j] and performing a
sequence of |q| − 1 FL steps for each, we can visit each
offset of T overlapped by an occurrence of q. Checking
MA[k] at each step, where k is the current row, tells us
which marker is overlapped, if any. This is slow in prac-
tice, both because it requires O(|q|(j − i + 1)) FL steps
in total, and because each step requires a select query,
which is more costly in practice than a rank query.

Heuristic backward‑search approach with smearing
Say we perform a backward search starting with the
rightmost character of q. At each step we are consid-
ering a range [i..j] of SA having a suffix of q as a prefix.
Using i and j, we can query MA[i..j] . However, this tells us
instances where a suffix of q overlaps a marker, whereas
our goal is to find where the whole query q overlaps a
marker. If we report overlaps involving trivially short suf-
fixes of q, many would be false positives. We propose to
allow but reduce the number of such false positives by
augmenting MA:

Definition 2 The augmented marker array MA
w is a

multimap such that MA
w
[i] = [M[SA[i]],M[SA[i] + 1], ...,

M[SA[i] + w]]

That is, MA
w[i] is a (possibly empty) list containing

markers overlapping any of the positions T [i..i + w] . We
call this a “smeared” marker array, since the marks are
extended (smeared) to the left by w additional positions.
Note that a length-w extension can overlap one or more
other marked variants to the left. For this reason, MA

w
must be a multimap, i.e. it might associate up to w mark-
ers with a given position.

Using MA
w , we adjust the backward-search strategy so

that instead of querying MA at each step, we query MA
w

every w steps. If w is large enough—e.g. longer than the
length at which we see random-chance matches—we
can avoid many false positives. More space is required

(3)i′ = |{h : S[h] ≺ c}| + BWT.rankBWTi,

(4)i =BWT.selectF [i′](i
′ − |{h : S[h] ≺ F [i′]}|),

Page 5 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

to represent MA
w compared to MA since it is less sparse.

However, we expect MA
w to remain run-length com-

pressible for the same reason that MA is.

Genotyping a read
Given a sequencing read, we would like to extract as
much genotype information as possible while minimiz-
ing computational cost and false-positive genotype evi-
dence. Here we give a heuristic algorithm (Algorithm 1)
that handles entire sequencing reads, querying MA

w
during the backward-search process as proposed in the

previous section. The algorithm proceeds right to left
through the read, growing the match by one character if
possible. When we can no longer grow the match (i.e. the
range [i..j] becomes empty), we reset the range to the all-
inclusive range [0..|T | − 1] and restart the matching pro-
cess at the next character. We use the term “extension” to
refer to a consecutive sequence of steps that successfully
extend a match. Note that this is a heuristic algorithm
that does not exhaustively find all half-MEMs between
the read and the index, as the MONI algorithm does [24].

Page 6 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

As discussed above, the algorithm only checks the
marker array every w steps (line 14). As an additional
filter, the algorithm only performs a marker-array query
when the current suffix-array range size is no larger than
the number of haplotypes in the index (Nh). A range
exceeding that size indicates that we are seeing more
than one distinct match in at least one haplotype, mean-
ing that the evidence is ambiguous.

The algorithm tallies evidence as it goes (line 18), but
might later choose to ignore that evidence if certain
conditions are not satisfied (lines 10 and 27). For exam-
ple, if the evidence has a conflict—i.e. one match indi-
cates a reference allele at a site but another match found
during the same extension finds an alternate allele at
that site—then all the evidence is discarded for that
extension. Similarly, evidence from an extension is dis-
carded if the tallied sites span multiple chromosomes.
Finally, evidence from extensions failing to match at
least 80 bp of the read (adjustable with --min-seed-
length option) is discarded.

We employ other heuristics to minimize mapping
time not shown in Algorithm 1. For instance, we avoid

wasted effort spent querying the wrong read strand.
Specifically: rowbowt randomly selects an initial
strand of the read to investigate: forward or reverse
complement. If an extension from this strand meets the
minimum seed-length threshold (80 by default), then
the other strand is not considered and analysis of the
read is complete. Otherwise, rowbowt then goes on to
examine the opposite strand of the read.

Sparse marker encoding
We encode the sparse arrays M , MA and MA

w in the
following way. Say that array A consists of empty and
non-empty elements. We consider A’s non-empty ele-
ments as falling into one of x maximal runs of identical

(and non-empty) elements. Our sparse encoding for A
consists of three structures. S is a length-|A| bit vector
with 1s at the positions where a run of identical entries
in A begins, and 0s elsewhere. E is a similar bit vector
marking the last position of each of the x runs. (This
variable E is distinct from the E table defined above
in “Marker Array.”) To find whether an element A[i] is
non-empty, we can ask whether we are between two
such marks; that is, A[i] is non-empty if and only if
S.rank1(i + 1) > E.rank1(i).

X is a length-x array containing the element that is
repeated in each of A’s non-empty runs, in the order
they appear in A. If A[i] is not empty, the element
appearing there is given by X[E.rank1(i)].

