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Abstract 

Background Therapeutics against the envelope (Env) proteins of human immunodeficiency virus type 1 (HIV-1) 
effectively reduce viral loads in patients. However, due to mutations, new therapy-resistant Env variants frequently 
emerge. The sites of mutations on Env that appear in each patient are considered random and unpredictable. Here 
we developed an algorithm to estimate for each patient the mutational state of each position based on the muta-
tional state of adjacent positions on the three-dimensional structure of the protein.

Methods We developed a dynamic ensemble selection algorithm designated k-best classifiers. It identifies the best 
classifiers within the neighborhood of a new observation and applies them to predict the variability state of each 
observation. To evaluate the algorithm, we applied amino acid sequences of Envs from 300 HIV-1-infected individuals 
(at least six sequences per patient). For each patient, amino acid variability values at all Env positions were mapped 
onto the three-dimensional structure of the protein. Then, the variability state of each position was estimated by the 
variability at adjacent positions of the protein.

Results The proposed algorithm showed higher performance than the base learner and a panel of classification 
algorithms. The mutational state of positions in the high-mannose patch and CD4-binding site of Env, which are 
targeted by multiple therapeutics, was predicted well. Importantly, the algorithm outperformed other classification 
techniques for predicting the variability state at multi-position footprints of therapeutics on Env.

Conclusions The proposed algorithm applies a dynamic classifier-scoring approach that increases its performance 
relative to other classification methods. Better understanding of the spatiotemporal patterns of variability across Env 
may lead to new treatment strategies that are tailored to the unique mutational patterns of each patient. More gener-
ally, we propose the algorithm as a new high-performance dynamic ensemble selection technique.
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Background
Four decades after recognizing human immunodefi-
ciency virus type 1 (HIV-1) as the causative agent of 
acquired immune deficiency syndrome (AIDS), this 
virus is still a major health concern worldwide. In the 
year 2021, 38  million individuals were living with HIV, 
650,000 died from AIDS-related diseases, and 1.5 million 
were newly infected [1]. To treat HIV-infected individu-
als, multiple therapeutics are available; they bind to the 
viral proteins and can effectively inhibit their function. 
However, the replication machinery of HIV-1 is prone to 
errors. As a result, new variants of its proteins are gener-
ated, some of which contain changes at sites targeted by 
the therapeutics [2]. Subsequent expansion of the mutant 
forms under the selective pressure of the therapeutic can 
lead to clinical resistance [3, 4]. Since the appearance of 
the mutations is random, the emergence of resistance by 
changes at any position of an HIV-1 protein is considered 
unpredictable. There is a critical need to better under-
stand the changes in HIV-1 within the host. Such knowl-
edge can lead to the design of new strategies that tailor 
treatments to infected individuals based on the proper-
ties of the infecting virus and the changes expected to 
occur. Multiple tools have been developed over the past 
two decades to predict the evolution of other viruses, pri-
marily influenza virus, to inform the design of vaccines 
according to the changes expected to occur [5]. Unfortu-
nately, the number of tools developed to model and pre-
dict the changes in HIV-1, particularly within the host, is 
limited [6–9].

Toward a better understanding of variability patterns 
in the envelope proteins of HIV‑1 within the infected host
Of all HIV-1 proteins, the envelope glycoproteins (Envs) 
exhibit the highest level of diversity, both within and 
between hosts [10, 11]. Env adorns the surface of HIV-1 
particles and allows the virus to enter cells [12]; it is thus 
a primary target in AIDS vaccine design [13]. Env is com-
posed of approximately 850 amino acids (some diversity 
in length exists between different strains). In the infected 
host, new amino acid variants continuously appear at 
multiple positions of this protein. Consequently, at any 
time point during chronic infection, 10% or more of Env 
positions can exhibit variability in amino acid sequence 
between co-circulating strains [14, 15]. The random 
nature of the mutations, the extreme diversity of Env 
within and between hosts, and the structural complexity 
of this protein limit our ability to model the changes.

Whereas the amino acid that occupies any Env position 
can vary between strains in different hosts, the level of 
in-host variability in amino acid sequence at each posi-
tion shows clear specificity for HIV-1 subtype (clade) [9]. 

Thus, patterns of variability in the host are not merely 
random “noise” but reflect inherent properties of the 
virus. Variability describes the permissiveness of each 
site to contain amino acids with different chemical prop-
erties, which reflects the strength of the selective pres-
sures applied on the site. In this work, we investigated 
the spatial clustering of variability across the Env protein. 
Specifically, we tested the hypothesis that the absence or 
presence of sequence variability at any position of Env 
can be predicted based on the variability at adjacent posi-
tions on the three-dimensional structure of the protein. 
If the propensity for co-occurrence of a high-variability 
state at adjacent positions is “stable” over time, then such 
patterns may capture the likelihood of each position to 
undergo changes at future time points. To test the above 
hypothesis, we developed a new algorithm that selects 
the best subset of classifiers to predict the class label (var-
iability status) of each new observation (patient) using a 
dynamic mechanism.

Multiple classifier selection
As the complexity of a dataset increases, the ability of 
any single classifier to capture all patterns is reduced, 
requiring integration of multiple classifiers to improve 
classification accuracy. However, the use of the same set 
of classifiers statically over the entire feature space can 
affect the overall performance of an algorithm (i.e. a clas-
sifier may perform well in some subspaces of the data 
but exhibit poor performance in others). One solution 
to this problem is the dynamic selection of the optimal 
classifier/s for each new instance from a pool of exist-
ing classifiers based on some evaluation criteria, and 
application of this subset to predict the class label of the 
instance. Dynamic ensemble selection (DES) techniques 
apply this approach. They are composed of three steps: 
(i) Classifier generation, (ii) Ensemble selection, and (iii) 
Classifier combination.

In the first step, a pool of heterogenous [16–18] or 
homogenous classifiers [19–21] is generated and then 
trained on the dataset. Strategies employed in DES meth-
ods for training include subspace sampling [22], bagging 
[23], stratified bagging [24], boosting [25], and clustering 
[26]. In the second step, ensemble selection, the mecha-
nism to select the best subset of base learners for each 
prediction is defined. Selection can be based on proba-
bilistic models [27], or by incorporation of multiple clas-
sifiers to increase the diversity of the base learners [28]. 
The third step of DES, classifier combination, aggregates 
the gathered information into a single class label (predic-
tion). Aggregation methods include Dynamic classifier 
weighting [29, 30], artificial neural networks (ANNs) [31] 
and majority voting [32].
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The k‑best classifiers (KBC) algorithm
Here we describe a novel algorithm, which utilizes a 
dynamic mechanism to select the best classifiers for pre-
dicting the class label of each new instance. Classifiers are 
chosen based on their performance in the neighborhood 
of a new observation (i.e. instances with similar profiles). 
Bootstrap resampling is used to increase randomness, 
thus introducing more diversity within the base learn-
ers. This creates an out-of-bag sample that can be used 
along with the resampled data in the classifiers’ evalua-
tion process. We also apply a classifier scoring approach, 
upon which the selection decision of a classifier is made. 
To define a neighborhood for a new observation, we use 
the k-nearest neighbors (KNN) algorithm. The feature 
vector of each observation is used for the neighbor-
hood selection process. The novelty of this method is 
in the dynamic classifier selection approach, where we 
introduce a weighting mechanism to evaluate each clas-
sifier’s performance within the neighborhood of a new 
observation to decide if the classifier contributes to the 
prediction.

