
Schmidt and Alanko
Algorithms for Molecular Biology (2023) 18:5
https://doi.org/10.1186/s13015-023-00227-1

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Eulertigs: minimum plain text representation
of k-mer sets without repetitions in linear time
Sebastian Schmidt1* and Jarno N. Alanko1,2

Abstract

A fundamental operation in computational genomics is to reduce the input sequences to their constituent k-mers.
For maximum performance of downstream applications it is important to store the k-mers in small space, while keep-
ing the representation easy and efficient to use (i.e. without k-mer repetitions and in plain text). Recently, heuristics
were presented to compute a near-minimum such representation. We present an algorithm to compute a minimum
representation in optimal (linear) time and use it to evaluate the existing heuristics. Our algorithm first constructs the
de Bruijn graph in linear time and then uses a Eulerian-cycle-based algorithm to compute the minimum representa-
tion, in time linear in the size of the output.

Keywords Spectrum preserving string sets, Eulerian cycle, Suffix tree, Bidirected arc-centric de Bruijn graph, K-mer
based methods

Introduction
Motivation A k-mer is a DNA string of length k that is
considered equal to itself and its reverse complement. A
common pattern in bioinformatics is to reduce a set of
input strings to their constituent k-mers. Such repre-
sentations are at the core of many bioinformatics pipe-
lines—see e.g. Schmidt et al. [1] or Brinda et al. [2] for an
overview of applications. The wide-spread use of k-mer
sets has prompted the question of what is the smallest
plain text representation for a set of k-mers. Here, a plain
text representation means a set of strings that have the
same set of k-mers as the input strings, i.e. the spectrum is
preserved. Such representations are also called spectrum
preserving string sets (SPSS) [3], or simplitigs [2]. This has
the following advantages over encoded representations:

• When storing k-mer sets to disk, plain text may
remove the need of decompression before usage, as
some tools that usually take unitigs as input can take
any other plain text representation without modifica-
tion (e.g. Bifrost [4]).

• Within an application, an encoded representa-
tion would require decoding whenever a k-mer is
accessed, which may slow down the application a lot
compared to when each k-mer is in RAM in plain
text.

Further, in applications, it might be useful if the represen-
tation contains each k-mer exactly once. This is because
some applications, like e.g. SSHash [5], are able to take
any set of k-mers as input, but cannot easily deal with
duplicate k-mers in the input.

Related work There are two heuristic approaches to the
construction of a small SPSS without repetitions, namely
ProphAsm [2] and UST [3]. While neither of these com-
putes a minimum representation, Rahman et al. [3] also
present a lower bound to the minimum size of any rep-
resentation without repetition, and they show that they
are within 3% of this lower bound in practice. They also

*Correspondence:
Sebastian Schmidt
sebastian.schmidt@helsinki.fi
1 Department of Computer Science, University of Helsinki, Helsinki,
Finland
2 Institute of Biology, National University of Sciences, Kiel, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00227-1&domain=pdf
https://orcid.org/0000-0003-4878-2809
https://orcid.org/0000-0002-8003-9225

Page 2 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

present a counter-example showing that their lower
bound is not tight. Small SPSSs without repetitions are
used e.g. in SSHash [5] and are also computed by state-
of-the-art de Bruijn graph compactors like Cuttlefish
2 [6]. Additionally, the state-of-the-art de Bruijn graph
compressor GGCAT [7] was extended to compute Euler-
tigs, in addition to other variants of SPSSs.

When k-mer repetitions are allowed in an SPSS, there
is a known polynomially computable minimum repre-
sentation, namely matchtigs [1]. The matchtig algorithm
joins unitigs by first iterating all possible joins repeating
up to k − 1 k-mers, and then using minimum perfect
matching to find a set of joins that minimises the size of
the representation. This is similar to the algorithm pre-
sented in this paper, which leaves out the matching step
and only joins unitigs that are adjacent. While matchtigs
are expensive to compute, the authors also present a
more efficient greedy heuristic that is able to compute
a near-minimum representation on a modern server
with no significant penalty in runtime (when compared
to computing just unitigs), but a significant increase in
RAM usage.

In [1, 2] the authors also showed that decreasing the
size of an SPSS results in significantly better performance
in downstream applications, i.e. when further compress-
ing the representation with general purpose compres-
sors, or when performing k-mer-based queries.

The authors of both [2] and [3] consider whether com-
puting a minimum representation without repetitions
may be NP-hard, as it is equivalent to computing a mini-
mum path cover in a de Bruijn graph, which is NP-hard
in general graphs by reduction from Hamiltonian cycle.
However, computing a Hamiltonian cycle in a de Bruijn
graph is actually polynomial [8]. The authors of [8] argue
that de Bruijn graphs are a subclass of adjoint graphs, in
which solving the Hamiltonian cycle problem is equiva-
lent to solving the Eulerian cycle problem in the original
of the adjoint graph, which can be computed in linear
time.1 However, the argument is only made for normal
directed (and not bidirected) graphs, and thus is not
applicable to our setup, where a k-mer is also considered
equal to its reverse complement.

Our contributions Our first technical contribution is to
carefully define the notion of a bidirected de Bruijn graph
such that the spectrum of the input is accurately mod-
elled in the allowed walks of the graph. While defining

a bidirected de Bruijn graph is not new [10], we take
specific care around k-mers that are their own reverse
complement. This technicality is often neglected in the
literature, and sidestepped by requiring that the value of
k is odd, in which case this special case does not occur.
To make sure that our definition is correct for any k, we
show that our de Bruijn graph admits exactly the strings
that can be spelled from the k-mers that it was con-
structed from. We give a suffix-tree-based deterministic
linear-time algorithm to construct such a graph, filling a
theory gap in the literature, as existing approaches [4, 6,
11, 12] depend on the value of k and/or are probabilistic
due to the of use hashing, minimizers or Bloom filters, or
do not use the reverse-complement-aware definition of
k-mers [13].

Given the bidirected de Bruijn graph, we present an
algorithm that computes a minimum plain text repre-
sentation of k-mer sets without repetitions, which runs
in output sensitive linear time. Steps 1 to 3 run in linear
time in the number of nodes and arcs in the graph. In
short, it works as follows:

1 Add breaking arcs into this graph to make it Eulerian.
2 Compute a Eulerian cycle in the resulting graph.
3 Break that cycle at the breaking arcs.
4 Output the strings spelled by the resulting walks.

The algorithm is essentially an adaption of the matchtigs
algorithm [1], removing the possibility of joining walks
by repeating k-mers. We give detailed descriptions for all
these steps and prove their correctness in our bidirected
de Bruijn graph model. Together with our linear-time de
Bruijn graph construction algorithm, we obtain the main
result of our paper:

Theorem 1 Let k be a positive integer and let I be a set
of strings of length at least k over some alphabet � . Then
we can compute a set of strings I ′ of length at least k with
minimum cumulative length and CS k(I) = CS k(I

′) in
O(||I || log |�|) time.

where CS k(I) = CS k(I
′) means that I ′ is an SPSS of

I, and ||I|| is the cumulative length of I (see Sect. "Pre-
liminaries" for accurate definitions). This gives a positive
answer to the open question if a minimum SPSS with-
out repetitions can be computed in polynomial time.
Additionally, this gives an easily computable tight lower
bound on the size of a minimum SPSS without repeti-
tions. We also give a counter example where previous
heuristics are not necessarily optimal.

For our experiments, we have implemented steps 1 to
4 in Rust, taking the de Bruijn graph as given. The imple-
mentation is available on github: https:// github. com/

1 The original of an adjoint graph can be computed by splitting each node
v into two nodes v′ and v′′ such that v′ keeps the incoming arcs, and v′′ the
outgoing arcs as in [9, Figure 4] Then, the graph is a collection of complete
bipartite graphs [9]. These graphs can be contracted into single nodes, and
then we add an arc between the contracted representations of each v′ and
v
′′ . This can be computed in linear time and is the original graph, since all

nodes have become arcs again, and the arcs have the correct predecessors
and successors.

https://github.com/algbio/matchtigs

Page 3 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

algbio/ match tigs. Our experimental evaluation shows
that our algorithm does not result in significant practical
improvements, but for the first time allows to benchmark
the quality the heuristics ProphAsm and UST against an
optimal solution. It turns out that both produce close-to-
optimal results, but with a different distribution of com-
putational resources.

Our work also shows that using arc-centric de Bruijn
graphs can aid the intuition for certain problems, as in
this case, the node-centric variant hides the relationship
between Eulerian cycles and minimum SPSS without
repetition.

Organisation of the paper In Sect. "Preliminaries" we
give preliminary definitions of well-known concepts. In
Sect. "De Bruijn graphs" we define de Bruijn graphs and
prove the soundness of the definitions. In Sect. "Linear-
time construction of compacted bidirected de Bruijn
graphs" we show how to construct de Bruijn graphs by
our definitions in linear time. In Sect. "Linear-time mini-
mum SPSS without repetitions" we show how to con-
struct a minimum SPSS without repetitions in linear time
if the de Bruijn graph is given. Additionally, we give an
example where previous heuristics were not optimal. In
Sect. "Experiments" we compare our algorithm and Eul-
ertigs against strings computed with ProphAsm and UST
on practical data sets.

Preliminaries
In this section we give the prerequisite knowledge
required for this paper.

Bidirected graphs
In this section we define our notion of the bidirected
graphs and the incidence model.

A multiset is defined as a set M, and an implicit func-
tion #M : M → Z

+ mapping elements to their multiplici-
ties. The cardinality is defined as |M| :=

∑
s∈M #M(s).