When encoding M or MA , the elements of X are simply
tuples. A complication exists for MA

w , since elements are
lists of up to w tuples. In this case, we keep an additional
bit-vector B of size |X| where 1s denote left-hand bound-
aries in X that correspond to runs in A. E and B can be
used together to access an element in A (Algorithm 2).

Extracting markers from VCF
A Variant Calling Format (VCF) [25] file is used to
encode a collection of haplotypes with the variants
arranged in order according to a reference genome. In
the case of human and other diploid genomes, haplo-
types are grouped as pairs. We refer to such a collection
of haplotypes as a “panel” and a single haplotype as a
“panelist.” An VCF entry encodes a variant as a tuple
consisting of a chromosome, offset, the allele found in
the reference, the alternate allele found in one or more
panelists, and a sequence of flags indicating whether
each panelist has the reference or alternate version. We
start from a VCF file to determine how to populate the
marker arrays M , MA and/or MA

w , as well as the edit
array E.

Page 7 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

A single element of M is a tuple (r, e), where r is an off-
set in T0 and e is the edit operation describing how the
sequence differs from the reference. As a practical mat-
ter, we represent these tuples in a different way that more
closely resembles the corresponding VCF records. Spe-
cifically, a marker is encoded in a 64-bit word divided
into three fields. First, a 12 bit field identifies the chromo-
some containing the marker. The chromosome ordering
is given at the beginning of the VCF file in the “header”
section. For example, if “chr1” is the first chromosome in
the header, then this chromosome is encoded as 0x000
(using hexadecimal), and if “chr2” is the second chromo-
some, it is encoded as 0x001. Second is a 54 bit field
encoding the marker’s offset within the chromosome.
Third is a 4-bit field storing which version of the variant
is present, with 0 indicating the reference allele, 1 indicat-
ing the 1st alternate allele, 2 the second alternate allele,
etc. This 64-bit representation allows for compact storage
of markers and easier random access to the marker array.

Diploid genotyping
In a diploid genome, it is possible for both alleles to
occur, i.e. for the genotype to be heterozygous. We use an
existing approach [26] to compute genotype likelihoods
considering all possible diploid genotypes: homozygous
reference (2 reference alleles), homozygous alternate (2
alternate alleles), or heterozygous (1 reference, 1 alter-
nate). Let g ∈ {0, 1, 2} denote the number of reference-
allele copies at the marked site; e.g. g = 1 corresponds
to a heterozygous site and g = 2 to a homozygous ref-
erence site. Let l be the number of times the reference
allele was observed in the reads overlapping a particular
marked site and let k be the count of all alleles (reference
or alternate) observed. Let ǫ be the sequencing error rate.
We calculate the genotype likelihood as follows, adopting
equation 2 of [26] while setting the ploidy to 2 and adopt-
ing a global rather than a per-base error rate:

To choose the most likely genotype gmax , we compute:

By default, rowbowt uses ǫ = 0.01.

Implementation details
The code for constructing the marker array is imple-
mented in the pfbwt-f spoftware package, with
repository at https:// github. com/ alshai/ pfbwt-f. This
repository also contains an efficient implementation of
the prefix-free-parse BWT construction algorithm [18].

L(g) =
1

2

k

[(2− g)ǫ + g(1− ǫ)]k [(2− g)(1− ǫ)+ gǫ]k−l .

gmax = argmaxg∈{0,1,2}L(g).

This software is written in C++17, uses the open-source
MIT license, and builds on the Succinct Data Structure
Library (SDSL) v3.0 [27].

For querying the marker array, we use the rowbowt
implementation at https:// github. com/ alshai/ rowbo wt.
This repository contains the open source C++17 imple-
mentation of rowbowt, distributed under the MIT
license. It is also a library, containing algorithms for
building and querying indexes containing various struc-
tures discussed here, including the run-sampled suffix
array, marker array, and others.

Results
We evaluated the efficiency and accuracy of our marker-
array method for compiling genotype evidence. We first
generated multiple series of rowbowt indexes covering
various settings for three parameters: the window size w
for the smeared marker array MA

w , the number of hap-
lotypes indexed, and the minimum allele frequency for
marked alleles. The rowbowt index consisted of three
components: the run-length encoded BWT, the run-sam-
pled suffix array, and the marker array. While we built the
sampled suffix array for these experiments, the stand-
ard marker-array-based method in rowbowt does not
require this array.

