
Marchand et al.
Algorithms for Molecular Biology (2023) 18:18
https://doi.org/10.1186/s13015-023-00229-z

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/ applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Automated design of dynamic programming
schemes for RNA folding with pseudoknots
Bertrand Marchand1,2, Sebastian Will1, Sarah J. Berkemer1,3, Yann Ponty1* and Laurent Bulteau2

Abstract

Although RNA secondary structure prediction is a textbook application of dynamic programming (DP) and routine
task in RNA structure analysis, it remains challenging whenever pseudoknots come into play. Since the prediction
of pseudoknotted structures by minimizing (realistically modelled) energy is NP-hard, specialized algorithms have
been proposed for restricted conformation classes that capture the most frequently observed configurations. To
achieve good performance, these methods rely on specific and carefully hand-crafted DP schemes. In contrast, we
generalize and fully automatize the design of DP pseudoknot prediction algorithms. For this purpose, we formal-
ize the problem of designing DP algorithms for an (infinite) class of conformations, modeled by (a finite number of)
fatgraphs, and automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm
for the problem, based on the tree-decomposition of a well-chosen representative structure, which we simplify
and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the treewidth tw of the fatgraph,
and its output represents a O(ntw+1) algorithm (and even possibly O(ntw) in simple energy models) for predicting
the MFE folding of an RNA of length n. We demonstrate, for the most common pseudoknot classes, that our auto-
matically generated algorithms achieve the same complexities as reported in the literature for hand-crafted schemes.
Our framework supports general energy models, partition function computations, recursive substructures and partial
folding, and could pave the way for algebraic dynamic programming beyond the context-free case.

Keywords Pseudoknots, RNA folding, Tree Decomposition, Treewidth

Introduction
The function of non-coding RNAs is, to a large extent,
determined by their structure. Structure prediction algo-
rithms therefore play a crucial role in biomedical and
pharmaceutical applications. The basis to determine more
complex 3D structures of RNA molecules is set by first
accurately predicting their 2D or secondary structures.
There exist various RNA folding algorithms that predict

an optimal secondary structure as minimum free energy
structure of the given RNA sequence in suitable thermo-
dynamic models. In the most frequently used methods,
this optimization is performed efficiently by a dynamic
programming (DP) algorithm, e.g. mfold [1], RNAfold
[2], RNAstructure [3]. A recent alternative to predic-
tions based on experimentally determined energy param-
eters are machine learning approaches that train models
on known secondary structures, e.g., CONTRAfold [4],
ContextFold [5], MXfold2 [6].

However, the most frequently used algorithms (includ-
ing all of the above ones) optimize solely over pseudo-
knot-free structures [7], which do not contain crossing
base pairs. Although pseudoknots (PK) appear in many
RNA secondary structures, they have been omitted by
initial prediction algorithms due to their computational
complexity [8], and the difficulty to score individual

*Correspondence:
Yann Ponty
yann.ponty@lix.polytechnique.fr
1 LIX (UMR 7161), Ecole Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France
2 LIGM, CNRS, University Gustave Eiffel, F77454 Marne-la-Vallée, France
3 Earth-Life Science Institute, Tokyo Institute of Technology 2–12-1-I7E-
318, Ookayama, Tokyo 152–8550, Japan

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00229-z&domain=pdf

Page 2 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

conformations [9]. Nevertheless, many algorithms have
been proposed to predict at least certain pseudoknots.
These methods are either based on exact DP algorithms
such as pknots-RE [10], NUPACK [11], gfold [12],
Knotty [13] or they use heuristics that don’t guarantee
exact solutions, e.g., HotKnots [14], IPknot [6, 15],
Hfold [16].

Owing to the hardness of PK prediction, efficient
exact DP algorithms are necessarily restricted to cer-
tain categories of pseudoknotted structures. The under-
lying DP schemes are designed manually, guided by
design to either i) support structures that are frequently
observed in experimentally resolved structures (declara-
tive categories); or ii) support the largest possible set
of conformations, while remaining within a certain
complexity (complexity-driven). For most categories,
essentially declarative ones, there exists one or several
helix arrangements, either observed in experimentally-
determined structures or implicitly characterized by
graph-theoretical properties (3-non-crossing [17], top-
ologically bounded [12]) that need to be captured. A
detailed overview of pseudoknot categories is given in
[18]. Similar situations occur for RNA-RNA interactions
[19], possibly including several RNA molecules. Inter-
estingly, when more than two RNA strands are consid-
ered, existing algorithms restrict the joint conformation
to crossing-free interactions [20], further motivating an,
ideally-automated, design of algorithms beyond the case
of pseudoknot-free secondary structures.

The paradigm of tree decompositions (TD) represents
an appealing candidate for automating such a design task.
TDs organize the vertices of a graph into a tree-like struc-
ture that represents all vertices and edges, augmented
with a notion of consistency. A TD can then be re-inter-
preted as DP schemes for a wealth of graphs problems
involving local constraints (coloring, independent sets,
covers...) [21] and complex pattern matching problems in
Bioinformatics [22]. The complexities of such exact algo-
rithms are typically exponential on a parameter called the
treewidth, which can be minimized to obtain an optimal
TD in time only exponential on the min treewidth itself
[23]. However, TD-based approaches typically start from
a single input graph, whereas folding prediction requires
DP schemes that generalize to collections of structures
of unbounded cardinalities. This led us to the following
question, at the foundation of this work:

Can tree decompositions be used to infer structure
prediction algorithms that work for entire classes of
conformations?

In this work, we answer positively to that question. We
consider popular classes of pseudoknotted structures,
described as fatgraphs [12, 24–26], an abstraction of

RNA conformations related to RNA shapes [27] or shad-
ows [12, 17]. We formalize the principles underlying the
design of DP folding algorithms including pseudoknots
and, at the same time, give a formulation of the compu-
tational problem corresponding to the design of DP algo-
rithms. We show how to leverage tree-decompositions,
computed on a minimal expansion of the input fatgraph,
to automatically derive DP schemes that use as little indi-
ces as possible. Our methodology leads to a generaliza-
tion of algorithms underlying LiCoRNA [22] and gfold
[12] and represents a parameterized algorithm based on
the treewidth (tw) of the underlying fatgraph. For exam-
ple, our method automatically derives optimally efficient
recursions of a gfold-like prediction algorithm cover-
ing the four pseudoknot types of 1-structures (cf Table 1)
Moreover, it enables highly complex implementations,
like a prediction algorithm for 2-structures. Notably, this
was never implemented for gfold, since it requires the
generation of recursions for 3472 fatgraphs—virtually
impossible to conduct “by hand”.

In Sect. "Definitions and main result", we state our
problem and define its input structure abstraction, the
fatgraph. Then, we describe helix expansions of the fat-
graph and their tree decompositions (Sect. "Minimal
representative expansion of a fatgraph"). By minimal
helix expansions and a derivation of the tree decomposi-
tion to its canonical form, we automatically derive a DP
scheme for the folding of pseudoknotted structures (Sect.
"Interpreting the tree decomposition of a fatgraph expan-
sion as a DP algorithm"). The following result is the main
result of our papering a number of indices equal to the
treewidth. Figure 1 outlines the fundamental algorithm.
Section "Extensions" discusses extensions to combine
multiple fatgraphs, include recursive substructure, and
cover realistic energy models. Section "Automated (re-)
design of algorithms for specificpseudoknot classes" dis-
cusses the application of our methods to the design of
concrete pseudoknot folding algorithms. We demon-
strate the re-design of gfold for 1-structures, as well as
the novel design of 2-structure prediction and interesting
novel algorithms between 1- and 2-structures (e.g. pre-
dicting 5-chains in O(n7)).