We tested the KBC algorithm with a panel of sequences 
from HIV-1-infected individuals. These data describe 
for each patient the absence or presence of variability 
in amino acid sequence at each position of Env on the 
three-dimensional structure of the protein. We exam-
ined whether the variability at each position (or group of 
positions) can be predicted based on variability at adja-
cent positions on the protein. Given the folded structure 
of the protein, the distance between any two positions 
(in Ångstroms, Å), as determined by the cryo-electron 
microscopy (cryo-EM) coordinates of the Env protein, 
was used as the measure of proximity. In many cases, the 
KBC algorithm showed higher classification metrics than 
other machine learning algorithms. Considerably higher 
performance was observed for the CD4-binding domain 
of Env, which is the target of multiple antibody therapeu-
tics against HIV-1 [33–37].

Methods
HIV‑1 Env sequence data
Nucleotide sequences of the HIV-1 env gene were 
downloaded from the National Center for Biotechnol-
ogy Information (NCBI) database (https:// www. ncbi. 
nlm. nih. gov) and from the Los Alamos National Lab 
(LANL) database (https:// www. hiv. lanl. gov). Sequence 
data for HIV-1 clades B and C were downloaded and 
processed separately. The clade C dataset is composed 
of 1,960 sequences from 109 distinct patients. The clade 
B dataset is composed of 4,174 sequences from 191 dis-
tinct patients. For each patient sample, all Envs isolated 
were analyzed (at least six sequences per sample). All 

env genes were cloned from the samples by the single 
genome amplification approach [38] and sequenced by 
the Sanger method. Sequences of non-functional Envs 
were removed, as were all sequences with nucleotide 
ambiguities or large deletions in conserved regions [9, 
39]. Nucleotide sequences were aligned using a Hidden 
Markov Model with the HMMER3 software [40] and 
then translated into the amino acid sequence, which was 
used for the analysis. All 856 Env positions described in 
the manuscript conform to the standard HXBc2 num-
bering of the Env protein [41]. Potential N-linked gly-
cosylation sites (PNGSs) contain the sequence motif 
Asn-X-Ser/Thr, where X is any amino acid except Pro. To 
account for the presence of N-linked glycans on the Asn 
residues, the first position of all Asn-X-Ser/Thr triplets 
was assigned a unique identifier. All aligned sequences 
from each patient were compared to determine whether 
each of the 856 positions contains variability in amino 
acid sequence (position is assigned a variability value 
of 1) or whether all sequences from that patient sample 
have the same amino acid at the position (assigned a vari-
ability value of 0).

Env structural data
To identify the positions closest to each position of inter-
est, we used the coordinates of the cryo-EM structure of 
the HIV-1 Env trimer. Coordinates of all three subunits 
were used in the calculations. For clade B viruses, we 
used the coordinates of Env from HIV-1 clade B strain 
JRFL (Protein Data Bank, PDB ID 5FUU) [42]. For clade 
C viruses, we used the coordinates of Env from HIV-1 
clade C strain 426c (PDB ID 6MZJ) [43]. All atoms of 
the N-linked glycans are associated with the Asn resi-
due at the first position of the PNGS triplet. The distance 
between any two positions was measured using the coor-
dinates of the closest two atoms of the two amino acids. 
These data were used to identify the ten closest positions 
to each position of interest.

The KBC algorithm
We apply the KBC algorithm to predict the absence or 
presence of variability at each position of interest in a 
patient based on the variability at adjacent positions 
on the protein structure. To this end, KBC applies the 
information from the training dataset to determine the 
classifiers that are most helpful in identifying the class 
label of a new instance based on their performance 
within a specific neighborhood (i.e., among patients 
with similar variability profiles in the environment of 
the site of interest). The foundation of this method, like 
other dynamic ensemble selection techniques, relies 
on three main steps: classifier generation, selection, 

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://www.hiv.lanl.gov
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and aggregation. A flow chart of the KBC algorithm is 
shown in Fig. 1 and further explained below.

1. Classifier generation

We randomly divide our data into a training set ( Xtrain ) 
and a test set ( Xtest ). The latter is ultimately used for 
evaluating performance of the algorithm. Then, using 
Xtrain we follow the steps below. First, we generate a 
pool of M base learners, L1, L2, . . . , LM . The number 
of base learners is a hyperparameter in the KBC algo-
rithm. Here we use decision trees as the base learn-
ers, primarily for their training speed. In the next 
step, we use bootstrap resampling to create two sets 
of data for each base learner Li : (i) A resampled set or 
“bag” (denoted as Sri  ) which refers to the observations 
selected through the resampling procedure, and (ii) An 
Out-of-Bag (OOB) set (denoted as Soobi  ), which includes 
the remaining observations not in Sri  . Each base learner 
Li is trained on the corresponding resampled set ( Sri  ) 
and evaluated using both the resampled and OOB set. 
Utilization of the unseen OOB set provides a more 
robust evaluation of the base learner.

We define the training set of samples Xtrain with 
x1, x2, . . . , xN as the observations, and y1, y2, . . . , yN as 

their corresponding class labels. We also denote the test 
set as Xtest , where:

If we define an event A , as a data point xj 
( j = 1, 2, . . . ,N  ) that belongs to the OOB sample:

then the probability of such an event can be calculated 
as:

where, N  is the total number of observations in the train-
ing set Xtrain . Later, we will show how to use this infor-
mation in the algorithm as a starting point.

To increase the variability among the base learners, we 
randomly sample features. For this purpose, the algo-
rithm randomly picks for Li a set of f  features out of all 
available features. In other words, the learner Li is trained 
over the subset of the features of Sri  which is denoted by 

(1)Xtrain = Sri ∪ Soobi , ∀i = 1, 2, . . . ,M

(2)Sri ∩ Soobi = ∅, ∀i = 1, 2, . . . ,M

(3)A : xj ∈ Soobi , ∀i = 1, 2, . . . ,M

(4)Pr(A) = (1−
1

N
)
N

≈ e−1 ≈ 0.368

Fig. 1 Flow chart of the KBC algorithm. The workflow starts with bootstrap resampling for each base learner. Then, for the neighborhood of each 
new data point (here, similar patients), weights are assigned to the OOB and resampled sets, and then aggregated into a single score for each 
learner. Those base learners that surpass the minimum threshold are selected for the prediction of the class label for the new data point
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S
r,f
i  . Knowing the set of f features for the learner Li , one 

can also create Soob,fi  for the evaluation phase.