We generated indexes for collections of 200, 400, 800,
or 1000 human chromosome-21 haplotypes from the
1000 Genomes Phase 3 reference panel [3] based on the
GRCh37 reference. We generated two sets of indexes:
one where the marker array marks all polymorphic
sites regardless of frequency (denoted “ AF > 0”), and
another where the marker array marks only those sites
where the less common allele occurs in greater than 1%
of haplotypes, i.e. has allele frequency over 1% (denoted
“ AF > 0.01”). In all cases, the marker array window size
w was set to 19. Each haplotype collection was drawn
from a random subset of 500 individuals from the 1000
Genomes Phase 3 panel. The AF > 0 panel of 500 hap-
lotypes contained 1, 097, 388 polymorphic sites. The
AF > 0.01 panel of the same haplotypes contained
193, 438 polymorphic sites with allele frequency over 1%.
We also included the GRCh37 reference sequence, con-
sisting of all reference alleles, in each collection, corre-
sponding to the reference sequence called T0 above.

We generated a series of indexes with window size
w ∈ {13, 15, 17, 19, 21, 23, 25} . We generated two such
series: one with no minimum allele frequency (AF > 0)
and another with a 1% minimum frequency (AF > 0.01).
Each index was over the same set of 100 haplotypes.

Index size
We measured the size of the three main components
of the rowbowt index: the augmented marker array,

https://github.com/alshai/pfbwt-f
https://github.com/alshai/rowbowt

Page 8 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

the run-length encoded BWT (RLE BWT) [28] and the
run-sampled suffix array (“r-index SA”) [17]. Figure 2
plots this measurement for collections of 200, 400, 800
and 1000 haplotypes for both AF > 0 and AF > 0.01 .
All grow linearly with the number haplotypes grows,
as expected. For AF > 0 , the augmented marker array
is consistently larger than the run-sampled suffix array
(“r-index SA”). For AF > 0.01 , the augmented marker
array is much smaller, approaching the size of the RLE
BWT. The AF > 0 array is larger because it contains pol-
ymorphic sites with infrequent alleles; about 85% of the
marked sites in the AF > 0 array have allele frequency
under 1%. Further, rare alleles are less likely to form long

runs in the augmented marker array, negatively affecting
run-length compression.

In the right portion of Fig. 2, the RLE BWT and r-index
SA have constant size because the w parameter does not
affect those data structures. In the left portion of Fig. 2,
showing size as a function of number of haplotypes, the
augmented marker array is almost always larger than
the r-index SA for AF > 0 as opposed to AF > 0.01 ,
except at w = 13 . The slope of the array size is smaller for
AF > 0.01 than for AF > 0.

Overall, both the value of w and the number of hap-
lotypes in the index cause the augmented marker array
to increase in size, but the inclusion of rare alleles (< 1%
allele frequency) has the largest effect on its size.

Fig. 2 Left: Size of rowbowt data structures as a function of the
number of haplotypes indexed, and with w = 19 . “Marker array”
refers to the augmented marker array, MA

w . Right: Size of rowbowt
data structures as a function of the “smearing” window size w, with
number of haplotypes fixed at 100. Separate results are shown for
when there is no minimum allowed allele frequency (AF > 0) and
when the minimum frequency is 1% (AF > 0.01)

Fig. 3 Mean time over 10 trials of aligning 10,000 simulated reads
from HG01498 against the augmented marker array (marker) and
the r-index suffix array (locate). Experiments are repeated for marker
collections including all alleles (AF > 0) and for alleles having
frequency at least 1% (AF > 0.01). Left: The experiment is repeated
for various window sizes w, and for 100 haplotypes. Right: The
experiment is repeated for different numbers of indexed haplotypes,
with w = 19

Page 9 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

Query time
We next measured query time for the augmented marker
array strategy versus the locate-query strategy which
uses the run-sampled suffix array. 150 bp simulated reads
of 25x coverage were generated for one haplotype of
HG01498, an individual that is part of the 1000-Genomes
panel, but which we excluded from all our indexes. We
simulated reads using Mason 2 mason_simulator
[29] with default options.

In the case of the marker-array strategy, we measured
the time required to analyze the reads using the algo-
rithm described above in “Genotyping a read.” In the case
of the locate-query strategy, the MA

w query was replaced
with a two-step process that first performed a locate
query with respect to the run-sampled suffix array, then
performed a lookup in the M array. To enable this mode,
we further augmented the r-index with a representa-
tion of M using the sparse encoding described above. To
emphasize: the rowbowt strategy does not require the
run-sampled suffix array or the M array; the MA

w effec-
tively replaces them both.

We repeatedly sampled 10,000 simulated reads and
recorded the mean query time over 10 trials. As seen
in Fig. 3 the augmented marker-array method (labeled
“marker”) was consistently faster than locate method.
This was true for all allele frequencies and window sizes
tested. We found that the effect of w and allele-frequency
cutoff was more pronounced with the larger reference
panel AF > 0 . For the smaller panel (AF > 0.01), query
time was mostly invariant to both window size and allele
frequency.

Genotyping accuracy
We next measured the accuracy of the genotype infor-
mation gathered using the augmented marker array.
We simulated sequencing reads from one haplotype of
HG01498 to an average depth of 25-fold coverage. Indi-
vidual HG01498 was excluded from the indexes. As our
“truth” set for evaluation, we use the variant calls in the
1000 Genomes project callset for the same haplotype we
simulated from. For simplicity, this experiment treats the
genome as haploid. Experiments in the next section will
account for the diploid nature of human genomes.

