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Abstract 

A fundamental operation in computational genomics is to reduce the input sequences to their constituent k-mers. 
For maximum performance of downstream applications it is important to store the k-mers in small space, while keep-
ing the representation easy and efficient to use (i.e. without k-mer repetitions and in plain text). Recently, heuristics 
were presented to compute a near-minimum such representation. We present an algorithm to compute a minimum 
representation in optimal (linear) time and use it to evaluate the existing heuristics. Our algorithm first constructs the 
de Bruijn graph in linear time and then uses a Eulerian-cycle-based algorithm to compute the minimum representa-
tion, in time linear in the size of the output.

Keywords Spectrum preserving string sets, Eulerian cycle, Suffix tree, Bidirected arc-centric de Bruijn graph, K-mer 
based methods

Introduction
Motivation A k-mer is a DNA string of length k that is 
considered equal to itself and its reverse complement. A 
common pattern in bioinformatics is to reduce a set of 
input strings to their constituent k-mers. Such repre-
sentations are at the core of many bioinformatics pipe-
lines—see e.g. Schmidt et al. [1] or Brinda et al. [2] for an 
overview of applications. The wide-spread use of k-mer 
sets has prompted the question of what is the smallest 
plain text representation for a set of k-mers. Here, a plain 
text representation means a set of strings that have the 
same set of k-mers as the input strings, i.e. the spectrum is 
preserved. Such representations are also called spectrum 
preserving string sets (SPSS) [3], or simplitigs [2]. This has 
the following advantages over encoded representations:

• When storing k-mer sets to disk, plain text may 
remove the need of decompression before usage, as 
some tools that usually take unitigs as input can take 
any other plain text representation without modifica-
tion (e.g. Bifrost [4]).

• Within an application, an encoded representa-
tion would require decoding whenever a k-mer is 
accessed, which may slow down the application a lot 
compared to when each k-mer is in RAM in plain 
text.

Further, in applications, it might be useful if the represen-
tation contains each k-mer exactly once. This is because 
some applications, like e.g. SSHash [5], are able to take 
any set of k-mers as input, but cannot easily deal with 
duplicate k-mers in the input.

Related work  There are two heuristic approaches to the 
construction of a small SPSS without repetitions, namely 
ProphAsm [2] and UST [3]. While neither of these com-
putes a minimum representation, Rahman et al. [3] also 
present a lower bound to the minimum size of any rep-
resentation without repetition, and they show that they 
are within 3% of this lower bound in practice. They also 
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present a counter-example showing that their lower 
bound is not tight. Small SPSSs without repetitions are 
used e.g. in SSHash [5] and are also computed by state-
of-the-art de Bruijn graph compactors like Cuttlefish 
2 [6]. Additionally, the state-of-the-art de Bruijn graph 
compressor GGCAT [7] was extended to compute Euler-
tigs, in addition to other variants of SPSSs.

When k-mer repetitions are allowed in an SPSS, there 
is a known polynomially computable minimum repre-
sentation, namely matchtigs [1]. The matchtig algorithm 
joins unitigs by first iterating all possible joins repeating 
up to k − 1 k-mers, and then using minimum perfect 
matching to find a set of joins that minimises the size of 
the representation. This is similar to the algorithm pre-
sented in this paper, which leaves out the matching step 
and only joins unitigs that are adjacent. While matchtigs 
are expensive to compute, the authors also present a 
more efficient greedy heuristic that is able to compute 
a near-minimum representation on a modern server 
with no significant penalty in runtime (when compared 
to computing just unitigs), but a significant increase in 
RAM usage.

In [1, 2] the authors also showed that decreasing the 
size of an SPSS results in significantly better performance 
in downstream applications, i.e. when further compress-
ing the representation with general purpose compres-
sors, or when performing k-mer-based queries.

The authors of both [2] and [3] consider whether com-
puting a minimum representation without repetitions 
may be NP-hard, as it is equivalent to computing a mini-
mum path cover in a de Bruijn graph, which is NP-hard 
in general graphs by reduction from Hamiltonian cycle. 
However, computing a Hamiltonian cycle in a de Bruijn 
graph is actually polynomial [8]. The authors of [8] argue 
that de Bruijn graphs are a subclass of adjoint graphs, in 
which solving the Hamiltonian cycle problem is equiva-
lent to solving the Eulerian cycle problem in the original 
of the adjoint graph, which can be computed in linear 
time.1 However, the argument is only made for normal 
directed (and not bidirected) graphs, and thus is not 
applicable to our setup, where a k-mer is also considered 
equal to its reverse complement.

Our contributions Our first technical contribution is to 
carefully define the notion of a bidirected de Bruijn graph 
such that the spectrum of the input is accurately mod-
elled in the allowed walks of the graph. While defining 

a bidirected de Bruijn graph is not new [10], we take 
specific care around k-mers that are their own reverse 
complement. This technicality is often neglected in the 
literature, and sidestepped by requiring that the value of 
k is odd, in which case this special case does not occur. 
To make sure that our definition is correct for any k, we 
show that our de Bruijn graph admits exactly the strings 
that can be spelled from the k-mers that it was con-
structed from. We give a suffix-tree-based deterministic 
linear-time algorithm to construct such a graph, filling a 
theory gap in the literature, as existing approaches [4, 6, 
11, 12] depend on the value of k and/or are probabilistic 
due to the of use hashing, minimizers or Bloom filters, or 
do not use the reverse-complement-aware definition of 
k-mers [13].

Given the bidirected de Bruijn graph, we present an 
algorithm that computes a minimum plain text repre-
sentation of k-mer sets without repetitions, which runs 
in output sensitive linear time. Steps 1 to 3 run in linear 
time in the number of nodes and arcs in the graph. In 
short, it works as follows: 

1 Add breaking arcs into this graph to make it Eulerian.
2 Compute a Eulerian cycle in the resulting graph.
3 Break that cycle at the breaking arcs.
4 Output the strings spelled by the resulting walks.

The algorithm is essentially an adaption of the matchtigs 
algorithm [1], removing the possibility of joining walks 
by repeating k-mers. We give detailed descriptions for all 
these steps and prove their correctness in our bidirected 
de Bruijn graph model. Together with our linear-time de 
Bruijn graph construction algorithm, we obtain the main 
result of our paper:

Theorem 1 Let k be a positive integer and let I be a set 
of strings of length at least k over some alphabet � . Then 
we can compute a set of strings I ′ of length at least k with 
minimum cumulative length and CS k(I) = CS k(I

′) in 
O(||I || log |�|) time.

where CS k(I) = CS k(I
′) means that I ′ is an SPSS of 

I, and ||I|| is the cumulative length of I (see Sect.  "Pre-
liminaries" for accurate definitions). This gives a positive 
answer to the open question if a minimum SPSS with-
out repetitions can be computed in polynomial time. 
Additionally, this gives an easily computable tight lower 
bound on the size of a minimum SPSS without repeti-
tions. We also give a counter example where previous 
heuristics are not necessarily optimal.

For our experiments, we have implemented steps 1 to 
4 in Rust, taking the de Bruijn graph as given. The imple-
mentation is available on github: https:// github. com/ 

1 The original of an adjoint graph can be computed by splitting each node 
v into two nodes v′ and v′′ such that v′ keeps the incoming arcs, and v′′ the 
outgoing arcs as in [9, Figure 4] Then, the graph is a collection of complete 
bipartite graphs [9]. These graphs can be contracted into single nodes, and 
then we add an arc between the contracted representations of each v′ and 
v
′′ . This can be computed in linear time and is the original graph, since all 

nodes have become arcs again, and the arcs have the correct predecessors 
and successors.

https://github.com/algbio/matchtigs
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algbio/ match tigs. Our experimental evaluation shows 
that our algorithm does not result in significant practical 
improvements, but for the first time allows to benchmark 
the quality the heuristics ProphAsm and UST against an 
optimal solution. It turns out that both produce close-to-
optimal results, but with a different distribution of com-
putational resources.

Our work also shows that using arc-centric de Bruijn 
graphs can aid the intuition for certain problems, as in 
this case, the node-centric variant hides the relationship 
between Eulerian cycles and minimum SPSS without 
repetition.

Organisation of the paper In Sect.  "Preliminaries" we 
give preliminary definitions of well-known concepts. In 
Sect. "De Bruijn graphs" we define de Bruijn graphs and 
prove the soundness of the definitions. In Sect.  "Linear-
time construction of compacted bidirected de Bruijn 
graphs" we show how to construct de Bruijn graphs by 
our definitions in linear time. In Sect. "Linear-time mini-
mum SPSS without repetitions" we show how to con-
struct a minimum SPSS without repetitions in linear time 
if the de Bruijn graph is given. Additionally, we give an 
example where previous heuristics were not optimal. In 
Sect.  "Experiments" we compare our algorithm and Eul-
ertigs against strings computed with ProphAsm and UST 
on practical data sets.

