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Abstract 

Although RNA secondary structure prediction is a textbook application of dynamic programming (DP) and routine 
task in RNA structure analysis, it remains challenging whenever pseudoknots come into play. Since the prediction 
of pseudoknotted structures by minimizing (realistically modelled) energy is NP-hard, specialized algorithms have 
been proposed for restricted conformation classes that capture the most frequently observed configurations. To 
achieve good performance, these methods rely on specific and carefully hand-crafted DP schemes. In contrast, we 
generalize and fully automatize the design of DP pseudoknot prediction algorithms. For this purpose, we formal-
ize the problem of designing DP algorithms for an (infinite) class of conformations, modeled by (a finite number of ) 
fatgraphs, and automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm 
for the problem, based on the tree-decomposition of a well-chosen representative structure, which we simplify 
and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the treewidth tw of the fatgraph, 
and its output represents a O(ntw+1) algorithm (and even possibly O(ntw) in simple energy models) for predicting 
the MFE folding of an RNA of length n. We demonstrate, for the most common pseudoknot classes, that our auto-
matically generated algorithms achieve the same complexities as reported in the literature for hand-crafted schemes. 
Our framework supports general energy models, partition function computations, recursive substructures and partial 
folding, and could pave the way for algebraic dynamic programming beyond the context-free case.

Keywords Pseudoknots, RNA folding, Tree Decomposition, Treewidth

Introduction
The function of non-coding RNAs is, to a large extent, 
determined by their structure. Structure prediction algo-
rithms therefore play a crucial role in biomedical and 
pharmaceutical applications. The basis to determine more 
complex 3D structures of RNA molecules is set by first 
accurately predicting their 2D or secondary structures. 
There exist various RNA folding algorithms that predict 

an optimal secondary structure as minimum free energy 
structure of the given RNA sequence in suitable thermo-
dynamic models. In the most frequently used methods, 
this optimization is performed efficiently by a dynamic 
programming (DP) algorithm, e.g. mfold [1], RNAfold 
[2], RNAstructure [3]. A recent alternative to predic-
tions based on experimentally determined energy param-
eters are machine learning approaches that train models 
on known secondary structures, e.g., CONTRAfold [4], 
ContextFold [5], MXfold2 [6].

However, the most frequently used algorithms (includ-
ing all of the above ones) optimize solely over pseudo-
knot-free structures [7], which do not contain crossing 
base pairs. Although pseudoknots (PK) appear in many 
RNA secondary structures, they have been omitted by 
initial prediction algorithms due to their computational 
complexity [8], and the difficulty to score individual 
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conformations [9]. Nevertheless, many algorithms have 
been proposed to predict at least certain pseudoknots. 
These methods are either based on exact DP algorithms 
such as pknots-RE [10], NUPACK [11], gfold [12], 
Knotty [13] or they use heuristics that don’t guarantee 
exact solutions, e.g., HotKnots [14], IPknot [6, 15], 
Hfold [16].

Owing to the hardness of PK prediction, efficient 
exact DP algorithms are necessarily restricted to cer-
tain categories of pseudoknotted structures. The under-
lying DP schemes are designed manually, guided by 
design to either i) support structures that are frequently 
observed in experimentally resolved structures (declara-
tive categories); or ii) support the largest possible set 
of conformations, while remaining within a certain 
complexity (complexity-driven). For most categories, 
essentially declarative ones, there exists one or several 
helix arrangements, either observed in experimentally-
determined structures or implicitly characterized by 
graph-theoretical properties (3-non-crossing [17], top-
ologically bounded [12]) that need to be captured. A 
detailed overview of pseudoknot categories is given in 
[18]. Similar situations occur for RNA-RNA interactions 
[19], possibly including several RNA molecules. Inter-
estingly, when more than two RNA strands are consid-
ered, existing algorithms restrict the joint conformation 
to crossing-free interactions [20], further motivating an, 
ideally-automated, design of algorithms beyond the case 
of pseudoknot-free secondary structures.

The paradigm of tree decompositions (TD) represents 
an appealing candidate for automating such a design task. 
TDs organize the vertices of a graph into a tree-like struc-
ture that represents all vertices and edges, augmented 
with a notion of consistency. A TD can then be re-inter-
preted as DP schemes for a wealth of graphs problems 
involving local constraints (coloring, independent sets, 
covers...) [21] and complex pattern matching problems in 
Bioinformatics [22]. The complexities of such exact algo-
rithms are typically exponential on a parameter called the 
treewidth, which can be minimized to obtain an optimal 
TD in time only exponential on the min treewidth itself 
[23]. However, TD-based approaches typically start from 
a single input graph, whereas folding prediction requires 
DP schemes that generalize to collections of structures 
of unbounded cardinalities. This led us to the following 
question, at the foundation of this work:

Can tree decompositions be used to infer structure 
prediction algorithms that work for entire classes of 
conformations?

In this work, we answer positively to that question. We 
consider popular classes of pseudoknotted structures, 
described as fatgraphs [12, 24–26], an abstraction of 

RNA conformations related to RNA shapes [27] or shad-
ows [12, 17]. We formalize the principles underlying the 
design of DP folding algorithms including pseudoknots 
and, at the same time, give a formulation of the compu-
tational problem corresponding to the design of DP algo-
rithms. We show how to leverage tree-decompositions, 
computed on a minimal expansion of the input fatgraph, 
to automatically derive DP schemes that use as little indi-
ces as possible. Our methodology leads to a generaliza-
tion of algorithms underlying LiCoRNA [22] and gfold 
[12] and represents a parameterized algorithm based on 
the treewidth (tw) of the underlying fatgraph. For exam-
ple, our method automatically derives optimally efficient 
recursions of a gfold-like prediction algorithm cover-
ing the four pseudoknot types of 1-structures (cf Table 1) 
Moreover, it enables highly complex implementations, 
like a prediction algorithm for 2-structures. Notably, this 
was never implemented for gfold, since it requires the 
generation of recursions for 3472 fatgraphs—virtually 
impossible to conduct “by hand”.

In Sect. "Definitions and main result", we state our 
problem and define its input structure abstraction, the 
fatgraph. Then, we describe helix expansions of the fat-
graph and their tree decompositions (Sect. "Minimal 
representative expansion of a fatgraph"). By minimal 
helix expansions and a derivation of the tree decomposi-
tion to its canonical form, we automatically derive a DP 
scheme for the folding of pseudoknotted structures (Sect. 
"Interpreting the tree decomposition of a fatgraph expan-
sion as a DP algorithm"). The following result is the main 
result of our papering a number of indices equal to the 
treewidth. Figure  1 outlines the fundamental algorithm. 
Section "Extensions"  discusses extensions to combine 
multiple fatgraphs, include recursive substructure, and 
cover realistic energy models. Section  "Automated (re-)
design of algorithms for specificpseudoknot classes" dis-
cusses the application of our methods to the design of 
concrete pseudoknot folding algorithms. We demon-
strate the re-design of gfold for 1-structures, as well as 
the novel design of 2-structure prediction and interesting 
novel algorithms between 1- and 2-structures (e.g.  pre-
dicting 5-chains in O(n7)).

Definitions and main result
We define an RNA sequence S as a word of length n over 
the nucleotides A,  C,  G and U; moreover an RNA sec-
ondary structure (potentially, with pseudoknots) ω of S 
as a set of base pairs (i,  j) between sequence positions i 
and j (in 1, ..., n), such that there is at most one base pair 
incident to each position. A diagram is a graph of nodes 
1,...,n (the positions), connecting consecutive positions 
by directed edges (i, i + 1) and moreover connecting 
positions by arcs, visualizing the arc-annotation of the 
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sequence. Typically this is represented drawing the back-
bone linearly and the arcs on top. RNA secondary struc-
tures are naturally interpreted as diagrams.

One of our central concerns is the crossing con-
figuration of arcs in a diagram. We define two arcs (i,  j) 
and (i′, j′) in a diagram as crossing iff i < i′ < j < j′ or 
i′ < i < j′ < j . Naturally, this leads to the notion of a 
conflict graph consisting of all the arcs of a diagram 
and connecting crossing arcs by a conflict edge. Given 
a potentially conflicted set of base pairs, the associated 

RNA structure graph is the diagram consisting of one 
vertex per nucleotide, backbone links, and one arc per 
base pair.