A single marked site can have conflicting evidence, due,
for instance, to mismapped reads or sequencing errors.
For this evaluation, we make calls simply by finding the
frequently observed allele at the site. We ignore any
instances of alleles other than the ones noted in the VCF
file as the reference and alternate alleles. If the reference
and alternate alleles have equal evidence, the reference
allele is called.

We calculate precision and recall according to the fol-
lowing formulas. Here, the positive class consists of

marked sites that truly have the alternate allele, while the
negative class consists of marked sites that truly have the
reference allele. We measure:

where TP stands for True Positive, FN stands for False
Negative, etc.

Figure 4 shows precision and recall with respect to the
number of haplotypes in the index and the minimum
allele frequency of the haplotype collection. We observed
that the AF > 0.01 indexes generally had better precision
compared to the AF > 0 indexes, though at the expense
of recall. Precision and recall generally improve with the
addition of more haplotypes to the index. The augmented
marker array has similar recall to the locate procedure
across all haplotype sizes at the loss of precision. When

Precision =
TPs

TPs + FPs
Recall =

TPs

TPs + FNs
,

Fig. 4 Precision (left) and recall (right) of the calls made when
querying 25x simulated reads from HG01498 against the augmented
marker array (marker) and the r-index (locate). Stratified by minimum
allowed allele frequency (AF) in the index

Page 10 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

rare variants are removed from the index (AF > 0.01),
the gap in precision between the marker array and the
locate procedure lessens. This mild (less than 0.1%) loss
of precision is expected since algorithm described above
in “Genotyping reads” is still prone to some false posi-
tives in the earlier part of the extension process.

Diploid genotyping assessment
To assess diploid genotyping accuracy, we used data
from the Human Genome Structural Variation Consor-
tium (HGSVC) [22, 23]. The HGSVC called both simple
and complex genetic variants across a panel of 64 human
genomes. Calls were made with respect to the GRCh38
primary assembly [4]. For input reads, we subsampled
reads from a 30-fold average coverage PCR-free read set
provided by the 1000 Genomes Project [3] (accession
SRR622457). To create more challenging scenarios for
the genotypers, we randomly subsampled the read sets
to make smaller datasets of 0.01, 0.05, 0.1, 0.5, 1, 2 and
5-fold average coverage.

We assessed four genotyping methods. The first
(bowtie2+bcftools) used Bowtie 2 [30] v2.4.2 to
align reads to a standard linear reference genome, then
used BCFtools v1.13 to call variants (i.e. genotypes)
at the marked sites [26]. The second method used the
graph-based genotyper BayesTyper v1.5. The third
was PanGenie [16], a pangenome-based genotyper
for short reads. PanGenie calls genotypes for variants
that are represented in its index as bubbles in a pange-
nome. PanGenie represents known haplotypes as paths
through the graph, accounting for these paths during the
genotyping process. PanGenie takes directed acyclic
pangenome graph as input, represented as a VCF file
containing phased genotypes for many samples. PanGe-
nie further requires that the VCF have non-overlapping
variants. We generated a compliant input VCF using a
workflow provided by the PanGenie project1 We used
the “high-gq” quality filter also used in the PanGenie
study: genotype quality (GQ) ≥ 200 . The fourth method
assessed was rowbowt.

Prior to applying BayesTyper, we built a Bayes-
Typer-compatible VCF file containing all relevant vari-
ants from the HGSVC haplotype panel. For rowbowt,
we created a rowbowt index from the genomes in the
HGSVC haplotype panel. In both cases we excluded
NA12878’s haplotypes from the panel prior to building
the index.

When evaluating, we stratified variants by complex-
ity: the “SNV” category includes single-nucleotide

substitutions, “Indel” includes indels no more than 50bp
long, and “SV” includes insertion or deletions longer than
50bp, and “All” includes all variant types. More complex
structural variants like inversions and chromosomal rear-
rangements are ignored.

We analyzed the accuracy of rowbowt ’s diploid gen-
otypes in two ways. First we considered allele-by-allele
precision and recall, considering the alternate (ALT)
allele calls to be the positive class. Specifically, every dip-
loid genotype called by a method is considered as a pair
of individual allele calls. If a given allele call is an alternate
(ALT) allele and there is at least one ALT allele present in
the true diploid genotype at that site, it counts as a true
positive (TP). If the given allele is a reference allele (REF)
and there is at least one REF allele in the true diploid gen-
otype, this is a true negative (TN). If the given allele is an
ALT but the true genotype is homozygous REF, we count
it as a false positive (FP). Finally, if the given allele is REF
but the true genotype is homozygous ALT, this is a a false
negative (FN).

Second, we considered precision and recall with
respect to sites that were either truly heterozygous or
called heterozygous. If a heterozygous call made by a
method is truly heterozygous, this was counted as a true
positive (TP). False positives, false negatives, and true
negatives are defined accordingly.