2. Classifier selection

First, each base learner is used to predict all instances in 
Xtrain , including the resampled and OOB data. Then, the 
classification results are mapped onto a binary variable, 
zij , which is 1 or 0 based on whether the classifier Li cor-
rectly classified the instance xj or not, respectively:

where, i = 1,2, ...,M is the base learner index, 
j = 1,2, . . . ,N  is the observation index, and ŷij is the class 
label that is predicted by the learner Li for xj ∈ Xtrain . 
The product of this phase is an M*N binary matrix Z , in 
which each row represents the mapped prediction result 
for one base learner, and each column corresponds to an 
observation in the training set, Xtrain :

For efficiency, we perform this only once for all obser-
vations rather than during each iteration. In effect, not 
all observations are used for selecting the best classifiers, 
but only the ones in the neighborhood of the new obser-
vation xq ∈ Xtest . To find the neighbors (i.e., the closest 
data points to the observation of interest), we use the 
KNN algorithm.

By defining Ψ n
q  as the neighborhood of a new data point 

xq which includes n-closest observations, we define:

where, φn
q is the set of n indices for the data points within 

the neighborhood of xq.
To account for the differences in performance of 

the base learners for the OOB and resampled sets, we 
assign greater weights to the observations in the OOB 
set. Weighting of the OOB and resampled sets can be 
described by:

where, Woob and Wr are the weights for observations 
within the OOB ( Soob,fi  ) and resampled ( Sr,fi  ) sets for 
learner Li , respectively. From Eq.  4, we can conclude 
that the probability of a data point belonging to Sr,fi  is 
approximately 0.632. We can use this value as the default 
Woob ; however, the optimal value for this parameter can 

(5)zij =

{
1 if ŷij = yj
0 Otherwise

(6)Z =
[
zij
]
M*N

(7)φn
q = {j : 1 ≤ j ≤ N , xj ∈ Ψ n

q }

(8)Woob +Wr = 1

(9)Woob,Wr > 0

be obtained via hyperparameter tuning. In general, the 
higher the OOB weight, the greater the focus on the 
OOB observations rather than the resampled set.

Now, consider the matrix Π in which the type of data 
points (i.e., being from the OOB or resampled set) is 
stored:

where πij is defined as:

where, i = 1,2, . . . ,M and j = 1,2, . . . ,N  . In the next step, 
the classifier’s score, CSi , is calculated for base learner Li:

Then, we scale the scores:

where, h = {1,2, . . . ,M} is the set of all classifiers. This 
rescales all scores into a range of (0, 1], and facilitates the 
comparison between the classifiers:

Here, CS′i quantifies the relative importance of base 
learner Li to the best classifier.

Next, we consider the relationship between the range 
of scores assigned by the different classifiers and the nor-
malized scores. As the difference between the perfor-
mance of the best and worst classifiers increases, there 
is greater confidence that classifiers with higher scores 
are performing significantly better than those with lower 
scores. As shown in Eq.  15, for the extreme case where 
the range of scores approaches infinity, the difference 
between the best and worst scaled score converges to the 
maximum value of 1:

On the other hand, if the range of scores is 0 (i.e., all 
classifiers have the same performance), the scaled scores 
will be 1 for all classifiers (no distinction).

Finally, we consider a minimum acceptance thresh-
old ( δ ) for the classifiers. For different observations, 
we expect to obtain different arrays of scores for the 
base learners’ performance within the neighborhoods. 

(10)
Π =

[
πij

]
M∗N

, i = 1,2, . . . ,Mand j = 1,2, . . . ,N

(11)πij =

{
Woob xj ∈ S

oob,f
i

W r xj ∈ S
r,f
i

(12)
CSi =

∑

j∈φn
q

πijzij , ∀i = 1,2, . . . ,M

(13)

CS′i =

CSi −min
h

CSh + 1

max
h

CSh −min
h

CSh + 1
, ∀i = 1,2, . . . ,M

(14)0 < CS′i ≤ 1, ∀i = 1,2, . . . ,M

(15)Lim
Range→∞

(
max

i

(
CS′i

)
−min

i

(
CS′i

))
→ 1
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Therefore, the algorithm selects the best classifiers by 
comparison of the score arrays with the threshold δ , con-
sidering the problem space, observations, and the base 
learners’ capabilities to correctly classify similar instances 
each time.

In Eq. 16, the index corresponding to the k-best classi-
fiers (out of M existing classifiers) for predicting the class 
label of xq , is defined as:

The number of best classifiers can differ from obser-
vation to observation. However, for similar points (i.e., 
observations within a similar segment of the problem 
space), we expect to obtain a similar set of best classifiers 
for prediction.

3. Classifier aggregation

Once the best classifiers for the prediction are identi-
fied, we apply an aggregation method to obtain a single 
result for the new instance. Here we use the majority vote 
approach. For a general case in which we have P classes, 
we can write:

where, ŷq is the predicted class of the new observation 
xq , and cp counts the number of base learners predicting 
class p . We can write this as:

where, ŷiq is the class label predicted by learner Li for xq.

Hyperparameters
The hyperparameters for the KBC algorithm are designed 
to accommodate the variability in the dataset to ensure 
maximal performance (see Table 1). M is the number of 
base learners; if sufficient diversity exists within the base 
learners (i.e., among the decision trees generated), more 
learners typically lead to better results. We can also tune 

(16)Kq =
{
i : CS′i ≥ δ, 1 ≤ i ≤ M

}

(17)ŷq = Argmax
p

{
cp
}
, p = {1,2, . . . ,P}

(18)cp =
∑

i∈Kq

1{ŷiq=p}, ∀p ∈ {1,2, . . . ,P}

the number of features ( f  ) for each classifier. Using all 
available features for each of the base learners can result 
in lower diversity among the base learners. On the other 
hand, using too few features, such as the extreme case of 
f=1, can result in a naïve learner that may not be much 
better than the random guess. By using a suitable fraction 
of the available features for training the classifiers, we can 
add variability between the classifiers and increase the 
confidence that each classifier will perform well.

The third hyperparameter is the number of neighbors 
for a new instance ( n ). Increasing the number of neigh-
bors to all training observations ( N  ) will lead to the 
majority vote for a fixed set of classifiers. In this case, 
we expect to obtain no variance but high bias. At the 
other extreme, if we use only one neighbor, the variance 
will be high. Therefore, it is a bias-variance tradeoff, and 
selecting the optimal n is essential for performance. The 
effect of this parameter on the accuracy of the model is 
explored in this study.