A  fatgraph [12, 24–26] is an abstraction of a family 
of pseudoknotted RNA structures displaying a specific 
conflict structure. It is typically represented as a band 
diagram (see Figs.  1 and  2), in which each band may 
represent a helix of arbitrary size, including bulges. An 
arc-annotation is said to be an expansion of a fatgraph 
if collapsing nested arcs and contracting isolated bases 

Fig. 1 Given a finite number of arbitrary fatgraphs, a dynamic programming scheme for folding (restricted to the family of structures specified 
by the fatgraphs) is derived from canonical tree decompositions of minimal representative expansions of the helices, for each fatgraph. The 
workflow gives an overview of the steps of the algorithm. Each step is described in more details in the subsequent sections and figures: see Fig. 2 
for fatgraphs, Fig. 5 and Sect. "Minimal representative expansion of a fatgraph"  for a detailed version of the canonical tree decomposition, Fig. 8 
for a detailed view of the compact skeleton of the tree decomposition

Fig. 2 a Diagram of a secondary structure with two crossing helices (H1 green, H2 blue). b fatgraph corresponding to the above structure such 
that helices are collapsed into bands and form the shadow of the structure
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yields the band diagram of a fatgraph. Given a finite num-
ber of fatgraphs, we say a structure is a recursive expan-
sion of these fatgraphs if decomposing the structure into 
conflict-connected components, collapsing nested arcs 
and contracting isolated bases only yields members of the 
given fatgraph set. For the purpose of this presentation 
(where we do not explicitly study structure topology), we 
moreover identify fatgraphs with their diagrams.

To make the connection to gfold [12] explicit, recur-
sive expansions of fatgraphs are equivalently understood 
in terms of the shadows of a structure. The shadow of an 
RNA structure (or equivalently, its diagram) is defined 
in [12] as the diagram obtained by, firstly, removing all 
unpaired bases and non-crossing structures and, sec-
ondly, contracting all stacks (i.e. pairs of arcs between 
directly consecutive positions) to single arcs. Then, the 
class of recursive expansions of a set of input fatgraphs Ŵ 
is the class of structures, where the shadows of their con-
flict-connected components are in Ŵ.

In this paper, we consider a class of RNA folding prob-
lems in which the search space is restricted to recursive 
expansions of a user-specified finite set of fatgraphs. 
For the sake of simplicity, we first describe minimizing 
energy in a simple free-energy model E , where the energy 
of a sequence/structure is obtained by summing the con-
tributions of individual base pairs; moreover, we present 
the method initially without recursive insertions. Only 
later, in Sect. "Extensions", we extend to the full problem 
in realistic energy models.

Definition 1 (Fatgraph MFE folding problem)  
Input: Collection of fatgraphs γ1, . . . , γp , sequence S
Output: Minimum Free Energy (MFE) arc-annotation 
for S according to a free-energy model E , restricting the 
search to recursive expansions of the input fatgraphs.

Specifically, we solve the problem of automatic design 
of such pseudoknot prediction algorithms based on an 
input set of fatgraphs.

Definition 2 (Fatgraph algorithm design problem) 
Input: Collection of fatgraphs γ1, . . . , γp
Output: A Dynamic-Programming algorithm that, given 
any sequence S, solves the Fatgraph MFE folding problem 
over γ1, . . . , γp and S.

Defining the treewidth of a fatgraph as the tree-
width of its minimal expansion (see Sect. "Helices 
of length 5 are sufficient to obtain generalizable tree 
decompositions"), our main result, stated in Algo-
rithm  1, is the existence of an effective algorithm for 
the Fatgraph MFE-folding problem, parameterized 
by the maximum treewidth tw of the input fatgraphs. 

Using parameterized algorithmics terminology [28], it 
consists of an FPT (Fixed-Parameter Tractable) pre-
processing of the input fatgraphs, yielding an XP (Slice-
wise-Polynomial) dynamic-programming algorithm 
accepting any input sequence and solving the Fatgraph 
MFE folding problem (see Fig. 1). In a nutshell, an algo-
rithm is FPT in a parameter k is its run-time is of the 
form O(f (k) · nc) , for c a constant and f a computable 
(typically super-exponential) function. On the other 
hand, it is XP if its run-time is of the form f (k) · ng(k) 
for two computable functions f,  g. Both yield poly-
nomial algorithms for a fixed value of k. More details 
about the parameterized complexity classes XP and 
FPT can be found in [28].

Input : Finite number of fatgraphs γ1, . . . , γp, sequence
S, base-pair based energy model E

Output: Best-scoring arc-annotation for S, in the class
specified by the fatgraphs

1 foreach fatgraph γi do
2 Compute minimal expansion Gi of fatgraph γi;

−→ Linear time; see Section ''Helices of
length 5 are sufficient to obtain
generalizable tree decompositions''

3 Find min. width tree decomposition T for Gi;
−→ FPT in tw using exact tree dec. algorithm

4 Transform T into a canonical form tree dec T ′;
−→ Polynomial time; see Section ''Canonical

form of fatgraph tree decompositions''
5 Compute skeleton of T ′;

−→ Linear time; see Section ''Canonical form
of fatgraph tree decompositions''

6 Derive corresponding DP scheme;
−→ Linear time; see Section ''Automatic

derivation of dynamic programming
equations in a base pair-based energy
model''

7 end
8 Run all DP schemes to find MFE arc-annotation of S;

−→ XP in tw O(ntw+1); See Section ''Extensions''

Algorithm  1: Pseudocode for  the  recursive fatgraph 
folding problem.

The following result is the main result of our paper. 
A refined version is Theorem  4 in Sect. "Complexity 
analysis".

Theorem  1 (Main result) Algorithm  1 solves the fat-
graph folding problem in O(ntw+1) , where tw is the maxi-
mum treewidth of the input fatgraphs.

As detailed with Theorem 4, the complexity can also 
be O(ntw) in certain cases, depending on the choice of 
energy model and the fatgraphs under consideration.

Since the number of indices used by the DP equation 
is minimized, the resulting complexities could be seen as 
optimal within a family of simple DP algorithms. How-
ever, a characterization of such a non-trivial family of 
algorithms would be beyond the scope of this work, and 
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we leave formal proofs of optimality to future work, as 
briefly discussed in Sect “Conclusions and discussion”.

Minimal representative expansion of a fatgraph
Our approach builds on the concept of tree decomposi-
tion, which we want to leverage to derive decomposition 
strategies within dynamic programming (DP) schemes. A 
key challenge is in the fact that tree decompositions are 
computed for concrete graphs, whereas our objective is 
to find an algorithm whose search space includes all pos-
sible recursive expansions of an input fatgraph.

Fortunately, we find that expanding every helix of a fat-
graph to length 5 (i.e. 5 nested base pairs) yields a graph 
which is representative of the fatgraph. Namely, its optimal 
tree decomposition, having treewidth tw, trivially general-
izes into a tree decomposition for any further expansion, 
retaining treewidth tw. This tree decomposition can finally 
be reinterpreted into a DP scheme that exactly solves the 
MFE folding problem in O(ntw+1) complexity (and some-
times even O(ntw) for simple energy models).

Treewidth and tree decompositions

Definition 3 A tree decomposition T = (T , {Xi}i∈V (T )) 
of a graph G = (V ,E) is a tree of subsets of vertices of G, 
called bags, verifying the following conditions:

• ∀u ∈ V  ∃i ∈ V (T ) such that u ∈ Xi . (representing 
vertices)

• ∀(u, v) ∈ E ∃i ∈ V (T ) such that {u, v} ⊂ Xi.(repre-
senting edges)

• Tu = {i ∈ V (T ) | u ∈ Xi} must be connected. (vertex 
subtree property)

The width of a tree decomposition is the size of its big-
gest bag minus one, i.e. maxi∈V (T ) |Xi| − 1 . The tree-
width of a graph G is then the minimum possible width 
of a tree decomposition of G. Intuitively, the lower the 
treewidth, the closer G is to being a tree. Treewidth is 
NP-hard to compute [29], but fixed-parameter tracta-
ble (FPT): there is a O(f (w) · n) algorithm [23] deciding 
whether tw(G) ≤ w given G. More details regarding the 
fixed-parameter tractability and theoretical aspects of 
treewidth can be found in [28]. Many polynomial heuris-
tics are also known to yield reasonable results [30], and 
optimized exact solvers have been developed [31, 32]. 
Notoriously, a wide variety of hard computational prob-
lems can be solved efficiently when restricted to graphs 
of bounded treewidth [21, 28], including in bioinfomat-
ics [22, 33, 34]. Such is the case of pseudoknotted struc-
ture-sequence alignment, using the algorithm presented 
in [22]. The method presented in this paper can actually 
be seen as a generalization of this algorithm, allowing to 

perform “pseudoknotted motif-sequence alignment”, with 
a motif describing a family of structures.

We will rely in the remainder of this section on some well 
known-properties for treewidth, which we recall here. First, 
taking any minor of G [35], i.e. performing any sequence or 
edge contractions, edge deletions and vertex deletions on G 
can only lower the treewidth. Second, degree-2 vertices can 
be contracted into their neighbors without changing the 
treewidth, as quickly stated below. This implies in particu-
lar that any bulge in a helix of an RNA structure graph is 
inconsequential with respect to treewidth.