Definitions and main result
We define an RNA sequence S as a word of length n over
the nucleotides A, C, G and U; moreover an RNA sec-
ondary structure (potentially, with pseudoknots) ω of S
as a set of base pairs (i, j) between sequence positions i
and j (in 1, ..., n), such that there is at most one base pair
incident to each position. A diagram is a graph of nodes
1,...,n (the positions), connecting consecutive positions
by directed edges (i, i + 1) and moreover connecting
positions by arcs, visualizing the arc-annotation of the

Page 3 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

sequence. Typically this is represented drawing the back-
bone linearly and the arcs on top. RNA secondary struc-
tures are naturally interpreted as diagrams.

One of our central concerns is the crossing con-
figuration of arcs in a diagram. We define two arcs (i, j)
and (i′, j′) in a diagram as crossing iff i < i′ < j < j′ or
i′ < i < j′ < j . Naturally, this leads to the notion of a
conflict graph consisting of all the arcs of a diagram
and connecting crossing arcs by a conflict edge. Given
a potentially conflicted set of base pairs, the associated

RNA structure graph is the diagram consisting of one
vertex per nucleotide, backbone links, and one arc per
base pair.

A fatgraph [12, 24–26] is an abstraction of a family
of pseudoknotted RNA structures displaying a specific
conflict structure. It is typically represented as a band
diagram (see Figs. 1 and 2), in which each band may
represent a helix of arbitrary size, including bulges. An
arc-annotation is said to be an expansion of a fatgraph
if collapsing nested arcs and contracting isolated bases

Fig. 1 Given a finite number of arbitrary fatgraphs, a dynamic programming scheme for folding (restricted to the family of structures specified
by the fatgraphs) is derived from canonical tree decompositions of minimal representative expansions of the helices, for each fatgraph. The
workflow gives an overview of the steps of the algorithm. Each step is described in more details in the subsequent sections and figures: see Fig. 2
for fatgraphs, Fig. 5 and Sect. "Minimal representative expansion of a fatgraph" for a detailed version of the canonical tree decomposition, Fig. 8
for a detailed view of the compact skeleton of the tree decomposition

Fig. 2 a Diagram of a secondary structure with two crossing helices (H1 green, H2 blue). b fatgraph corresponding to the above structure such
that helices are collapsed into bands and form the shadow of the structure

Page 4 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

yields the band diagram of a fatgraph. Given a finite num-
ber of fatgraphs, we say a structure is a recursive expan-
sion of these fatgraphs if decomposing the structure into
conflict-connected components, collapsing nested arcs
and contracting isolated bases only yields members of the
given fatgraph set. For the purpose of this presentation
(where we do not explicitly study structure topology), we
moreover identify fatgraphs with their diagrams.

To make the connection to gfold [12] explicit, recur-
sive expansions of fatgraphs are equivalently understood
in terms of the shadows of a structure. The shadow of an
RNA structure (or equivalently, its diagram) is defined
in [12] as the diagram obtained by, firstly, removing all
unpaired bases and non-crossing structures and, sec-
ondly, contracting all stacks (i.e. pairs of arcs between
directly consecutive positions) to single arcs. Then, the
class of recursive expansions of a set of input fatgraphs Ŵ
is the class of structures, where the shadows of their con-
flict-connected components are in Ŵ.

In this paper, we consider a class of RNA folding prob-
lems in which the search space is restricted to recursive
expansions of a user-specified finite set of fatgraphs.
For the sake of simplicity, we first describe minimizing
energy in a simple free-energy model E , where the energy
of a sequence/structure is obtained by summing the con-
tributions of individual base pairs; moreover, we present
the method initially without recursive insertions. Only
later, in Sect. "Extensions", we extend to the full problem
in realistic energy models.

Definition 1 (Fatgraph MFE folding problem)
Input: Collection of fatgraphs γ1, . . . , γp , sequence S
Output: Minimum Free Energy (MFE) arc-annotation
for S according to a free-energy model E , restricting the
search to recursive expansions of the input fatgraphs.

Specifically, we solve the problem of automatic design
of such pseudoknot prediction algorithms based on an
input set of fatgraphs.

Definition 2 (Fatgraph algorithm design problem)
Input: Collection of fatgraphs γ1, . . . , γp
Output: A Dynamic-Programming algorithm that, given
any sequence S, solves the Fatgraph MFE folding problem
over γ1, . . . , γp and S.

Defining the treewidth of a fatgraph as the tree-
width of its minimal expansion (see Sect. "Helices
of length 5 are sufficient to obtain generalizable tree
decompositions"), our main result, stated in Algo-
rithm 1, is the existence of an effective algorithm for
the Fatgraph MFE-folding problem, parameterized
by the maximum treewidth tw of the input fatgraphs.

Using parameterized algorithmics terminology [28], it
consists of an FPT (Fixed-Parameter Tractable) pre-
processing of the input fatgraphs, yielding an XP (Slice-
wise-Polynomial) dynamic-programming algorithm
accepting any input sequence and solving the Fatgraph
MFE folding problem (see Fig. 1). In a nutshell, an algo-
rithm is FPT in a parameter k is its run-time is of the
form O(f (k) · nc) , for c a constant and f a computable
(typically super-exponential) function. On the other
hand, it is XP if its run-time is of the form f (k) · ng(k)
for two computable functions f, g. Both yield poly-
nomial algorithms for a fixed value of k. More details
about the parameterized complexity classes XP and
FPT can be found in [28].

Input : Finite number of fatgraphs γ1, . . . , γp, sequence
S, base-pair based energy model E

Output: Best-scoring arc-annotation for S, in the class
specified by the fatgraphs

1 foreach fatgraph γi do
2 Compute minimal expansion Gi of fatgraph γi;

−→ Linear time; see Section ''Helices of
length 5 are sufficient to obtain
generalizable tree decompositions''

3 Find min. width tree decomposition T for Gi;
−→ FPT in tw using exact tree dec. algorithm

4 Transform T into a canonical form tree dec T ′;
−→ Polynomial time; see Section ''Canonical

form of fatgraph tree decompositions''
5 Compute skeleton of T ′;

−→ Linear time; see Section ''Canonical form
of fatgraph tree decompositions''

6 Derive corresponding DP scheme;
−→ Linear time; see Section ''Automatic

derivation of dynamic programming
equations in a base pair-based energy
model''

7 end
8 Run all DP schemes to find MFE arc-annotation of S;

−→ XP in tw O(ntw+1); See Section ''Extensions''

Algorithm 1: Pseudocode for the recursive fatgraph
folding problem.

The following result is the main result of our paper.
A refined version is Theorem 4 in Sect. "Complexity
analysis".

Theorem 1 (Main result) Algorithm 1 solves the fat-
graph folding problem in O(ntw+1) , where tw is the maxi-
mum treewidth of the input fatgraphs.