The weight of OOB instances ( Woob ) plays an impor-
tant role in emphasizing the unseen data for selecting 
the best classifiers. Since the data in the OOB set are not 
used during the training of the base learners, predicting 
them correctly is more important than the observations 
in the resampled set. Choosing the weight as 1 will com-
pletely ignore the resampled data, whereas a weight of 0 
will result in using only the resampled data in the training 
phase. The optimized value for the OOB weight can be 
obtained by hyperparameter tuning.

The last hyperparameter of the KBC algorithm is 
the minimum acceptance threshold ( δ ), which deter-
mines the sensitivity in selecting the best classifiers. The 
higher the threshold, the smaller the number of learn-
ers we expect to obtain. In such a case, the variance may 
increase; however, at the same time, the confidence in 
the set of selected classifiers in that region increases. By 
contrast, the use of lower thresholds may result in more 
learners, which reduces variance.

We note that in the KBC algorithm, one can use any 
set of homogenous or heterogeneous base learners. 
Since we use decision tree as the base learner, we add the 

Table 1 Hyperparameters of the KBC algorithm

parameter Domain Description

M ∈ N Number of initial base learners

f  ∈ N Number of features to be selected randomly for each base learner

n ∈ N Number of close neighbors to a new instance (similar instances)

Woob [0,1] Weight of OOB instances (default = 0.632).

δ [0,1] Minimum acceptance threshold for a base learner’s score to be 
selected in a neighborhood of a new data point.
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maximum depth of the tree to the set of existing hyper-
parameters and tune KBC for the best performance.

To summarize the KBC algorithm, we start with the 
training set from which we create a resampled set and 
an OOB set for each base learner. The classifiers are then 
trained separately on their own resampled data. In the 
prediction phase, for each new data point, we first iden-
tify the closest neighbors (i.e., similar patient profiles). 
Then, based on whether a point belongs to the OOB or 
resampled set, the method assigns weights to the binary 
mapping of the initial predictions (1 for correctly clas-
sifying an observation and 0 for misclassifying it). This 
approach introduces a scoring function that is used for 
evaluating the classifiers. Finally, according to a mini-
mum threshold acceptance value, only those classifiers 
for which the scaled score exceeds the selected limit is 
chosen for classifying the new instance. The individual 
predictions are then aggregated into a single result by the 
majority vote aggregation method. The pseudocode for 
the entire KBC algorithm is shown in Fig. 2.

Evaluation procedure
The Xtest set is used to determine performance of the 
model generated using the Xtrain set. For cross valida-
tion, we repeat the random partition of the dataset into 

Xtrain and Xtest five times. To evaluate performance, 
for any position of Env, we distinguish between two 
outcome states (class labels): (i) Variability-positive 
(at least two amino acids are identified at the position 
in the patient), and (ii) No-variability (all sequences 
from the patient have the same amino acid at the posi-
tion). As classification metrics, we use accuracy, preci-
sion, recall, F1 score, and balanced accuracy. Accuracy 
depicts the percentage of predictions that are correct. 
Precision describes the percentage of correct classifica-
tions from the group of instances that are predicted as 
the positive group. Recall or sensitivity represents the 
correct classification rate from the group of true posi-
tive instances. The F1 score is the harmonic mean of 
precision and recall. Since the HIV-1 datasets are not 
balanced (i.e., for any position, the proportion of varia-
bility-positive and no-variability samples is not equal), 
we also use balanced accuracy, which is an average of 
sensitivity and specificity.

Results
Prediction of variability patterns in HIV‑1 Env
New forms of the Env protein are continuously gener-
ated in HIV-infected individuals by the error-prone 
replication machinery of this virus. Substitutions at Env 

Fig. 2 Pseudocode for the KBC algorithm
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positions targeted by therapeutics can lead to virus resist-
ance to their effects. Such events appear to be random 
and are thus considered unpredictable. There is a clini-
cal need to understand the spatiotemporal patterns of 
Env variability in the HIV-infected host, which may lead 
to development of new treatment strategies. We hypoth-
esized that at any time in the infected host, positions that 
exhibit variability in amino acid sequence are spatially 
clustered on the Env protein. Such patterns are intuitive 
since immune and fitness pressures mostly act on multi-
position domains of Env rather than individual positions. 
Toward a better understanding of such patterns, we 
sought to determine whether the presence of variability 
at any Env position can be accurately estimated based on 
the variability at adjacent positions on the protein.

To this end, we tested the KBC algorithm with patient-
derived datasets. We used sequence data from 300 
patients infected by the two major HIV-1 clades (a total 
of 6134 sequences). HIV-1 clade C is the most prevalent 
subtype worldwide and accounts for 46% global infec-
tions. HIV-1 clade B is the dominant subtype found in 
the United States and Europe, infecting more than 90% of 
all HIV-1 patients in these regions. Given the divergence 
of the env gene between HIV-1 clades B and C, datasets 
from these two clades were tested separately. We exam-
ined the ability of the algorithm to predict the absence 
or presence of variability at any position Ap of Env based 
on the variability at the 10 closest positions on the three-
dimensional structure of the protein. Env sequences 
cloned from patient blood samples were applied (at 
least six Envs sequenced for each sample). Sequences 
from each patient sample were aligned and compared to 
determine the absence or presence of in-host variability 
at each of the 856 positions of this protein. The response 
variable is thus the absence or presence of variability at 
each position Ap . The features are the variability values 
at the 10 positions closest to position Ap on the protein, 
as determined by the physical distance between the clos-
est atoms of the two positions (measured in Ångtroms) 
on the Env trimer structure. The goal is to correctly clas-
sify the variability at position Ap by the variability profile 
at adjacent positions. We decided to use the 10 closest 
positions since this approximates the maximal number of 
amino acids that can contact the position of interest on 
the protein structure. We note that the actual number of 
residues that are in contact with or adjacent to each posi-
tion may vary according to the location on the protein. 
For example, for any position buried within the core of 
the protein, its 10 nearest positions will be closer than for 
a position located on a loop that is exposed to the sol-
vent. Nevertheless, we decided that as a first step, we will 
maintain this variable constant for all positions.

We first tested the ability of the KBC algorithm to pre-
dict the absence or presence of variability at individual 
positions in the high-mannose patch of Env (Fig.  3). 
These N-linked glycans help to shield Env from recog-
nition by host antibodies [44]; however, they also serve 
as targets for microbicidal agents such as lectins [45, 46] 
and therapeutic antibodies [47, 48]. We tested three posi-
tions in the high-mannose patch, namely positions 289, 
332, and 339. These positions form part of the target sites 
for multiple agents that inhibit HIV-1, including anti-
bodies 2G12, 10-1074, PGT135, PGT128, and DH270.5 
[49–53], and the lectin microbicide griffithsin [54]. Data 
were composed of 1,960 amino acid sequences from 109 
patients infected by HIV-1 subtype C, which is the most 
prevalent HIV-1 clade worldwide [55]. For position 289, 
the ratio of the variability-positive class to the no-varia-
bility class was 34:75. This ratio for positions 332 and 339 
was 46:63 and 53:56, respectively.