An alphabet � is an ordered set, and an �-word is a
string of characters of that set. String concatenation is
written as ab for two strings a and b. The set �k is the
set of all �-words of length k and the set �∗ is the set of
all �-words, including the empty word ǫ . Given a posi-
tive integer k, the k-suffix suf k(w) (k-prefix pre k(w)) of
a word w is the substring of its last (first) k characters. A
k-mer is a word of length k. A complement function over
� is a function comp : � → � mapping characters to
characters that is self-inverse (i.e. comp (comp (x)) = x ,
also called an involution). A reverse complement func-
tion for alphabet � is a function rc : �∗ → �∗ defined
as rc ((w1, . . . ,wℓ)) := (comp (wℓ), . . . , comp (w1)) , for
some arbitrary complement function comp . On sets, rc is

defined to compute the reverse complement of each ele-
ment in the set. Note that rc is self-inverse. A canonical
k-mer is a k-mer that is lexicographically smaller than or
equal to its reverse complement.

Given an integer k and an alphabet � , the k-spec-
trum of a set of strings I ⊆

⋃
k ′≥k �

k ′ is a set of strings
S k(I) := {w ∈ �k | ∃i ∈ I : w is substring of i or rc (i)} .
The canonical k-spectrum of I is CS k(I) := {w ∈ S k(I)

| w is canonical} . For simplicity, the spectrum and canon-
ical spectrum are defined for a single string w as if it
were a set {w} . A spectrum preserving string set of a set of
strings I is a set of strings I ′ such that CS k(I) = CS k(I

′) .
The cumulative length of I is ||I || :=

∑
w∈I |w|.

Our definition of a bidirected graph is mostly stand-
ard like in e.g. [14], however we allow self-complemental
nodes that occur in bidirected de Bruijn graphs. A bidi-
rected graph is a tuple G = (V ,E, c) with a set of normal
and self-complemental nodes v ∈ V , a set of arcs e ∈ E ,
and a function c : V → {1, 0} marking self-complemen-
tal nodes with 1, and normal nodes with 0. An inci-
dence is a pair vd , where d ∈ {⊕,⊖,⊙} is called its sign
(e.g. v⊕). The negation of a sign is defined as ¬⊕ := ⊖ ,
¬⊖ := ⊕ and ¬⊙ := ⊙ . For self-complemental nodes
v ∈ V , only incidences v⊙ are allowed, and for normal
nodes only incidences v⊕ and v⊖ are allowed. An arc
(v1d1, v

′
1d

′
1, η) ∈ E is a tuple of incidences and a unique

identifier η , where η can be of any type. The reversal of
an arc is denoted by (v1d1, v′1d

′
1, η)

−1 := (v′1d
′
1, v1d1, η) .

If not required, we may drop the identifier (i.e. just write
(v1⊖, v′1⊙) ∈ E). We count the incidences present in an
arc e using multiset notation like #e(vd) , returning 0 if
the arc does not contain the incidence vd , returning 1 if it
contains the incidence once and returning 2 if it is a self-
loop with that incidence. If a node v ∈ V is present with
a ⊕ (⊖) sign in an arc, then the arc is outgoing (incoming)
from (to) v.

Note that, other than in standard directed graphs, in
bidirected graphs arcs can be outgoing or incoming on
both ends, and the order of the incidences in the arc does
not affect if it is outgoing or incoming to a node. Fur-
ther, our notation differs from that of standard bidirected
graphs in that arcs have a direction. This is required
because we will work with arc-centric de Bruijn graphs
(see Sect. "De Bruijn graphs"), which have labels on the
arcs and not the nodes. Using the sign of the incidence
pairs, it is possible to decide if a node is traversed for-
wards or backwards, but not if the arc is traversed for-
wards or backwards. But to decide which label (forwards
or reverse complement) to use when computing the
string spelled by an arc, the direction is relevant. See

https://github.com/algbio/matchtigs

Page 4 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

Fig. 1a for an example of a bigraph, which has labels that
make it a de Bruijn graph as well.

A walk in a bigraph is a sequence of arcs
W := ((v1d1, v

′
1
d
′
1
, η1), (v2d2, v

′
2
d
′
2
, η2), . . . , (vℓdℓ, v

′
ℓd

′
ℓ, ηℓ))

where for every i it holds that (vidi, v′id
′
i , ηi) ∈ E or

(v′id
′
i , vidi, ηi) ∈ E (we can arbitrarily walk over arcs for-

wards and reverse), and for every i < ℓ it holds that
v′i = vi+1 and d′i = ¬di+1 . The length of a walk is ℓ = |W | .
If v1 = v′ℓ and d1 = ¬d′ℓ , then W is a cycle. A bigraph is
connected, if for each pair of nodes v1, v2 ∈ V there is a
walk from v1 to v2.

For a node v ∈ V , the multiset of incidences is
defined as I (v) := {vd | d ∈ {⊕,⊖,⊙}} , with multi-
plicities # I (v)(vd) :=

∑
e∈E #e(vd) . For a node v ∈ V

that is not self-complemental, the outdegree is defined
as δ+(v) := # I (v)(v⊕) , and the indegree is defined as
δ−(v) := # I (v)(v⊖) . For a self-complemental node v ∈ V ,
the degree is defined as δ(v) := # I (v)(v⊙).

We define the imbalance of a node v ∈ V that is not
self-complemental as the difference of its outdegree and
indegree imbalance (v) := δ+(v)− δ−(v) . For a self-
complemental node v ∈ V the imbalance is defined as
imbalance (v) := 1 if δ(v) is odd, and imbalance (v) := 0
otherwise. A node v ∈ V is called unbalanced, if
imbalance (v) = 0 , and balanced otherwise.

A labelled graph is a bidirected graph G = (V ,E, c)
where the identifiers of arcs are strings over some alpha-
bet � (e.g. (v1⊕, v2⊖,ACCTG) ∈ E).

Suffix arrays and suffix trees
Section "Linear-time construction of compacted bidi-
rected de Bruijngraphs" requires knowledge of suffix
arrays and suffix trees. We assume the reader is familiar
with these data structures, and briefly give the relevant
definitions and properties below. We point the reader to
Gusfield [15] and Mäkinen [16] for an in-depth treatment
of the topics.

A suffix array SAT for a string T is an array of length
|T| such that SAT [i] is the starting position of the lexico-
graphically i-th suffix of T. The suffix array interval of a
string x is the maximal interval [i..j] such that all the suf-
fixes pointed by SAT [i], . . . , SAT [j] have x as a prefix, or
the empty interval if x is not a substring of T.

A suffix tree of a string T is a compacted version of the
trie of all suffixes of T, such that non-branching paths
are merged into single arcs, with arcs pointing away
from the root. The compactification concatenates the
labels of the arcs on the compacted path. The nodes that
were compacted away and are now in the middle of an
arc are called implicit nodes, and the rest of the nodes
are explicit. A locus (plural loci) is a node that is either
explicit or implicit. A locus v is represented by a pair (u,
d), where u is the explicit suffix tree node at the end of
the arc containing v (u is equal to v if v is explicit), and d
is the depth of locus v in the trie of loci. The suffix array
interval of a node is the interval of leaves in the subtree
of the node. The suffix array interval of an implicit locus
(u, d) is the same as the suffix array interval of u.

The suffix tree can be constructed in log-linear time in
|T | log |�| using e.g. Ukkonen’s algorithm [17] or in linear

Fig. 1 Overview of our algorithm executed on the input strings
{GAATG, ATCTGCT } with k = 3 . After step (d), the resulting spelled
SPSS is {ATC , AGAATGCTG}

Page 5 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

time in |T| using Farach’s algorithm [18]. The tree comes
with a function child that takes an explicit node and a
character, and returns the child at the end of the arc from
that node whose label starts with the given character (if
such node exists). This can be implemented in O(log |�|)
time by binary searching over child pointers sorted by
labels. The child function can also be easily imple-
mented for implicit loci. Ukkonen’s algorithm also pro-
duces suffix links for the explicit nodes, which map from
the suffix tree node of a string cx to the suffix tree node

of string x. It is possible to emulate suffix links on the
implicit loci using constant-time weighted level-ancestor
queries [19] by mapping (u, d) → (fd−1(SL(u)), d − 1) ,
where SL(u) is the destination of a suffix link from u,
and fd−1(SL(u)) is the furthest suffix tree ancestor from
SL(u) at depth at least d − 1 in the trie of loci. The inverse
pointers of suffix links are called Weiner links, and they
can also be simulated on the implicit loci by mapping
(u, d) → (WL(u, c), d + 1) , where WL(u, c) is the destina-
tion of a Weiner link from u with character c.

De Bruijn graphs

Page 6 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

The de Bruijn graph of order k of a set of input strings I is
defined as a labelled graph constructed by Algorithm 1.
See Fig. 1a for an example. The algorithm inserts an arc
for each canonical k-mer, and connects the arcs via nodes
according to their k − 1 overlaps. Depending on if these
overlaps use the reverse complement or if the k − 1-mer
of a node is self-complemental, it adds directions to the
incidences. A de Bruijn graph computed by this algo-
rithm has the following property.

Lemma 2 Let k be a positive integer and let I be a set
of strings of length at least k. Let G = (V ,E, c) be the de
Bruijn graph of order k constructed from I. For all pairs
of arcs e1 := (v1d1, v

′
1d

′
1, η1), e2 := (v2d2, v

′
2d

′
2, η2) ∈ E it

holds that:

(a) (v′1 = v2 and d′1 = ¬d2) if and only if
suf k−1(η1) = pre k−1(η2),

(b) (v′1 = v′2 and d′1 = ¬d′2) if and only if
suf k−1(η1) = pre k−1(rc (η2)),

(c) (v1 = v2 and d1 = ¬d2) if and only if
suf k−1(rc (η1)) = pre k−1(η2) , and

(d) (v1 = v′2 and d1 = ¬d′2) if and only if
suf k−1(rc (η1)) = pre k−1(rc (η2)).