Preliminaries
In this section we give the prerequisite knowledge 
required for this paper.

Bidirected graphs
In this section we define our notion of the bidirected 
graphs and the incidence model.

A multiset is defined as a set M, and an implicit func-
tion #M : M → Z

+ mapping elements to their multiplici-
ties. The cardinality is defined as |M| :=

∑
s∈M #M(s).

An alphabet � is an ordered set, and an �-word is a 
string of characters of that set. String concatenation is 
written as ab for two strings a and b. The set �k is the 
set of all �-words of length k and the set �∗ is the set of 
all �-words, including the empty word ǫ . Given a posi-
tive integer k, the k-suffix suf k(w) (k-prefix pre k(w) ) of 
a word w is the substring of its last (first) k characters. A 
k-mer is a word of length k. A complement function over 
� is a function comp : � → � mapping characters to 
characters that is self-inverse (i.e. comp ( comp (x)) = x , 
also called an involution). A reverse complement func-
tion for alphabet � is a function rc : �∗ → �∗ defined 
as rc ((w1, . . . ,wℓ)) := ( comp (wℓ), . . . , comp (w1)) , for 
some arbitrary complement function comp . On sets, rc is 

defined to compute the reverse complement of each ele-
ment in the set. Note that rc is self-inverse. A canonical 
k-mer is a k-mer that is lexicographically smaller than or 
equal to its reverse complement.

Given an integer k and an alphabet � , the k-spec-
trum of a set of strings I ⊆

⋃
k ′≥k �

k ′ is a set of strings 
S k(I) := {w ∈ �k | ∃i ∈ I : w is substring of i or rc (i)}  . 
The canonical k-spectrum of I is CS k(I) := {w ∈ S k(I)

| w is canonical} . For simplicity, the spectrum and canon-
ical spectrum are defined for a single string w as if it 
were a set {w} . A spectrum preserving string set of a set of 
strings I is a set of strings I ′ such that CS k(I) = CS k(I

′) . 
The cumulative length of I is ||I || :=

∑
w∈I |w|.

Our definition of a bidirected graph is mostly stand-
ard like in e.g. [14], however we allow self-complemental 
nodes that occur in bidirected de Bruijn graphs. A bidi-
rected graph is a tuple G = (V ,E, c) with a set of normal 
and self-complemental nodes v ∈ V  , a set of arcs e ∈ E , 
and a function c : V → {1, 0} marking self-complemen-
tal nodes with 1, and normal nodes with 0. An inci-
dence is a pair vd , where d ∈ {⊕,⊖,⊙} is called its sign 
(e.g. v⊕ ). The negation of a sign is defined as ¬⊕ := ⊖ , 
¬⊖ := ⊕ and ¬⊙ := ⊙ . For self-complemental nodes 
v ∈ V  , only incidences v⊙ are allowed, and for normal 
nodes only incidences v⊕ and v⊖ are allowed. An arc 
(v1d1, v

′
1d

′
1, η) ∈ E is a tuple of incidences and a unique 

identifier η , where η can be of any type. The reversal of 
an arc is denoted by (v1d1, v′1d

′
1, η)

−1 := (v′1d
′
1, v1d1, η) . 

If not required, we may drop the identifier (i.e. just write 
(v1⊖, v′1⊙) ∈ E ). We count the incidences present in an 
arc e using multiset notation like #e(vd) , returning 0 if 
the arc does not contain the incidence vd , returning 1 if it 
contains the incidence once and returning 2 if it is a self-
loop with that incidence. If a node v ∈ V  is present with 
a ⊕ ( ⊖ ) sign in an arc, then the arc is outgoing (incoming) 
from (to) v.

Note that, other than in standard directed graphs, in 
bidirected graphs arcs can be outgoing or incoming on 
both ends, and the order of the incidences in the arc does 
not affect if it is outgoing or incoming to a node. Fur-
ther, our notation differs from that of standard bidirected 
graphs in that arcs have a direction. This is required 
because we will work with arc-centric de Bruijn graphs 
(see Sect.  "De Bruijn graphs"), which have labels on the 
arcs and not the nodes. Using the sign of the incidence 
pairs, it is possible to decide if a node is traversed for-
wards or backwards, but not if the arc is traversed for-
wards or backwards. But to decide which label (forwards 
or reverse complement) to use when computing the 
string spelled by an arc, the direction is relevant. See 

https://github.com/algbio/matchtigs
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Fig. 1a for an example of a bigraph, which has labels that 
make it a de Bruijn graph as well.

A walk in a bigraph is a sequence of arcs 
W := ((v1d1, v

′
1
d
′
1
, η1), (v2d2, v

′
2
d
′
2
, η2), . . . , (vℓdℓ, v

′
ℓd

′
ℓ, ηℓ)) 

where for every i it holds that (vidi, v′id
′
i , ηi) ∈ E or 

(v′id
′
i , vidi, ηi) ∈ E (we can arbitrarily walk over arcs for-

wards and reverse), and for every i < ℓ it holds that 
v′i = vi+1 and d′i = ¬di+1 . The length of a walk is ℓ = |W | . 
If v1 = v′ℓ and d1 = ¬d′ℓ , then W is a cycle. A bigraph is 
connected, if for each pair of nodes v1, v2 ∈ V  there is a 
walk from v1 to v2.

For a node v ∈ V  , the multiset of incidences is 
defined as I (v) := {vd | d ∈ {⊕,⊖,⊙}} , with multi-
plicities # I (v)(vd) :=

∑
e∈E #e(vd) . For a node v ∈ V  

that is not self-complemental, the outdegree is defined 
as δ+(v) := # I (v)(v⊕) , and the indegree is defined as 
δ−(v) := # I (v)(v⊖) . For a self-complemental node v ∈ V  , 
the degree is defined as δ(v) := # I (v)(v⊙).

We define the imbalance of a node v ∈ V  that is not 
self-complemental as the difference of its outdegree and 
indegree imbalance (v) := δ+(v)− δ−(v) . For a self-
complemental node v ∈ V  the imbalance is defined as 
imbalance (v) := 1 if δ(v) is odd, and imbalance (v) := 0 
otherwise. A node v ∈ V  is called unbalanced, if 
imbalance (v)  = 0 , and balanced otherwise.

A labelled graph is a bidirected graph G = (V ,E, c) 
where the identifiers of arcs are strings over some alpha-
bet � (e.g. (v1⊕, v2⊖,ACCTG) ∈ E).

Suffix arrays and suffix trees
Section "Linear-time construction of compacted bidi-
rected de Bruijngraphs" requires knowledge of suffix 
arrays and suffix trees. We assume the reader is familiar 
with these data structures, and briefly give the relevant 
definitions and properties below. We point the reader to 
Gusfield [15] and Mäkinen [16] for an in-depth treatment 
of the topics.

A suffix array SAT for a string T is an array of length 
|T| such that SAT [i] is the starting position of the lexico-
graphically i-th suffix of T. The suffix array interval of a 
string x is the maximal interval [i..j] such that all the suf-
fixes pointed by SAT [i], . . . , SAT [j] have x as a prefix, or 
the empty interval if x is not a substring of T.

A suffix tree of a string T is a compacted version of the 
trie of all suffixes of T, such that non-branching paths 
are merged into single arcs, with arcs pointing away 
from the root. The compactification concatenates the 
labels of the arcs on the compacted path. The nodes that 
were compacted away and are now in the middle of an 
arc are called implicit nodes, and the rest of the nodes 
are explicit. A locus (plural loci) is a node that is either 
explicit or implicit. A locus v is represented by a pair (u, 
d), where u is the explicit suffix tree node at the end of 
the arc containing v (u is equal to v if v is explicit), and d 
is the depth of locus v in the trie of loci. The suffix array 
interval of a node is the interval of leaves in the subtree 
of the node. The suffix array interval of an implicit locus 
(u, d) is the same as the suffix array interval of u.