Proposition 1 If u is a degree-2 vertex of G with neigh-
bors {v,w} , and Gv←u is the graph obtained by contracting 
u into v in G then tw(G) = tw(Gv←u)

Proof To start with, Gv←u is a minor of G, therefore 
tw(Gv←u) ≤ tw(G) . Then, given an optimal tree 
decomposition T  for Gv←u , since (v, w) is an edge of this 
graph, there has to be a bag X containing both vertices. If 
tw(Gv←u) = 1 , then X = {v,w} and can be split into two 
bags {v,u} and {u,w} to obtain a tree decomposition for 
G. If tw(Gv←u) ≥ 2 , then we can simply connect a new 
bag {u, v,w} and connect it to X to obtain again a valid 
tree decomposition for G of the same width. Therefore 
tw(G) ≤ tw(Gv←u) and we have the equality.  �

Then, we import from [36] an inequality valid for any 
separator of G. A separator is a subset S of vertices of G 
such that G \ S is composed of at least 2 conected com-
ponents. This set of connected components obtained by 
removing S in G is denoted CG(S) . We then have:

Proposition 2 If S is a separator of G, then

with G[C ∪ clique(S)] the subgraph of G induced by 
C ∪ S augmented by edges making S a clique. In case of 
equality, we say that S is safe.

Proof Consider, for each C ∈ CG(S) , a tree decomposition 
TC of G[C ∪ clique(S)] . Since these graphs contain S as 
a clique, each TC must have a bag XC containing S entirely. 
Consider now the following tree decomposition for G: 
make a bag out of S, and connect XC for each C to it. The 
resulting tree decomposition is valid for G, and its width 
is the left-hand-side of the inequality.  �

Conversely, given two adjacent bags X and Y in a tree 
decomposition T  , unless all vertices on the “X-side” of 
the tree decomposition are also present in the Y-side (or 
the opposite), X ∩ Y  is a separator of G. Formally, given 

tw(G) ≤ max
C∈CG(S)

tw(G[C ∪ clique(S)])
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(X, Y) an edge of a tree decomposition T  , the X-side of T  
is the connected component of T  containing X obtained 
when removing (X, Y).

To write down the proofs of the following section in a 
smoother fashion, we restrict (w.l.o.g) tree decomposi-
tions to be such that any intersection of two adjacent 
bags is a minimal separator of the graph. The existence 
of optimal decompositions with these property is easily 
seen when defining tree decompositions in terms of tri-
angulations and chordal graphs [31, 37]. In this frame-
work, the treewidth of a graph G is the minimum possible 
maximum clique size in a chordal completion of G. The 
bags of the decomposition are the maximal cliques of the 
chordal completion (“clique-tree”), and intersections of 
adjacent bags are minimal separators. For completeness, 
we formulate this result in the following proposition:

Proposition 3 Given a graph G, there always exists an 
optimal tree decomposition such that, for any two adja-
cent bags X and Y: 

1. X ∩ Y  is a minimal separator of G.
2. |X ∩ Y | ≤ tw(G)

Proof Denoting ω(H) the maximum clique size of a 
graph H, we have [37]:

The tree decomposition corresponding to a particular 
chordal completion H of G is the “clique-tree” of H. Bag 
intersections are then minimal separators of G (item 1), 
and no two bags contain exactly the same vertices (hence 
item 2). We refer the reader to [37] for full definitions and 
justifications.  �

Helices of length 5 are sufficient to obtain generalizable 
tree decompositions
Given an RNA graph (with one vertex per nucleotide 
and one edge per base pair and backbone link, see 
Fig. 3a, we call perfect helix a set of directly nested base 
pairs, resulting in the subgraph depicted on Fig.  3b. 
We call the number of nested base pairs its length, and 
denote it with l. With a slight abuse of language, we call 
such a subgraph a helix, even for general graphs.

Throughout the remainder of the article, helices will 
be often proven to be replaceable, as a subgraph, by one 
of two small graphs on 4 vertices. These two graphs are 

tw(G) = min
H chordal completion of G

ω(H)

the clique on 4 vertices and a 4-cycle augmented with 
one (and only one) of the possible two chords. To sim-
plify the exposition, we simply denote them by ⊠ and �.

One situation where ⊠ will appear is when we prove 
that, sometimes, the 4 extremities can be connected 
into a clique without loss of generality. The graph we 
obtain, an helix closed by a clique, has treewidth 4, 
which will be an important threshold in our structural 
results below. We state this fact in the following lemma. 
Let us denote by H∗

l  the graph corresponding to a helix 
of length l, with the extremities connected as a clique.

Lemma 1 For l = 2 , tw(H∗
l ) = 3 , while for l ≥ 3 , 

tw(H∗
l ) = 4.

Proof For l = 2 , H∗
l  is simply the clique on 4 vertices, and 

which has a width of 3. For l ≥ 3 , a clique on 5 vertices can 
be obtained as a minor by contracting the internal part of 
the helix to one vertex, which ends up being connected to 
all 4 extremities, which already form a clique. Therefore, 
tw(H∗

l ) ≥ 4 . To obtain the equality, we recursively build 
a tree decomposition of width ≤ 4 , starting with l = 2 
which we already described. Given a tree decomposition 
of width ≤ 4 for H∗

l  , there has to be a bag X containing 
all 4 extremities {u1, v1,ul , vl} (see Fig. 3b). We introduce 
two new bags: X ′ = {u1, v1,ul , vl , vl+1} introducing a new 
vertex vl+1 , and X ′′ = {u1, v1,ul , vl+1,ul+1} introducing 
ul+1 . We connect X ′ to X and X ′′ to X ′ . By doing so, we 
respect the subtree connectivity property for all involved 
vertices, and build a tree decomposition capable of 
representing H∗

l+1 .  �
Our main structural result is to show that the treewidth 

of a graph G does not increase when extending a helix 
past a length of 5. Its proof relies on the following ine-
quality, involving the graphs G⊠ and G� , obtained from 
G by replacing a helix H with either ⊠ or � , (see Fig. 3c).

Lemma 2 Given a graph G and a helix H of length l ≥ 3 
in G, we have:

Proof To start with, by noticing that the 4 extremities 
of the helix form a separator S between the inside 
and the outside of it, we get by Proposition  2 that 
tw(G) ≤ max(H ∪ clique(S),G⊠) . The graph 
H ∪ clique(S) does not depend on G, and consists of a 
helix with the 4 extremities forming a clique. With l ≥ 2 , 
it turns out that this graph has treewidth 4, per Lemma 1, 
hence the inequality.

tw(G⊠)− 1 ≤ tw(G�) ≤ tw(G) ≤ max(4, tw(G⊠))
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Next, we notice that G� is a minor of G when l ≥ 3 . This 
can be seen by contracting the helix according to the pat-
tern outlined on Fig.  3d by the green areas (each green 
area is contracted to the extremity it contains). Therefore, 
tw(G�) ≤ tw(G).
Finally, let us note that G⊠ and G� only differ by 1 edge, 
and removing a single edge from a graph can only 
decrease its treewidth by at most 1. Indeed, suppose that 
tw(G�) < tw(G⊠)− 1 , and consider an optimal tree 
decomposition T  for G� . Let us denote by u and v the 
two extremities of the helix not connected in G� . If the 
subtrees of bags containing respectively u and v do not 
intersect, then one can just add v to all bags of the tree 
decomposition, to represent the edge (u, v) while increas-
ing the width by ≤ 1 . Therefore tw(G⊠)− 1 ≤ tw(G�) 
and the inequality is complete.  �

Through the introduction of G⊠ and G� as the two pos-
sible graphs to which G is equivalent in terms of tree-
width, Lemma 2 already contains the essence of our main 
structural result, Theorem 2. It will be the basis for gen-
eralizing tree decompositions of minimal expansions of a 
fatgraph to arbitrary helix lengths.

Theorem  2 If H is a helix in G of length l ≥ 5 , then 
extending the helix to have length l + 1 does not increase 
the treewidth.

Proof Let us distinguish two cases depending on the 
treewidth of G. For both of them, we consider an optimal 
tree decomposition T  of G and show how to modify it 
into a valid tree decomposition for the extended version 
of G:
If tw(G) ≤ 3 then there has to be a pair i, j ( i ≤ j ) of indi-
ces ∈ [1, l] such that |i − j| > 1 and no bag contains both 
an element from{ui, vi} and {uj , vj} . I.e. the occurences 
of {ui, vi} and {uj , vj} in the tree decomposition are 
completely separated by some edge (X,  Y) of the tree 
decomposition. Indeed, if ∀i, j ∈ [1, l] there is some edge 
between {ui, vi} and {uj , vj} represented, then contract-
ing uk , vk together ∀k would yield a clique on 5 vertices, 
which is forbidden if tw(G) ≤ 3.