For positions 289 and 339, the results of the KBC anal-
yses showed improvement relative to the base learner 
(decision tree) and random forest (Fig.  4). By con-
trast, the prediction of variability at position 332 by the 
KBC algorithm was similar to that of the other meth-
ods. We also compared the performance of KBC with 
other machine learning algorithms (Table  2). Again, we 

Fig. 3   Cryo-EM structure of HIV-1 Env showing positions in the 
high-mannose patch (PDB ID 5FUU). Positions occupied by glycans 
are shown as spheres and labeled by Env position number. All 
positions shown contain N-linked glycans, except position 289, which 
contains Arg in the Env of HIV-1 isolate JRFL used to generate this 
structure
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observed modestly better performance of KBC for posi-
tions 289 and 339, whereas, for position 332, the per-
formance was similar to (or slightly worse than) other 
methods. We note that although KBC generally exhibited 
better point estimates than other methods, it also exhib-
ited a relatively high standard deviation (see values in 

parentheses in Table  2). This likely occurred due to the 
relatively small size of the dataset. Below, we show that 
increasing the size of the dataset drastically reduces the 
standard deviation of the estimates.

Antiviral therapeutics bind to targets composed of mul-
tiple residues; their “footprint” on the viral protein can 

Fig. 4   Predictions of variability at positions 289, 339, and 332 of the high-mannose patch. Data describe the results obtained for patients infected 
by HIV-1 clade C

Table 2 Prediction of variability at Env positions in the high-mannose patch by KBC and other algorithms

a Calculations were performed using data from 109 patients infected by HIV-1 clade C
b Standard deviation values are indicated in parentheses
c Values in bold font indicate the highest point estimation value for each metric

Position Method a Balanced Accuracy b,c Accuracy Precision Recall F1 Score

289 KBC 0.88 (± 0.13) 0.92 (± 0.08) 0.94 (± 0.07) 0.80 (± 0.26) 0.83 (± 0.20)

QDA 0.83 (± 0.01) 0.88 (± 0.01) 0.90 (± 0.07) 0.71 (± 0.05) 0.79 (± 0.01)

LDA 0.87 (± 0.02) 0.91 (± 0.01) 0.93 (± 0.05) 0.76 (± 0.05) 0.84 (± 0.03)

NB 0.71 (± 0.18) 0.69 (± 0.26) 0.66 (± 0.26) 0.76 (± 0.05) 0.67 (± 0.16)

ADA 0.86 (± 0.01) 0.90 (± 0.01) 0.91 (± 0.07) 0.76 (± 0.05) 0.83 (± 0.02)

LogReg 0.86 (± 0.01) 0.90 (± 0.01) 0.91 (± 0.07) 0.76 (± 0.05) 0.83 (± 0.02)

SVM 0.83 (± 0.01) 0.88 (± 0.01) 0.90 (± 0.07) 0.71 (± 0.05) 0.79 (± 0.01)

339 KBC 0.75 (± 0.12) 0.74 (± 0.12) 0.71 (± 0.12) 0.81 (± 0.13) 0.75 (± 0.11)

QDA 0.59 (± 0.07) 0.59 (± 0.07) 0.56 (± 0.09) 0.72 (± 0.09) 0.63 (± 0.07)

LDA 0.57 (± 0.03) 0.57 (± 0.03) 0.55 (± 0.05) 0.64 (± 0.13) 0.59 (± 0.06)

NB 0.65 (± 0.08) 0.65 (± 0.07) 0.64 (± 0.00) 0.68 (± 0.16) 0.66 (± 0.19)

ADA 0.60 (± 0.02) 0.60 (± 0.02) 0.59 (± 0.03) 0.62 (± 0.06) 0.59 (± 0.02)

LogReg 0.59 (± 0.06) 0.58 (± 0.07) 0.54 (± 0.05) 0.94 (± 0.05) 0.69 (± 0.03)

SVM 0.65 (± 0.04) 0.66 (± 0.05) 1.00 (± 0.09) 0.30 (± 0.04) 0.48 (± 0.02)

332 KBC 0.85 (± 0.07) 0.85 (± 0.07) 0.86 (± 0.12) 0.80 (± 0.08) 0.83 (± 0.08)

QDA 0.84 (± 0.05) 0.84 (± 0.06) 0.84 (± 0.12) 0.83 (± 0.11) 0.82 (± 0.06)

LDA 0.87 (± 0.03) 0.88 (± 0.03) 0.89 (± 0.05) 0.83 (± 0.06) 0.85 (± 0.04)

NB 0.61 (± 0.16) 0.57 (± 0.21) 0.59 (± 0.23) 0.91 (± 0.13) 0.67 (± 0.10)

ADA 0.87 (± 0.03) 0.88 (± 0.03) 0.89 (± 0.05) 0.83 (± 0.06) 0.85 (± 0.04)

LogReg 0.82 (± 0.09) 0.81 (± 0.12) 0.80 (± 0.18) 0.87 (± 0.11) 0.81 (± 0.08)

SVM 0.88 (± 0.02) 0.89 (± 0.02) 0.89 (± 0.05) 0.85 (± 0.03) 0.87 (± 0.03)
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span a large surface that contains multiple amino acids 
[56–59]. Changes at any of these contacts may reduce 
Env recognition by the therapeutic and cause resistance. 
We examined the performance of the KBC algorithm to 
predict variability in a combined feature composed of 10 
positions in the high-mannose patch shown in Fig. 3. To 
this end, for each position Ap in the high-mannose patch 
( p = 1, 2, . . . , 10) , we relabeled its 10 adjacent positions 
as vAp

(1), v
Ap

(2), . . . , v
Ap

(10) , where vAp

(l) is the variability at the l
-th adjacent position to Ap(l = 1, 2, . . . , 10) . For each l , 
we then combined the vAp

(l) values of the 10 Ap positions.
We first used the dataset of sequences from 109 HIV-1 

clade C-infected individuals. Results were compared 
between KBC and the above machine learning methods. 
The ratio of positive-variability to no-variability instances 
for this dataset was 450:640. Remarkably, KBC performed 
better than all models to predict sequence variability in 
the high-mannose patch (Table 3).