The suffix tree can be constructed in log-linear time in 
|T | log |�| using e.g. Ukkonen’s algorithm [17] or in linear 

Fig. 1 Overview of our algorithm executed on the input strings 
{GAATG, ATCTGCT } with k = 3 . After step (d), the resulting spelled 
SPSS is {ATC , AGAATGCTG}
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time in |T| using Farach’s algorithm [18]. The tree comes 
with a function child that takes an explicit node and a 
character, and returns the child at the end of the arc from 
that node whose label starts with the given character (if 
such node exists). This can be implemented in O(log |�|) 
time by binary searching over child pointers sorted by 
labels. The child function can also be easily imple-
mented for implicit loci. Ukkonen’s algorithm also pro-
duces suffix links for the explicit nodes, which map from 
the suffix tree node of a string cx to the suffix tree node 

of string x. It is possible to emulate suffix links on the 
implicit loci using constant-time weighted level-ancestor 
queries [19] by mapping (u, d)  → (fd−1(SL(u)), d − 1) , 
where SL(u) is the destination of a suffix link from u, 
and fd−1(SL(u)) is the furthest suffix tree ancestor from 
SL(u) at depth at least d − 1 in the trie of loci. The inverse 
pointers of suffix links are called Weiner links, and they 
can also be simulated on the implicit loci by mapping 
(u, d)  → (WL(u, c), d + 1) , where WL(u, c) is the destina-
tion of a Weiner link from u with character c.

De Bruijn graphs
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The de Bruijn graph of order k of a set of input strings I is 
defined as a labelled graph constructed by Algorithm 1. 
See Fig. 1a for an example. The algorithm inserts an arc 
for each canonical k-mer, and connects the arcs via nodes 
according to their k − 1 overlaps. Depending on if these 
overlaps use the reverse complement or if the k − 1-mer 
of a node is self-complemental, it adds directions to the 
incidences. A de Bruijn graph computed by this algo-
rithm has the following property.

Lemma 2 Let k be a positive integer and let I be a set 
of strings of length at least k. Let G = (V ,E, c) be the de 
Bruijn graph of order k constructed from I. For all pairs 
of arcs e1 := (v1d1, v

′
1d

′
1, η1), e2 := (v2d2, v

′
2d

′
2, η2) ∈ E it 

holds that: 

(a) (v′1 = v2 and d′1 = ¬d2 ) if and only if 
suf k−1(η1) = pre k−1(η2),

(b) (v′1 = v′2 and d′1 = ¬d′2 ) if and only if 
suf k−1(η1) = pre k−1( rc (η2)),

(c) (v1 = v2 and d1 = ¬d2 ) if and only if 
suf k−1( rc (η1)) = pre k−1(η2) , and

(d) (v1 = v′2 and d1 = ¬d′2 ) if and only if 
suf k−1( rc (η1)) = pre k−1( rc (η2)).

Proof
Observe that the values of w and w′ computed in Lines 
5 and 7 of Algorithm  1 are equal to pre k−1(η1) and 
suf k−1(η1) for e1 and equal to pre k−1(η2) and suf k−1(η2) 
for e2 . Further, observe that the values of v and v′ com-
puted in Lines 6 to 8 are equal to v1 and v′1 for e1 and 

equal to v2 and v′2 for e2 . This makes v1 , v′1 , v2 and v′2 the 
canonicals of pre k−1(η1) , suf k−1(η1) , pre k−1(η2) and 
suf k−1(η2) . Finally, observe that the sign values d and d′ 
computed in Lines 9 to 14 are equal to d1 and d′1 for e1 and 
equal to d2 and d′2 for e2 . 

(a) If v′1 = v2 and d′1 = ¬d2 , then w′
1 = w2 

for all possible values of d′1 , and there-
fore suf k−1(η1) = pre k−1(η2) . If suf k−1(η1)

= pre k−1(η2) , then w′
1 = w2 , and therefore v′1 = v2 

because v′1 and v2 are the canonicals of w′
1 and w2 . 

Additionally, d′1 = ¬d2 for all possible values of d′1.
(b) If v′1 = v′2 and d′1 = ¬d′2 , then w′

1 = rc (w′
2) 

for all possible values of d′1 , and therefore 
suf k−1(η1) = rc ( suf k−1(η2)) = pre k−1( rc (η2)) . 
If suf k−1(η1) = pre k−1( rc (η2)) , then w′

1
= rc (w′

2
) , 

and therefore v′1 = v′2 because v′1 and v′2 are the 
canonicals of w′

1 and w′
2 . Additionally, d′1 = ¬d′2 for 

all possible values of d′1.
(c) If v1 = v2 and d1 = ¬d2 , then rc (w1) = w2 

for all possible values of d1 , and therefore 
suf k−1( rc (η1)) = rc ( pre k−1(η1)) = pre k−1(η2) . 
If suf k−1( rc (η1)) = pre k−1(η2) , then w1 = rc (w2) , 
and therefore v1 = v2 because v1 and v2 are the 
canonicals of w1 and w2 . Additionally, d1 = ¬d2 for 
all possible values of d1.

(d) This case is equivalent to the first case when swap-
ping e1 and e2 , because suf k−1(η1) = pre k−1(η2)

⇐⇒ suf k−1( rc (η2)) = pre k−1( rc (η1)).

 �
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For a walk W := (e1 = (v1d1, v
′
1
d
′
1
, η1), . . . , eℓ = (vℓdℓ, v

′
ℓd

′
ℓ, ηℓ)) 

in a de Bruijn graph, its sequence of k-mers is 
K := (κ1, . . . , κℓ) , where for each i we define κi as ηi if 
ei ∈ E , and as rc (ηi) if e−1

i ∈ E . The string spell (W ) is 
the string spelled by W, which is defined as its collapsed 
sequence of kmers, i.e. its sequence of k-mers gets con-
catenated while overlapping consecutive k-mers by 
k − 1 . This is computed by Algorithm 2. It spells out the 
first k-mer (or its reverse complement) completely, and 
then adds the last characters of all subsequent k-mers 
(or their reverse complements). We prove the follow-
ing lemmas to show that our definition of a de Bruijn 
graph together with the spell (·) function is sound for 
our purposes, i.e. walks in the de Bruijn graph can spell 
exactly the strings containing subsets of the k-mers 
used to create the de Bruijn graph. Due to this property, 
we can use our de Bruijn graph and spell to in the Eul-
ertig algorithm, such that finding a minimum SPSS is 
equivalent to finding a minimum walk cover of the de 
Bruijn graph.

Lemma 3 Let k be a positive integer and let I be a 
set of strings of length at least k. Let G = (V ,E, c) be 
the de Bruijn graph of order k constructed from I. Let 
W := (e1 = (v1d1, v

′
1d

′
1, η1), . . . , eℓ = (vℓdℓ, v

′
ℓd

′
ℓ, ηℓ)) be 

a walk in G, and K := (κ1, . . . , κℓ) its sequence of k-mers. 
Then for each consecutive pair of kmers κi, κi+1 it holds 
that suf k−1(κi) = pre k−1(κi+1).

Proof
Let i ∈ {1, . . . , ℓ− 1} . By the definition of walk it holds 
that v′i = vi+1 and d′i = ¬di+1 . We can apply Lemma 2 
case by case. 

(a) If ei, ei+1 ∈ E , then by Lemma 2  (a), it 
holds that suf k−1(ηi) equals pre k−1(ηi+1) . 
By definition, κi = ηi and κi+1 = ηi+1 , so 
suf k−1(κi) = pre k−1(κi+1).

(b) If ei, e
−1
i+1 ∈ E , then by Lemma 2  (b) applied 

to ei, e
−1
i+1 , it holds that suf k−1(ηi) equals 

pre k−1( rc (ηi+1)) . By definition, κi = ηi and 
κi+1 = rc (ηi+1) , so suf k−1(κi) = pre k−1(κi+1)

(c) If e−1
i , ei+1 ∈ E , then by Lemma 2  (c) applied 

to e−1
i , ei+1 , it holds that suf k−1( rc (ηi)) equals 

pre k−1(ηi+1) . By definition, κi = rc (ηi) and 
κi+1 = ηi+1 , so suf k−1(κi) = pre k−1(κi+1).

(d) If e−1
i , e−1

i+1 ∈ E , then by Lemma 2  (d) applied 
to e−1

i , e−1
i+1 , it holds that suf k−1( rc (ηi)) equals 

pre k−1( rc (ηi+1)) . By definition, κi = rc (ηi) and 
κi+1 = rc (ηi+1) , so suf k−1(κi) = pre k−1(κi+1).

�

We define the sequence of k-mers K = (κ1, . . . , κℓ) of a 
string w = (a1, . . . , aℓ+k−1) by κi := (ai, . . . , ai+k−1) for 
each i.

Lemma 4 Let k be a positive integer and let I be a set of 
strings of length at least k. Let G = (V ,E, c) be the de Bruijn 
graph of order k constructed from I. Let W be a walk in G, 
KW  its sequence of k-mers and K ′

W  the sequence of k-mers 
of spell (W ) . Then KW = K ′

W .