Proof
Observe that the values of w and w′ computed in Lines
5 and 7 of Algorithm 1 are equal to pre k−1(η1) and
suf k−1(η1) for e1 and equal to pre k−1(η2) and suf k−1(η2)
for e2 . Further, observe that the values of v and v′ com-
puted in Lines 6 to 8 are equal to v1 and v′1 for e1 and

equal to v2 and v′2 for e2 . This makes v1 , v′1 , v2 and v′2 the
canonicals of pre k−1(η1) , suf k−1(η1) , pre k−1(η2) and
suf k−1(η2) . Finally, observe that the sign values d and d′
computed in Lines 9 to 14 are equal to d1 and d′1 for e1 and
equal to d2 and d′2 for e2 .

(a) If v′1 = v2 and d′1 = ¬d2 , then w′
1 = w2

for all possible values of d′1 , and there-
fore suf k−1(η1) = pre k−1(η2) . If suf k−1(η1)

= pre k−1(η2) , then w′
1 = w2 , and therefore v′1 = v2

because v′1 and v2 are the canonicals of w′
1 and w2 .

Additionally, d′1 = ¬d2 for all possible values of d′1.
(b) If v′1 = v′2 and d′1 = ¬d′2 , then w′

1 = rc (w′
2)

for all possible values of d′1 , and therefore
suf k−1(η1) = rc (suf k−1(η2)) = pre k−1(rc (η2)) .
If suf k−1(η1) = pre k−1(rc (η2)) , then w′

1
= rc (w′

2
) ,

and therefore v′1 = v′2 because v′1 and v′2 are the
canonicals of w′

1 and w′
2 . Additionally, d′1 = ¬d′2 for

all possible values of d′1.
(c) If v1 = v2 and d1 = ¬d2 , then rc (w1) = w2

for all possible values of d1 , and therefore
suf k−1(rc (η1)) = rc (pre k−1(η1)) = pre k−1(η2) .
If suf k−1(rc (η1)) = pre k−1(η2) , then w1 = rc (w2) ,
and therefore v1 = v2 because v1 and v2 are the
canonicals of w1 and w2 . Additionally, d1 = ¬d2 for
all possible values of d1.

(d) This case is equivalent to the first case when swap-
ping e1 and e2 , because suf k−1(η1) = pre k−1(η2)

⇐⇒ suf k−1(rc (η2)) = pre k−1(rc (η1)).

 �

Page 7 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

For a walk W := (e1 = (v1d1, v
′
1
d
′
1
, η1), . . . , eℓ = (vℓdℓ, v

′
ℓd

′
ℓ, ηℓ))

in a de Bruijn graph, its sequence of k-mers is
K := (κ1, . . . , κℓ) , where for each i we define κi as ηi if
ei ∈ E , and as rc (ηi) if e−1

i ∈ E . The string spell (W) is
the string spelled by W, which is defined as its collapsed
sequence of kmers, i.e. its sequence of k-mers gets con-
catenated while overlapping consecutive k-mers by
k − 1 . This is computed by Algorithm 2. It spells out the
first k-mer (or its reverse complement) completely, and
then adds the last characters of all subsequent k-mers
(or their reverse complements). We prove the follow-
ing lemmas to show that our definition of a de Bruijn
graph together with the spell (·) function is sound for
our purposes, i.e. walks in the de Bruijn graph can spell
exactly the strings containing subsets of the k-mers
used to create the de Bruijn graph. Due to this property,
we can use our de Bruijn graph and spell to in the Eul-
ertig algorithm, such that finding a minimum SPSS is
equivalent to finding a minimum walk cover of the de
Bruijn graph.

Lemma 3 Let k be a positive integer and let I be a
set of strings of length at least k. Let G = (V ,E, c) be
the de Bruijn graph of order k constructed from I. Let
W := (e1 = (v1d1, v

′
1d

′
1, η1), . . . , eℓ = (vℓdℓ, v

′
ℓd

′
ℓ, ηℓ)) be

a walk in G, and K := (κ1, . . . , κℓ) its sequence of k-mers.
Then for each consecutive pair of kmers κi, κi+1 it holds
that suf k−1(κi) = pre k−1(κi+1).

Proof
Let i ∈ {1, . . . , ℓ− 1} . By the definition of walk it holds
that v′i = vi+1 and d′i = ¬di+1 . We can apply Lemma 2
case by case.

(a) If ei, ei+1 ∈ E , then by Lemma 2 (a), it
holds that suf k−1(ηi) equals pre k−1(ηi+1) .
By definition, κi = ηi and κi+1 = ηi+1 , so
suf k−1(κi) = pre k−1(κi+1).

(b) If ei, e
−1
i+1 ∈ E , then by Lemma 2 (b) applied

to ei, e
−1
i+1 , it holds that suf k−1(ηi) equals

pre k−1(rc (ηi+1)) . By definition, κi = ηi and
κi+1 = rc (ηi+1) , so suf k−1(κi) = pre k−1(κi+1)

(c) If e−1
i , ei+1 ∈ E , then by Lemma 2 (c) applied

to e−1
i , ei+1 , it holds that suf k−1(rc (ηi)) equals

pre k−1(ηi+1) . By definition, κi = rc (ηi) and
κi+1 = ηi+1 , so suf k−1(κi) = pre k−1(κi+1).

(d) If e−1
i , e−1

i+1 ∈ E , then by Lemma 2 (d) applied
to e−1

i , e−1
i+1 , it holds that suf k−1(rc (ηi)) equals

pre k−1(rc (ηi+1)) . By definition, κi = rc (ηi) and
κi+1 = rc (ηi+1) , so suf k−1(κi) = pre k−1(κi+1).

�

We define the sequence of k-mers K = (κ1, . . . , κℓ) of a
string w = (a1, . . . , aℓ+k−1) by κi := (ai, . . . , ai+k−1) for
each i.

Lemma 4 Let k be a positive integer and let I be a set of
strings of length at least k. Let G = (V ,E, c) be the de Bruijn
graph of order k constructed from I. Let W be a walk in G,
KW its sequence of k-mers and K ′

W the sequence of k-mers
of spell (W) . Then KW = K ′

W .

Proof
Let (κ1, . . . , κℓ) := KW . We use induction over the length
of W. For an empty W, K is empty, spell (W) is empty, and
therefore K ′ is empty as well. For |W | = 1 , Algorithm 2 out-
puts spell (W) = κ1 and it holds that K ′

W = (κ1) = KW .

For |W | ≥ 2 we consider that KX = K ′
X holds for a prefix

X of W with |X | = |W | − 1 . When i = |W | at the begin-
ning of the loop in Line 8, then s = spell (X) . By Lemma
3 it holds that the last k − 1 characters of s are equal to the
first k − 1 characters of κℓ . Therefore, by appending the
last character from κℓ to s, κℓ is appended to K ′

X forming
K ′
W . Therefore, last k-mer of K ′

W equals the last k-mer of
KW , and the first ℓ− 1 k-mers of K ′

W equal those of KW by
induction. �

Lemma 5 Let k be a positive integer and let I be a set
of strings of length at least k. Let G = (V ,E, c) be the de
Bruijn graph of order k constructed from I. Let w be a string
with CS k(w) ⊆ CS k(I) . Then there exists a walk W in G
with spell (W) = w.

Proof
Let Kw = (κ1, . . . , κℓ) be the sequence of k-mers of
w. We construct W = (e1 = (v1d1, v

′
1
d
′
1
, η1), . . . , eℓ

= (vℓdℓ, v
′
ℓd

′
ℓ, ηℓ)) as follows: for each i, let ηi be the

Page 8 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

canonical of κi and fi ∈ E be the arc whose identifier is ηi .
We set ei = fi if κi is canonical, and ei = f −1

i otherwise.

For W to fulfil the definition of a walk we need that
v′i = vi+1 and d′i = ¬d′i+1 for all i. Using Lemma 2, we get:

• If ei, ei+1 ∈ E , then suf k−1(ηi) = suf k−1(κi)

= pre k−1(κi+1) = pre k−1(ηi+1) . Therefore, by
Lemma 2 (a), it holds that v′i = vi+1 and d′i = ¬d′i+1.

• If ei, e
−1
i+1 ∈ E , then suf k−1(ηi) = suf k−1(κi)

= pre k−1(κi+1) = pre k−1(rc (ηi+1)) . Therefore, by
Lemma 2 (b), it holds that v′i = vi+1 and d′i = ¬d′i+1.

• If e−1
i , ei+1 ∈ E , then suf k−1(rc (ηi)) = suf k−1(κi) =

pre k−1(κi+1) = pre k−1(ηi+1) . Therefore, by Lemma
2 (c), it holds that v′i = vi+1 and d′i = ¬d′i+1.

• If e−1
i , e−1

i+1 ∈ E , then suf k−1(rc (ηi)) = suf k−1(κi) =

pre k−1(κi+1) = pre k−1(rc (ηi+1)) . Therefore, by
Lemma 2 (d), it holds that v′i = vi+1 and d′i = ¬d′i+1.