As detailed with Theorem 4, the complexity can also
be O(ntw) in certain cases, depending on the choice of
energy model and the fatgraphs under consideration.

Since the number of indices used by the DP equation
is minimized, the resulting complexities could be seen as
optimal within a family of simple DP algorithms. How-
ever, a characterization of such a non-trivial family of
algorithms would be beyond the scope of this work, and

Page 5 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

we leave formal proofs of optimality to future work, as
briefly discussed in Sect “Conclusions and discussion”.

Minimal representative expansion of a fatgraph
Our approach builds on the concept of tree decomposi-
tion, which we want to leverage to derive decomposition
strategies within dynamic programming (DP) schemes. A
key challenge is in the fact that tree decompositions are
computed for concrete graphs, whereas our objective is
to find an algorithm whose search space includes all pos-
sible recursive expansions of an input fatgraph.

Fortunately, we find that expanding every helix of a fat-
graph to length 5 (i.e. 5 nested base pairs) yields a graph
which is representative of the fatgraph. Namely, its optimal
tree decomposition, having treewidth tw, trivially general-
izes into a tree decomposition for any further expansion,
retaining treewidth tw. This tree decomposition can finally
be reinterpreted into a DP scheme that exactly solves the
MFE folding problem in O(ntw+1) complexity (and some-
times even O(ntw) for simple energy models).

Treewidth and tree decompositions

Definition 3 A tree decomposition T = (T , {Xi}i∈V (T))
of a graph G = (V ,E) is a tree of subsets of vertices of G,
called bags, verifying the following conditions:

• ∀u ∈ V ∃i ∈ V (T) such that u ∈ Xi . (representing
vertices)

• ∀(u, v) ∈ E ∃i ∈ V (T) such that {u, v} ⊂ Xi.(repre-
senting edges)

• Tu = {i ∈ V (T) | u ∈ Xi} must be connected. (vertex
subtree property)

The width of a tree decomposition is the size of its big-
gest bag minus one, i.e. maxi∈V (T) |Xi| − 1 . The tree-
width of a graph G is then the minimum possible width
of a tree decomposition of G. Intuitively, the lower the
treewidth, the closer G is to being a tree. Treewidth is
NP-hard to compute [29], but fixed-parameter tracta-
ble (FPT): there is a O(f (w) · n) algorithm [23] deciding
whether tw(G) ≤ w given G. More details regarding the
fixed-parameter tractability and theoretical aspects of
treewidth can be found in [28]. Many polynomial heuris-
tics are also known to yield reasonable results [30], and
optimized exact solvers have been developed [31, 32].
Notoriously, a wide variety of hard computational prob-
lems can be solved efficiently when restricted to graphs
of bounded treewidth [21, 28], including in bioinfomat-
ics [22, 33, 34]. Such is the case of pseudoknotted struc-
ture-sequence alignment, using the algorithm presented
in [22]. The method presented in this paper can actually
be seen as a generalization of this algorithm, allowing to

perform “pseudoknotted motif-sequence alignment”, with
a motif describing a family of structures.

We will rely in the remainder of this section on some well
known-properties for treewidth, which we recall here. First,
taking any minor of G [35], i.e. performing any sequence or
edge contractions, edge deletions and vertex deletions on G
can only lower the treewidth. Second, degree-2 vertices can
be contracted into their neighbors without changing the
treewidth, as quickly stated below. This implies in particu-
lar that any bulge in a helix of an RNA structure graph is
inconsequential with respect to treewidth.

Proposition 1 If u is a degree-2 vertex of G with neigh-
bors {v,w} , and Gv←u is the graph obtained by contracting
u into v in G then tw(G) = tw(Gv←u)

Proof To start with, Gv←u is a minor of G, therefore
tw(Gv←u) ≤ tw(G) . Then, given an optimal tree
decomposition T for Gv←u , since (v, w) is an edge of this
graph, there has to be a bag X containing both vertices. If
tw(Gv←u) = 1 , then X = {v,w} and can be split into two
bags {v,u} and {u,w} to obtain a tree decomposition for
G. If tw(Gv←u) ≥ 2 , then we can simply connect a new
bag {u, v,w} and connect it to X to obtain again a valid
tree decomposition for G of the same width. Therefore
tw(G) ≤ tw(Gv←u) and we have the equality. �

Then, we import from [36] an inequality valid for any
separator of G. A separator is a subset S of vertices of G
such that G \ S is composed of at least 2 conected com-
ponents. This set of connected components obtained by
removing S in G is denoted CG(S) . We then have:

Proposition 2 If S is a separator of G, then

with G[C ∪ clique(S)] the subgraph of G induced by
C ∪ S augmented by edges making S a clique. In case of
equality, we say that S is safe.

Proof Consider, for each C ∈ CG(S) , a tree decomposition
TC of G[C ∪ clique(S)] . Since these graphs contain S as
a clique, each TC must have a bag XC containing S entirely.
Consider now the following tree decomposition for G:
make a bag out of S, and connect XC for each C to it. The
resulting tree decomposition is valid for G, and its width
is the left-hand-side of the inequality. �

Conversely, given two adjacent bags X and Y in a tree
decomposition T , unless all vertices on the “X-side” of
the tree decomposition are also present in the Y-side (or
the opposite), X ∩ Y is a separator of G. Formally, given

tw(G) ≤ max
C∈CG(S)

tw(G[C ∪ clique(S)])

Page 6 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

(X, Y) an edge of a tree decomposition T , the X-side of T
is the connected component of T containing X obtained
when removing (X, Y).

To write down the proofs of the following section in a
smoother fashion, we restrict (w.l.o.g) tree decomposi-
tions to be such that any intersection of two adjacent
bags is a minimal separator of the graph. The existence
of optimal decompositions with these property is easily
seen when defining tree decompositions in terms of tri-
angulations and chordal graphs [31, 37]. In this frame-
work, the treewidth of a graph G is the minimum possible
maximum clique size in a chordal completion of G. The
bags of the decomposition are the maximal cliques of the
chordal completion (“clique-tree”), and intersections of
adjacent bags are minimal separators. For completeness,
we formulate this result in the following proposition:

Proposition 3 Given a graph G, there always exists an
optimal tree decomposition such that, for any two adja-
cent bags X and Y:

1. X ∩ Y is a minimal separator of G.
2. |X ∩ Y | ≤ tw(G)

Proof Denoting ω(H) the maximum clique size of a
graph H, we have [37]:

The tree decomposition corresponding to a particular
chordal completion H of G is the “clique-tree” of H. Bag
intersections are then minimal separators of G (item 1),
and no two bags contain exactly the same vertices (hence
item 2). We refer the reader to [37] for full definitions and
justifications. �

Helices of length 5 are sufficient to obtain generalizable
tree decompositions
Given an RNA graph (with one vertex per nucleotide
and one edge per base pair and backbone link, see
Fig. 3a, we call perfect helix a set of directly nested base
pairs, resulting in the subgraph depicted on Fig. 3b.
We call the number of nested base pairs its length, and
denote it with l. With a slight abuse of language, we call
such a subgraph a helix, even for general graphs.