As seen in Fig. 5, rowbowt ’s ALT and HET preci-
sion were generally the highest of all the methods across
all variant categories, though BayesTyper sometimes
achieved higher ALT/HET precision for indels in the
higher-coverage datasets and PanGenie had the highest
HET precision for SNVs and Indels for some coverages.
At the highest coverage level examined (5-fold), PanG-
enie also achieved similar ALT precision to rowbowt
on SNVs and Indels. rowbowt dominates on precision
of SV calls, and also exhibits the best recall for ALTs at
higher coverage. PanGenie exhibits slightly higher
recall for HET SVs.

Figure 6 compares the methods on their F1 measure.
rowbowt achieved the highest F1 scores for ALT and
HET SNBs. For HET SNV variants, rowbowt had the
highest F1 score of 0.71, while for ALT SNV variants, the
F1 was 0.95. In the case of Indel variants, rowbowt pro-
duced the highest F1 score of 0.81 for the ALT class and
tied with PanGenie for the HET class, with an aggregate
score of 0.48. Fr SVs, rowbowt had the highest F1 score of
0.55 in the ALT class and a comparable score of 0.21 in
the HET class, just below PanGenie ’s score of 0.23.

Diploid genotyping assessment on medically relevant
genes
We obtained a list of medically relevant autosomal genes,
collected from medical gene databases by the Genome

1 The workflow can be found in the pipelines/run-from-callset
subdirectory of the PanGenie repository.

Page 11 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

Fig. 5 Precision and recall for the four tested genotyping methods, both at the level of individual alleles (ALT precision/recall) and at the level of
heterozygous variants (HET precision/recall). Note that the bowtie2+bcftools approach is generally unable to align reads across variants in the “SV”
category, leading to low precision and recall

Page 12 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

in a Bottle (GiaB) project [31]. Among the 5,026 genes
included are the major MHC Class I genes (HLA-A,
HLA-B, HLA-C), MHC Class II genes (HLA-DP, HLA-
DQ, HLA-DR) and KIR genes. A complete list including
coordinates can be found at the CMRG GitHub repo [32].

As seen in Fig. 7, rowbowt ’s performance relative to
the other methods is very similar for these genes com-
pared to the full set of genes assessed in Fig. 5. As seen in
Fig. 6, rowbowt generally outperformed other methods
on F1 score for medically relevant genes. For HET SNV
variants, rowbowt achieved the highest F1 score of 0.72,
while for ALT SNV variants, the F1 score was 0.96. In the

case of Indel variants, rowbowt was the leader with an
F1 score of 0.82 for the ALT class, and tied with PanG-
enie with a score of 0.47 for the HET class. As for SVs,
rowbowt had the highest F1 score of 0.56 in the ALT
class, and a comparable score of 0.19 in the HET class,
closely following PanGenie ’s score of 0.22.

Computational performance
We compared the time and memory usage of each geno-
typing method, dividing the computations performed
by each method into a few distinct categories. For each
phase, we measured both the wall-clock time elapsed and

Fig. 6 F1 scores across variant types and tools. Computed genomewide (top) and over only those variants in medically relevant autosomal genes
(bottom)

Page 13 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

Fig. 7 Precision and recall presented as in Fig. 5 but filtered to only the medically relevant autosomal genes, collected from medical gene
databases by the Genome in a Bottle (GiaB) project

Page 14 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

maximum memory (“maximum resident set”) used. Both
were measured with the Snakemake tool’s benchmark
directive [33].

We categorized and benchmarked three distinct types
of computation. For bowtie2+bcftools, we defined
the “Alignment” step as the process of using bowtie2 to
align reads to the linear reference genome. For rowbowt,
we defined the “Alignment” step as the process of using
the rb_markers command to genotype the reads using
the algorithm described in Methods. For the alignment-
free methods PanGenie and BayesTyper, we use the
term “Pre-genotyping” for the initial phase that includes
k-mer counting and other index building procedures. In

the case of BayesTyper, this specifically consists of
(a) using the KMC3 software [34] to count k-mers in the
input reads, (b) using the bayestyper makeBloom
command to convert k-mer counts to Bloom filters for
each sample, and (c) using the bayestyper clus-
ter command to identify variant clusters. In the case
of PanGenie, “Pre-genotyping” consists of: (a) read-
ing input files, (b) k-mer counting, (c) path selection, (c)
determining unique k-mers. Also for PanGenie, the ini-
tial input VCF file must be preprocessed into a new VCF
file containing additional fields, accounting for about 1 h
of computation, not included in our measurements.

Fig. 8 Wall clock time and peak memory footprint for each phase of the genotyping workflow for four methods tested

Page 15 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

16 threads were used during the Alignment phase for
bowtie2+bcftools, rowbowt and PanGenie, while
32 threads were used for BayesTyper.