To validate these results, we examined the ability of 
KBC to predict variability in a second panel of sequences 
derived from individuals infected by HIV-1 clade B. 
This clade is the most prevalent in the United States and 
Europe [55]. Sequences from 191 patients were tested to 
predict variability at the multi-position high-mannose 
patch using the different algorithms. Consistent with the 
data shown for clade C, the performance of KBC was 
superior, albeit modestly, to that of the other algorithms 

(Table 3). The ratio of the positive-variability class to the 
no-variability class for the clade B dataset was 621:1289.

We expanded our studies to test a second clinically 
significant domain of the Env protein, namely the CD4-
binding site. This domain interacts with the CD4 mole-
cule, which allows entry of the viral genome into the cell 
[60]. Since this site is conserved among diverse HIV-1 
strains, it also serves as a target for multiple therapeu-
tics, including the small molecule Fostemsavir [33] and 
antibody therapeutics VRC01 and 3BNC117 [34, 35]. We 
tested a combination of the 23 positions that serve as the 
contact sites for both antibodies VRC01 and 3BNC117 
(Fig.  5). We applied the same procedure explained for 
the high-mannose patch positions to combine the posi-
tions of the CD4-binding site. The ratio of positive-var-
iability to the no-variability classes for the CD4-binding 
site dataset was 685:3708 and 557:1950 for clades B and 
C, respectively. The performance of KBC was compared 
with all other algorithms tested above. Interestingly, the 
performance of the KBC algorithm was considerably 
higher than that of other algorithms (Table 4).

For positions in the CD4-binding site, the increase in 
performance was greater than that observed for posi-
tions in the high-mannose patch (Table 3). Comparing 
the results in Tables  3 and 4 shows that the standard 
deviation of the estimates was considerably lower when 
we analyzed a group of positions rather than individ-
ual positions. For the CD4-binding site, the standard 

Table 3 Prediction of variability in the high-mannose patch of Env by KBC and other algorithms

a Standard deviation values are indicated in parentheses
b Values in bold font indicate the highest point estimation value for each metric

Clade Method Balanced Accuracy a,b Accuracy Precision Recall F1 Score

Clade C KBC 0.65 (± 0.05) 0.69 (± 0.05) 0.67 (± 0.08) 0.47 (± 0.05) 0.55 (± 0.08)

DT 0.59 (± 0.05) 0.63 (± 0.07) 0.54 (± 0.07) 0.39 (± 0.21) 0.43 (± 0.17)

RF 0.59 (± 0.02) 0.63 (± 0.03) 0.60 (± 0.05) 0.34 (± 0.13) 0.42 (± 0.10)

QDA 0.60 (± 0.02) 0.63 (± 0.04) 0.57 (± 0.02) 0.39 (± 0.16) 0.45 (± 0.12)

LDA 0.58 (± 0.04) 0.62 (± 0.06) 0.54 (± 0.07) 0.39 (± 0.17) 0.44 (± 0.13)

NB 0.61 (± 0.06) 0.63 (± 0.08) 0.54 (± 0.08) 0.52 (± 0.21) 0.52 (± 0.14)

ADA 0.50 (± 0.05) 0.44 (± 0.04) 0.42 (± 0.02) 0.88 (± 0.09) 0.56 (± 0.02)

LogReg 0.57 (± 0.06) 0.61 (± 0.04) 0.55 (± 0.07) 0.33 (± 0.20) 0.38 (± 0.15)

SVM 0.58 (± 0.04) 0.62 (± 0.06) 0.56 (± 0.06) 0.35 (± 0.23) 0.40 (± 0.17)

Clade B KBC 0.65 (± 0.02) 0.74 (± 0.02) 0.68 (± 0.06) 0.39 (± 0.03) 0.50 (± 0.04)

DT 0.60 (± 0.05) 0.70 (± 0.02) 0.61 (± 0.03) 0.29 (± 0.16) 0.36 (± 0.16)

RF 0.62 (± 0.00) 0.72 (± 0.00) 0.61 (± 0.02) 0.35 (± 0.02) 0.45 (± 0.01)

QDA 0.63 (± 0.01) 0.73 (± 0.01) 0.64 (± 0.03) 0.36 (± 0.02) 0.46 (± 0.02)

LDA 0.64 (± 0.01) 0.72 (± 0.01) 0.61 (± 0.01) 0.40 (± 0.04) 0.48 (± 0.03)

NB 0.67 (± 0.04) 0.70 (± 0.03) 0.53 (± 0.05) 0.59 (± 0.07) 0.56 (± 0.06)

ADA 0.41 (± 0.05) 0.29 (± 0.02) 0.28 (± 0.03) 0.74 (± 0.14) 0.40 (± 0.05)

LogReg 0.64 (± 0.02) 0.72 (± 0.01) 0.61 (± 0.02) 0.39 (± 0.05) 0.47 (± 0.03)

SVM 0.63 (± 0.02) 0.70 (± 0.02) 0.55 (± 0.03) 0.41 (± 0.01) 0.47 (± 0.02)
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deviation in accuracy, balanced accuracy, recall, and 
F1 score obtained by KBC was the smallest among all 
other models for clade C. Indeed, KBC shows higher 
point estimates as well as smaller standard deviation 
values for the estimates.

Taken together, these findings show that when Env 
positions are tested individually, KBC outperforms other 

algorithms for most (but not all) positions. Nevertheless, 
this algorithm shines in its performance when tested with 
a combination of positions that describe the complex 
(multi-position) target sites of therapeutics on the Env 
protein.

Hyperparameter analysis
We examined the effects of two critical hyperparam-
eters of the KBC algorithm on its performance, namely 
the minimum acceptance threshold ( δ ) and neighbor-
hood size ( n ). Data that describe variability patterns 
in the high-mannose patch were used. To evaluate per-
formance, we used the balanced accuracy metric. We 
explored the effect of one hyperparameter while main-
taining the rest at a constant level. We used 20 decision 
trees ( M=20); for each, we picked four features randomly 
( f=4), and the maximum depth of the trees was set to be 
4. The OOB weight was fixed for both experiments at its 
default value of 0.632.