To complete the proof we need to show that
spell (W) = w . By definition, the sequence of k-mers KW
of W is equivalent to Kw . And since W is a walk, by Lemma
4 we get that the sequence of k-mers of spell (W) is equiva-
lent to KW , and therefore spell (W) = w . �

A walk cover W of a bigraph G is a set of walks such
that for each arc e ∈ E it holds that e is part of some walk
W ∈ W , or e−1 is part of some walk W ∈ W.

Theorem 6 Let k be a positive integer and let I and I ′ be
sets of strings of length at least k. Let G = (V ,E, c) be the
de Bruijn graph of order k constructed from I. Then it holds
that CS k(I) = CS k(I

′) , if and only if there is a walk cover
W in G that spells the strings in I ′.

Proof
If CS k(I

′) ⊆ CS k(I) , then for each string w′ ∈ I ′ it holds
that CS k(w

′) ⊆ CS k(I) . Therefore, by Lemma 5, there
exists a walk w in G with spell (w) = w′ . Then, the set of all
such walks W spells I ′ . Further, because CS k(I) ⊆ CS k(I

′) ,
the identifier η of each arc e ∈ E is in CS k(I

′) , and there-
fore in the sequence of kmers Kw′ of some string w′ ∈ I ′ (pos-
sibly as a reverse complement). By Lemma 4 it holds that
Kw′ = Kw , where Kw is the sequence of k-mers of walk w.
By the definition of the sequence of k-mers of a walk, this
implies that w visits e (possible in reverse direction). Since
this holds for each e ∈ E , it holds that W is a walk cover of
G.

Assume that there is a walk cover W in G that spells the
strings in I ′ , and let w ∈ W be a walk, Kw its sequence of

k-mers, w′ := spell (w) and Kw′ the sequence of k-mers
of w′ . Then, by Lemma 4, Kw = Kw′ , which, by the defi-
nition of the sequence of k-mers of a walk implies that
CS k(I) ⊆ CS k(I

′) . And since W is a walk cover of G, we
get CS k(I) = CS k(I

′) . �

Corollary 7 By setting I = I ′ in Theorem 6 we see that
our de Bruijn graph contains the strings it was constructed
from. Further, by Theorem 6 it holds that walks in the de
Bruijn graph spell exactly the strings that can be formed
from the k-mers that were used to create the graph. Hence,
our definition of a de Bruijn graph is sound for all k.

A compacted de Bruijn graph is constructed from a de
Bruijn graph by contracting all nodes v ∈ V that are either
self-complemental and have exactly two arcs that have
exactly one incidence to v each, or that are not self-com-
plemental and have exactly one incoming and one out-
going arc. For simplicity, we use uncompacted de Bruijn
graphs in our theoretical sections, however all results
equally apply to compacted de Bruijn graphs.

Linear‑time construction of compacted bidirected
de Bruijn graphs
In this section, we fill a gap in the literature by describing
on a high level an algorithm to construct the bidirectional
de Bruijn graph of a set of input strings in time linear in
the total length of the input strings, independent of the
value of k.

Algorithm
Let I = {w1, . . .wm} be the set of input strings. Consider
the following concatenation:

where $ is a special character outside of the alphabet �
of the input strings. We require an index on T that can
answer the following queries: extendRight, extend-
Left, contractRight and contractLeft in con-
stant time. The extension operations take as input a
character c ∈ � and the interval of a string x in the suffix
array of T, and return the suffix array intervals of xc in the
case of extendRight and cx in the case of extend-
Left. The contraction operations are the inverse opera-
tions of these, mapping the suffix array intervals of xc
to x in the case of contractRight and cx to x in the
case of contractLeft. For efficiency, we also require
operations enumerateRight and enumerateLeft,
which take a string x and give all characters such that
extendRight and extendLeft respectively return
a non-empty interval, in time that is linear in the num-
ber of such characters. Implementations for all the six

T = $w1$w2$. . . wm rc (w1)$ rc (w2)$. . . $ rc (wm)$,

Page 9 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

subroutines are given in Sect. "Implementation of the
subroutines".

Using these operations, we can simulate the regular non-
bidirected de Bruijn graph of T. Each k-mer of the input
strings for a fixed k corresponds to a disjoint interval in
the suffix array of T. The nodes are represented by their
suffix array intervals. The outgoing arcs from a (k − 1)

-mer x are those characters c where extendRight(x,
c) returns a non-empty interval. We can enumerate all
the characters c with this property in constant time using
enumerateRight(x). The incoming arcs can be enu-
merated symmetrically with the enumerateLeft(x).
Finally, we can find the destination or origin of an arc
labelled with x by running a contractLeft or con-
tractRight operation respectively on x.

To construct the bidirected de Bruijn graph, we merge
together nodes that are the reverse complement of each
other. To find which nodes are complemental, we scan the
input strings I while maintaining the suffix array interval of
the current k-mer using extendRight and contract-
Left operations, while at the same time maintaining
the suffix array interval of the reverse complement using
extendLeft and contractRight operations. When-
ever we merge two nodes, we combine the incoming and
outgoing arcs, assigning the incidences of the arcs accord-
ing to the incidence rules in our definition. We are able to
tell in constant time which k-mer of a pair of complemental
k-mers is canonical by comparing the suffix array intervals
of the k-mers: the k-mer whose suffix array interval has a
smaller starting point is the canonical k-mer. If the starting
points are the same, the k-mer is self-complemental.

Using the enumerateRight and enumerateLeft
functions, we can check if a node would be contracted in
a compacted de Bruijn graph. By extending k-mers over
such nodes, we can in linear time also output only the arcs
and nodes of a compacted de Bruijn graph. For storing the
labels, we use one pointer into the input strings to store
a single k-mer, as well as a flag that is set whenever the
label is not canonical. If a label has multiple k-mers, then
we store the remaining k-mers as explicit strings, however
without their overlap with the “pointer-k-mer”. This way,
we can store each label in O(ℓ) space, where ℓ is the num-
ber of k-mers in the label. We additionally store the first

and last character of each label, as an easy way to make the
spell function run in output sensitive linear time.

Implementation of the subroutines
All required the subroutines extendRight, extend-
Left, contractRight, contractLeft, enumera-
teRight and enumerateLeft can be implemented
with the suffix tree of T by simulating the trie of the suf-
fix tree loci as described in Sect. "Suffix arrays and suf-
fix trees". The suffix array intervals of explicit nodes can
be stored with the nodes, so that we can operate on loci
(u, d) and retrieve the suffix array intervals on demand.
The operation extendRight follows an arc from a locus
to a child, and the operation contractRight is imple-
mented by going to the parent of the current locus. The
operation contractLeft follows a suffix link from the
current locus, and extendLeft follows a Weiner link.
The operations enumerateRight and enumerate-
Left are implemented by storing the children and the
Weiner links from explicit suffix tree nodes as neighbor
lists. The total number of these links is linear in |T| [16].
With this implementation, the slowest operations are
extendRight and extendLeft, taking O(log |�|) time
to binary search the neighbor lists. We therefore obtain
the following result:

Theorem 8 The compacted arc-centric bidirected de
Bruijn graph of order k of a set of input strings I from the
alphabet � can be constructed in time O(||I || log |�|).

We note that the same operations can also be imple-
mented on top of the bidirectional BWT index of
Belazzougui and Cunial [20], using the data structures
of Belazzougui et al. [21] for the enumeration opera-
tions. This gives an index that supports all the required
subroutines in constant time. The drawback of the bidi-
rectional BWT index is that only randomized construc-
tion algorithms are known, but the expected time is
still linear in |T|. We leave as an open problem the con-
struction of the compacted arc-centric bidirected de
Bruijn graph in deterministic linear time independent
of the alphabet size.

Page 10 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

Pseudocode
The pseudocode for computing a compacted de Bruijn graph in linear time is given by Algorithm 4 which
uses Algorithm 3 as a subroutine. The data structure D used by the algorithms is that described in Sect. "Lin-
ear-time construction of compacted bidirected de Bruijn graphs". Note that if we compute the arc labels
as plain strings as in Algorithm 1, we need up to O(k log |�|) bits to store a single-k-mer arc. And since
arcs are not substrings of input strings (but potentially combinations of input strings), we would need
up to O(k||I || log |�|) bits to store all arc labels without referring to the input strings. This contradicts
the algorithm being linear in ||I || log |�| . However, we can store the labels as tuples (p, η, q, r) , where pηq
is the label where p and q are explicit strings while η is a pointer to a k-mer in the input. If r is true, then
the label must be reverse complemented to match that defined by Algorithm 1. With this fix, the size of
a label that represents ℓ k-mers is O(ℓ log |�|) , and in total the de Bruijn graph represets O(||I||) k-mers.

Page 11 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

Page 12 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

The comparison on Line 16 of Algorithm 4 can be done in
linear time in |η1| + |η2| by finding the suffix array inter-
vals of η1ηη2 and rc (η1ηη2) with extendLeft and
extendRight from η and rc (η) respectively, and com-
paring the starts of the intervals. This way, the total time
taken by all those comparisons is proportional to the sum
of |η1| + |η2| over all unitigs, which is linear in ||I|| because
each character of η1 and η2 can be mapped to a distinct
edge in the non-compacted de Bruijn graph of ||I||. There-
fore, the algorithm can be implemented to run in
O(||I || log |�|) time.

Our pseudocode does not compute the first and last
character of each arc-label, but this can be easily computed
in constant time using wi , η1 and η2 in Algorithm 4.

Linear‑time minimum SPSS without repetitions
Let I be a set of strings. To compute an SPSS without rep-
etitions we first build a compacted de Bruijn graph G from
I. By Theorem 6, finding an SPSS is equivalent to finding
a walk cover in G. Further, with Lemma 4, we get that an
SPSS without repetitions is equivalent to a walk cover that
visits each arc exactly once (either once forwards, or once
reverse, but not both forwards and reverse). We call such a
walk cover a unique walk cover.