Throughout the remainder of the article, helices will
be often proven to be replaceable, as a subgraph, by one
of two small graphs on 4 vertices. These two graphs are

tw(G) = min
H chordal completion of G

ω(H)

the clique on 4 vertices and a 4-cycle augmented with
one (and only one) of the possible two chords. To sim-
plify the exposition, we simply denote them by ⊠ and �.

One situation where ⊠ will appear is when we prove
that, sometimes, the 4 extremities can be connected
into a clique without loss of generality. The graph we
obtain, an helix closed by a clique, has treewidth 4,
which will be an important threshold in our structural
results below. We state this fact in the following lemma.
Let us denote by H∗

l the graph corresponding to a helix
of length l, with the extremities connected as a clique.

Lemma 1 For l = 2 , tw(H∗
l) = 3 , while for l ≥ 3 ,

tw(H∗
l) = 4.

Proof For l = 2 , H∗
l is simply the clique on 4 vertices, and

which has a width of 3. For l ≥ 3 , a clique on 5 vertices can
be obtained as a minor by contracting the internal part of
the helix to one vertex, which ends up being connected to
all 4 extremities, which already form a clique. Therefore,
tw(H∗

l) ≥ 4 . To obtain the equality, we recursively build
a tree decomposition of width ≤ 4 , starting with l = 2
which we already described. Given a tree decomposition
of width ≤ 4 for H∗

l , there has to be a bag X containing
all 4 extremities {u1, v1,ul , vl} (see Fig. 3b). We introduce
two new bags: X ′ = {u1, v1,ul , vl , vl+1} introducing a new
vertex vl+1 , and X ′′ = {u1, v1,ul , vl+1,ul+1} introducing
ul+1 . We connect X ′ to X and X ′′ to X ′ . By doing so, we
respect the subtree connectivity property for all involved
vertices, and build a tree decomposition capable of
representing H∗

l+1 . �
Our main structural result is to show that the treewidth

of a graph G does not increase when extending a helix
past a length of 5. Its proof relies on the following ine-
quality, involving the graphs G⊠ and G� , obtained from
G by replacing a helix H with either ⊠ or � , (see Fig. 3c).

Lemma 2 Given a graph G and a helix H of length l ≥ 3
in G, we have:

Proof To start with, by noticing that the 4 extremities
of the helix form a separator S between the inside
and the outside of it, we get by Proposition 2 that
tw(G) ≤ max(H ∪ clique(S),G⊠) . The graph
H ∪ clique(S) does not depend on G, and consists of a
helix with the 4 extremities forming a clique. With l ≥ 2 ,
it turns out that this graph has treewidth 4, per Lemma 1,
hence the inequality.

tw(G⊠)− 1 ≤ tw(G�) ≤ tw(G) ≤ max(4, tw(G⊠))

Page 7 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Next, we notice that G� is a minor of G when l ≥ 3 . This
can be seen by contracting the helix according to the pat-
tern outlined on Fig. 3d by the green areas (each green
area is contracted to the extremity it contains). Therefore,
tw(G�) ≤ tw(G).
Finally, let us note that G⊠ and G� only differ by 1 edge,
and removing a single edge from a graph can only
decrease its treewidth by at most 1. Indeed, suppose that
tw(G�) < tw(G⊠)− 1 , and consider an optimal tree
decomposition T for G� . Let us denote by u and v the
two extremities of the helix not connected in G� . If the
subtrees of bags containing respectively u and v do not
intersect, then one can just add v to all bags of the tree
decomposition, to represent the edge (u, v) while increas-
ing the width by ≤ 1 . Therefore tw(G⊠)− 1 ≤ tw(G�)
and the inequality is complete. �

Through the introduction of G⊠ and G� as the two pos-
sible graphs to which G is equivalent in terms of tree-
width, Lemma 2 already contains the essence of our main
structural result, Theorem 2. It will be the basis for gen-
eralizing tree decompositions of minimal expansions of a
fatgraph to arbitrary helix lengths.

Theorem 2 If H is a helix in G of length l ≥ 5 , then
extending the helix to have length l + 1 does not increase
the treewidth.

Proof Let us distinguish two cases depending on the
treewidth of G. For both of them, we consider an optimal
tree decomposition T of G and show how to modify it
into a valid tree decomposition for the extended version
of G:
If tw(G) ≤ 3 then there has to be a pair i, j (i ≤ j) of indi-
ces ∈ [1, l] such that |i − j| > 1 and no bag contains both
an element from{ui, vi} and {uj , vj} . I.e. the occurences
of {ui, vi} and {uj , vj} in the tree decomposition are
completely separated by some edge (X, Y) of the tree
decomposition. Indeed, if ∀i, j ∈ [1, l] there is some edge
between {ui, vi} and {uj , vj} represented, then contract-
ing uk , vk together ∀k would yield a clique on 5 vertices,
which is forbidden if tw(G) ≤ 3.

Given such a pair i, j of indices, let us denote S = X ∩ Y
the separator associated to that edge. By Proposition 3, S
can be assumed to be inclusion minimal, and therefore to
contain exactly 2 vertices uk and vk ′ such that |k − k ′| ≤ 1

Fig. 3 a minimal expansion of a fatgraph, with every helix of length 5, and no unpaired base. The associated graph consists of one vertex per base,
and one edge per base pair and backbone link. b A helix of length l in an RNA graph, as per the latter definition. c Given a helix in a graph G,
the treewidth of G is either equal to tw(G⊠) or tw(G�) . Each case is associated with a type of separator that can be used to extend the helix,
or insert bulges, without changing the treewidth. (d) The dotted line represents a “hop-edge” which, if represented in a given tree decomposition
of G, can be used to obtain G⊠ as a minor of G, showing that the helix is in the “clique” case

Page 8 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

and i ≤ k , k ′ ≤ j . Such a separator is depicted on Fig. 3c,
as well as on Fig. 7. On this latter Figure, we also depict
the re-writing we perform: we introduce two new vertices
x and y to the X-side of the separator, as well as interme-
diary bags between Y and X that will gradually transform
uk , v

′
k into x and y. To be specific, we introduce S as a bag

between X and Y, and connect it to X through the series
of bags S ∪ {x} , S ∪ {x, y} \ {uk} , S ∪ {x, y}\{uk , v

′
k} in the

case (w.l.o.g) that k ≤ k ′ . In addition, all occurences of uk
in X and beyond in the subtree rooted at X and directed
away from S are replaced with x and those of v′k with y.
Since |S| ≤ tw(G) , such a re-writing does not increase the
treewidth, while representing all necessary edges for an
extension of the helix by one level.

If tw(G) ≥ 4 , then we first look for a pair i, j verifying
(as above) that some edge (X, Y) of the tree decomposi-
tion completely separates {ui, vi} from {uj , vj} , although
this time with no garantee of finding one. If we do find
one, we apply the same transformation as above.

In the case where no such pair i, j exists, we argue that
the four extremities of the helix form a safe separator of
G. i.e. tw(G) = max(4, tw(G⊠)) . An optimal tree decom-
position for G can then be obtained from a tree decom-
position G⊠ , and a tree decomposition of an helix closed
by a clique, connected through a bag in which the separa-
tor forms a clique. The helix can then simply be extended
by changing the part of the tree decomposition repre-
senting the helix.