Given such a pair i, j of indices, let us denote S = X ∩ Y  
the separator associated to that edge. By Proposition 3, S 
can be assumed to be inclusion minimal, and therefore to 
contain exactly 2 vertices uk and vk ′ such that |k − k ′| ≤ 1 

Fig. 3 a minimal expansion of a fatgraph, with every helix of length 5, and no unpaired base. The associated graph consists of one vertex per base, 
and one edge per base pair and backbone link. b A helix of length l in an RNA graph, as per the latter definition. c Given a helix in a graph G, 
the treewidth of G is either equal to tw(G⊠) or tw(G�) . Each case is associated with a type of separator that can be used to extend the helix, 
or insert bulges, without changing the treewidth. (d) The dotted line represents a “hop-edge” which, if represented in a given tree decomposition 
of G, can be used to obtain G⊠ as a minor of G, showing that the helix is in the “clique” case
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and i ≤ k , k ′ ≤ j . Such a separator is depicted on Fig. 3c, 
as well as on Fig. 7. On this latter Figure, we also depict 
the re-writing we perform: we introduce two new vertices 
x and y to the X-side of the separator, as well as interme-
diary bags between Y and X that will gradually transform 
uk , v

′
k into x and y. To be specific, we introduce S as a bag 

between X and Y, and connect it to X through the series 
of bags S ∪ {x} , S ∪ {x, y} \ {uk} , S ∪ {x, y}\{uk , v

′
k} in the 

case (w.l.o.g) that k ≤ k ′ . In addition, all occurences of uk 
in X and beyond in the subtree rooted at X and directed 
away from S are replaced with x and those of v′k with y. 
Since |S| ≤ tw(G) , such a re-writing does not increase the 
treewidth, while representing all necessary edges for an 
extension of the helix by one level.

If tw(G) ≥ 4 , then we first look for a pair i,  j verifying 
(as above) that some edge (X, Y) of the tree decomposi-
tion completely separates {ui, vi} from {uj , vj} , although 
this time with no garantee of finding one. If we do find 
one, we apply the same transformation as above.

In the case where no such pair i, j exists, we argue that 
the four extremities of the helix form a safe separator of 
G. i.e. tw(G) = max(4, tw(G⊠)) . An optimal tree decom-
position for G can then be obtained from a tree decom-
position G⊠ , and a tree decomposition of an helix closed 
by a clique, connected through a bag in which the separa-
tor forms a clique. The helix can then simply be extended 
by changing the part of the tree decomposition repre-
senting the helix.

By Lemma 2, we have tw(G) ≤ max(4, tw(G⊠)) . Since 
tw(G) ≥ 4 , it reduces to tw(G) ≤ tw(G⊠) . We now use 
the fact that edges connecting {ui, vi} and {uj , vj} for all i, j 
are represented in the tree decomposition to show that 
G⊠ is a minor of G, and therefore tw(G) = tw(G⊠)

If there is an edge connecting ui to vj or vi to uj for 
|j − i| > 1 represented in the tree decomposition, then we 
obtain G⊠ through the contraction scheme represented 
on Fig.  3. If ∀i, j the edge connecting {ui, vi} and {uj , vj} 
is (ui,uj) or (vi, vj) , then w.l.o.g we are in one of the two 
situations colored in orange on Fig. 3. By contracting the 
orange parts into the extremity they contain, we get G⊠ 
as a minor of G.  �

Since bulges in a helix only consist of vertices of degree 
exactly 2, combining Proposition  1 with Theorem  2 
implies that the treewidth of any expansion of a given fat-
graph is always smaller than or equal to the treewidth of 
a minimal expansion where all bands are helices of length 
exactly 5. As for gaps, arguments similar to the proof of 

Theorem 2 can show that going from a gap of length 0 to 
an arbitrary length does not increase the treewidth of a 
fatgraph expansion. Overall, we formally define the mini-
mal expansion of a fatgraph as:

Definition 4 (Minimal representative expansion of a 
fatgraph) Given a fatgraph γ , its minimal representative 
expansion consists of:

• A perfect helix of length 5 for each band.
• No gap between the extremities of two helices

Such a minimal representative expansion is illustrated 
in Fig. 8a. For visual clarity, gaps have been kept between 
consecutive helices, but one can see that the correspond-
ing extremities have the same labels. Given a fatgraph, 
this RNA structure graph contains all necessary informa-
tion for formulating DP equations decomposing all RNA 
structures compatible with the fatgraph.

Interestingly, the two graphs G⊠ and G� that emerge in 
the proofs as the two graphs G could be equivalent in terms 
of treewidth, as well as the separators they are associated to 
(see Fig. 3c) are reminiscent of two typical decomposition 
strategies used into dynamic programming for RNA folding. 
They suggest, for each helix in a graph, two possible “canon-
ical representations” in terms of tree decomposition, which 
will be elaborated on in the next section.

Interpreting the tree decomposition of a fatgraph 
expansion as a DP algorithm
Starting with a tree decomposition for a minimal repre-
sentative expansion of a given fatgraph, we first describe 
in this section how to represent it in a canonical form, 
with each helix represented either in one of two differ-
ent ways, respectively related to G� and G⊠ . The result-
ing tree decomposition can be further compressed into 
a skeleton, where bags within individual helices are com-
pressed into a single bag.

This tree can then be interpreted as a dynamic pro-
gramming scheme, in which helices are generated by spe-
cializing dynamic programming subroutines. In a sense, 
the tree decomposition yields automatically a decompo-
sition strategy usable for dynamic programming, of the 
kind that was hand-crafted in previous approaches [11, 
12].
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Canonical form of fatgraph tree decompositions
Let us recall this additional definition for the sake of 
presentation: Given an edge e = (X ,Y ) of a tree decom-
position T  , we call the X − side of T  the connected com-
ponent of T \ e containing X.

Definition 5 A tree decomposition of an expansion G 
of a fatgraph is in canonical form if, for each helix H of 
length l, either:

• Clique case: H is represented by a root bag that 
contains its 4 extremities, connected to a sub-tree-
decomposition Tl recursively defined as 

• Diagonal case: Helix H is represented by a linear 
series of bags starting with X1 = S∗ ∪ {u1, v1} , fin-
ishing with X2l+2 = S∗ ∪ {ul , vl} , and such that for 
1 < k < l + 1 : 

T⊠
0 = ∅

T⊠
l = {u1, v1,ul , vl}

→ {u1, v1,ul , vl−1, vl}

→ {u1, v1,ul−1,ul , vl−1} → T⊠
l−1

 and 

The definition above is illustrated by Fig. 4. A canoni-
cal tree decomposition for a minimum expansion of 
a fatgraph is also presented on Fig.  5. It was obtained 
through the processing routine that we describe in 
Algorithm  2, applicable to any (optimal or not) tree 
decomposition. It can therefore use a sub-optimal tree 
decomposition obtained from a polynomial heuristic 
[21] instead of an exponential solver, if the latter is too 
time-consuming (although [31] is empirically quite effi-
cient on RNA structure graphs) (Fig 6).

Algorithm 2 essentially follows the dichotomy of the 
proof of Theorem 2. We state its correctness, run-time 
and proof below.

X2k = S∗ ∪ {u2k−1, v2k−1,u2k}

X2k+1 = S∗ ∪ {v2k−1,u2k , v2k}.

Fig. 4 The two types of canonical representations for the helices of a graph completion G and associated dynamic programming schemes. (Left) 
In the Diagonal case, only the sequence positions of external (resp. internal) anchors are provided. Internal ones are obtained as the base case 
of an energy model-dependent dedicated dynamic programming scheme, propagating values for anchors in S along the way. (Right) In the clique 
case, all four anchors delimiting the helix have known position. Again, a dedicated dynamic programming algorithm is used to optimize over all 
possible contents for the helix, while accounting for associated free-energies
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Input : Tree decomposition T for the minimal
expansion G of a fatgraph γ.

Output: A tree decomposition of G in canonical form
1 if width(T ) ≤ 3 then

−→ ‘‘Diagonal case’’ only
2 foreach helix H in fatgraph γ do

−→ ∃i, j s.t. ui, vi completely separated
from uj , vj in T

3 Find an edge (X,Y ) of T and i, j such that
0 ≤ i, j ≤ 4, |i− j| > 1 and X ∩ Y separates
ui, vi on the X-side from uj , vj on the Y-side;

4 ∀i ∈ [0 . . . 4], replace ui with u1 and vi with
v1 in all bags of the X-side of T ;

5 ∀j ∈ [0 . . . 4], replace uj with u4 and vj with
v4 in all bags of the Y -side of T ;

6 Insert between X and Y the “diagonal”
canonical representation for H, with constant
part S = (X ∩ Y ) \ {uk, vk}i≤k≤j

7 end
8 else
9 foreach helix H in γ do

10 if ∃ i, j and (X,Y ) edge of T s.t X ∩ Y
separates ui, vi on the X-side from uj , vj on
the Y -side then

−→ ‘‘Diagonal case’’
11 ∀i ∈ [0 . . . 4], replace ui with u1 and vi

with v1 in all bags of the X-side of T ;
12 ∀j ∈ [0 . . . 4], replace uj with u4 and vj

with v4 in all bags of the Y -side of T ;
13 Insert between X and Y the “diagonal”

canonical representation for H, with
constant part
S = (X ∩ Y ) \ {uk, vk}i≤k≤j

14 else
−→ ‘‘Clique case’’

15 ∀i, j there is always an edge connecting
ui, vi to uj , vj represented T → use these
edges to get a tree decomposition for G ;

16 Attach a tree decomposition for an helix
closed by a clique to the bag containing the
clique on the 4 extremities of H

17 end
18 end
19 end

Algorithm  2: Algorithm for  re-writing a  tree 
decomposition into a canonical one in which every helix 
of  the  input graph is  represented in  a  canonical way. 
A representation of an helix as a subgraph in a minimal 
representative expansion, along  with  the notations (ui, 
vj ...) used in this pseudo-code can be found on Figure 6. 
With a  slight abuse of  notation, we re-use these 
variables for each helix.