For minimality, observe that the cumulative length of an
SPSS S relates to its equivalent set of walks W as follows:

This is because in Algorithm 2, in Line 7, k − 1 characters
are appended to the result, and then in the loop in Line
8, one additional character per arc in W is appended. We
cannot alter the sum

∑
W∈W |W | , since we need to cover

all arcs in G. However we can alter the number of strings,
and decreasing or increasing this number by one will
decrease or increase the cumulative length of S by k − 1 .
Therefore, finding a minimum SPSS of I without repeti-
tions equals finding a unique walk cover of G that has a
minimum number of walks.

Note that computing a minimum SPSS in a bigraph
that is not connected is equivalent to separately comput-
ing an SPSS in each maximal connected subgraph. There-
fore we restrict to connected bigraphs from here on.

A lower bound for an SPSS without repetitions
Using the imbalance of the nodes of a bigraph, we can
derive a lower bound for the number of walks in a walk
cover.

(1)||S|| =
∑

W∈W

(k − 1+ |W |)

Lemma 9 Let v ∈ V be an unbalanced node in a
bigraph G = (V ,E, c) . Then in a unique walk cover W of
G, either at least | imbalance (v)| walks start in v, or at
least | imbalance (v)| walks end in v.

Proof
If v is self-complemental, then its imbalance is 1, so by
definition v has an odd number of incident arcs. Each
walk that does not start or end in v needs to enter and
leave v via two distinct arcs whenever it visits v. But since
the number of incident arcs is odd, there is at least one
arc that cannot be covered this way, implying that a walk
needs to start or end in this arc.

If v is not self-complemental and has a positive imbal-
ance, then it has imbalance (v) more outgoing arcs then
incoming arcs. Since walks need to leave v with the oppo-
site sign than they entered v, at least imbalance (v) arcs
cannot be covered by walks that do not start or end in v.
If v has negative imbalance, the situation is symmetric. �

Definition 10 The imbalance imbalance (G) of a
bigraph G = (V ,E, c) is the sum of the absolute imbal-
ance of all nodes

∑
v∈V | imbalance (v)|.

Theorem 11 Let G be a bigraph. A walk cover W of G
has a minimum string count of imbalance (G)/2.

Proof
Let v ∈ V be an unbalanced node. Then, by Lemma
9 at least | imbalance (v)| walks start in v or at least
| imbalance (v)| walks end in v. Since each walk has exactly
one start node and one end node, W has a minimum
string count of imbalance (G)/2 . �

Eulerising a bigraph
A directed graph is called Eulerian, if all nodes have
indegree equal to outdegree, i.e. are balanced [22]. If the
graph is strongly connected,2 then this is equivalent to
the graph admitting a Eulerian cycle, i.e. a cycle that visits
each arc exactly once. The same notion can be used with
bidirected graphs, using our definition of imbalance.

2 Strongly connected means that there is a directed path from each node v1
to each node v2.

Page 13 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

Definition 12 A bigraph is Eulerian, if all nodes have
imbalance zero.

A connected bigraph can be transformed into a Eulerian
bigraph by adding arcs using Algorithm 5. See Fig. 1b for
an example. The algorithm lists all nodes that are out of
balance, and inserts arbitrary arcs to balance them.

Lemma 13 The imbalance of a bigraph is even.

Proof
Adding or removing an arc changes the imbalance of two
nodes by 1, or of one node by two. In both cases, the imbal-
ance of the graph can only change by −2 , 0, or 2. Since the
imbalance of a graph without arcs is 0, this implies that
there can be no graph with odd imbalance. �

Lemma 14 Given a connected bigraph G = (V ,E, c) ,
Algorithm 5 outputs a Eulerian bigraph G′ = (V ,E′, c).

Proof
Algorithm 5 is well-defined, since by Lemma 13, it holds
that L has even length in each iteration of the loop in Line
10, so the removal operation in Line 12 always has some-
thing to remove.

The output of Algorithm 5 is a valid bigraph, since for self-
complemental nodes v ∈ V , only incidences v⊙ are added
to G′ , and for not self-complemental nodes v ∈ V , only
incidences v⊕ and v⊖ are added to G′.

Further, the output is a Eulerian bigraph, because for all
v ∈ V , it holds that imbalance (v) is 0, by the following
argument:

• If c(v) = 1 and v has imbalance zero in G, then its
imbalance stays the same in G′ . If it has imbalance 1,
then one incident arc is inserted, making its degree
even and its imbalance therefore zero.

• If c(v) = 0 and v has positive imbalance i in G, then i
incoming arcs are added to v (counting incoming self-
loops twice), and no outgoing arcs are added. There-
fore, it has imbalance zero in G′ . By symmetry, if v has
negative imbalance in G, it has imbalance zero in G′.

�

Lemma 15 Given a bigraph G = (V ,E, c) , Algorithm 5
terminates after O(|V | + |E|) steps.

Page 14 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

Proof
For the list data structure we choose a doubly linked list,
and for the graph an adjacency list (and array with an
entry for each node containing a doubly linked list for the
arcs).

The loop in Line 3 runs |V| times and each iteration
runs in O(| imbalance (v)|) for a node v, because a doubly
linked list supports appending in constant time. The sum
of absolute imbalances of all nodes cannot exceed 2|E|,
because each arc adds at most 1 to the absolute imbal-
ance of at most two nodes, or adds at most 2 to the abso-
lute imbalance of at most one node. Therefore, the length

Computing a Eulerian cycle in a bigraph

of list L after completing the loop is at most 2|E|, and the
loop runs in O(|V | + |E|) time.

The loop in Line 10 runs at most |L| ≤ 2|E| times and
performs only constant-time operations, since L is a dou-
bly linked list and we can insert arcs into an adjacency
list in constant time. Therefore, this loop also runs in
O(|V | + |E|) time. �

With Lemma 14 and 15 we get the following.

Theorem 16 Algorithm 5 is correct and runs in
O(|V | + |E|) time.

Page 15 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

After Eulerising the bigraph, we can compute a Eulerian
cycle using Algorithm 6. We do this similarly to Hier-
holzer’s classic algorithm for Eulerian cycles [22]. First we
find an arbitrary cycle. Then, as long as there are unused
arcs left, we search along the current cycle for unused
arcs, and find additional cycles through such unused
arcs. We integrate each of those additional cycles into the
main cycle. See Fig. 1c for an example of a Eulerian cycle.

Lemma 17 Given a connected Eulerian bigraph
G = (V ,E, c) , Algorithm 6 terminates and outputs a Eule-
rian cycle W.

Proof
For W = (e1 = (v1d1, v

′
1d

′
1, η1), . . . , eℓ = (vℓdℓ, v

′
ℓd

′
ℓ, ηℓ))

to be a Eulerian cycle, it must be a cycle that contains
each arc exactly once.

The sequence W ′ constructed by the loop in Line 10 is a
walk by construction, and since G is Eulerian it is a cycle
after the loop terminates. After finding the initial cycle in
the first iteration of the outer loop, each additional cycle
is started from a node on the initial cycle, and is a cycle
again. Therefore it can be inserted into the original cycle
without breaking its cycle property.

Since each arc is deleted when being added to W ′ , there
is no duplicate arc in W. And if the algorithm terminates,
then |E| = 0 (Line 1), so W contains all arcs.

For termination, consider that if W is not complete
after the first iteration of the outer loop, then the
loop in Line 7 searches for an unused arc using the
first_unfinished pointer. Since the prefix of W up to
including first_unfinished is never modified (Line
19), and first_unfinished is only advanced when its

Fig. 2 An example de Bruijn graph with k = 4 in which UST and
ProphAsm may compute a suboptimal solution. The optimal solution
here is a single string AGG TGC CGT GGG AT

Table 1 Experiments on references and read sets of single genomes with k = 51 and a min abundance of 10 for human and 1 for the
others

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves.
Prophasm can only be run for k ≤ 32 , which does not make sense for large genomes. The number in parentheses behind time and memory indicates the slowdown/
increase over computing just unitigs with BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The lengths of the genomes are
100Mbp for C. elegans, 482Mbp for B. mori and 3.21Gbp for H. sapiens and the read data sets have a coverage of 64x for C. elegans, 58x for B. mori and 300x for H.
sapiens

Genome Algorithm CL ratio SC ratio Time [s] Memory [GiB]

C. elegans (reads) Unitigs 1.789 2.831 1963 5.96

UST 1.035 1.080 2815 (1.43) 15.2 (2.54)

Eulertigs 1 1 2741 (1.40) 24.9 (4.18)

B. mori (reads) Unitigs 1.912 3.136 6844 9.35

UST 1.050 1.118 10053 (1.47) 52.4 (5.60)

Eulertigs 1 1 9412 (1.38) 78.4 (8.38)

H. sapiens (reads) Unitigs 1.418 2.143 55007 13.0

UST 1.016 1.044 55772 (1.01) 16.4 (1.26)

Eulertigs 1 1 55856 (1.02) 26.5 (2.05)

C. elegans Unitigs 1.060 3.154 53.3 1.22

UST 1.002 1.089 57.1 (1.07) 1.22 (1.00)

Eulertigs 1 1 62.5 (1.17) 1.22 (1.00)

B. mori Unitigs 1.262 3.310 244 3.32

UST 1.018 1.156 281 (1.15) 3.32 (1.00)

Eulertigs 1 1 295 (1.21) 3.32 (1.00)

H. sapiens Unitigs 1.195 3.532 1788 10.0

UST 1.015 1.192 2020 (1.13) 10.0 (1.00)

Eulertigs 1 1 2127 (1.19) 10.0 (1.00)

Page 16 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

pointee cannot reach any arc anymore, it holds that no
arc in W can reach an arc in E when first_unfinished gets
advanced over the end of W. Since G was initially Eule-
rian and only Eulerian cycles have been removed from G,
this implies that all nodes visited by W are still balanced
and therefore have no incident arcs anymore. And since
G was originally connected, W has visited all nodes, i.e.
|E| = 0 . Therefore, first_unfinished cannot be advanced
over the end of W, because the outer loop terminates
before that.