Proof
Let (κ1, . . . , κℓ) := KW  . We use induction over the length 
of W. For an empty W, K is empty, spell (W ) is empty, and 
therefore K ′ is empty as well. For |W | = 1 , Algorithm 2 out-
puts spell (W ) = κ1 and it holds that K ′

W = (κ1) = KW .

For |W | ≥ 2 we consider that KX = K ′
X holds for a prefix 

X of W with |X | = |W | − 1 . When i = |W | at the begin-
ning of the loop in Line 8, then s = spell (X) . By Lemma 
3 it holds that the last k − 1 characters of s are equal to the 
first k − 1 characters of κℓ . Therefore, by appending the 
last character from κℓ to s, κℓ is appended to K ′

X forming 
K ′
W  . Therefore, last k-mer of K ′

W  equals the last k-mer of 
KW  , and the first ℓ− 1 k-mers of K ′

W  equal those of KW  by 
induction. �

Lemma 5 Let k be a positive integer and let I be a set 
of strings of length at least k. Let G = (V ,E, c) be the de 
Bruijn graph of order k constructed from I. Let w be a string 
with CS k(w) ⊆ CS k(I) . Then there exists a walk W in G 
with spell (W ) = w.

Proof
Let Kw = (κ1, . . . , κℓ) be the sequence of k-mers of 
w. We construct W = (e1 = (v1d1, v

′
1
d
′
1
, η1), . . . , eℓ

= (vℓdℓ, v
′
ℓd

′
ℓ, ηℓ)) as follows: for each i, let ηi be the 
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canonical of κi and fi ∈ E be the arc whose identifier is ηi . 
We set ei = fi if κi is canonical, and ei = f −1

i  otherwise.

For W to fulfil the definition of a walk we need that 
v′i = vi+1 and d′i = ¬d′i+1 for all i. Using Lemma 2, we get:

• If ei, ei+1 ∈ E , then suf k−1(ηi) = suf k−1(κi)

= pre k−1(κi+1) = pre k−1(ηi+1) . Therefore, by 
Lemma 2 (a), it holds that v′i = vi+1 and d′i = ¬d′i+1.

• If ei, e
−1
i+1 ∈ E , then suf k−1(ηi) = suf k−1(κi)

= pre k−1(κi+1) = pre k−1( rc (ηi+1)) . Therefore, by 
Lemma 2 (b), it holds that v′i = vi+1 and d′i = ¬d′i+1.

• If e−1
i , ei+1 ∈ E , then suf k−1( rc (ηi)) = suf k−1(κi) =

pre k−1(κi+1) = pre k−1(ηi+1) . Therefore, by Lemma 
2 (c), it holds that v′i = vi+1 and d′i = ¬d′i+1.

• If e−1
i , e−1

i+1 ∈ E , then suf k−1( rc (ηi)) = suf k−1(κi) =

pre k−1(κi+1) = pre k−1( rc (ηi+1)) . Therefore, by 
Lemma 2 (d), it holds that v′i = vi+1 and d′i = ¬d′i+1.

To complete the proof we need to show that 
spell (W ) = w . By definition, the sequence of k-mers KW  
of W is equivalent to Kw . And since W is a walk, by Lemma 
4 we get that the sequence of k-mers of spell (W ) is equiva-
lent to KW  , and therefore spell (W ) = w . �

A walk cover W of a bigraph G is a set of walks such 
that for each arc e ∈ E it holds that e is part of some walk 
W ∈ W , or e−1 is part of some walk W ∈ W.

Theorem 6 Let k be a positive integer and let I and I ′ be 
sets of strings of length at least k. Let G = (V ,E, c) be the 
de Bruijn graph of order k constructed from I. Then it holds 
that CS k(I) = CS k(I

′) , if and only if there is a walk cover 
W in G that spells the strings in I ′.

Proof
If CS k(I

′) ⊆ CS k(I) , then for each string w′ ∈ I ′ it holds 
that CS k(w

′) ⊆ CS k(I) . Therefore, by Lemma 5, there 
exists a walk w in G with spell (w) = w′ . Then, the set of all 
such walks W spells I ′ . Further, because CS k(I) ⊆ CS k(I

′) , 
the identifier η of each arc e ∈ E is in CS k(I

′) , and there-
fore in the sequence of kmers Kw′ of some string w′ ∈ I ′ (pos-
sibly as a reverse complement). By Lemma 4 it holds that 
Kw′ = Kw , where Kw is the sequence of k-mers of walk w. 
By the definition of the sequence of k-mers of a walk, this 
implies that w visits e (possible in reverse direction). Since 
this holds for each e ∈ E , it holds that W is a walk cover of 
G.

Assume that there is a walk cover W in G that spells the 
strings in I ′ , and let w ∈ W be a walk, Kw its sequence of 

k-mers, w′ := spell (w) and Kw′ the sequence of k-mers 
of w′ . Then, by Lemma 4, Kw = Kw′ , which, by the defi-
nition of the sequence of k-mers of a walk implies that 
CS k(I) ⊆ CS k(I

′) . And since W is a walk cover of G, we 
get CS k(I) = CS k(I

′) . �

Corollary 7 By setting I = I ′ in Theorem  6 we see that 
our de Bruijn graph contains the strings it was constructed 
from. Further, by Theorem 6 it holds that walks in the de 
Bruijn graph spell exactly the strings that can be formed 
from the k-mers that were used to create the graph. Hence, 
our definition of a de Bruijn graph is sound for all k.

A compacted de Bruijn graph is constructed from a de 
Bruijn graph by contracting all nodes v ∈ V  that are either 
self-complemental and have exactly two arcs that have 
exactly one incidence to v each, or that are not self-com-
plemental and have exactly one incoming and one out-
going arc. For simplicity, we use uncompacted de Bruijn 
graphs in our theoretical sections, however all results 
equally apply to compacted de Bruijn graphs.

Linear‑time construction of compacted bidirected 
de Bruijn graphs
In this section, we fill a gap in the literature by describing 
on a high level an algorithm to construct the bidirectional 
de Bruijn graph of a set of input strings in time linear in 
the total length of the input strings, independent of the 
value of k.

Algorithm
Let I = {w1, . . .wm} be the set of input strings. Consider 
the following concatenation:

where $ is a special character outside of the alphabet � 
of the input strings. We require an index on T that can 
answer the following queries: extendRight, extend-
Left, contractRight and contractLeft in con-
stant time. The extension operations take as input a 
character c ∈ � and the interval of a string x in the suffix 
array of T, and return the suffix array intervals of xc in the 
case of extendRight and cx in the case of extend-
Left. The contraction operations are the inverse opera-
tions of these, mapping the suffix array intervals of xc 
to x in the case of contractRight and cx to x in the 
case of contractLeft. For efficiency, we also require 
operations enumerateRight and enumerateLeft, 
which take a string x and give all characters such that 
extendRight and extendLeft respectively return 
a non-empty interval, in time that is linear in the num-
ber of such characters. Implementations for all the six 

T = $w1$w2$ . . . $wm$ rc (w1)$ rc (w2)$ . . . $ rc (wm)$,
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subroutines are given in Sect.  "Implementation of the 
subroutines".

Using these operations, we can simulate the regular non-
bidirected de Bruijn graph of T. Each k-mer of the input 
strings for a fixed k corresponds to a disjoint interval in 
the suffix array of T. The nodes are represented by their 
suffix array intervals. The outgoing arcs from a (k − 1)

-mer x are those characters c where extendRight(x, 
c) returns a non-empty interval. We can enumerate all 
the characters c with this property in constant time using 
enumerateRight(x). The incoming arcs can be enu-
merated symmetrically with the enumerateLeft(x). 
Finally, we can find the destination or origin of an arc 
labelled with x by running a contractLeft or con-
tractRight operation respectively on x.

To construct the bidirected de Bruijn graph, we merge 
together nodes that are the reverse complement of each 
other. To find which nodes are complemental, we scan the 
input strings I while maintaining the suffix array interval of 
the current k-mer using extendRight and contract-
Left operations, while at the same time maintaining 
the suffix array interval of the reverse complement using 
extendLeft and contractRight operations. When-
ever we merge two nodes, we combine the incoming and 
outgoing arcs, assigning the incidences of the arcs accord-
ing to the incidence rules in our definition. We are able to 
tell in constant time which k-mer of a pair of complemental 
k-mers is canonical by comparing the suffix array intervals 
of the k-mers: the k-mer whose suffix array interval has a 
smaller starting point is the canonical k-mer. If the starting 
points are the same, the k-mer is self-complemental.