For bowtie2+bcftools, we define the Genotyping
step as the process of using bcftools call to call
variants from the BAM file output by bowtie2. For
rowbowt We define the Genotyping phase as the pro-
cess of running the vc_from_markers.py script on
the output from rb_markers. For BayesTyper, we
define the genotyping step as the process of running the
bayesTyper genotype command. PanGenie was
run by providing 16 threads. Figure 8 shows the time-
taken and peak memory footprint for each method and
on defined phases.

The Genotype phases for both bowtie2+bcftools
and rowbowt do not support multi-threading, so a sin-
gle thread was used. For the BayesTyper and Pange-
nome Genotype phases, we used 16 threads.

Figure 8 shows the time taken and peak memory
footprint for each method and each category. We
observed that rowbowt was consistently faster than
the other methods in the Genotyping phase, sometimes
by a large margin. We also observed that while row-
bowt has a higher memory footprint compared to the
bowtie2+bcftools method, it uses substantially
less memory than BayesTyper and PanGenie, the
other pangenome-based methods. PanGenie has a
particularly high (>100 gigabyte) memory footprint in
both the Pre-genotyping and Genotyping steps.

Discussion
We proposed a family of novel marker array structures,
M , MA and MA

w that, together with a pangenome index
like the r-index, allow for rapid and memory-efficient
genotyping with respect to large pan-genome refer-
ences. The augmented marker array is smaller and
faster to query than the run-sampled suffix array — the
usual way to establish where matches fall when query-
ing a run-length compressed index — especially when
we limit the set of markers to just alleles at frequency
1% or higher. We further showed that the augmented
marker array can replace the sampled suffix array in
simple genotyping experiments with moderate sacrifice
of precision, and that a marker array based genotyping
method outperforms the graph-based BayesTyper
method.

Pan-genome indexes allow for rapid analysis of reads
while reducing reference bias. The indexes used in our
experiments consisted of many (up to 65) haplotypes,
with none having a higher priority over the others, except
in the sense that results were expressed in terms of the
standard reference. Our approach preserves all linkage
disequilibrium information. This is in contrast to some

graph-indexing approaches, which might consider all
possible combinations of nearby alleles to be “valid,” even
if most combinations never co-occur in nature.

While we examined only simple structural variants in
the form of insertions and deletions longer than 50 bp,
the genotyping method is readily extensible to more
complex differences as well. Indeed, as long as we can
mark the base or bases just to the left of the variant, we
can mark any variant in a way that we can later genotype.

Our method will mark only a single base that is to the
left of the boundary (“breakpoint”) of a variant. This is
true whether the variant is large (i.e. is a large insertion
or deletion) or small (i.e. an SNV). We choose to mark
the base to the left of the boundary rather than the right
because suffixes starting from the base to the right will be
unaffected by the REF and ALT alleles; therefore, matches
spanning that position do not necessarily carry evidence
for a particular allele. That said, an alternative approach
would be to consider “suffixes” extending in either direc-
tion—either left-to-right or right-to-left—by additionally
indexing the reverse of the reference sequences. If both
forward and reverse versions of the index are available,
our method can be made more robust by combining
the evidence obtained from matches spanning both the
left and right boundaries of the polymorphic variant. In
the future, it will be important to measure whether the
increase in index size and genotyping memory footprint
can justify this refinement.

We also note that our strategy marks only a single
left-flank base position per variant, even in the case of
an insertion or deletion where the alleles span different
numbers of bases. For instance, for an insertion where
the REF allele is A and the ALT allele is AGG . If we were
instead to mark both the left-flank base (A in this exam-
ple) and every base within the insertion (the two Gs in the
ALT allele), we are vulnerable to a bias resulting from the
fact that there are more opportunities to observe a match
overlapping the longer allele than the shorter one. With-
out any correction, this artificially inflates the evidence
from the longer allele. That said, it should be possible to
correct for the bias, e.g. by penalizing the evidence from
the longer allele in a length-weighted fashion. In the
future, it will be important to investigate whether this
enhanced marking strategy yields an overall improve-
ment in genotyping accuracy.

Since this work first appeared, other groups have pur-
sued related ideas. In particular, we note that the new
MARIA index is capable list all the distinct columns of
the multiple alignment overlapped by a match in the
r-index [35]. Further, that study defines a quantity called
r′ that captures something similar to the number of dis-
tinct runs we expected to find in the MA or MA

w arrays.
In the future it will be important to directly relate r′ to the

Page 16 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

quantities discussed here and to compare the advantages
and disadvantages of our genotyping-centric approach to
the more general approach of MARIA.

The rowbowt method can lead to future methods that
use information about genotypes to build a personal-
ized reference genome, containing exactly the genotyped
alleles. Alignment to a personalized reference have been
shown previously to be the best way to reduce reference
bias, even more effective than the best pangenome meth-
ods [10, 13].