Theorem  3 Given G the structure graph of a minimal 
expansion of a fatgraph γ , and T  a tree decomposition of 
G, Algorithm 2 outputs a canonical tree decomposition for 
G, having same width as T, in time O(NH · n3) , where NH 
is the number of helices in γ.

Fig. 5 Canonical tree decomposition of the fatgraph given in Fig. 1. 
White boxes represent the bags of the tree decomposition. Number 
in the bags correspond to the indices of the helices in the fatgraph 
where number on the bottom are kept while traversing the branch 
of the decomposition tree. Colored frames indicate the distinct 
helices (H0 to H4) of the structure. The tree decomposition 
was computed with the optimal solver [31], which we noticed 
is particularly efficient on RNA structure graphs

Fig. 6 Sketch of an helix subgraph, in a minimal representative 
expansion of a fatgraph, along the annotation of vertices used 
in Algorithm 2. There is a slight abuse in using these same labels 
for each of the helices in the main for loop of Algorithm 2
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Proof Concerning the run-time, enumerating all pairs 
1 ≤ i < j ≤ l) is quadratic in the length of the helix under 
consideration, which is O(n) in a general graph, while 
testing a given edge for separation of ui, vi and uj , vj takes 
O(n) (through breadth-first search) for each of the O(n) 
edges of the tree decomposition.

As for its correctness: it essentially follows the dichot-
omy of Theorem 2. If width(T ) ≤ 3 , then there has to be 
a pair of indices i,  j such that {ui, vi} is separated from 
{uj , vj} by an edge (X, Y) of the tree decomposition. If it 
is not the case, contracting (uk , vk) ∀k yields a K5-minor, 
which is not possible with a width of 3. We therefore get 
a separator as depicted in blue on Fig. 7, which forms the 
“constant part” of the diagonal-case helix representation. 
The replacement of vertex occurences on both sides of 
the separator does not increase the width, while repre-
senting all edges of the graph.

If width(T ) ≥ 4 , if a separator as above is found (but 
this time, no guarantee to find one), then we apply the 
same transformation. Otherwise, we use the extra edges 
represented in the tree decomposition to modify it into 
a tree decomposition of G⊠ , as in the proof of Theo-
rem 2. There is then necessarily a bag containing all four 
extremities of the helix, to which a tree decomposition 
representing the inside of the helix can be attached.  �

Note that in a canonical tree decomposition, all vertices 
and edges internal to a helix of a graph are represented in 
the canonical sub-tree-decomposition associated to it. 
All bags outside of these canonical blocks only consist of 
extremities of helices, or other vertices outside of helices. 
Ignoring these internal parts, to focus on a more compact 
“skeleton” of canonical tree decompositions will be the first 

step towards automatically deriving dynamic programming 
equations.

Definition 6 The skeleton of a canonical tree decompo-
sition for a graph G, is defined as follows:

• All sub-tree-decompositions representing a helix in the 
“clique” case are replaced with a unique bag containing 
all extremities of the helix

• All sub-tree-decompositions representing a helix in the 
“diagonal” case are contracted to contain their first and 
last bags only, denoted as S ∪ {u1, v1} and S ∪ {ul , vl} 
in Definition 5.

Figure 8b gives an example of such a skeleton.

Automatic derivation of dynamic programming equations 
in a base pair‑based energy model
Given the skeleton of a representative minimal expan-
sion of a fatgraph γ , we describe here how to formulate 
DP equations for the corresponding folding problem. We 
initially restrict our exposition to a base-pair based model, 
further named BP model, akin to the one optimized by the 
seminal Nussinov algorithm [38], where the free-energy of 
a structure S is given by:

�Gi,j being the contribution of a base-pair (i,  j) to the 
free-energy (or negative log-odd to produce max-likeli-
hood structures).

EBP(S) =
∑

(i,j)∈S

�Gi,j ,

Fig. 7 Representation of the local rewriting of a tree decomposition next to a separator S separating to base pairs (ui , vi) and (uj , vj) , in order 
to extend a helix by one unit, through the introduction of new vertices x and y. This is used in Theorem 2, in what corresponds in Sect "Interpreting 
the tree decomposition of a fatgraph expansion as a DP algorithm"  to the “diagonal” case
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Essentially, we introduce helix DP tables for each 
helix, and transitional tables for non-helix bags. The 
variables indexing these tables are called anchors. These 
integer variables each represent a separation point 
between consecutive (half-)helices. Taken together, a 
full set of anchors (a, b, c, . . .) partitions the sequence 
into a set of disjoint intervals [a, b[, [b, c[. . . , each asso-
ciated with one half-helix, i.e. one of the subsequences 
that form a helix. Helix tables will account for the free-
energy contributions of concrete base-pairs, while tran-
sitional tables will instantiate anchors in a way that 
remains consistent with previous assignments.

Indeed, owing to the definition of a valid tree decom-
position, a skeleton is guaranteed to: 

1. Feature each anchor in some bag;
2. Represent each pair of consecutive anchors in at least 

one bag;

3. Propagate anchor values, such that the anchor values 
within helix tables remain consistent. This implies 
that non-helix bags can simply propagate previously-
assigned anchors, possibly assigning values to novel 
anchors (if any and constrained to remain consistent 
with the sequential order) to explore all possible par-
titions of the input RNA sequence.

Helix tables will predict concrete sets of base pairs and 
account for their associated free-energy. In order to both 
prevent the double pairing of certain sequence positions, 
and to avoid ambiguity, we require (and enforce in the DP 
rules) that an anchor x, separating the consecutive halves 
of two helices H and H ′ , implies the pairing of position x 
to the other half of H ′ , and the pairing of some position 
x′ < x as part of H. In other words, a helix H delimited by 
anchors i, i′, j′, and j must pair position i to some position 
x ∈]j′, j[ , and j′ to some position y ∈]i, i′[ , implicitly leav-
ing both regions ]y, i′[ and ]x, j[ unpaired.

Fig. 8 A Minimal representative length-5 expansion of the fatgraph shown in Fig. 1. Anchor variables are highlighted in green. We introduce one 
such variable per gap between helices. B Skeleton of the tree decomposition. White boxes represent transitional bags, introducing/propagating 
indices, while colored boxes represent helices in the fatgraph (H0 to H4) with associated indices in the input structure. Red letters indicate tables 
of the dynamic programming algorithm. Green indices are novel indices, absent from a bag’s predecessor. D P equations derived from the compact 
skeleton, involving the anchor variable defined above, and following the rules described in Sect. "Automatic derivation of dynamic programming 
equations in a base pair-based energy model" 
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Helix table 1: “Clique” cases
In the skeleton, each bag representing a helix in the 
“clique” case is associated to the following tables, where 
i, i′ + 1, j′ , and j + 1 represent the values of the anchors 
delimiting the helix. The increments on i′ and j are here 
to ensure the presence of gap of length ≥ 1 between two 
base pairs belonging to different helices. (see also Fig. 8c 
for an example of how anchor values are passed to C⊠ 
with a decrement of −1 for the same reason).

A first table C ′
⊠

 holds the minimal free-energy of a helix 
delimited by i, i′, j′, and j, such that position i is paired to 
some x ∈]j′, j[ and j′ to some position y ∈]i, i′[ . The idea 
is here to iteratively move the anchor from j to j − 1 , 
implicitly leaving position j unpaired, until a base pair 
(i, j) is formed. Once a base pair is created, we transition 
to another table C⊠ which optimizes over helices like C ′

⊠
 , 

but additionally allows position i to be left unpaired.
Those two tables can be filled owing to the following 

recurrences:

and

where �Gi,j denote the free-energy contribution of the 
base pair (i, j) in the input RNA sequence.

Helix tables 2: “Diagonal” cases
In the skeleton bags representing the diagonal cases, we 
need to associate a different table to each helix. Indeed, 
each “diagonal” case associates, to a helix H, a set S of 
indices, dubbed the constant anchors, whose values 
remain unchanged during the construction of H.

We focus on the case where (i,  j) represents the value 
of the outermost anchor pair (i.e. [i,  j] represents the 
full span of H), leaving to the reader the symmetric case 
starting from the innermost pair. Note that, in the skel-
eton, we kept two bags for a “diagonal case” helix. Yet 
they are associated to a single table, since the helix is cre-
ated by incrementing two indices only, such that the ini-
tial pair of extremities “becomes” the other pair. We need 
this second bag to know how to map index values to the 
children tables {Mk}k . This value mapping at the end of a 
diagonal case is illustrated on Fig. 9.