Using the enumerateRight and enumerateLeft 
functions, we can check if a node would be contracted in 
a compacted de Bruijn graph. By extending k-mers over 
such nodes, we can in linear time also output only the arcs 
and nodes of a compacted de Bruijn graph. For storing the 
labels, we use one pointer into the input strings to store 
a single k-mer, as well as a flag that is set whenever the 
label is not canonical. If a label has multiple k-mers, then 
we store the remaining k-mers as explicit strings, however 
without their overlap with the “pointer-k-mer”. This way, 
we can store each label in O(ℓ) space, where ℓ is the num-
ber of k-mers in the label. We additionally store the first 

and last character of each label, as an easy way to make the 
spell function run in output sensitive linear time.

Implementation of the subroutines
All required the subroutines extendRight, extend-
Left, contractRight, contractLeft, enumera-
teRight and enumerateLeft can be implemented 
with the suffix tree of T by simulating the trie of the suf-
fix tree loci as described in Sect.  "Suffix arrays and suf-
fix trees". The suffix array intervals of explicit nodes can 
be stored with the nodes, so that we can operate on loci 
(u,  d) and retrieve the suffix array intervals on demand. 
The operation extendRight follows an arc from a locus 
to a child, and the operation contractRight is imple-
mented by going to the parent of the current locus. The 
operation contractLeft follows a suffix link from the 
current locus, and extendLeft follows a Weiner link. 
The operations enumerateRight and enumerate-
Left are implemented by storing the children and the 
Weiner links from explicit suffix tree nodes as neighbor 
lists. The total number of these links is linear in |T| [16]. 
With this implementation, the slowest operations are 
extendRight and extendLeft, taking O(log |�|) time 
to binary search the neighbor lists. We therefore obtain 
the following result:

Theorem  8 The compacted arc-centric bidirected de 
Bruijn graph of order k of a set of input strings I from the 
alphabet � can be constructed in time O(||I || log |�|).

We note that the same operations can also be imple-
mented on top of the bidirectional BWT index of 
Belazzougui and Cunial [20], using the data structures 
of Belazzougui et  al. [21] for the enumeration opera-
tions. This gives an index that supports all the required 
subroutines in constant time. The drawback of the bidi-
rectional BWT index is that only randomized construc-
tion algorithms are known, but the expected time is 
still linear in |T|. We leave as an open problem the con-
struction of the compacted arc-centric bidirected de 
Bruijn graph in deterministic linear time independent 
of the alphabet size.
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Pseudocode
The pseudocode for computing a compacted de Bruijn graph in linear time is given by Algorithm  4 which 
uses Algorithm  3 as a subroutine. The data structure D used by the algorithms is that described in Sect.  "Lin-
ear-time construction of compacted bidirected de Bruijn graphs". Note that if we compute the arc labels 
as plain strings as in Algorithm  1, we need up to O(k log |�|) bits to store a single-k-mer arc. And since 
arcs are not substrings of input strings (but potentially combinations of input strings), we would need 
up to O(k||I || log |�|) bits to store all arc labels without referring to the input strings. This contradicts 
the algorithm being linear in ||I || log |�| . However, we can store the labels as tuples (p, η, q, r) , where pηq 
is the label where p and q are explicit strings while η is a pointer to a k-mer in the input. If r is true, then 
the label must be reverse complemented to match that defined by Algorithm  1. With this fix, the size of 
a label that represents ℓ k-mers is  O(ℓ log |�|) , and in total the de Bruijn graph represets O(||I||) k-mers. 
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The comparison on Line 16 of Algorithm 4 can be done in 
linear time in |η1| + |η2| by finding the suffix array inter-
vals of η1ηη2 and rc (η1ηη2) with extendLeft and 
extendRight from η and rc (η) respectively, and com-
paring the starts of the intervals. This way, the total time 
taken by all those comparisons is proportional to the sum 
of |η1| + |η2| over all unitigs, which is linear in ||I|| because 
each character of η1 and η2 can be mapped to a distinct 
edge in the non-compacted de Bruijn graph of ||I||. There-
fore, the algorithm can be implemented to run in 
O(||I || log |�|) time.

Our pseudocode does not compute the first and last 
character of each arc-label, but this can be easily computed 
in constant time using wi , η1 and η2 in Algorithm 4.

Linear‑time minimum SPSS without repetitions
Let I be a set of strings. To compute an SPSS without rep-
etitions we first build a compacted de Bruijn graph G from 
I. By Theorem 6, finding an SPSS is equivalent to finding 
a walk cover in G. Further, with Lemma 4, we get that an 
SPSS without repetitions is equivalent to a walk cover that 
visits each arc exactly once (either once forwards, or once 
reverse, but not both forwards and reverse). We call such a 
walk cover a unique walk cover.

For minimality, observe that the cumulative length of an 
SPSS S relates to its equivalent set of walks W as follows:

This is because in Algorithm 2, in Line 7, k − 1 characters 
are appended to the result, and then in the loop in Line 
8, one additional character per arc in W is appended. We 
cannot alter the sum 

∑
W∈W |W | , since we need to cover 

all arcs in G. However we can alter the number of strings, 
and decreasing or increasing this number by one will 
decrease or increase the cumulative length of S by k − 1 . 
Therefore, finding a minimum SPSS of I without repeti-
tions equals finding a unique walk cover of G that has a 
minimum number of walks.

Note that computing a minimum SPSS in a bigraph 
that is not connected is equivalent to separately comput-
ing an SPSS in each maximal connected subgraph. There-
fore we restrict to connected bigraphs from here on.

A lower bound for an SPSS without repetitions
Using the imbalance of the nodes of a bigraph, we can 
derive a lower bound for the number of walks in a walk 
cover.

(1)||S|| =
∑

W∈W

(k − 1+ |W |)

Lemma 9 Let v ∈ V  be an unbalanced node in a 
bigraph G = (V ,E, c) . Then in a unique walk cover W of 
G, either at least | imbalance (v)| walks start in v, or at 
least | imbalance (v)| walks end in v.

Proof
If v is self-complemental, then its imbalance is 1, so by 
definition v has an odd number of incident arcs. Each 
walk that does not start or end in v needs to enter and 
leave v via two distinct arcs whenever it visits v. But since 
the number of incident arcs is odd, there is at least one 
arc that cannot be covered this way, implying that a walk 
needs to start or end in this arc.

If v is not self-complemental and has a positive imbal-
ance, then it has imbalance (v) more outgoing arcs then 
incoming arcs. Since walks need to leave v with the oppo-
site sign than they entered v, at least imbalance (v) arcs 
cannot be covered by walks that do not start or end in v. 
If v has negative imbalance, the situation is symmetric. �

Definition 10 The imbalance imbalance (G) of a 
bigraph G = (V ,E, c) is the sum of the absolute imbal-
ance of all nodes 

∑
v∈V | imbalance (v)|.

Theorem 11 Let G be a bigraph. A walk cover W of G 
has a minimum string count of imbalance (G)/2.

Proof
Let v ∈ V  be an unbalanced node. Then, by Lemma 
9 at least | imbalance (v)| walks start in v or at least 
| imbalance (v)| walks end in v. Since each walk has exactly 
one start node and one end node, W has a minimum 
string count of imbalance (G)/2 . �

Eulerising a bigraph
A directed graph is called Eulerian, if all nodes have 
indegree equal to outdegree, i.e. are balanced [22]. If the 
graph is strongly connected,2 then this is equivalent to 
the graph admitting a Eulerian cycle, i.e. a cycle that visits 
each arc exactly once. The same notion can be used with 
bidirected graphs, using our definition of imbalance.

2 Strongly connected means that there is a directed path from each node v1 
to each node v2.
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Definition 12 A bigraph is Eulerian, if all nodes have 
imbalance zero.

A connected bigraph can be transformed into a Eulerian 
bigraph by adding arcs using Algorithm 5. See Fig. 1b for 
an example. The algorithm lists all nodes that are out of 
balance, and inserts arbitrary arcs to balance them.

Lemma 13 The imbalance of a bigraph is even.

Proof
Adding or removing an arc changes the imbalance of two 
nodes by 1, or of one node by two. In both cases, the imbal-
ance of the graph can only change by −2 , 0, or 2. Since the 
imbalance of a graph without arcs is 0, this implies that 
there can be no graph with odd imbalance. �

Lemma 14 Given a connected bigraph G = (V ,E, c) , 
Algorithm 5 outputs a Eulerian bigraph G′ = (V ,E′, c).