Acknowledgements
We thank Massimiliano Rossi and Travis Gagie for many helpful discussions.
We thank Margaret Gagie for her careful editing.Part of this research project
was conducted using computational resources at the Maryland Advanced
Research Computing Center (MARCC).

Author contributions
TM and BL conceived the method. TM wrote the Rowbowt software tool. TM,
NGKV and BL designed and ran the experiments. TM, NGKV and BL wrote and
revised the manuscript. All authors reviewed the manuscript. All authors read
and approved the final manuscript.

Funding
N.S.K.V., T.M. and B.L. were supported by NIH grants R01HG011392 and
R35GM139602 to BL. T.M. and B.L. were also supported by NSF DBI Grant
2029552.

Availability of data and materials
rowbowt is available at https:// github. com/ alshai/ rowbo wt.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 31 March 2023 Accepted: 22 April 2023

References
 1. Davies RW, Kucka M, Su D, Shi S, Flanagan M, Cunniff CM, Chan YF, Myers

S. Rapid genotype imputation from sequence with reference panels. Nat
Genet. 2021;53(7):1104–11.

 2. Kim C, Guo H, Kong W, Chandnani R, Shuang LS, Paterson AH. Application
of genotyping by sequencing technology to a variety of crop breeding
programs. Plant Sci. 2016;242:14–22.

 3. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini
JL, McCarthy S, McVean GA, Abecasis GR, et al. A global reference for
human genetic variation. Nature. 2015;526(7571):68–74.

 4. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA,
Murphy TD, Pruitt KD, Thibaud-Nissen F, Albracht D, et al. Evalua-
tion of GRCh38 and de novo haploid genome assemblies demon-
strates the enduring quality of the reference assembly. Genome Res.
2017;27(5):849–64.

 5. Günther T, Nettelblad C. The presence and impact of reference bias on
population genomic studies of prehistoric human populations. PLoS
Genet. 2019;15(7):1008302.

 6. Brandt DY, Aguiar VR, Bitarello BD, Nunes K, Goudet J, Meyer D. Mapping
bias overestimates reference allele frequencies at the HLA genes in the
1000 genomes project phase I data. G3 (Bethesda). 2015;5(5):931–41.

 7. Sherman RM, Forman J, Antonescu V, Puiu D, Daya M, Rafaels N, Boorgula
MP, Chavan S, Vergara C, Ortega VE, et al. Assembly of a pan-genome
from deep sequencing of 910 humans of African descent. Nat Genet.
2019;51(1):30–5.

 8. Denti L, Previtali M, Bernardini G, Schönhuth A, Bonizzoni P. MALVA: geno-
typing by mapping-free ALlele detection of known VAriants. iScience.
2019;18:20–7.

 9. Shajii A, Yorukoglu D, William Yu Y, Berger B. Fast genotyping of
known SNPs through approximate k-mer matching. Bioinformatics.
2016;32(17):538–44.

 10. Pritt J, Chen NC, Langmead B. FORGe: prioritizing variants for graph
genomes. Genome Biol. 2018;19(1):220.

 11. Chen S, Krusche P, Dolzhenko E, Sherman RM, Petrovski R, Schlesinger F,
Kirsche M, Bentley DR, Schatz MC, Sedlazeck FJ, Eberle MA. Paragraph: a
graph-based structural variant genotyper for short-read sequence data.
Genome Biol. 2019;20(1):291.

 12. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, Jones
W, Garg S, Markello C, Lin MF, Paten B, Durbin R. Variation graph toolkit
improves read mapping by representing genetic variation in the refer-
ence. Nat Biotechnol. 2018;36(9):875–9.

 13. Chen NC, Solomon B, Mun T, Iyer S, Langmead B. Reference flow: reduc-
ing reference bias using multiple population genomes. Genome Biol.
2021;22(1):8.

 14. n J, Monlong J, Chang X, Novak AM, Eizenga JM, Markello C, Sibbesen JA,
Hickey G, Chang PC, Carroll A, Gupta N, Gabriel S, Blackwell TW, Ratan A,
Taylor KD, Rich SS, Rotter JI, Haussler D, Garrison E, Paten B. Pangenom-
ics enables genotyping of known structural variants in 5202 diverse
genomes. Science. 2021;374(6574):8871.

 15. Sibbesen JA, Maretty L, Krogh A. Accurate genotyping across variant
classes and lengths using variant graphs. Nat Genet. 2018;50(7):1054–9.

 16. Ebler J, Ebert P, Clarke WE, Rausch T, Audano PA, Houwaart T, Mao Y,
Korbel JO, Eichler EE, Zody MC, et al. Pangenome-based genome infer-
ence allows efficient and accurate genotyping across a wide spectrum of
variant classes. Nat Genet. 2022;54(4):518–25.

 17. Gagie T, Navarro G, Prezza N. Optimal-Time Text Indexing in BWT-runs
Bounded Space. In: Proceedings of the 29th Annual Symposium on
Discrete Algorithms (SODA), pp. 1459–1477; 2018.