By Lemma 2, we have tw(G) ≤ max(4, tw(G⊠)) . Since
tw(G) ≥ 4 , it reduces to tw(G) ≤ tw(G⊠) . We now use
the fact that edges connecting {ui, vi} and {uj , vj} for all i, j
are represented in the tree decomposition to show that
G⊠ is a minor of G, and therefore tw(G) = tw(G⊠)

If there is an edge connecting ui to vj or vi to uj for
|j − i| > 1 represented in the tree decomposition, then we
obtain G⊠ through the contraction scheme represented
on Fig. 3. If ∀i, j the edge connecting {ui, vi} and {uj , vj}
is (ui,uj) or (vi, vj) , then w.l.o.g we are in one of the two
situations colored in orange on Fig. 3. By contracting the
orange parts into the extremity they contain, we get G⊠
as a minor of G. �

Since bulges in a helix only consist of vertices of degree
exactly 2, combining Proposition 1 with Theorem 2
implies that the treewidth of any expansion of a given fat-
graph is always smaller than or equal to the treewidth of
a minimal expansion where all bands are helices of length
exactly 5. As for gaps, arguments similar to the proof of

Theorem 2 can show that going from a gap of length 0 to
an arbitrary length does not increase the treewidth of a
fatgraph expansion. Overall, we formally define the mini-
mal expansion of a fatgraph as:

Definition 4 (Minimal representative expansion of a
fatgraph) Given a fatgraph γ , its minimal representative
expansion consists of:

• A perfect helix of length 5 for each band.
• No gap between the extremities of two helices

Such a minimal representative expansion is illustrated
in Fig. 8a. For visual clarity, gaps have been kept between
consecutive helices, but one can see that the correspond-
ing extremities have the same labels. Given a fatgraph,
this RNA structure graph contains all necessary informa-
tion for formulating DP equations decomposing all RNA
structures compatible with the fatgraph.

Interestingly, the two graphs G⊠ and G� that emerge in
the proofs as the two graphs G could be equivalent in terms
of treewidth, as well as the separators they are associated to
(see Fig. 3c) are reminiscent of two typical decomposition
strategies used into dynamic programming for RNA folding.
They suggest, for each helix in a graph, two possible “canon-
ical representations” in terms of tree decomposition, which
will be elaborated on in the next section.

Interpreting the tree decomposition of a fatgraph
expansion as a DP algorithm
Starting with a tree decomposition for a minimal repre-
sentative expansion of a given fatgraph, we first describe
in this section how to represent it in a canonical form,
with each helix represented either in one of two differ-
ent ways, respectively related to G� and G⊠ . The result-
ing tree decomposition can be further compressed into
a skeleton, where bags within individual helices are com-
pressed into a single bag.

This tree can then be interpreted as a dynamic pro-
gramming scheme, in which helices are generated by spe-
cializing dynamic programming subroutines. In a sense,
the tree decomposition yields automatically a decompo-
sition strategy usable for dynamic programming, of the
kind that was hand-crafted in previous approaches [11,
12].

Page 9 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Canonical form of fatgraph tree decompositions
Let us recall this additional definition for the sake of
presentation: Given an edge e = (X ,Y) of a tree decom-
position T , we call the X − side of T the connected com-
ponent of T \ e containing X.

Definition 5 A tree decomposition of an expansion G
of a fatgraph is in canonical form if, for each helix H of
length l, either:

• Clique case: H is represented by a root bag that
contains its 4 extremities, connected to a sub-tree-
decomposition Tl recursively defined as

• Diagonal case: Helix H is represented by a linear
series of bags starting with X1 = S∗ ∪ {u1, v1} , fin-
ishing with X2l+2 = S∗ ∪ {ul , vl} , and such that for
1 < k < l + 1 :

T⊠
0 = ∅

T⊠
l = {u1, v1,ul , vl}

→ {u1, v1,ul , vl−1, vl}

→ {u1, v1,ul−1,ul , vl−1} → T⊠
l−1

 and

The definition above is illustrated by Fig. 4. A canoni-
cal tree decomposition for a minimum expansion of
a fatgraph is also presented on Fig. 5. It was obtained
through the processing routine that we describe in
Algorithm 2, applicable to any (optimal or not) tree
decomposition. It can therefore use a sub-optimal tree
decomposition obtained from a polynomial heuristic
[21] instead of an exponential solver, if the latter is too
time-consuming (although [31] is empirically quite effi-
cient on RNA structure graphs) (Fig 6).

Algorithm 2 essentially follows the dichotomy of the
proof of Theorem 2. We state its correctness, run-time
and proof below.

X2k = S∗ ∪ {u2k−1, v2k−1,u2k}

X2k+1 = S∗ ∪ {v2k−1,u2k , v2k}.

Fig. 4 The two types of canonical representations for the helices of a graph completion G and associated dynamic programming schemes. (Left)
In the Diagonal case, only the sequence positions of external (resp. internal) anchors are provided. Internal ones are obtained as the base case
of an energy model-dependent dedicated dynamic programming scheme, propagating values for anchors in S along the way. (Right) In the clique
case, all four anchors delimiting the helix have known position. Again, a dedicated dynamic programming algorithm is used to optimize over all
possible contents for the helix, while accounting for associated free-energies

Page 10 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Input : Tree decomposition T for the minimal
expansion G of a fatgraph γ.

Output: A tree decomposition of G in canonical form
1 if width(T) ≤ 3 then

−→ ‘‘Diagonal case’’ only
2 foreach helix H in fatgraph γ do

−→ ∃i, j s.t. ui, vi completely separated
from uj , vj in T

3 Find an edge (X,Y) of T and i, j such that
0 ≤ i, j ≤ 4, |i− j| > 1 and X ∩ Y separates
ui, vi on the X-side from uj , vj on the Y-side;

4 ∀i ∈ [0 . . . 4], replace ui with u1 and vi with
v1 in all bags of the X-side of T ;

5 ∀j ∈ [0 . . . 4], replace uj with u4 and vj with
v4 in all bags of the Y -side of T ;

6 Insert between X and Y the “diagonal”
canonical representation for H, with constant
part S = (X ∩ Y) \ {uk, vk}i≤k≤j

7 end
8 else
9 foreach helix H in γ do

10 if ∃ i, j and (X,Y) edge of T s.t X ∩ Y
separates ui, vi on the X-side from uj , vj on
the Y -side then

−→ ‘‘Diagonal case’’
11 ∀i ∈ [0 . . . 4], replace ui with u1 and vi

with v1 in all bags of the X-side of T ;
12 ∀j ∈ [0 . . . 4], replace uj with u4 and vj

with v4 in all bags of the Y -side of T ;
13 Insert between X and Y the “diagonal”

canonical representation for H, with
constant part
S = (X ∩ Y) \ {uk, vk}i≤k≤j

14 else
−→ ‘‘Clique case’’

15 ∀i, j there is always an edge connecting
ui, vi to uj , vj represented T → use these
edges to get a tree decomposition for G ;

16 Attach a tree decomposition for an helix
closed by a clique to the bag containing the
clique on the 4 extremities of H

17 end
18 end
19 end

Algorithm 2: Algorithm for re-writing a tree
decomposition into a canonical one in which every helix
of the input graph is represented in a canonical way.
A representation of an helix as a subgraph in a minimal
representative expansion, along with the notations (ui,
vj ...) used in this pseudo-code can be found on Figure 6.
With a slight abuse of notation, we re-use these
variables for each helix.