To complete the proof of termination, consider that
in each iteration of the outer loop, at least one arc gets
removed from E. In the first iteration, this happens at
least in Line 3, and in all following iterations, this hap-
pens in Line 11. �

Lemma 18 Given a connected Eulerian bigraph
G = (V ,E, c) , Algorithm 6 terminates after O(|V | + |E|)
steps.

Proof
We use a doubly linked list for W and W ′ , and an adja-
cency list for G. Then all lines can be executed in constant
time.

The loop in Line 10 removes one arc from E each itera-
tion, so it runs at most |E| times in total (over all itera-
tions of the outer loop). The loop in Line 7 advances
first_unfinished each iteration. Since the algorithm is
correct by Lemma 17, |W | ≤ |E| and first_unfinished
never runs over the end of first_unfinished , so the loop
runs at most |E| times in total (over all iterations of the
outer loop).

The condition for the loop in Line 10 is true at least once
in each iteration of the outer loop, since the preceding
branch sets up (vd, v′d′, η) such that it has a successor (in
the first iteration because of Eulerianess). So in each iter-
ation of the outer loop, at least one arc gets removed, so
the outer loop runs at most |E| times in total.

Table 2 Experiments on (references of) pangenomes with k = 31 and a min abundance of 1

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves.
Prophasm is run directly on the source data. The number in parentheses behind time and memory indicates the slowdown/increase over computing just unitigs with
BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The N. gonorrhoeae pangenome contains 8.36 million unique kmers, the S.
pneumoniae pangenome contains 19.3 million unique kmers, the E. coli pangenome contains 341 million unique kmers, the Salmonella pangenome contains 657
million unique kmers and the human pangenome contains 2.8 billion unique kmers. Due to its size, ProphAsm could not be run on the Salmonella pangenome. Also
due to size, BCALM2 did not run on the human pangenome, hence we used Cuttlefish 2. To still be able to compare against competitors, we ran ProphAsm on the
unitigs produced by Cuttlefish 2 (UST requires extra information specific to BCALM2)
* Indicates that resource usage includes running Cuttlefish 2 for ProphAsm

Pangenome Tigs CL ratio SC ratio Time [s] Memory [MiB]

1102x N. gonorrhoeae Unitigs 1.615 3.052 29.1 4351

UST 1.022 1.072 31.4 (1.08) 4351 (1.00)

ProphAsm 1.00004 1.00013 734 (25.2) 208 (0.05)

Eulertigs 1 1 30.2 (1.04) 4351 (1.00)

616x S. pneumoniae Unitigs 1.679 3.055 26.1 3146

UST 1.026 1.080 30.8 (1.18) 3146 (1.00)

ProphAsm 1.00004 1.00012 412 (15.8) 434 (0.14)

Eulertigs 1 1 29.3 (1.12) 3146 (1.00)

3682x E. coli Unitigs 1.705 3.092 334 7117

UST 1.031 1.092 418 (1.25) 7117 (1.00)

ProphAsm 1.00008 1.00023 7066 (21.1) 7221 (1.01)

Eulertigs 1 1 398 (1.19) 7117 (1.00)
∼309kx Salmonella Unitigs 1.830 3.151 82417 13007

UST 1.049 1.126 82836 (1.01) 13007 (1.00)

Eulertigs 1 1 82732 (1.00) 13007 (1.00)

2505x Human Unitigs 1.479 3.201 77582 411472

ProphAsm 1.00004 1.00017 82797* (1.07) 411472* (1.00)

Eulertigs 1 1 79198 (1.02) 411472 (1.00)

Page 17 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

Table 3 Experiments on references and read sets of single genomes with k = 52 and a min abundance of 10 for human and 1 for the
others

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves.
Prophasm can only be run for k ≤ 32 , which does not make sense for large genomes. The number in parentheses behind time and memory indicates the slowdown/
increase over computing just unitigs with BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The lengths of the genomes are
100Mbp for C. elegans, 482Mbp for B. mori and 3.21Gbp for H. sapiens and the read data sets have a coverage of 64x for C. elegans, 58x for B. mori and 300x for H.
sapiens

Genome Algorithm CL ratio SC ratio Time [s] Memory [GiB]

C. elegans (reads) Unitigs 1.788 2.824 2278 5.94

UST 1.034 1.079 3164 (1.39) 15.0 (2.53)

Eulertigs 1 1 3101 (1.36) 24.8 (4.17)

B. mori (reads) Unitigs 1.911 3.133 7157 9.35

UST 1.050 1.117 10530 (1.47) 52.3 (5.59)

Eulertigs 1 1 10006 (1.40) 78.3 (8.38)

H. sapiens (reads) Unitigs 1.414 2.135 56418 12.0

UST 1.016 1.043 57174 (1.01) 16.1 (1.35)

Eulertigs 1 1 57252 (1.01) 25.9 (2.17)

C. elegans Unitigs 1.059 3.145 72.9 1.22

UST 1.002 1.088 76.2 (1.05) 1.22 (1.00)

Eulertigs 1 1 82.0 (1.13) 1.22 (1.00)

B. mori Unitigs 1.259 3.296 259 3.33

UST 1.017 1.153 295 (1.14) 3.33 (1.00)

Eulertigs 1 1 311 (1.20) 3.33 (1.00)

H. sapiens Unitigs 1.190 3.521 1509 10.0

UST 1.014 1.190 1708 (1.13) 10.0 (1.00)

Eulertigs 1 1 1845 (1.22) 10.0 (1.00)

Table 4 Experiments on (references of) pangenomes with k = 32 and a min abundance of 1

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves.
Prophasm is run directly on the source data. The number in parentheses behind time and memory indicates the slowdown/increase over computing just unitigs with
BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The N. gonorrhoeae pangenome contains 8.36 million unique kmers, the S.
pneumoniae pangenome contains 19.3 million unique kmers, the E. coli pangenome contains 341 million unique kmers, the Salmonella pangenome contains 657
million unique kmers and the human pangenome contains 2.8 billion unique kmers. Due to its size, ProphAsm could not be run on the Salmonella pangenome. Also
due to size, BCALM2 did not run on the human pangenome, hence we used Cuttlefish 2. To still be able to compare against competitors, we ran ProphAsm on the
unitigs produced by Cuttlefish 2 (UST requires extra information specific to BCALM2) . Cuttlefish 2 supports only odd k, hence the human pangenome is excluded
from this experiment

Pangenome Tigs CL ratio SC ratio Time [s] Memory [MiB]

1102x N. gonorrhoeae Unitigs 1.623 3.053 37.1 6725

UST 1.023 1.074 39.3 (1.06) 6725 (1.00)

ProphAsm 1.00005 1.00015 764 (20.6) 210 (0.03)

Eulertigs 1 1 38.3 (1.03) 6725 (1.00)

616x S. pneumoniae Unitigs 1.685 3.050 37.8 4036

UST 1.026 1.079 42.2 (1.12) 4036 (1.00)

ProphAsm 1.00005 1.00014 446 (11.8) 439 (0.11)

Eulertigs 1 1 41.3 (1.09) 4036 (1.00)

3682x E. coli Unitigs 1.710 3.089 457 7193

UST 1.031 1.092 542 (1.18) 7193 (1.00)

ProphAsm 1.00006 1.00018 7148 (15.6) 7318 (1.02)

Eulertigs 1 1 521 (1.14) 7193 (1.00)

∼309kx Salmonella Unitigs 1.831 3.141 169935 13860

UST 1.048 1.124 170358 (1.00) 13860 (1.00)

Eulertigs 1 1 170248 (1.00) 13860 (1.00)

Page 18 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

Table 5 Experiments on references and read sets of single genomes with k = 102 and a min abundance of 10 for human and 1 for
the others

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves.
Prophasm can only be run for k ≤ 32 , which does not make sense for large genomes. The number in parentheses behind time and memory indicates the slowdown/
increase over computing just unitigs with BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The lengths of the genomes are
100Mbp for C. elegans, 482Mbp for B. mori and 3.21Gbp for H. sapiens and the read data sets have a coverage of 64x for C. elegans, 58x for B. mori and 300x for H.
sapiens

Genome Algorithm CL ratio SC ratio Time [s] Memory [GiB]

C. elegans (reads) Unitigs 1.742 2.588 5585 5.91

UST 1.023 1.049 6292 (1.13) 11.8 (2.00)

Eulertigs 1 1 6565 (1.18) 21.6 (3.66)

B. mori (reads) Unitigs 1.891 3.003 34979 10.8

UST 1.042 1.093 38272 (1.09) 47.1 (4.36)

Eulertigs 1 1 38939 (1.11) 77.3 (7.17)

H. sapiens (reads) Unitigs 1.334 1.927 191808 9.15

UST 1.008 1.021 192219 (1.00) 10.8 (1.18)

Eulertigs 1 1 192464 (1.00) 13.8 (1.50)

C. elegans Unitigs 1.042 3.061 176 2.14

UST 1.001 1.063 179 (1.01) 2.14 (1.00)