Proof
Algorithm  5 is well-defined, since by Lemma 13, it holds 
that L has even length in each iteration of the loop in Line 
10, so the removal operation in Line 12 always has some-
thing to remove.

The output of Algorithm 5 is a valid bigraph, since for self-
complemental nodes v ∈ V  , only incidences v⊙ are added 
to G′ , and for not self-complemental nodes v ∈ V  , only 
incidences v⊕ and v⊖ are added to G′.

Further, the output is a Eulerian bigraph, because for all 
v ∈ V  , it holds that imbalance (v) is 0, by the following 
argument:

• If c(v) = 1 and v has imbalance zero in G, then its 
imbalance stays the same in G′ . If it has imbalance 1, 
then one incident arc is inserted, making its degree 
even and its imbalance therefore zero.

• If c(v) = 0 and v has positive imbalance i in G, then i 
incoming arcs are added to v (counting incoming self-
loops twice), and no outgoing arcs are added. There-
fore, it has imbalance zero in G′ . By symmetry, if v has 
negative imbalance in G, it has imbalance zero in G′.

�

Lemma 15 Given a bigraph G = (V ,E, c) , Algorithm 5 
terminates after O(|V | + |E|) steps.
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Proof
For the list data structure we choose a doubly linked list, 
and for the graph an adjacency list (and array with an 
entry for each node containing a doubly linked list for the 
arcs).

The loop in Line 3 runs |V| times and each iteration 
runs in O(| imbalance (v)|) for a node v, because a doubly 
linked list supports appending in constant time. The sum 
of absolute imbalances of all nodes cannot exceed 2|E|, 
because each arc adds at most 1 to the absolute imbal-
ance of at most two nodes, or adds at most 2 to the abso-
lute imbalance of at most one node. Therefore, the length 

Computing a Eulerian cycle in a bigraph

 

of list L after completing the loop is at most 2|E|, and the 
loop runs in O(|V | + |E|) time.

The loop in Line 10 runs at most |L| ≤ 2|E| times and 
performs only constant-time operations, since L is a dou-
bly linked list and we can insert arcs into an adjacency 
list in constant time. Therefore, this loop also runs in 
O(|V | + |E|) time. �

With Lemma 14 and 15 we get the following.

Theorem  16 Algorithm  5 is correct and runs in 
O(|V | + |E|) time.
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After Eulerising the bigraph, we can compute a Eulerian 
cycle using Algorithm  6. We do this similarly to Hier-
holzer’s classic algorithm for Eulerian cycles [22]. First we 
find an arbitrary cycle. Then, as long as there are unused 
arcs left, we search along the current cycle for unused 
arcs, and find additional cycles through such unused 
arcs. We integrate each of those additional cycles into the 
main cycle. See Fig. 1c for an example of a Eulerian cycle.

Lemma 17 Given a connected Eulerian bigraph 
G = (V ,E, c) , Algorithm 6 terminates and outputs a Eule-
rian cycle W.

Proof
For W = (e1 = (v1d1, v

′
1d

′
1, η1), . . . , eℓ = (vℓdℓ, v

′
ℓd

′
ℓ, ηℓ)) 

to be a Eulerian cycle, it must be a cycle that contains 
each arc exactly once.

The sequence W ′ constructed by the loop in Line 10 is a 
walk by construction, and since G is Eulerian it is a cycle 
after the loop terminates. After finding the initial cycle in 
the first iteration of the outer loop, each additional cycle 
is started from a node on the initial cycle, and is a cycle 
again. Therefore it can be inserted into the original cycle 
without breaking its cycle property.

Since each arc is deleted when being added to W ′ , there 
is no duplicate arc in W. And if the algorithm terminates, 
then |E| = 0 (Line 1), so W contains all arcs.

For termination, consider that if W is not complete 
after the first iteration of the outer loop, then the 
loop in Line 7 searches for an unused arc using the 
first_unfinished pointer. Since the prefix of W up to 
including first_unfinished is never modified (Line 
19), and first_unfinished is only advanced when its 

Fig. 2 An example de Bruijn graph with k = 4 in which UST and 
ProphAsm may compute a suboptimal solution. The optimal solution 
here is a single string AGG TGC CGT GGG AT

Table 1 Experiments on references and read sets of single genomes with k = 51 and a min abundance of 10 for human and 1 for the 
others

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs 
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves. 
Prophasm can only be run for k ≤ 32 , which does not make sense for large genomes. The number in parentheses behind time and memory indicates the slowdown/
increase over computing just unitigs with BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The lengths of the genomes are 
100Mbp for C. elegans, 482Mbp for B. mori and 3.21Gbp for H. sapiens and the read data sets have a coverage of 64x for C. elegans, 58x for B. mori and 300x for H. 
sapiens

Genome Algorithm CL ratio SC ratio Time [s] Memory [GiB]

C. elegans (reads) Unitigs 1.789 2.831 1963 5.96

UST 1.035 1.080 2815 (1.43) 15.2 (2.54)

Eulertigs 1 1 2741 (1.40) 24.9 (4.18)

B. mori (reads) Unitigs 1.912 3.136 6844 9.35

UST 1.050 1.118 10053 (1.47) 52.4 (5.60)

Eulertigs 1 1 9412 (1.38) 78.4 (8.38)

H. sapiens (reads) Unitigs 1.418 2.143 55007 13.0

UST 1.016 1.044 55772 (1.01) 16.4 (1.26)

Eulertigs 1 1 55856 (1.02) 26.5 (2.05)

C. elegans Unitigs 1.060 3.154 53.3 1.22

UST 1.002 1.089 57.1 (1.07) 1.22 (1.00)

Eulertigs 1 1 62.5 (1.17) 1.22 (1.00)

B. mori Unitigs 1.262 3.310 244 3.32

UST 1.018 1.156 281 (1.15) 3.32 (1.00)

Eulertigs 1 1 295 (1.21) 3.32 (1.00)

H. sapiens Unitigs 1.195 3.532 1788 10.0

UST 1.015 1.192 2020 (1.13) 10.0 (1.00)

Eulertigs 1 1 2127 (1.19) 10.0 (1.00)
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pointee cannot reach any arc anymore, it holds that no 
arc in W can reach an arc in E when first_unfinished gets 
advanced over the end of W. Since G was initially Eule-
rian and only Eulerian cycles have been removed from G, 
this implies that all nodes visited by W are still balanced 
and therefore have no incident arcs anymore. And since 
G was originally connected, W has visited all nodes, i.e. 
|E| = 0 . Therefore, first_unfinished cannot be advanced 
over the end of W, because the outer loop terminates 
before that.

To complete the proof of termination, consider that 
in each iteration of the outer loop, at least one arc gets 
removed from E. In the first iteration, this happens at 
least in Line 3, and in all following iterations, this hap-
pens in Line 11. �

Lemma 18 Given a connected Eulerian bigraph 
G = (V ,E, c) , Algorithm  6 terminates after O(|V | + |E|) 
steps.

Proof
We use a doubly linked list for W and W ′ , and an adja-
cency list for G. Then all lines can be executed in constant 
time.

The loop in Line 10 removes one arc from E each itera-
tion, so it runs at most |E| times in total (over all itera-
tions of the outer loop). The loop in Line 7 advances 
first_unfinished each iteration. Since the algorithm is 
correct by Lemma 17, |W | ≤ |E| and first_unfinished 
never runs over the end of first_unfinished , so the loop 
runs at most |E| times in total (over all iterations of the 
outer loop).

The condition for the loop in Line 10 is true at least once 
in each iteration of the outer loop, since the preceding 
branch sets up (vd, v′d′, η) such that it has a successor (in 
the first iteration because of Eulerianess). So in each iter-
ation of the outer loop, at least one arc gets removed, so 
the outer loop runs at most |E| times in total.