Theorem 3 Given G the structure graph of a minimal
expansion of a fatgraph γ , and T a tree decomposition of
G, Algorithm 2 outputs a canonical tree decomposition for
G, having same width as T, in time O(NH · n3) , where NH
is the number of helices in γ.

Fig. 5 Canonical tree decomposition of the fatgraph given in Fig. 1.
White boxes represent the bags of the tree decomposition. Number
in the bags correspond to the indices of the helices in the fatgraph
where number on the bottom are kept while traversing the branch
of the decomposition tree. Colored frames indicate the distinct
helices (H0 to H4) of the structure. The tree decomposition
was computed with the optimal solver [31], which we noticed
is particularly efficient on RNA structure graphs

Fig. 6 Sketch of an helix subgraph, in a minimal representative
expansion of a fatgraph, along the annotation of vertices used
in Algorithm 2. There is a slight abuse in using these same labels
for each of the helices in the main for loop of Algorithm 2

Page 11 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Proof Concerning the run-time, enumerating all pairs
1 ≤ i < j ≤ l) is quadratic in the length of the helix under
consideration, which is O(n) in a general graph, while
testing a given edge for separation of ui, vi and uj , vj takes
O(n) (through breadth-first search) for each of the O(n)
edges of the tree decomposition.

As for its correctness: it essentially follows the dichot-
omy of Theorem 2. If width(T) ≤ 3 , then there has to be
a pair of indices i, j such that {ui, vi} is separated from
{uj , vj} by an edge (X, Y) of the tree decomposition. If it
is not the case, contracting (uk , vk) ∀k yields a K5-minor,
which is not possible with a width of 3. We therefore get
a separator as depicted in blue on Fig. 7, which forms the
“constant part” of the diagonal-case helix representation.
The replacement of vertex occurences on both sides of
the separator does not increase the width, while repre-
senting all edges of the graph.

If width(T) ≥ 4 , if a separator as above is found (but
this time, no guarantee to find one), then we apply the
same transformation. Otherwise, we use the extra edges
represented in the tree decomposition to modify it into
a tree decomposition of G⊠ , as in the proof of Theo-
rem 2. There is then necessarily a bag containing all four
extremities of the helix, to which a tree decomposition
representing the inside of the helix can be attached. �

Note that in a canonical tree decomposition, all vertices
and edges internal to a helix of a graph are represented in
the canonical sub-tree-decomposition associated to it.
All bags outside of these canonical blocks only consist of
extremities of helices, or other vertices outside of helices.
Ignoring these internal parts, to focus on a more compact
“skeleton” of canonical tree decompositions will be the first

step towards automatically deriving dynamic programming
equations.

Definition 6 The skeleton of a canonical tree decompo-
sition for a graph G, is defined as follows:

• All sub-tree-decompositions representing a helix in the
“clique” case are replaced with a unique bag containing
all extremities of the helix

• All sub-tree-decompositions representing a helix in the
“diagonal” case are contracted to contain their first and
last bags only, denoted as S ∪ {u1, v1} and S ∪ {ul , vl}
in Definition 5.

Figure 8b gives an example of such a skeleton.

Automatic derivation of dynamic programming equations
in a base pair‑based energy model
Given the skeleton of a representative minimal expan-
sion of a fatgraph γ , we describe here how to formulate
DP equations for the corresponding folding problem. We
initially restrict our exposition to a base-pair based model,
further named BP model, akin to the one optimized by the
seminal Nussinov algorithm [38], where the free-energy of
a structure S is given by:

�Gi,j being the contribution of a base-pair (i, j) to the
free-energy (or negative log-odd to produce max-likeli-
hood structures).

EBP(S) =
∑

(i,j)∈S

�Gi,j ,

Fig. 7 Representation of the local rewriting of a tree decomposition next to a separator S separating to base pairs (ui , vi) and (uj , vj) , in order
to extend a helix by one unit, through the introduction of new vertices x and y. This is used in Theorem 2, in what corresponds in Sect "Interpreting
the tree decomposition of a fatgraph expansion as a DP algorithm" to the “diagonal” case

Page 12 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Essentially, we introduce helix DP tables for each
helix, and transitional tables for non-helix bags. The
variables indexing these tables are called anchors. These
integer variables each represent a separation point
between consecutive (half-)helices. Taken together, a
full set of anchors (a, b, c, . . .) partitions the sequence
into a set of disjoint intervals [a, b[, [b, c[. . . , each asso-
ciated with one half-helix, i.e. one of the subsequences
that form a helix. Helix tables will account for the free-
energy contributions of concrete base-pairs, while tran-
sitional tables will instantiate anchors in a way that
remains consistent with previous assignments.

Indeed, owing to the definition of a valid tree decom-
position, a skeleton is guaranteed to:

1. Feature each anchor in some bag;
2. Represent each pair of consecutive anchors in at least

one bag;

3. Propagate anchor values, such that the anchor values
within helix tables remain consistent. This implies
that non-helix bags can simply propagate previously-
assigned anchors, possibly assigning values to novel
anchors (if any and constrained to remain consistent
with the sequential order) to explore all possible par-
titions of the input RNA sequence.

Helix tables will predict concrete sets of base pairs and
account for their associated free-energy. In order to both
prevent the double pairing of certain sequence positions,
and to avoid ambiguity, we require (and enforce in the DP
rules) that an anchor x, separating the consecutive halves
of two helices H and H ′ , implies the pairing of position x
to the other half of H ′ , and the pairing of some position
x′ < x as part of H. In other words, a helix H delimited by
anchors i, i′, j′, and j must pair position i to some position
x ∈]j′, j[, and j′ to some position y ∈]i, i′[, implicitly leav-
ing both regions]y, i′[and]x, j[unpaired.

Fig. 8 A Minimal representative length-5 expansion of the fatgraph shown in Fig. 1. Anchor variables are highlighted in green. We introduce one
such variable per gap between helices. B Skeleton of the tree decomposition. White boxes represent transitional bags, introducing/propagating
indices, while colored boxes represent helices in the fatgraph (H0 to H4) with associated indices in the input structure. Red letters indicate tables
of the dynamic programming algorithm. Green indices are novel indices, absent from a bag’s predecessor. D P equations derived from the compact
skeleton, involving the anchor variable defined above, and following the rules described in Sect. "Automatic derivation of dynamic programming
equations in a base pair-based energy model"

Page 13 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Helix table 1: “Clique” cases
In the skeleton, each bag representing a helix in the
“clique” case is associated to the following tables, where
i, i′ + 1, j′ , and j + 1 represent the values of the anchors
delimiting the helix. The increments on i′ and j are here
to ensure the presence of gap of length ≥ 1 between two
base pairs belonging to different helices. (see also Fig. 8c
for an example of how anchor values are passed to C⊠
with a decrement of −1 for the same reason).