C ′
⊠
[i, i′, j′, j] = min



















C ′
⊠
[i, i′, j′, j − 1] {if j′ < j}

C⊠[i + 1, i′, j′, j − 1] +�Gi,j

{if (i < i′) ∧ (j′ < j)}
�Gi,j {if j = j′}
+∞ {if no case applies}

C⊠[i, i′, j′, j] = min



























C ′
⊠
[i, i′, j′, j − 1] {if j′ < j}

C⊠[i + 1, i′, j′, j] {if i < i′}
C⊠[i + 1, i′, j′, j − 1] +�Gi,j

{if (i < i′) ∧ (j′ < j)}
�Gi,j {if j = j′}
+∞ {if no case applies}

Namely, let the cell DH [i, j | S] (resp. D′
H [i, j | S] ) rep-

resent the minimum-free energy achieved by the set of 
helices in the subtree of H, when H is anchored at (i,  j) 
without commitment to form base pairs for neither i nor 
j (resp. where i is committed to form a pair with some 
position x ≤ j′ ). We have:

and

where Ak denotes the anchors values needed for the k-th 
child of the diagonal bag.

Transitional tables: Non‑helix bags
The general case consists of passing the values of relevant 
variables onward to the diagonal and clique tables, possi-
bly assigning/propagating anchors that appear in the bag 
for the first time, i.e. anchors that are not found in the 
parent bag. Let IP be the anchors of the parent bag of M 
in the tree decomposition, we have:

where Ik denotes the anchor values from I needed for 
the k-th child of the bag, and S represents the constant 
anchors of the k-th child, assumed to be a diagonal.

Complexity analysis
Let w⊠ , w� and w′ be the maximum width of a clique, 
diagonal and transitional bag (i.e. its size minus one; 
or 0 if no bag exist for a given type) in a canonical tree 
decomposition T  of a fatgraph γ . Note that w⊠ is always 
4, but we keep this notation for consistency. In the fol-
lowing theorem, γ is a fatgraph with |γ | helices and T  is 
a canonical tree decomposition for γ . The DP scheme 
obtained from T  as described in the previous section is 
called the DP scheme inferred from T .

D′
H [i, j | S] = min











D′
H [i, j − 1 | S]
{if j − 1 > i ∧ ∀s ∈ S, j − 1 �= s}

DH [i + 1, j − 1 | S] +�Gi,j

{if ∀s ∈ S, (i + 1 �= s) ∧ (j − 1 �= s)}

DH [i, j | S] = min











































DH [i + 1, j | S]
{if i + 1 < j ∧ ∀s ∈ S, i + 1 �= s}

D′
H [i, j − 1 | S]
{if j − 1 > i ∧ ∀s ∈ S, j − 1 �= s}

DH [i + 1, j − 1 | S] +�Gi,j

{if ∀s ∈ S, (i + 1 �= s) ∧ (j − 1 �= s)}
�

k Mk [Ik ]
{with Ik :=

�

{i, j + 1} ∪ S
�

∩ Ak}

M[IP] = min
Values for

anch. in I \ IP

#child.
�

k=1



























Mk [Ik ]
{if k-th child trans.}

C ′
⊠
[i, i′ − 1, j′, j − 1]
{if clique at (i, i′, j′, j)}

D′
Hk
[i, j − 1 | Sk ]

{if diagonal at (i, j′)}
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Theorem 4 In the base-pair energy model, the DP scheme 
inferred from T  yields an algorithm for the Fatgraph MFE 
Folding problem with O(|γ | · nmax(w⊠,w�,w′+1)) time and 
O(|γ | · nmax(w⊠,w�,w′)) space complexity.

Fig. 9 Derivation of DP equations from a skeleton, starting from the canonical tree decomposition of a length-5 expansion for a simple H-type 
fatgraph. On the left-hand-side, special emphasis is given to explaining how values are mapped at the end of a diagonal case. Extra tables C ′

⊠
 

and D′
H , needed to ensure unambiguity of the DP scheme, are omitted for the sake of simplicity without adverse consequences to correctness

Table 1 While the space complexity of the generated DP 
schemes is always bounded by O(ntw) (Lemma 3), the run-time 
complexity of filling-up the DP tables C� and C⊠ depends on 
the choice of energy model. As for the table corresponding to a 
transitional bag X with indices I, the cost of filling it is O(ntw+1) 
irrespectively of the energy model

Energy model Diagonal tables Clique tables Transitional tables
C�[i, j|S] C⊠[i, i′ , j′, j] MX [IX ]

BP-based model O
(

n
|S|+2

)

O
(

n
4
)

O
(

n
|I|
)

BP+stacking O
(

n
|S|+2

)

O
(

n
4
)

|

Full Turner O
(

n
|S|+3

)

O
(

n
5
)

|

Table 2 Table listing pseudoknot classes, corresponding treewidth 
and resulting complexity of the folding algorithm

For H-type pseudoknots beneath the Turner model, marked as (*), an iterated 
computation over canonical tree decompositions is required to achieve the 
complexity (see Theorem 5). For the H-type and kissing hairpins cases, we are in 
the specific case where the most complex routine is the alignment of a “clique 
case” helix, which is done in O(n4) despite a treewidth of 4. These examples are 
detailed in the Appendix, Fig. 10. The DP equations for each of these examples 
have been automatically generated by a Python implementation of our 
pipeline, freely available at https:// gitlab. inria. fr/ bmarc han/ auto- dp

Complexities

Type Fatgraph Treewidth Full Turner All others

H-type ([)] 4 O
(

n
5
)

O
(

n
4
)

(*)

Kissing hairpins ([)(]) 4 O
(

n
5
)

O
(

n
4
)

“L” [12] ([{)]} 5 O
(

n
6
)

O
(

n
6
)

“M” [12] ([{)(]}) 5 O
(

n
6
)

O
(

n
6
)

4-clique ([{<)]}> 5 O
(

n
6
)

O
(

n
6
)

5-clique ([{<A)] 
}>a

5 O
(

n
6
)

O
(

n
6
)

5-chain ({[)(]
[)}]

6 O
(

n
7
)

O
(

n
7
)

https://gitlab.inria.fr/bmarchan/auto-dp
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Proof The complexity of the DP scheme inferred from T  
(presented in the previous section for a base-pair based 
model) depends on the complexities of filling each of the 
tables corresponding to helices.

C⊠[i, i′, j′, j] and C ′
⊠
[i, i′, j′, j] take O(n4) to fill, using 

either a memoization procedure or a bottom-up iteration 
of all possible values for i, i′, j′, j . It is equal to the space 
complexity thanks to the finite number of cases in their 
recursive equations.

A similar analysis holds for C�[i, j | S] and C ′
�
[i, j | S] , 

except that the number of indices is |S| + 2 . Since the 
maximum size of a bag in a diagonal-case representation 
is |S| + 3 , we indeed have w� = |S| + 2.

For transitional bags, the situation is slightly differ-
ent. The indices of the table are the intersection with the 
parent bag in the tree decomposition, whose number is 
bounded by w′ . The space complexity of the correspond-
ing DP table is therefore O(ntw

′
) . But there is also a mini-

mization over all possible values for the variables not pre-
sent in the parent bag, incurring a linear factor for each 
of them. Overall, for a transitional B of maximum size 
w′ + 1 , the complexity of filling the matrix is O(w′ + 1) 
( O(n|B\P|) for each of the O(n|B∩P|) ) entries.

As for the number of tables, it is at most twice the 
number of bags in T  , which is linear in the number 
of helices in γ . The overall time complexity is there-
fore given the DP table of most expensive filling cost, 
O(|γ | · nmax(w⊠,w�,w′+1)) . The same holds for the space 
complexity, yielding O(|γ | · nmax(w⊠,w�,w′)) .  �

Since tree decompositions are typically chosen to mini-
mize their width tw := max(w⊠,w�,w

′) , then the precise 
resulting complexity may depend on the choice of an opti-
mal tree decomposition. Indeed, it could be that tw = w′ , 
yielding a O(ntw+1) algorithm or, conversely, w′ < tw − 1 
would imply a complexity of O(ntw) . In other words, in the 
base pair model, the algorithm induced by the choice of 
an arbitrary tree decomposition T may be suboptimal by 
a linear factor. Figure 11 shows an example with two tree 
decompositions of the same width, but with different w′ 
values. They yield different complexities ( O(n4) vs. O(n5)).

Fortunately, it is possible to work around this issue, and 
obtain a O(ntw) DP algorithm anytime a suitable canoni-
cal fatgraph decomposition exists. To find such a decom-
position, we explore the space of all possible canonical 
tree decompositions, through an enumeration of all pos-
sible representations for each helix. This is formalized 
in the theorem below (note that this is purely meant as 
a feasibility result, we do not expect this approach to be 
optimal in terms of complexity; however, we conjecture 
that this subproblem is FPT for the treewdidth of γ ). 
We use the same notations as above by calling w′(T ) the 

maximum width of a transitional bag of a canonical tree 
decomposition.