Eulertigs 1 1 186 (1.05) 2.14 (1.00)

B. mori Unitigs 1.133 2.805 756 3.15

UST 1.005 1.071 771 (1.02) 3.15 (1.00)

Eulertigs 1 1 801 (1.06) 3.15 (1.00)

H. sapiens Unitigs 1.060 3.189 5204 17.4

UST 1.003 1.101 5277 (1.01) 17.4 (1.00)

Eulertigs 1 1 5474 (1.05) 17.4 (1.00)

Table 6 Experiments on (references of) pangenomes with k = 64 and a min abundanceof 1

The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory required to compute the tigs
from the respective data set. BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves.
Prophasm is run directly on the source data. The number in parentheses behind time and memory indicates the slowdown/increase over computing just unitigs with
BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread. The N. gonorrhoeae pangenome contains 8.36 million unique kmers, the S.
pneumoniae pangenome contains 19.3 million unique kmers, the E. coli pangenome contains 341 million unique kmers, the Salmonella pangenome contains 657
million unique kmers and the human pangenome contains 2.8 billion unique kmers. Due to its size, ProphAsm could not be run on the Salmonella pangenome. Also
due to size, BCALM2 did not run on the human pangenome, hence we used Cuttlefish 2. To still be able to compare against competitors, we ran ProphAsm on the
unitigs produced by Cuttlefish 2 (UST requires extra information specific to BCALM2). Cuttlefish 2 supports only odd k, hence the human pangenome is excluded from
this experiment. ProphAsm supports only k ≤ 32 , hence it is excluded from this experiment

Pangenome Tigs CL ratio SC ratio Time [s] Memory [MiB]

1102x N. gonorrhoeae Unitigs 1.805 3.026 57.3 6116

UST 1.028 1.069 59.4 (1.04) 6116 (1.00)

Eulertigs 1 1 59.2 (1.03) 6116 (1.00)

616x S. pneumoniae Unitigs 1.767 3.008 42.4 5375

UST 1.026 1.068 46.9 (1.10) 5375 (1.00)

Eulertigs 1 1 47.0 (1.11) 5375 (1.00)

3682x E. coli Unitigs 1.803 3.037 637 6897

UST 1.030 1.076 720 (1.13) 6897 (1.00)

Eulertigs 1 1 724 (1.14) 6897 (1.00)

∼309kx Salmonella Unitigs 1.873 3.021 202386 15580

UST 1.042 1.098 202838 (1.00) 15580 (1.00)

Eulertigs 1 1 202816 (1.00) 15580 (1.00)

Page 19 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

As a result, all loops individually run at most |E| times,
therefore Algorithm 6 terminates after O(|E|) steps.
Because G is connected, this is equivalent to O(|V | + |E|)
steps. �

With Lemma 17 and 18 we get the following.

Theorem 19 Algorithm 6 is correct and runs in
O(|V | + |E|) time.

Computing a minimum SPSS without repetitions
We convert the Eulerian cycle into a walk cover of the
original bigraph by breaking it at all arcs inserted by
Algorithm 5, and removing those arcs (see Fig. 1d for
an example). This results in a walk cover with either
one walk, if Algorithm 5 inserted zero or one arcs, or
imbalance (G)/2 arcs, if Algorithm 5 inserted more arcs.
By Theorem 11, this is a minimum number of walks,
and therefore the SPSS spelled by these walks is mini-
mum as well. Constructing the de Bruijn graph takes
O(||I || log |�|) time, and it has O(||I||) k-mers, so it holds
that |V | ∈ O(||I ||) and |E| ∈ O(||I ||) . Further, spelling the
walk cover takes time linear to the cumulative length of
the spelled strings. Since we compute a minimum repre-
sentation, it holds that the output is not larger than the
total length of the input strings. Therefore we get:

Theorem 1 Let k be a positive integer and let I be a set
of strings of length at least k over some alphabet � . Then
we can compute a set of strings I ′ of length at least k with
minimum cumulative length and CS k(I) = CS k(I

′) in
O(||I || log |�|) time.

Previous heuristics were not optimal
The heuristics implemented by UST [3] and Prophasm
[2] are not optimal, as shown experimentally below. Here,
we also give a simple counter-example to argue that the
previous heuristics were not optimal. Even though the
previous algorithms were described in node-centric de
Bruijn graphs, we describe them here in the arc-centric
variants to stick with the terminology of this paper.

UST works by starting from an arbitrary arc and
extending forwards to unused arcs as long as possible. If
there is no unused arc, but the last chosen arc has a suc-
cessor that is the start of another walk, then the walks are
joined. On the other hand, ProphAsm works by choosing
an arbitrary arc and extending both forwards and back-
wards to unused arcs as long as possible. Both algorithms
may fail to produce an optimal solution in the exam-
ple given in Fig. 2. They may both first choose AGGTG
and then continue to GTG GGA T, producing a string
AGG TGG GAT. When they then process GTG CCG TG,
they cannot join it with the previous string, hence they

produce two strings of a cumulative length of 17. The
optimal solution in Fig. 2 has one string with a cumula-
tive length of 14.

Experiments
We ran our experiments on a server running Linux with
two 64-core AMD EPYC 7H12 processors with 2 logical
cores per physical core, 1.96TiB RAM and an SSD. Our
data sets are the same as in [1], and we also adapted their
metrics cumulative length (CL), which is the total count
of characters in all strings, and string count (SC), which
is the number of strings. Our implementation does not
use the formalisation of bidirected graphs introduced in
this work, but instead uses the formalisation from [1]. For
constructing de Bruijn graphs, we do not implement our
purely theoretical linear time algorithm, since practical
de Bruijn graph construction is a well-researched field [4,
6, 11, 23–25], and we want to focus more on computing
the compressed representation from unitigs. UST only
supports unitigs constructed by BCALM2 [11], since it
needs certain additional data. BCALM2 is not a linear
time algorithm, but is efficient in practice. Therefore,
we use BCALM2 to construct a node-centric de Bruijn
graph, and then convert it to an arc-centric variant using
a union-find data structure. For the human pangenome,
which hits some built-in limit of BCALM2, we use Cut-
tlefish 2 [6] instead. This prevents us from running UST,
but instead we run ProphAsm on the unitigs computed
by Cuttlefish 2.

Our experimental pipeline is constructed with [26]
and using the bioconda software repository [27]. We
ran all multithreaded tools with up to 28 threads and
never used more than 128 cores of our machine at once
to prevent hyperthreading from affecting our timing.
The code to reproduce our experiments is licensed
under the Creative Commons Attribution 4.0 Interna-
tional license and available on zenodo [28]. We addi-
tionally provide our implementation of the Eulertigs
algorithm on zenodo [29] as well as github [30], conda
[31] and crates. io [32].

The performance figures in Tables 1 and 2 are all
very similar, with two exceptions. Prophasm does not
support parallel computation at the moment, there-
fore its runtime is much higher. Compared to that,
all other algorithms use parallel computation to com-
pute unitigs, but computing the final tigs from unitigs
seems to be negligible compared to computing the de
Bruijn topology. Moreover, running UST or Eulertigs
on read data sets of larger genomes consumes signifi-
cantly more memory than computing just unitigs. This
is likely because BCALM2 uses external memory to
compute unitigs, while the other tools simply load the
whole set of unitigs into memory.In terms of CL, we

https://crates.io/

Page 20 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

see that the SPSS computed with UST mostly remains
within the expected 3% of the lower bound, but it is up
to 5% above the lower bound on more compressible
data sets. The SPSS computed by ProphAsm is very
close to the optimum in all cases, and we assume that
this difference in quality is because ProphAsm extends
paths both forwards and backwards, while the UST
heuristic merely extends them forwards.

Looking at SC, we see that Eulertigs are always the
lowest, which is due to the string count directly being
connected to the cumulative length by Eq. 1. This also
explains the correlation between CL ratio and SC ratio,
which can be observed in all cases.

We conduct our experiments also with even k in
Tables 3 and 4 to prove that our implementation also
works with even k. To verify that the strings are cor-
rect, the tigs computed for the E. coli pangenome are
compared against each other by loading all k-mers
into a hash table and checking if different tigs con-
tain the same k-mers. There are no significant differ-
ences between the experiments with even k and odd
k.Additionally, we conduct our experiments with higher
k in Tables 5 and 6 to show that performance stays the
same when k is increased. The increase in k seems to
increase the runtimes of BCALM2 and Cuttlefish 2, but
the runtime of our Eulertigs implementation does not
change significantly. As a result, the ratio between the
runtimes of BCALM2 and Cuttlefish 2 and the runtime
of our Eulertigs implementation becomes smaller for
larger k.

Conclusions
We have presented a linear and hence optimal algorithm
for computing a minimum SPSS without repetitions
for a fixed alphabet size. This closes the open question
about its complexity raised in [2, 3]. Using our optimal
algorithm, we were able to accurately evaluate the exist-
ing heuristics and show that they are very close to the
optimum in practice. Further, we have published our
algorithm as a command-line tool on github. com [30]
and conda [31] and a library on crates. io [32], allowing
it to easily be used in any k-mer-based tool. While the
difference in cumulative length between previous heu-
ristics and the optimum is not large, our tool works for
any value of k, and is, combined with a de Bruijn graph
compactor such as BCALM, much faster than Pro-
phAsm, which achieves nearly indistinguishable cumu-
lative length. Hence, our tool is better suited to be used
any k-mer-based application including SSHash [5], and
specifically in the applications listed in [2] which include
compressed storage on disk and k-mer-based queries.