A first table C ′
⊠

 holds the minimal free-energy of a helix
delimited by i, i′, j′, and j, such that position i is paired to
some x ∈]j′, j[and j′ to some position y ∈]i, i′[. The idea
is here to iteratively move the anchor from j to j − 1 ,
implicitly leaving position j unpaired, until a base pair
(i, j) is formed. Once a base pair is created, we transition
to another table C⊠ which optimizes over helices like C ′

⊠
 ,

but additionally allows position i to be left unpaired.
Those two tables can be filled owing to the following

recurrences:

and

where �Gi,j denote the free-energy contribution of the
base pair (i, j) in the input RNA sequence.

Helix tables 2: “Diagonal” cases
In the skeleton bags representing the diagonal cases, we
need to associate a different table to each helix. Indeed,
each “diagonal” case associates, to a helix H, a set S of
indices, dubbed the constant anchors, whose values
remain unchanged during the construction of H.

We focus on the case where (i, j) represents the value
of the outermost anchor pair (i.e. [i, j] represents the
full span of H), leaving to the reader the symmetric case
starting from the innermost pair. Note that, in the skel-
eton, we kept two bags for a “diagonal case” helix. Yet
they are associated to a single table, since the helix is cre-
ated by incrementing two indices only, such that the ini-
tial pair of extremities “becomes” the other pair. We need
this second bag to know how to map index values to the
children tables {Mk}k . This value mapping at the end of a
diagonal case is illustrated on Fig. 9.

C ′
⊠
[i, i′, j′, j] = min

C ′
⊠
[i, i′, j′, j − 1] {if j′ < j}

C⊠[i + 1, i′, j′, j − 1] +�Gi,j

{if (i < i′) ∧ (j′ < j)}
�Gi,j {if j = j′}
+∞ {if no case applies}

C⊠[i, i′, j′, j] = min

C ′
⊠
[i, i′, j′, j − 1] {if j′ < j}

C⊠[i + 1, i′, j′, j] {if i < i′}
C⊠[i + 1, i′, j′, j − 1] +�Gi,j

{if (i < i′) ∧ (j′ < j)}
�Gi,j {if j = j′}
+∞ {if no case applies}

Namely, let the cell DH [i, j | S] (resp. D′
H [i, j | S]) rep-

resent the minimum-free energy achieved by the set of
helices in the subtree of H, when H is anchored at (i, j)
without commitment to form base pairs for neither i nor
j (resp. where i is committed to form a pair with some
position x ≤ j′). We have:

and

where Ak denotes the anchors values needed for the k-th
child of the diagonal bag.

Transitional tables: Non‑helix bags
The general case consists of passing the values of relevant
variables onward to the diagonal and clique tables, possi-
bly assigning/propagating anchors that appear in the bag
for the first time, i.e. anchors that are not found in the
parent bag. Let IP be the anchors of the parent bag of M
in the tree decomposition, we have:

where Ik denotes the anchor values from I needed for
the k-th child of the bag, and S represents the constant
anchors of the k-th child, assumed to be a diagonal.

Complexity analysis
Let w⊠ , w� and w′ be the maximum width of a clique,
diagonal and transitional bag (i.e. its size minus one;
or 0 if no bag exist for a given type) in a canonical tree
decomposition T of a fatgraph γ . Note that w⊠ is always
4, but we keep this notation for consistency. In the fol-
lowing theorem, γ is a fatgraph with |γ | helices and T is
a canonical tree decomposition for γ . The DP scheme
obtained from T as described in the previous section is
called the DP scheme inferred from T .

D′
H [i, j | S] = min

D′
H [i, j − 1 | S]
{if j − 1 > i ∧ ∀s ∈ S, j − 1 �= s}

DH [i + 1, j − 1 | S] +�Gi,j

{if ∀s ∈ S, (i + 1 �= s) ∧ (j − 1 �= s)}

DH [i, j | S] = min

DH [i + 1, j | S]
{if i + 1 < j ∧ ∀s ∈ S, i + 1 �= s}

D′
H [i, j − 1 | S]
{if j − 1 > i ∧ ∀s ∈ S, j − 1 �= s}

DH [i + 1, j − 1 | S] +�Gi,j

{if ∀s ∈ S, (i + 1 �= s) ∧ (j − 1 �= s)}
�

k Mk [Ik]
{with Ik :=

�

{i, j + 1} ∪ S
�

∩ Ak}

M[IP] = min
Values for

anch. in I \ IP

#child.
�

k=1

Mk [Ik]
{if k-th child trans.}

C ′
⊠
[i, i′ − 1, j′, j − 1]
{if clique at (i, i′, j′, j)}

D′
Hk
[i, j − 1 | Sk]

{if diagonal at (i, j′)}

Page 14 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Theorem 4 In the base-pair energy model, the DP scheme
inferred from T yields an algorithm for the Fatgraph MFE
Folding problem with O(|γ | · nmax(w⊠,w�,w′+1)) time and
O(|γ | · nmax(w⊠,w�,w′)) space complexity.

Fig. 9 Derivation of DP equations from a skeleton, starting from the canonical tree decomposition of a length-5 expansion for a simple H-type
fatgraph. On the left-hand-side, special emphasis is given to explaining how values are mapped at the end of a diagonal case. Extra tables C ′

⊠

and D′
H , needed to ensure unambiguity of the DP scheme, are omitted for the sake of simplicity without adverse consequences to correctness

Table 1 While the space complexity of the generated DP
schemes is always bounded by O(ntw) (Lemma 3), the run-time
complexity of filling-up the DP tables C� and C⊠ depends on
the choice of energy model. As for the table corresponding to a
transitional bag X with indices I, the cost of filling it is O(ntw+1)
irrespectively of the energy model

Energy model Diagonal tables Clique tables Transitional tables
C�[i, j|S] C⊠[i, i′ , j′, j] MX [IX]

BP-based model O
(

n
|S|+2

)

O
(

n
4
)

O
(

n
|I|
)

BP+stacking O
(

n
|S|+2

)

O
(

n
4
)

|

Full Turner O
(

n
|S|+3

)

O
(

n
5
)

|

Table 2 Table listing pseudoknot classes, corresponding treewidth
and resulting complexity of the folding algorithm

For H-type pseudoknots beneath the Turner model, marked as (*), an iterated
computation over canonical tree decompositions is required to achieve the
complexity (see Theorem 5). For the H-type and kissing hairpins cases, we are in
the specific case where the most complex routine is the alignment of a “clique
case” helix, which is done in O(n4) despite a treewidth of 4. These examples are
detailed in the Appendix, Fig. 10. The DP equations for each of these examples
have been automatically generated by a Python implementation of our
pipeline, freely available at https:// gitlab. inria. fr/ bmarc han/ auto- dp

Complexities

Type Fatgraph Treewidth Full Turner All others

H-type ([)] 4 O
(

n
5
)

O
(

n
4
)

(*)

Kissing hairpins ([)(]) 4 O
(

n
5
)

O
(

n
4
)

“L” [12] ([{)]} 5 O
(

n
6
)

O
(

n
6
)

“M” [12] ([{)(]}) 5 O
(

n
6
)

O
(

n
6
)

4-clique ([{<)]}> 5 O
(

n
6
)

O
(

n
6
)

5-clique ([{<A)]
}>a

5 O
(

n
6
)

O
(

n
6
)

5-chain ({[)(]
[)}]

6 O
(

n
7
)

O
(

n
7
)

https://gitlab.inria.fr/bmarchan/auto-dp

Page 15 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Proof The complexity of the DP scheme inferred from T
(presented in the previous section for a base-pair based
model) depends on the complexities of filling each of the
tables corresponding to helices.