Theorem 5 Let G be a minimal expansion of a fatgraph 
γ with nH helices. If there exists an optimal canonical tree 
decomposition T  of G such that w′(T ) ≤ tw(G)− 1 , then 
such a T  can be found in 2O

(

|γ |2
)

· f (tw) time.

Proof The space of all possible canonical tree decom-
position can be iterated over by deciding, for each helix, 
whether it is in the “clique” or “diagonal” case. If it is in 
the diagonal case, one must in addition decide what is the 
“constant part” of the representation of the helix. Any set 
S such that {u1, v1,u5, v5} ∪ S separates the graph into at 
least 3 connected components, one being the inside of 
the helix, is an eligible candidate.

This process corresponds to deciding, for each helix, 
what separator cuts out the inside of the helix from the 
rest of the graph. When such a decision is made, a canon-
ical tree decomposition can be obtained by computing 
canonical tree decompositions for the connected com-
ponents associate to the separator, and connecting them 
together (in the spirit of Proposition 2).
When there are no helices left, an optimal tree decompo-
sition of the graph is computed in time f(tw). It yields the 
transitional bags in between helix representations.

Given that S is only composed of helix extremities, 
it is chosen among ≤ |γ | vertices. We consider there-
fore an upper bound of 2|γ | for the number of pos-
sible choices of S in the diagonal case, and an upper 
bound of |γ | for the number of connected components 
associated to a separator, the overall time of explor-
ing all canonical tree decompositions is bounded by 
O((|γ | · 2|γ |)|γ | · f (tw)) ⊆ 2O

(

|γ |2
)

· f (tw).
If an optimal canonical tree decomposition T  such 

that w′(T ) ≤ tw(G)− 1 exists, then it corresponds to a 
particular assignation of separators to each helix as out-
lined above, and it will be one of the tree decompositions 
explored by the iteration.  �

Automated C code generation
Figure  8 shows an example of output to our pipeline, 
with automatically generated LaTeX equations for the 
dynamic programming scheme inferred from the tree 
decomposition. Figure  10 gives other examples of such 
automatically generated equations. But our implementa-
tion, available freely at https:// gitlab. inria. fr/ bmarc han/ 
auto- dp, is also capable of automatically generating C 
code implementing these equations. The automatically 
generated *.c files corresponding to all of the exam-
ples of Fig.  10 are available as Supplementary Material. 
In the current state, they are only meant as a prototype 

https://gitlab.inria.fr/bmarchan/auto-dp
https://gitlab.inria.fr/bmarchan/auto-dp
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demonstration. Developments towards generation of 
fully functional code, including the extensions presented 
in the next Section, will be the subject of future work.

Extensions
The DP scheme, as stated above, only supports conforma-
tions that consist of a single pseudoknot configuration, 
indicated by a fatgraph. Moreover, it forces the first posi-
tion of the sequence to always form a base pair. Finally, 
it considers an energy model that is fairly unrealistic in 
comparison with the current state of the art. In this sec-
tion, we briefly describe how to extend this fundamental 
construction in several directions. This enables us to solve 
the stated algorithm design problem (Def. 2) and conse-
quently the associated folding problem in complex energy 
models, and discuss the consequences on the complexity.

Integration with classic DP algorithms for MFE structure 
prediction
Firstly, let us note that alternative fatgraphs can easily be 
considered, without significant overhead, by adding a dis-
junctive rule at the top level of the DP scheme, such as

where rootγi is the top level case of the DP scheme for fat-
graph γi.The associated conformation space then consists 
of the union of all pseudoknotted structures compatible 
with one of the fatgraphs.

Enriching classic schemes with fatgraphs
Fatgraphs usually represent a structural module rather 
than a complete RNA conformation. The classic DP 
scheme for 2D structure energy-minimization can thus 
be supplemented by additional constructs, enabling the 
consideration of pseudoknots. Towards that goal, one 
needs to access MFEPK(i, j) , the MFE achieved over a 
region [i, j] by a conformation compatible with one of the 
input fatgraphs. In other words, one needs to be able to 
prescribe the span of the fatgraph occurrence, i.e. the val-
ues (i, j) of its extremal anchors (a, a′) within the dynamic 
programming.

To ensure this possibility, one simply needs to con-
nect the first and last positions within the minimal fat-
graph completion G = (V ,E) , i.e. resulting in a graph 
G′ := (V ,E ∪ {(a, a′)}) . Since each arc of the input 
graph is represented in a valid tree decomposition, we 
know that any tree decomposition for G′ features a bag 
B including both a and a′ , possibly in conjunction with 
additional anchors S := {k1, k2, . . .} . Moreover, since a 
tree decomposition is unordered, it can be rerooted to 
start with B, and preceded by a root node restricted to 

MFEPK :=
p

min
i=1

rootγi [∅]

anchors (a,  b), without adverse consequences complex-
ity-wise. This yields the following entry point for the DP 
of a fatgraph γ:

which can be used within a classic, pseudoknot-oblivious, 
DP scheme for MFE structure prediction. Complexity-
wise, it can be shown that the additional base pair can at 
most increase by 1 the treewidth (and frequently leaves it 
unchanged).

Recursive substructures
Recursive substructures consist of secondary struc-
tures/occurrences of fatgraphs that are inserted, both in 
between and within helices, usually through recursive 
calls to the (augmented) 2D folding scheme.

To allow arbitrary sub-structures to be inserted in the 
gaps between consecutive helices, one can again modify 
the minimal helix expansion to distinguish the anchors 
a, b associated with consecutive helices (instead of merg-
ing them into a single anchor in our initial exposition). 
By connecting a and b, one ensures their simultane-
ous presence in a tagged bag B, whose DP recurrence 
is then augmented to include an energy contribution 
MFESS(a+ 1, b− 1).

To enable the insertion of substructures within a helix 
requires modifications to the helix clique/diagonal rules 
that are very similar to the ones enabling support for the 
Turner energy model. Assuming the presence of a base 
pair (i, j), an insertion can indeed be performed by delim-
iting a region [i, k] (resp. [k, j]) of arbitrary length, leading 
to an overall MFE of MFESS(i, k)+ δ , where δ is the free-
energy contributed by the rest of the helix (e.g. to include 
additional terms associated with multiloops).

More realistic energy models
For the sake of simplicity, we illustrated in Sect. "Auto-
matic derivation of dynamic programming equations 
in a base pair-based energy model" the generation of a 
dynamic programming algorithm within a fairly simple 
base-pair based energy model. However, the procedure 
can be adapted to capture more complex energy models 
found in the literature. This includes stacking base pairs 
models defined as:

with �Gi,i+1,j−1,j the energy of base pair (i + 1, j − 1) 
stacking onto (i,  j), or even the nearest-neighbor free-
energy model, also called Turner model.

MFEγ (i, j) := min
i<k1<k2<...<j

MB[i, k1, k2, . . . , j]

EStacking (S) =
∑

{(i, j), (i + 1, j − 1)} ⊂ S

�Gi,i+1,j−1,j



Page 17 of 22Marchand et al. Algorithms for Molecular Biology           (2023) 18:18  

In the Turner model, any pseudoknot-free structure 
S is decomposed into loops, each rooted at a base pair 
(i, j) ∈ S ∪ {(−1, n+ 1)} , and delimited by a set of base 
pairs L(i, j) = {(i′, j′)} ∈ S such that [i′, j′] ⊂ [i, j] and 
 ∃(i′′, j′′) ∈ S such that [i′, j′] ⊂ [i′′, j′′] ⊂ [i, j] . A loop 
L(i, j) is then assigned a free-energy contribution �GL(i,j) 
that depends on the nucleotide content of base pairs, and 
unpaired regions between adjacent base pairs. The over-
all free energy of a structure in the Turner model is then 
defined as

Rather than including independent values for all contents 
and size of loops, the Turner model usually uses affine lin-
ear models for multiloops ( |L(i, j)| ≥ 2 ), and interior loops 
( |L(i, j)| = 1 ), the latter based on loop length and asymmetry.

Both of those models can be captured by a modified 
version of the dynamic programming algorithm pre-
sented in Sect.  "Automatic derivation of dynamic pro-
grammingequations in a base pair-based energy model". 
In the stacking model, it suffices to duplicate the cliques 
(resp. diagonal) matrices to keep track of (i,  j) being 
directly enclosed ( ⊥ ) or not (  ⊥ ) within a base pair 
(i + 1, j − 1) . This results in a replacement (C⊠,C ′

⊠
) with 

(C⊠,⊥,C
′
⊠,⊥,C⊠,�⊥,C

′
⊠,�⊥) (resp. (DH ,D

′
H ) into (DH ,⊥,

D
′
H ,⊥,DH ,�⊥,D

′
H ,�⊥) ), and the inclusion of suitable energy 

contributions for the ⊥ cases, the only ones likely to form 
stacking pairs. The time complexity remains identical, up 
to a constant, to that of the BP energy model.