First, we explored the effect of the minimum accept-
ance threshold ( δ ). For this experiment, the number of 
neighbors was set to 10. The experiment was conducted 
with a variety of thresholds from 0 to 1, and the balanced 
accuracy was calculated. We observed that for the clade 
B dataset, increasing the minimum acceptance thresh-
old improved the performance of the KBC algorithm 
(Fig. 6A). For the clade C dataset, the performance also 
increased gradually; however, it peaked at a threshold 

Fig. 5 Cryo-EM structure of HIV-1 Env showing positions in the 
CD4-binding site (PDB ID 5FUU). Positions contacted by antibodies 
3BNC117 and VRC01 are shown as spheres and labeled

Table 4 Prediction of variability in the CD4-binding site of Env using KBC and other algorithms

a Standard deviation values are indicated in parentheses
b Values in bold font indicate the highest point estimation value for each metric

Clade Methods Balanced Accuracy a,b Accuracy Precision Recall F1 Score

Clade C KBC 0.71 (± 0.01) 0.85 (± 0.01) 0.81 (± 0.07) 0.45 (± 0.03) 0.58 (± 0.02)

DT 0.61 (± 0.13) 0.76 (± 0.03) 0.32 (± 0.23) 0.34 (± 0.42) 0.25 (± 0.25)

RF 0.56 (± 0.04) 0.76 (± 0.03) 0.49 (± 0.08) 0.19 (± 0.18) 0.22 (± 0.14)

QDA 0.59 (± 0.07) 0.75 (± 0.04) 0.50 (± 0.08) 0.29 (± 0.28) 0.28 (± 0.15)

LDA 0.69 (± 0.11) 0.79 (± 0.03) 0.59 (± 0.09) 0.50 (± 0.31) 0.46 (± 0.19)

NB 0.67 (± 0.09) 0.73 (± 0.09) 0.45 (± 0.11) 0.58 (± 0.31) 0.45 (± 0.16)

ADA 0.46 (± 0.18) 0.62 (± 0.24) 0.44 (± 0.29) 0.15 (± 0.10) 0.20 (± 0.14)

LogReg 0.65 (± 0.12) 0.79 (± 0.01) 0.56 (± 0.04) 0.39 (± 0.33) 0.38 (± 0.21)

SVM 0.64 (± 0.11) 0.76 (± 0.03) 0.50 (± 0.06) 0.43 (± 0.35) 0.37 (± 0.16)

Clade B KBC 0.69 (± 0.02) 0.89 (± 0.01) 0.78 (± 0.02) 0.40 (± 0.04) 0.53 (± 0.04)

DT 0.54 (± 0.02) 0.82 (± 0.02) 0.33 (± 0.02) 0.13 (± 0.08) 0.17 (± 0.10)

RF 0.53 (± 0.02) 0.82 (± 0.03) 0.35 (± 0.18) 0.11 (± 0.05) 0.15 (± 0.06)

QDA 0.56 (± 0.03) 0.82 (± 0.04) 0.42 (± 0.16) 0.17 (± 0.11) 0.21 (± 0.09)

LDA 0.58 (± 0.05) 0.82 (± 0.01) 0.38 (± 0.05) 0.24 (± 0.13) 0.28 (± 0.10)

NB 0.64 (± 0.08) 0.75 (± 0.10) 0.34 (± 0.14) 0.47 (± 0.21) 0.37 (± 0.13)

ADA 0.48 (± 0.03) 0.17 (± 0.02) 0.15 (± 0.01) 0.93 (± 0.10) 0.26 (± 0.02)

LogReg 0.56 (± 0.04) 0.84 (± 0.00) 0.42 (± 0.05) 0.17 (± 0.10) 0.23 (± 0.11)

SVM 0.55 (± 0.04) 0.82 (± 0.03) 0.35 (± 0.15) 0.17 (± 0.11) 0.21 (± 0.10)
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of 0.65, followed by a modest reduction (Fig. 6B). These 
findings suggest that increasing the value of δ results in 
an overall increase in performance due to the higher con-
fidence in the set of selected classifiers. However, in some 
cases, further increases in δ may result in the loss of use-
ful classifiers, which can reduce overall performance.

We also explored the effect of neighborhood size on 
performance of the KBC algorithm. Here we used δ
=0.8 as the minimum acceptance threshold. Differ-
ent numbers of neighbors (ranging between 1 and 100) 
were tested. We observed that for both clades B and C, 
increasing the number of neighbors up to approximately 
15 or 20 increased the performance (Fig.  6, C, and D). 
Further increases in the neighborhood size decreased the 
performance in clade B, whereas it did not impact clade 
C. These findings suggested that a neighborhood size of 
approximately 15 is optimal for the data that describe 
variability patterns in high-mannose patch given the 
above hyperparameters.

Effect of base learners on performance of the KBC 
algorithm
As a further analysis, we examined if the choice of base 
learners in the KBC algorithm affects the overall perfor-
mance of the method. To this end, we also tested logis-
tic regression and Naïve Bayes (separately) as the base 
learners. We evaluated KBC using data from HIV-1 clade 
C that describe variability patterns in the high-mannose 
patch and the CD4-binding site. These results were com-
pared with the results obtained using decision tree as 
the base learner. In this experiment, we maintained the 
structure of the KBC algorithm as before, with the excep-
tion that for each trial, a homogenous set of base learn-
ers from one type was utilized (i.e., logistic regression 
or Naïve Bayes). For the tuning process and for the KBC 
with logistic regression as the base learner, we incorpo-
rated the hyperparameter C , which is the inverse of the 
regularization strength. For the KBC model with Naïve 

Fig. 6   Effect of critical hyperparameters on performance of the KBC algorithm. (A, B) Effect of the minimum acceptance threshold on balanced 
accuracy of the algorithm using data that describe variability patterns in the high-mannose patch of clade B and clade C strains, respectively. (C, D) 
Effect of the neighborhood size on balanced accuracy of the algorithm using data that describe variability patterns in the CD4-binding site of clade 
B and clade C strains, respectively
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Bayes as the base learner, no hyperparameter was added 
to the hyperparameters’ list.

The results of the above tests are shown in Fig. 7. For 
the high-mannose patch (Fig.  7A), decision tree yielded 
modestly higher point estimates for accuracy and preci-
sion, whereas Naïve Bayes showed modestly better recall 
and F1 score. However, these differences were not statis-
tically significant (see error bars in Fig. 7). Therefore, for 
this dataset, the choice of base learner did not impact the 
performance of the KBC algorithm. For the CD4-binding 
site (Fig.  7B), decision tree and logistic regression per-
formed equally well as the base learners, and were both 
better than Naïve Bayes in accuracy and precision met-
rics. Similar to the high-mannose-patch data, the recall 
was better for Naïve Bayes; however, this improvement 
was not sufficient to counterbalance the considerably 
lower precision, resulting in an F1 score for Naïve Bayes 
that was modestly smaller than that of decision tree and 
logistic regression.

In summary, KBC is a general algorithm that can apply 
a wide range of base learners. As shown in Fig.  7, the 
choice of base learner may affect the performance of the 
KBC algorithm. These effects are likely specific to each 
application. In this study, we utilized decision tree as the 
base learner due to its speed and performance, which was 
at least as good as other options.

Discussion
Many viruses, including HIV-1, exhibit high error rates 
during their replication [61, 62]. New variants of their 
proteins are continuously generated in the host. The abil-
ity to create diversity allows viruses to rapidly adapt to 
selective pressures, including antiviral therapeutics. The 
first step in the emergence of resistance is the appearance 

of sequence variability at a position of the viral protein 
targeted by the therapeutic. Variability patterns across 
the Env protein seem random and are thus considered 
unpredictable. In this study, we examined whether posi-
tions that exhibit sequence variability are spatially clus-
tered on the three-dimensional structure of the HIV-1 
Env protein. Specifically, we tested whether the absence 
or presence of sequence variability at any position of Env 
in a patient can be predicted by variability at adjacent 
positions on the protein. To address this question, we 
developed a new dynamic ensemble selection algorithm.