Table 2 Experiments on (references of ) pangenomes with k = 31 and a min abundance of 1

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs 
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves. 
Prophasm is run directly on the source data. The number in parentheses behind time and memory indicates the slowdown/increase over computing just unitigs with 
BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The N. gonorrhoeae pangenome contains 8.36 million unique kmers, the S. 
pneumoniae pangenome contains 19.3 million unique kmers, the E. coli pangenome contains 341 million unique kmers, the Salmonella pangenome contains 657 
million unique kmers and the human pangenome contains 2.8 billion unique kmers. Due to its size, ProphAsm could not be run on the Salmonella pangenome. Also 
due to size, BCALM2 did not run on the human pangenome, hence we used Cuttlefish 2. To still be able to compare against competitors, we ran ProphAsm on the 
unitigs produced by Cuttlefish 2 (UST requires extra information specific to BCALM2)
*  Indicates that resource usage includes running Cuttlefish 2 for ProphAsm

Pangenome Tigs CL ratio SC ratio Time [s] Memory [MiB]

1102x N. gonorrhoeae Unitigs 1.615 3.052 29.1 4351

UST 1.022 1.072 31.4 (1.08) 4351 (1.00)

ProphAsm 1.00004 1.00013 734 (25.2) 208 (0.05)

Eulertigs 1 1 30.2 (1.04) 4351 (1.00)

616x S. pneumoniae Unitigs 1.679 3.055 26.1 3146

UST 1.026 1.080 30.8 (1.18) 3146 (1.00)

ProphAsm 1.00004 1.00012 412 (15.8) 434 (0.14)

Eulertigs 1 1 29.3 (1.12) 3146 (1.00)

3682x E. coli Unitigs 1.705 3.092 334 7117

UST 1.031 1.092 418 (1.25) 7117 (1.00)

ProphAsm 1.00008 1.00023 7066 (21.1) 7221 (1.01)

Eulertigs 1 1 398 (1.19) 7117 (1.00)
∼309kx Salmonella Unitigs 1.830 3.151 82417 13007

UST 1.049 1.126 82836 (1.01) 13007 (1.00)

Eulertigs 1 1 82732 (1.00) 13007 (1.00)

2505x Human Unitigs 1.479 3.201 77582 411472

ProphAsm 1.00004 1.00017 82797* (1.07) 411472* (1.00)

Eulertigs 1 1 79198 (1.02) 411472 (1.00)
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Table 3 Experiments on references and read sets of single genomes with k = 52 and a min abundance of 10 for human and 1 for the 
others

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs 
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves. 
Prophasm can only be run for k ≤ 32 , which does not make sense for large genomes. The number in parentheses behind time and memory indicates the slowdown/
increase over computing just unitigs with BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The lengths of the genomes are 
100Mbp for C. elegans, 482Mbp for B. mori and 3.21Gbp for H. sapiens and the read data sets have a coverage of 64x for C. elegans, 58x for B. mori and 300x for H. 
sapiens

Genome Algorithm CL ratio SC ratio Time [s] Memory [GiB]

C. elegans (reads) Unitigs 1.788 2.824 2278 5.94

UST 1.034 1.079 3164 (1.39) 15.0 (2.53)

Eulertigs 1 1 3101 (1.36) 24.8 (4.17)

B. mori (reads) Unitigs 1.911 3.133 7157 9.35

UST 1.050 1.117 10530 (1.47) 52.3 (5.59)

Eulertigs 1 1 10006 (1.40) 78.3 (8.38)

H. sapiens (reads) Unitigs 1.414 2.135 56418 12.0

UST 1.016 1.043 57174 (1.01) 16.1 (1.35)

Eulertigs 1 1 57252 (1.01) 25.9 (2.17)

C. elegans Unitigs 1.059 3.145 72.9 1.22

UST 1.002 1.088 76.2 (1.05) 1.22 (1.00)

Eulertigs 1 1 82.0 (1.13) 1.22 (1.00)

B. mori Unitigs 1.259 3.296 259 3.33

UST 1.017 1.153 295 (1.14) 3.33 (1.00)

Eulertigs 1 1 311 (1.20) 3.33 (1.00)

H. sapiens Unitigs 1.190 3.521 1509 10.0

UST 1.014 1.190 1708 (1.13) 10.0 (1.00)

Eulertigs 1 1 1845 (1.22) 10.0 (1.00)

Table 4 Experiments on (references of ) pangenomes with k = 32 and a min abundance of 1

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs 
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves. 
Prophasm is run directly on the source data. The number in parentheses behind time and memory indicates the slowdown/increase over computing just unitigs with 
BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The N. gonorrhoeae pangenome contains 8.36 million unique kmers, the S. 
pneumoniae pangenome contains 19.3 million unique kmers, the E. coli pangenome contains 341 million unique kmers, the Salmonella pangenome contains 657 
million unique kmers and the human pangenome contains 2.8 billion unique kmers. Due to its size, ProphAsm could not be run on the Salmonella pangenome. Also 
due to size, BCALM2 did not run on the human pangenome, hence we used Cuttlefish 2. To still be able to compare against competitors, we ran ProphAsm on the 
unitigs produced by Cuttlefish 2 (UST requires extra information specific to BCALM2) . Cuttlefish 2 supports only odd k, hence the human pangenome is excluded 
from this experiment

Pangenome Tigs CL ratio SC ratio Time [s] Memory [MiB]

1102x N. gonorrhoeae Unitigs 1.623 3.053 37.1 6725

UST 1.023 1.074 39.3 (1.06) 6725 (1.00)

ProphAsm 1.00005 1.00015 764 (20.6) 210 (0.03)

Eulertigs 1 1 38.3 (1.03) 6725 (1.00)

616x S. pneumoniae Unitigs 1.685 3.050 37.8 4036

UST 1.026 1.079 42.2 (1.12) 4036 (1.00)

ProphAsm 1.00005 1.00014 446 (11.8) 439 (0.11)

Eulertigs 1 1 41.3 (1.09) 4036 (1.00)

3682x E. coli Unitigs 1.710 3.089 457 7193

UST 1.031 1.092 542 (1.18) 7193 (1.00)

ProphAsm 1.00006 1.00018 7148 (15.6) 7318 (1.02)

Eulertigs 1 1 521 (1.14) 7193 (1.00)

∼309kx Salmonella Unitigs 1.831 3.141 169935 13860

UST 1.048 1.124 170358 (1.00) 13860 (1.00)

Eulertigs 1 1 170248 (1.00) 13860 (1.00)
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Table 5 Experiments on references and read sets of single genomes with k = 102 and a min abundance of 10 for human and 1 for 
the others

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs 
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves. 
Prophasm can only be run for k ≤ 32 , which does not make sense for large genomes. The number in parentheses behind time and memory indicates the slowdown/
increase over computing just unitigs with BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The lengths of the genomes are 
100Mbp for C. elegans, 482Mbp for B. mori and 3.21Gbp for H. sapiens and the read data sets have a coverage of 64x for C. elegans, 58x for B. mori and 300x for H. 
sapiens

Genome Algorithm CL ratio SC ratio Time [s] Memory [GiB]

C. elegans (reads) Unitigs 1.742 2.588 5585 5.91

UST 1.023 1.049 6292 (1.13) 11.8 (2.00)

Eulertigs 1 1 6565 (1.18) 21.6 (3.66)

B. mori (reads) Unitigs 1.891 3.003 34979 10.8

UST 1.042 1.093 38272 (1.09) 47.1 (4.36)

Eulertigs 1 1 38939 (1.11) 77.3 (7.17)

H. sapiens (reads) Unitigs 1.334 1.927 191808 9.15

UST 1.008 1.021 192219 (1.00) 10.8 (1.18)

Eulertigs 1 1 192464 (1.00) 13.8 (1.50)

C. elegans Unitigs 1.042 3.061 176 2.14

UST 1.001 1.063 179 (1.01) 2.14 (1.00)

Eulertigs 1 1 186 (1.05) 2.14 (1.00)

B. mori Unitigs 1.133 2.805 756 3.15

UST 1.005 1.071 771 (1.02) 3.15 (1.00)

Eulertigs 1 1 801 (1.06) 3.15 (1.00)

H. sapiens Unitigs 1.060 3.189 5204 17.4

UST 1.003 1.101 5277 (1.01) 17.4 (1.00)

Eulertigs 1 1 5474 (1.05) 17.4 (1.00)

Table 6 Experiments on (references of ) pangenomes with k = 64 and a min abundanceof 1

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs 
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves. 
Prophasm is run directly on the source data. The number in parentheses behind time and memory indicates the slowdown/increase over computing just unitigs with 
BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The N. gonorrhoeae pangenome contains 8.36 million unique kmers, the S. 
pneumoniae pangenome contains 19.3 million unique kmers, the E. coli pangenome contains 341 million unique kmers, the Salmonella pangenome contains 657 
million unique kmers and the human pangenome contains 2.8 billion unique kmers. Due to its size, ProphAsm could not be run on the Salmonella pangenome. Also 
due to size, BCALM2 did not run on the human pangenome, hence we used Cuttlefish 2. To still be able to compare against competitors, we ran ProphAsm on the 
unitigs produced by Cuttlefish 2 (UST requires extra information specific to BCALM2). Cuttlefish 2 supports only odd k, hence the human pangenome is excluded from 
this experiment. ProphAsm supports only k ≤ 32 , hence it is excluded from this experiment

Pangenome Tigs CL ratio SC ratio Time [s] Memory [MiB]

1102x N. gonorrhoeae Unitigs 1.805 3.026 57.3 6116

UST 1.028 1.069 59.4 (1.04) 6116 (1.00)

Eulertigs 1 1 59.2 (1.03) 6116 (1.00)

616x S. pneumoniae Unitigs 1.767 3.008 42.4 5375

UST 1.026 1.068 46.9 (1.10) 5375 (1.00)

Eulertigs 1 1 47.0 (1.11) 5375 (1.00)

3682x E. coli Unitigs 1.803 3.037 637 6897

UST 1.030 1.076 720 (1.13) 6897 (1.00)

Eulertigs 1 1 724 (1.14) 6897 (1.00)

∼309kx Salmonella Unitigs 1.873 3.021 202386 15580

UST 1.042 1.098 202838 (1.00) 15580 (1.00)

Eulertigs 1 1 202816 (1.00) 15580 (1.00)
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As a result, all loops individually run at most |E| times, 
therefore Algorithm  6 terminates after O(|E|) steps. 
Because G is connected, this is equivalent to O(|V | + |E|) 
steps. �

With Lemma 17 and 18 we get the following.