A consideration of the full Turner model is more 
involved, but can be achieved in O(n3) through an enu-
meration of all possible loops, as shown by Lyngsoe 
et al [39], by exploiting the linear interpolation of loops 
beyond a certain length threshold. Adapting the recur-
rence to consider all possible helix expansions of cliques 
and diagonals will result in a O(n) time overhead for all 
cliques and diagonals, leading to an increased time com-
plexity in O(|γ | · nmax(w⊠+1,w�+1,w′+1)) , or equivalently 
O(|γ | · ntw+1) . A summary of the complexity of filling 
the different kinds of DP table (transitional, clique and 
diagonal) depending on the choice of energy is given 
on Table  1. In any case, the space complexity is always 
O(|γ | · ntw) , as stated below.

Lemma 3 The space complexity of the generated DP 
schedule is O(|γ | · ntw) , regardless of the energy model.

Proof The set of indices of a table is the intersection 
of the corresponding bag with its parent bag. Both bags 
have size at most tw + 1 , and they are distinct, so their 
intersection has size at most tw. Each index runs in the 

ETurner(S) =
∑

(i,j)∈S∪{−1,n+1}

�GL(i,j).

range [0, n], so the size of each table is at most ntw . The 
number of tables is bounded by the number of bags in the 
tree decomposition of γ , which is itself in O(|γ |) .  �

Partition functions and ensemble applications
For ensemble applications of our DP schemes, such as 
computing the partition function [40] and statistical sam-
pling of the Boltzmann ensemble [41], it is imperative for 
the DP scheme above to be complete and unambiguous 
[42]. Fortunately, both properties are already guaranteed 
by our DP schemes. Indeed, intuitively: the completeness 
is ensured by the exhaustive investigation of all possible 
anchor positions, i.e. all possible partitions; the unambi-
guity is guaranteed by the invariant that assigning a posi-
tion x to a given anchor (within a transitional or diagonal 
bag), leads x to be paired within the (half-)helix imme-
diately to its right. Choosing different values for x thus 
induces different innermost/outermost base pairs for the 
associated helix, leading to disjoint sets of structures.

From these two properties, we conclude that the par-
tition function for a fatgraph (or several, possibly recur-
sively and/or within a ± realistic energy model) can be 
obtained through the simple change of algebra pioneered 
by McCaskill [40] in the pseudoknot-free case. Namely, 
replace the (min,+,�G) terms into (

∑

,×, eβ�G) , with 
β = RT  being the Boltzmann constant multiplied by 
some absolute temperature.

Automated (re‑)design of algorithms for specific 
pseudoknot classes
Our pipeline for automated generation of DP folding 
equations given a fatgraph has been implemented using 
Python and Snakemake [43]. The implementation 
is freely available at: https:// gitlab. inria. fr/ bmarc han/ 
auto- dp.

Since the algorithms in [12] have been described in 
terms of a finite number of fatgraphs (called irreducible 
shadows in the paper), one can directly apply our method 
to obtain an efficient algorithm that covers the same class 
as gfold, namely 1-structures that are recursive expan-
sions of the four fatgraphs of genus 1 corresponding to 
simple PK ’H’ ([)], kissing hairpin ’K’ ([)(]), three-
knot ’L’ ({[)}] and ’M’ ([{)(]}) (here, represented 
in dot-bracket notation, i.e. corresponding opening and 
closing brackets correspond to arcs). The maximum 
complexity of O(n6) of the four fatgraphs (see Table  2) 
implies that the automatically derived algorithm cov-
ers the class of 1-structures in O(n6) time—the same 
complexity as hand-crafted gfold. Note that [12] used 
declarative methods in their algorithm design only to 
the point of generating grammar rules, which without 

https://gitlab.inria.fr/bmarchan/auto-dp
https://gitlab.inria.fr/bmarchan/auto-dp
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further optimization yield O(n18) (after applying alge-
braic dynamic programming; ADP [44]). In contrast, our 
method obtains the optimal complexity in fully automatic 
fashion. Beyond this re-design of gfold, remarkably our 
method is equally prepared to automatically design a DP 
algorithm with optimized efficiency for 2-structures, 
which are based on all genus 2 fatgraphs. This is remark-
able, since the implementation of a practical algorithm 
has been considered infeasible [12] due to the large num-
ber of genus 2 shadows (namely, there are 3472 shadows/
fatgraphs), whose grammar rules would have to be opti-
mized by hand. In contrast, due to full automation, our 
method directly handles even the large number of fat-
graphs of genus 2 and yields an efficient, complexity opti-
mized, DP scheme.

Recall that we cover all other pseudoknot classes that 
are recursive expansions of a finite number of fatgraphs 
(in the same way as we cover the design of prediction 
algorithms for 1- and 2-structures). In this way, among 
the previously existing DP algorithms, we cover the class 
of Dirks &Pierce (D &P) [11], simply by specifying the 
H-type as single input fatgraph. Consequently, we auto-
matically re-design the D &P algorithm in the same com-
plexity of O(n5) . Even more interestingly, we can design 
algorithms covering specific (sets of ) crossing configu-
rations. This results in an infinite class of efficient algo-
rithms that have not been designed before. Again the 
complexity of such algorithms is dominated by the most 
complex fatgraph; where results for interesting ones are 
given in Table 2. Most remarkably, we design an algorithm 
optimizing over recursive expansions of kissing hairpins 
in O(n4) , whereas CCJ [13, 45], which was specifically 
designed to cover kissing hairpins, requires O(n5).

A special case, which further showcases the flexibil-
ity, is the extension of existing classes by specific cross-
ing configurations. For example, extending D &P by 
kissing hairpin covers a much larger class while stay-
ing in the same complexity. Extending 1-structures by 
5-chain yields a new algorithm with a complexity below 
of 2-structures (namely only O(n7) instead of O(n8) [12]). 
The complexity of 5-chain is remarkably low, when con-
sidering that previously described algorithms covering 
this configuration take O(n8) (e.g. gfold’s generalization 
to 2-structures and a hypothetical blow-up of the Rivas 
and Eddy algorithm [10] to 6-dimensional instead of 
4-dimensional DP matrix elements—both of which have 
never been implemented).

Conclusions and discussion
In this work, we provided an algorithm that takes a family 
of fatgraphs, i.e. pseudoknotted structures, and returns 
DP equations that efficiently predict arc annotations 

minimizing the free energy. The DP equations are auto-
matically generated based on an expansion of the fat-
graph, designed to capture helices of arbitrary length. 
The DP tables in the equations use a number of indices 
smaller than or equal to the treewidth of the minimal 
expansion. This very general framework recovers the 
complexity of prior, hand-crafted algorithms, and lays 
the foundation for a purely declarative approach to RNA 
folding with pseudoknots.

In addition to the extensions described in Sect. "Exten-
sions", this work suggests perspectives that will be 
explored in future work. Indeed, the choice of an optimal 
decomposition/DP scheme for the input fatgraph can be 
seen as the automated design of an optimal table strategy 
in the context of algebraic dynamic programming [44, 46, 
47]. This would enable extensions to multiple context free 
grammars or tree grammars when describing the prob-
lem in the ADP framework.

Our automated design of pseudoknot folding algo-
rithms could naturally be extended to RNA–RNA inter-
actions, since the joint conformation of two interacting 
RNA sequences can be seen as a pseudoknot when con-
catenating the two structures [48]. More ambitiously, 
categories of pseudoknots inducing an infinite family of 
fatgraphs, e.g. as covered by the seminal Rivas & Eddy 
algorithm [10], could be captured by allowing the intro-
duction of recursive gapped structures in prescribed 
parts of the fatgraph. This could be addressed by adding 
cliques to the minimal completion graph which would 
ensure the availability of the relevant anchors in some 
bags of the tree decomposition, allowing to score such 
non-contiguous, recursive substructures.

Another avenue for future research includes a proof 
of optimality, in term of polynomial complexity, for the 
produced DP algorithms. Of course, it would be far too 
ambitious (and erroneous) to expect our DP schemes to 
be optimal within general computational models. How-
ever, it may be possible to prove optimality within a for-
mally-defined subset of DP schemes, e.g. by contradiction 
since the existence of a better algorithm would imply the 
existence of a tree decomposition having smaller width. 
More precisely, given a fatgraph γ , one could imagine that 
a DP scheme (with DP tables indexed by anchor variables 
as is typically the case) capable of exploring all recursive 
expansions of γ would in particular induce a decomposi-
tion of the minimal representative expansion of γ , from 
the parsing of this structure by the DP grammar. If this 
decomposition can be reinterpreted as a tree decomposi-
tion, then the treewidth of the minimal expansion would 
become a lower bound on the number of indices to use in 
such a DP scheme.
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Appendix
See Figs. 10, 11

Fig. 10 Minimal representative expansions and final equations for the examples of Table 2. The equations have been automatically generated, 
and the pipeline code is freely available at https:// gitlab. inria. fr/ bmarc han/ auto- dp. In particular, the optimal tree decompositions were computed 
using an exact algorithm proposed by Tamaki [31]

https://gitlab.inria.fr/bmarchan/auto-dp
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