The KBC algorithm defines the neighborhood of a new 
data point using the KNN algorithm. Specifically, for 
each position of interest, KBC defines the neighborhood 
by identifying observations (patient samples) that have a 
similar feature vector (i.e. a similar variability profile of 
the 10 adjacent positions). The k-best classifier(s) within 
that neighborhood are then selected based on a weighted 
scoring procedure. By comparing each classifier’s score 
with a minimum acceptance threshold, we obtain the set 
of best classifiers to predict the class label for each new 
instance. The dynamism, along with the specific design, 
resulted in a flexible approach that is not constrained 
to select a constant number of learners every time that 
it predicts the class label of a new observation. Based on 
the performance of the learners, only those classifiers 
surpassing an explicit expectation are chosen, resulting 
in an improvement in the overall performance. The nov-
elty of this algorithm is in the dynamic classifier selection 
mechanism, in which we designed a weighting proce-
dure to evaluate each classifier’s performance within a 
neighborhood of an instance and decide if the classifier is 
good enough to classify the observation. This approach is 
based on bootstrap resampling, which creates out-of-bag 

Fig. 7   Effect of the choice of base learners on performance of the KBC algorithm. Performance of KBC was tested using decision tree, logistic 
regression, and Naïve Bayes as the base learners, with data from HIV-1 clade C that describe variability patterns in the high-mannose patch (A) and 
the CD4-binding site (B). Error bars indicate standard deviations
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samples that can be used along with the resampled data 
in the classifiers’ evaluation process.

We applied the algorithms to predict the level of vari-
ability at individual positions of Env based on variabil-
ity at adjacent positions on the molecule. Results were 
compared with a variety of state-of-art methods, such 
as the Adaboost, Naïve Bayes, logistic regression, lin-
ear and quadratic discriminant analysis methods, and 
SVM. Overall, the KBC algorithm predicted the absence 
or presence of variability better than the above machine 
learning tools. Importantly, KBC showed considerable 
improvement in predicting variability at multi-position 
features. We tested two Env domains targeted by thera-
peutics; the CD4-binding site and the high-mannose 
patch (composed of 23 and 10 positions, respectively). 
Both domains constitute targets for multiple HIV-1 
therapeutics [34, 35, 49–53]. These epitopes were ana-
lyzed using sequence data from patients infected by 
HIV-1 clades B and C, which were tested separately. For 
both domains and in both clades, the absence or pres-
ence of variability was predicted better using KBC than 
other algorithms. Interestingly, performance varied with 
the domain of Env tested. Only modest enhancement of 
performance by the KBC method was observed for the 
high-mannose patch, whereas dramatic enhancement 
was observed for the CD4-binding site, with improve-
ment in all critical classification metrics. These results 
are encouraging since therapeutics do not recognize sin-
gle positions but rather multi-position footprints on the 
protein; a change at any position can reduce the binding 
of the agents and increase clinical resistance [56, 57, 63]. 
The ability to predict the variability in a given domain 
based on the adjacent sites suggests that if these associa-
tions are stable over time, they may provide insight into 
future changes that can occur based on the current pat-
terns of variability in the patient. Such knowledge can be 
applied to personalize therapeutics based on the likeli-
hood for resistance mutations to appear in each patient. 
Notably, for small datasets (e.g. analysis of single Env 
positions), KBC exhibited high point estimates but also 
high standard deviations. By contrast, using larger data-
sets (e.g. multi-position targets), KBC exhibited both 
higher estimates and also smaller standard deviations 
compared to other algorithms. This finding suggested 
that KBC is more suitable for large datasets.

We observed that despite using homogenous and 
simple learners, KBC competes well with even sophis-
ticated algorithms such as SVM, Adaboost, and dis-
criminant analysis techniques. We also evaluated the 
effects of using logistic regression and Naïve Bayes as the 
base learners. Our results suggested that the choice of 
base learner may impact the overall performance; how-
ever, the effects are likely specific for each problem. We 

selected to focus our studies on decision tree as the base 
learner because of its relative speed and its performance, 
which was at least as high as that of the other options. 
Nevertheless, we note that by using more advanced 
methods as the base learner and by increasing diversity 
using a pool of different methods, KBC may exhibit even 
higher performance, which can be explored in future 
studies.

Our study is subjected to a few limitations which suggest 
future research directions. First, in the current design, the 
entire training dataset is scanned for each new instance to 
find the neighbors using KNN. This may lead to compu-
tational intractability for very large datasets. Innovative 
methods for defining the neighborhood can be applied 
to improve efficiency, such as clustering algorithms that 
group similar instances [26]. In this manner, the most 
similar cluster to the new data point can be identified, 
and performance of the classifiers is evaluated within that 
isolated “neighborhood”. Second, for small datasets, KBC 
often shows higher classification metrics than other meth-
ods but also higher standard deviations. We anticipate that 
the use of more sophisticated base learners will reduce this 
variance. Nevertheless, it should be noted that the use of 
new learners will likely require an additional optimization 
phase to balance the running time of the algorithm with 
classification performance.

Conclusions
To better understand the patterns of amino acid vari-
ability across the Env protein in HIV-1-infected patients, 
we developed a new classification algorithm based on 
dynamic ensemble selection. This algorithm, designated 
k-best classifiers (KBC), accurately predicts the absence 
or presence of variability at Env positions and at multi-
position epitopes based on the variability at adjacent posi-
tions on the three-dimensional structure of the protein. 
The primary advantage of KBC is that it does not use the 
same set of classifiers for the entire problem space; instead, 
it identifies the subset of base learners that are capable 
of better predicting class labels for the new observations 
based on their neighborhood. This flexibility helps to 
avoid the loss of helpful learners and to limit the reten-
tion of weak learners that occurs when a fixed number 
of classifiers is used. We applied KBC to individual posi-
tions as well as multi-position epitopes that are commonly 
targeted by antibodies elicited by HIV-1 infection. KBC 
showed superior performance in predicting variability pat-
terns at these sites relative to the base learner and a large 
panel of classification techniques we tested. Higher point 
estimations and lower standard deviations of the estimates 
were observed. This study supports the notion that posi-
tions with sequence variability in each patient are spatially 
clustered on the three-dimensional structure of the Env 
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protein. This knowledge and the algorithm developed here 
can be applied to refine models aimed at predicting future 
changes in viral proteins within the host as the basis for 
personalizing antiviral therapeutics.
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