Theorem  19 Algorithm  6 is correct and runs in 
O(|V | + |E|) time.

Computing a minimum SPSS without repetitions
We convert the Eulerian cycle into a walk cover of the 
original bigraph by breaking it at all arcs inserted by 
Algorithm  5, and removing those arcs (see Fig.  1d for 
an example). This results in a walk cover with either 
one walk, if Algorithm  5 inserted zero or one arcs, or 
imbalance (G)/2 arcs, if Algorithm 5 inserted more arcs. 
By Theorem  11, this is a minimum number of walks, 
and therefore the SPSS spelled by these walks is mini-
mum as well. Constructing the de Bruijn graph takes 
O(||I || log |�|) time, and it has O(||I||) k-mers, so it holds 
that |V | ∈ O(||I ||) and |E| ∈ O(||I ||) . Further, spelling the 
walk cover takes time linear to the cumulative length of 
the spelled strings. Since we compute a minimum repre-
sentation, it holds that the output is not larger than the 
total length of the input strings. Therefore we get:

Theorem 1 Let k be a positive integer and let I be a set 
of strings of length at least k over some alphabet � . Then 
we can compute a set of strings I ′ of length at least k with 
minimum cumulative length and CS k(I) = CS k(I

′) in 
O(||I || log |�|) time.

Previous heuristics were not optimal
The heuristics implemented by UST [3] and Prophasm 
[2] are not optimal, as shown experimentally below. Here, 
we also give a simple counter-example to argue that the 
previous heuristics were not optimal. Even though the 
previous algorithms were described in node-centric de 
Bruijn graphs, we describe them here in the arc-centric 
variants to stick with the terminology of this paper.

UST works by starting from an arbitrary arc and 
extending forwards to unused arcs as long as possible. If 
there is no unused arc, but the last chosen arc has a suc-
cessor that is the start of another walk, then the walks are 
joined. On the other hand, ProphAsm works by choosing 
an arbitrary arc and extending both forwards and back-
wards to unused arcs as long as possible. Both algorithms 
may fail to produce an optimal solution in the exam-
ple given in Fig. 2. They may both first choose AGGTG 
and then continue to GTG GGA T, producing a string 
AGG TGG GAT. When they then process GTG CCG TG, 
they cannot join it with the previous string, hence they 

produce two strings of a cumulative length of 17. The 
optimal solution in Fig. 2 has one string with a cumula-
tive length of 14.

Experiments
We ran our experiments on a server running Linux with 
two 64-core AMD EPYC 7H12 processors with 2 logical 
cores per physical core, 1.96TiB RAM and an SSD. Our 
data sets are the same as in [1], and we also adapted their 
metrics cumulative length (CL), which is the total count 
of characters in all strings, and string count (SC), which 
is the number of strings. Our implementation does not 
use the formalisation of bidirected graphs introduced in 
this work, but instead uses the formalisation from [1]. For 
constructing de Bruijn graphs, we do not implement our 
purely theoretical linear time algorithm, since practical 
de Bruijn graph construction is a well-researched field [4, 
6, 11, 23–25], and we want to focus more on computing 
the compressed representation from unitigs. UST only 
supports unitigs constructed by BCALM2 [11], since it 
needs certain additional data. BCALM2 is not a linear 
time algorithm, but is efficient in practice. Therefore, 
we use BCALM2 to construct a node-centric de Bruijn 
graph, and then convert it to an arc-centric variant using 
a union-find data structure. For the human pangenome, 
which hits some built-in limit of BCALM2, we use Cut-
tlefish 2 [6] instead. This prevents us from running UST, 
but instead we run ProphAsm on the unitigs computed 
by Cuttlefish 2.

Our experimental pipeline is constructed with [26] 
and using the bioconda software repository [27]. We 
ran all multithreaded tools with up to 28 threads and 
never used more than 128 cores of our machine at once 
to prevent hyperthreading from affecting our timing. 
The code to reproduce our experiments is licensed 
under the Creative Commons Attribution 4.0 Interna-
tional license and available on zenodo [28]. We addi-
tionally provide our implementation of the Eulertigs 
algorithm on zenodo [29] as well as github [30], conda 
[31] and crates. io [32].

The performance figures in Tables  1 and 2 are all 
very similar, with two exceptions. Prophasm does not 
support parallel computation at the moment, there-
fore its runtime is much higher. Compared to that, 
all other algorithms use parallel computation to com-
pute unitigs, but computing the final tigs from unitigs 
seems to be negligible compared to computing the de 
Bruijn topology. Moreover, running UST or Eulertigs 
on read data sets of larger genomes consumes signifi-
cantly more memory than computing just unitigs. This 
is likely because BCALM2 uses external memory to 
compute unitigs, while the other tools simply load the 
whole set of unitigs into memory.In terms of CL, we 

https://crates.io/
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see that the SPSS computed with UST mostly remains 
within the expected 3% of the lower bound, but it is up 
to 5% above the lower bound on more compressible 
data sets. The SPSS computed by ProphAsm is very 
close to the optimum in all cases, and we assume that 
this difference in quality is because ProphAsm extends 
paths both forwards and backwards, while the UST 
heuristic merely extends them forwards.

Looking at SC, we see that Eulertigs are always the 
lowest, which is due to the string count directly being 
connected to the cumulative length by Eq. 1. This also 
explains the correlation between CL ratio and SC ratio, 
which can be observed in all cases.

We conduct our experiments also with even k in 
Tables  3 and 4 to prove that our implementation also 
works with even k. To verify that the strings are cor-
rect, the tigs computed for the E.  coli pangenome are 
compared against each other by loading all k-mers 
into a hash table and checking if different tigs con-
tain the same k-mers. There are no significant differ-
ences between the experiments with even k and odd 
k.Additionally, we conduct our experiments with higher 
k in Tables 5 and 6 to show that performance stays the 
same when k is increased. The increase in k seems to 
increase the runtimes of BCALM2 and Cuttlefish 2, but 
the runtime of our Eulertigs implementation does not 
change significantly. As a result, the ratio between the 
runtimes of BCALM2 and Cuttlefish 2 and the runtime 
of our Eulertigs implementation becomes smaller for 
larger k.

Conclusions
We have presented a linear and hence optimal algorithm 
for computing a minimum SPSS without repetitions 
for a fixed alphabet size. This closes the open question 
about its complexity raised in [2, 3]. Using our optimal 
algorithm, we were able to accurately evaluate the exist-
ing heuristics and show that they are very close to the 
optimum in practice. Further, we have published our 
algorithm as a command-line tool on github. com [30] 
and conda [31] and a library on crates. io [32], allowing 
it to easily be used in any k-mer-based tool. While the 
difference in cumulative length between previous heu-
ristics and the optimum is not large, our tool works for 
any value of k, and is, combined with a de Bruijn graph 
compactor such as BCALM, much faster than Pro-
phAsm, which achieves nearly indistinguishable cumu-
lative length. Hence, our tool is better suited to be used 
any k-mer-based application including SSHash [5], and 
specifically in the applications listed in [2] which include 
compressed storage on disk and k-mer-based queries.

Further, we have presented how bidirected de Bruijn 
graphs can be formalised without excluding any corner 

cases. We have also shown how such a graph can be 
constructed in linear time for a fixed-size alphabet. The 
construction of the compacted arc-centric bidirected de 
Bruijn graph in linear time independent of the alphabet 
size stays an open problem.
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