 18. Kuhnle A, Mun T, Boucher C, Gagie T, Langmead B, Manzini G. Efficient
construction of a complete index for pan-genomics read alignment. J
Comput Biol. 2020;27(4):500–13.

 19. Ahmed O, Rossi M, Kovaka S, Schatz MC, Gagie T, Boucher C, Langmead
B. Pan-genomic matching statistics for targeted nanopore sequencing.
iScience. 2021;24(6): 102696.

 20. Burrows M, Wheeler DJ. A block sorting lossless data compression algo-
rithm. Technical Report 124, Digital Equipment Corporation 1994.

 21. Ferragina P, Manzini G. Opportunistic data structures with applications. In:
Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 390–398; 2000.

 22. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T,
Gardner EJ, Rodriguez OL, Guo L, Collins RL, et al. Multi-platform discov-
ery of haplotype-resolved structural variation in human genomes. Nat
Commun. 2019;10(1):1784.

 23. Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ,
Sulovari A, Ebler J, Zhou W, Serra Mari R, et al. Haplotype-resolved diverse
human genomes and integrated analysis of structural variation. Science.
2021;372:6537.

 24. Rossi M, Oliva M, Langmead B, Gagie T, Boucher C. MONI: a
pangenomic index for finding maximal exact matches. J Comput Biol.
2022;29(2):169–87.

 25. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Hand-
saker RE, Lunter G, Marth GT, Sherry ST, et al. The variant call format and
VCFtools. Bioinformatics. 2011;27(15):2156–8.

 26. Li H. A statistical framework for SNP calling, mutation discovery, associa-
tion mapping and population genetical parameter estimation from
sequencing data. Bioinformatics. 2011;27(21):2987–93.

 27. Gog S, Beller T, Moffat A, Petri M. From theory to practice: Plug and play
with succinct data structures. In: 13th International Symposium on
Experimental Algorithms, (SEA 2014), pp. 326–337; 2014.

 28. Belazzougui D, Cunial F, Gagie T, Prezza N, Raffinot M. Flexible indexing
of repetitive collections. In: Kari J, Manea F, Petre I., editors. Unveiling
dynamics and complexity. vol. 10307, pp. 162–174. Springer, Cham; 2017.
Series Title: Lecture Notes in Computer Science.

 29. Reinert K, Dadi TH, Ehrhardt M, Hauswedell H, Mehringer S, Rahn R, Kim
J, Pockrandt C, Winkler J, Siragusa E, Urgese G, Weese D. The SeqAn C++

https://github.com/alshai/rowbowt

Page 17 of 17Mun et al. Algorithms for Molecular Biology (2023) 18:2

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

template library for efficient sequence analysis: A resource for program-
mers. J Biotechnol. 2017;261:157–68.

 30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9(4):357–9.

 31. Wagner J, Olson ND, Harris L, McDaniel J, Cheng H, Fungtammasan A,
Hwang Y-C, Gupta R, Wenger AM, Rowell WJ, et al. Towards a comprehen-
sive variation benchmark for challenging medically-relevant autosomal
genes. 2021.

 32. NIST: Medically Relevant Genes. [Online]. Available from: https:// github.
com/ usnis tgov/ cmrg- bench marks et- manus cript/ tree/ master/ data/
gene_ coords/ unsor ted/ GRCh38_ mrg_ full_ gene. bed. Accessed 19 Mar
2023.

 33. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V,
Forster J, Lee S, Twardziok SO, Kanitz A, Wilm A, Holtgrewe M, Rahmann
S, Nahnsen S, Köster J. Sustainable data analysis with Snakemake. F1000
Res. 2021;10:33.

 34. Kokot M, Dlugosz M, Deorowicz S. KMC 3: counting and manipulating
k-mer statistics. Bioinformatics. 2017;33(17):2759–61.

 35. Goga A, Baláž A, Petescia A, Gagie T. MARIA: multiple-alignment r -index
with aggregation. 2022. arXiv 2209.09218.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/usnistgov/cmrg-benchmarkset-manuscript/tree/master/data/gene_coords/unsorted/GRCh38_mrg_full_gene.bed
https://github.com/usnistgov/cmrg-benchmarkset-manuscript/tree/master/data/gene_coords/unsorted/GRCh38_mrg_full_gene.bed
https://github.com/usnistgov/cmrg-benchmarkset-manuscript/tree/master/data/gene_coords/unsorted/GRCh38_mrg_full_gene.bed

	Pangenomic genotyping with the marker array
	Abstract
	Introduction
	Background
	r-index

	Methods
	Preliminaries
	Marker array
	FL approach
	Heuristic backward-search approach with smearing

	Genotyping a read
	Sparse marker encoding
	Extracting markers from VCF
	Diploid genotyping
	Implementation details

	Results
	Index size
	Query time
	Genotyping accuracy
	Diploid genotyping assessment
	Diploid genotyping assessment on medically relevant genes
	Computational performance

	Discussion
	Acknowledgements
	References