Further, we have presented how bidirected de Bruijn
graphs can be formalised without excluding any corner

cases. We have also shown how such a graph can be
constructed in linear time for a fixed-size alphabet. The
construction of the compacted arc-centric bidirected de
Bruijn graph in linear time independent of the alphabet
size stays an open problem.

Acknowledgements
We wish to thank Andrea Cracco for providing us with the ∼309kx Salmonella
pangenome. We also wish to thank the anonymous reviewers for there useful
constructive feedback, which improved the presentation of the paper, the
implementation and the experimental results. Open access funded by Helsinki
University Library.

Author contributions
JNA and SS discovered the problem, SS solved the problem when the de
Bruijn graph is given and wrote most of the manuscript, JNA designed the
linear-time de Bruijn graph construction algorithm and wrote Sect. "Linear-
time construction of compacted bidirected de Bruijn graphs". SS implemented
the algorithm and conducted and evaluated the experiments. All authors read
and approved the final manuscript.

Funding
Open Access funding provided by University of Helsinki including Helsinki
University Central Hospital. This work was partially funded by the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 851093, SAFEBIO), and by
NIH NIAID grant No. R01HG011392 and Academy of Finland grant 339070.

 Availability of data and materials
The implementation of the Eulertig algorithm is available on github [30].
The name of the project is matchtigs. It is platform independent, and can be
compiled locally or installed from bioconda as described in the README of
the project. It is licensed under the 2-clause BSD license. The version used
for our experiments is available on zenodo [29], and the implementation
together with all code to reproduce the experiments is available at [28]. The
experiment code is licensed under the Creative Commons Attribution 4.0
International license. See [1] for the availability of the non-original data used
for our experiments.

Declarations

Ethics approval and consent to participate
This study only uses publicly available datasets, hence an ethics approval or
consent to participate is not required.

Competing interests
The authors declare that they have no competing interests.

Received: 13 February 2023 Accepted: 13 May 2023

References
 1. Schmidt S, Khan S, Alanko J, Tomescu AI. Matchtigs: minimum plain

text representation of kmer sets. bioRxiv. 2021. https:// doi. org/ 10. 1101/
2021. 12. 15. 472871.

 2. Břinda K, Baym M, Kucherov G. Simplitigs as an efficient and scalable
representation of de Bruijn graphs. Genome Biol. 2021;22(1):1–24.

 3. Rahman A, Medevedev P. Representation of k-Mer sets using spectrum-
preserving string sets. J Comput Biol. 2021;28(4):381–94.

 4. Holley G, Melsted P. Bifrost: highly parallel construction and index-
ing of colored and compacted de Bruijn graphs. Genome Biol.
2020;21(1):1–20.

 5. Pibiri GE. Sparse and skew hashing of k-mers. bioRxiv. 2022. https:// doi.
org/ 10. 1101/ 2022. 01. 15. 476199.

https://github.com/
https://crates.io/
https://doi.org/10.1101/2021.12.15.472871
https://doi.org/10.1101/2021.12.15.472871
https://doi.org/10.1101/2022.01.15.476199
https://doi.org/10.1101/2022.01.15.476199

Page 21 of 21Schmidt and Alanko Algorithms for Molecular Biology (2023) 18:5

 6. Khan J, Kokot M, Deorowicz S, Patro R. Scalable, ultra-fast, and low-
memory construction of compacted de Bruijn graphs with Cuttlefish 2.
bioRxiv. 2021. https:// doi. org/ 10. 1101/ 2021. 12. 14. 472718.

 7. Cracco A, Tomescu AI. Extremely-fast construction and querying of
compacted and colored de Bruijn graphs with GGCAT. bioRxiv. 2022.
https:// doi. org/ 10. 1101/ 2022. 10. 24. 513174.

 8. Kasprzak M. Classification of de Bruijn-based labeled digraphs. Discrete
Appl Math. 2018;234:86–92. https:// doi. org/ 10. 1016/j. dam. 2016. 10. 014.

 9. Blazewicz J, Hertz A, Kobler D, de Werra D. On some properties of DNA
graphs. Discrete Appl Math. 1999;98(1–2):1–19.

 10. Rahman A, Medvedev P. Assembler artifacts include misassembly
because of unsafe unitigs and underassembly because of bidirected
graphs. Genome Res. 2022;32(9):1746–53.

 11. Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs
from sequencing data quickly and in low memory. Bioinformatics.
2016;32(12):201–8.

 12. Bankevich A, Bzikadze AV, Kolmogorov M, Antipov D, Pevzner PA.
Multiplex de Bruijn graphs enable genome assembly from long,
high-fidelity reads. Nat Biotechnol. 2022. https:// doi. org/ 10. 1038/
s41587- 022- 01220-6.

 13. Cazaux B, Lecroq T, Rivals E. From indexing data structures to de Bruijn
graphs. In: Kulikov AS, Kuznetsov SO, Pevzner P, editors. Symposium on
combinatorial pattern matching. Springer: Berlin; 2014. p. 89–99.

 14. Kundeti V, Rajasekaran S, Dinh H. An efficient algorithm for Chinese
postman walk on bi-directed de Bruijn graphs. In: Wu W, Daescu O, edi-
tors. Combinatorial optimization and applications. Berlin, Heidelberg:
Springer; 2010. p. 184–96.

 15. Gusfield D. Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge: Cambridge University
Press; 1997. https:// doi. org/ 10. 1017/ cbo97 80511 574931.

 16. Mäkinen V, Belazzougui D, Cunial F, Tomescu AI. Genome-scale algorithm
design. Cambridge: Cambridge University Press; 2015.

 17. Ukkonen E. On-line construction of suffix trees. Algorithmica.
1995;14(3):249–60.

 18. Farach M. Optimal suffix tree construction with large alphabets. In: Pro-
ceedings 38th Annual Symposium on Foundations of Computer Science.
IEEE. 1997; p. 137–43.

 19. Belazzougui D, Kosolobov D, Puglisi SJ, Raman R. Weighted ancestors in
suffix trees revisited. In: 32nd Annual Symposium on Combinatorial Pat-
tern Matching. 2021.

 20. Belazzougui D, Cunial F. Fully-functional bidirectional burrows-wheeler
indexes and infinite-order de bruijn graphs. In: 30th Annual Symposium
on Combinatorial Pattern Matching (CPM 2019). 2019; Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik

 21. Belazzougui D, Cunial F, Kärkkäinen J, Mäkinen V. Versatile succinct repre-
sentations of the bidirectional burrows-wheeler transform. In: Bodlaender
HL, Italiano GF, editors. European symposium on algorithms. Springer:
Berlin; 2013. p. 133–44.

 22. Fleischner H. Eulerian graphs and related topics. The Netherlands: Else-
vier; 1990.

 23. Crawford VG, Kuhnle A, Boucher C, Chikhi R, Gagie T. Practical dynamic de
Bruijn graphs. Bioinformatics. 2018;34(24):4189–95.

 24. Muggli MD, Bowe A, Noyes NR, Morley PS, Belk KE, Raymond R, Gagie T,
Puglisi SJ, Boucher C. Succinct colored de Bruijn graphs. Bioinformatics.
2017;33(20):3181–7.

 25. Muggli MD, Alipanahi B, Boucher C. Building large updatable colored de
Bruijn graphs via merging. Bioinformatics. 2019;35(14):51–60.

 26. Köster J, Rahmann S. Snakemake-a scalable bioinformatics workflow
engine. Bioinformatics. 2012;28(19):2520–2.

 27. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH,
Valieris R, Köster J. Bioconda: sustainable and comprehensive software
distribution for the life sciences. Nat Methods. 2018;15(7):475–6.

 28. Schmidt S. Eulertigs experiments. Zenodo. 2022. https:// doi. org/ 10. 5281/
zenodo. 73711 48.

 29. Schmidt S. Eulertigs. Zenodo. 2022. https:// doi. org/ 10. 5281/ zenodo.
73711 84.

 30. Schmidt S. Matchtigs. GitHub. https:// github. com/ algbio/ match tigs.
Accessed 15 Apr 2023.

 31. Schmidt S. Matchtigs. Bioconda. https:// anaco nda. org/ bioco nda/ match
tigs. Accessed 15 Apr 2023.

 32. Schmidt S. Matchtigs. Crates.io. https:// crates. io/ crates/ match tigs.
Accessed 15 Apr 2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1101/2021.12.14.472718
https://doi.org/10.1101/2022.10.24.513174
https://doi.org/10.1016/j.dam.2016.10.014
https://doi.org/10.1038/s41587-022-01220-6
https://doi.org/10.1038/s41587-022-01220-6
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.5281/zenodo.7371148
https://doi.org/10.5281/zenodo.7371148
https://doi.org/10.5281/zenodo.7371184
https://doi.org/10.5281/zenodo.7371184
https://github.com/algbio/matchtigs
https://anaconda.org/bioconda/matchtigs
https://anaconda.org/bioconda/matchtigs
https://crates.io/crates/matchtigs

	Eulertigs: minimum plain text representation of k-mer sets without repetitions in linear time
	Abstract
	Introduction
	Preliminaries
	Bidirected graphs
	Suffix arrays and suffix trees

	De Bruijn graphs
	Linear-time construction of compacted bidirected de Bruijn graphs
	Algorithm
	Implementation of the subroutines
	Pseudocode

	Linear-time minimum SPSS without repetitions
	A lower bound for an SPSS without repetitions
	Eulerising a bigraph
	Computing a Eulerian cycle in a bigraph
	Computing a minimum SPSS without repetitions
	Previous heuristics were not optimal

	Experiments
	Conclusions
	Acknowledgements
	References