C⊠[i, i′, j′, j] and C ′
⊠
[i, i′, j′, j] take O(n4) to fill, using

either a memoization procedure or a bottom-up iteration
of all possible values for i, i′, j′, j . It is equal to the space
complexity thanks to the finite number of cases in their
recursive equations.

A similar analysis holds for C�[i, j | S] and C ′
�
[i, j | S] ,

except that the number of indices is |S| + 2 . Since the
maximum size of a bag in a diagonal-case representation
is |S| + 3 , we indeed have w� = |S| + 2.

For transitional bags, the situation is slightly differ-
ent. The indices of the table are the intersection with the
parent bag in the tree decomposition, whose number is
bounded by w′ . The space complexity of the correspond-
ing DP table is therefore O(ntw

′
) . But there is also a mini-

mization over all possible values for the variables not pre-
sent in the parent bag, incurring a linear factor for each
of them. Overall, for a transitional B of maximum size
w′ + 1 , the complexity of filling the matrix is O(w′ + 1)
(O(n|B\P|) for each of the O(n|B∩P|)) entries.

As for the number of tables, it is at most twice the
number of bags in T , which is linear in the number
of helices in γ . The overall time complexity is there-
fore given the DP table of most expensive filling cost,
O(|γ | · nmax(w⊠,w�,w′+1)) . The same holds for the space
complexity, yielding O(|γ | · nmax(w⊠,w�,w′)) . �

Since tree decompositions are typically chosen to mini-
mize their width tw := max(w⊠,w�,w

′) , then the precise
resulting complexity may depend on the choice of an opti-
mal tree decomposition. Indeed, it could be that tw = w′ ,
yielding a O(ntw+1) algorithm or, conversely, w′ < tw − 1
would imply a complexity of O(ntw) . In other words, in the
base pair model, the algorithm induced by the choice of
an arbitrary tree decomposition T may be suboptimal by
a linear factor. Figure 11 shows an example with two tree
decompositions of the same width, but with different w′
values. They yield different complexities (O(n4) vs. O(n5)).

Fortunately, it is possible to work around this issue, and
obtain a O(ntw) DP algorithm anytime a suitable canoni-
cal fatgraph decomposition exists. To find such a decom-
position, we explore the space of all possible canonical
tree decompositions, through an enumeration of all pos-
sible representations for each helix. This is formalized
in the theorem below (note that this is purely meant as
a feasibility result, we do not expect this approach to be
optimal in terms of complexity; however, we conjecture
that this subproblem is FPT for the treewdidth of γ).
We use the same notations as above by calling w′(T) the

maximum width of a transitional bag of a canonical tree
decomposition.

Theorem 5 Let G be a minimal expansion of a fatgraph
γ with nH helices. If there exists an optimal canonical tree
decomposition T of G such that w′(T) ≤ tw(G)− 1 , then
such a T can be found in 2O

(

|γ |2
)

· f (tw) time.

Proof The space of all possible canonical tree decom-
position can be iterated over by deciding, for each helix,
whether it is in the “clique” or “diagonal” case. If it is in
the diagonal case, one must in addition decide what is the
“constant part” of the representation of the helix. Any set
S such that {u1, v1,u5, v5} ∪ S separates the graph into at
least 3 connected components, one being the inside of
the helix, is an eligible candidate.

This process corresponds to deciding, for each helix,
what separator cuts out the inside of the helix from the
rest of the graph. When such a decision is made, a canon-
ical tree decomposition can be obtained by computing
canonical tree decompositions for the connected com-
ponents associate to the separator, and connecting them
together (in the spirit of Proposition 2).
When there are no helices left, an optimal tree decompo-
sition of the graph is computed in time f(tw). It yields the
transitional bags in between helix representations.

Given that S is only composed of helix extremities,
it is chosen among ≤ |γ | vertices. We consider there-
fore an upper bound of 2|γ | for the number of pos-
sible choices of S in the diagonal case, and an upper
bound of |γ | for the number of connected components
associated to a separator, the overall time of explor-
ing all canonical tree decompositions is bounded by
O((|γ | · 2|γ |)|γ | · f (tw)) ⊆ 2O

(

|γ |2
)

· f (tw).
If an optimal canonical tree decomposition T such

that w′(T) ≤ tw(G)− 1 exists, then it corresponds to a
particular assignation of separators to each helix as out-
lined above, and it will be one of the tree decompositions
explored by the iteration. �

Automated C code generation
Figure 8 shows an example of output to our pipeline,
with automatically generated LaTeX equations for the
dynamic programming scheme inferred from the tree
decomposition. Figure 10 gives other examples of such
automatically generated equations. But our implementa-
tion, available freely at https:// gitlab. inria. fr/ bmarc han/
auto- dp, is also capable of automatically generating C
code implementing these equations. The automatically
generated *.c files corresponding to all of the exam-
ples of Fig. 10 are available as Supplementary Material.
In the current state, they are only meant as a prototype

https://gitlab.inria.fr/bmarchan/auto-dp
https://gitlab.inria.fr/bmarchan/auto-dp

Page 16 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

demonstration. Developments towards generation of
fully functional code, including the extensions presented
in the next Section, will be the subject of future work.

Extensions
The DP scheme, as stated above, only supports conforma-
tions that consist of a single pseudoknot configuration,
indicated by a fatgraph. Moreover, it forces the first posi-
tion of the sequence to always form a base pair. Finally,
it considers an energy model that is fairly unrealistic in
comparison with the current state of the art. In this sec-
tion, we briefly describe how to extend this fundamental
construction in several directions. This enables us to solve
the stated algorithm design problem (Def. 2) and conse-
quently the associated folding problem in complex energy
models, and discuss the consequences on the complexity.

Integration with classic DP algorithms for MFE structure
prediction
Firstly, let us note that alternative fatgraphs can easily be
considered, without significant overhead, by adding a dis-
junctive rule at the top level of the DP scheme, such as

where rootγi is the top level case of the DP scheme for fat-
graph γi.The associated conformation space then consists
of the union of all pseudoknotted structures compatible
with one of the fatgraphs.

Enriching classic schemes with fatgraphs
Fatgraphs usually represent a structural module rather
than a complete RNA conformation. The classic DP
scheme for 2D structure energy-minimization can thus
be supplemented by additional constructs, enabling the
consideration of pseudoknots. Towards that goal, one
needs to access MFEPK(i, j) , the MFE achieved over a
region [i, j] by a conformation compatible with one of the
input fatgraphs. In other words, one needs to be able to
prescribe the span of the fatgraph occurrence, i.e. the val-
ues (i, j) of its extremal anchors (a, a′) within the dynamic
programming.

To ensure this possibility, one simply needs to con-
nect the first and last positions within the minimal fat-
graph completion G = (V ,E) , i.e. resulting in a graph
G′ := (V ,E ∪ {(a, a′)}) . Since each arc of the input
graph is represented in a valid tree decomposition, we
know that any tree decomposition for G′ features a bag
B including both a and a′ , possibly in conjunction with
additional anchors S := {k1, k2, . . .} . Moreover, since a
tree decomposition is unordered, it can be rerooted to
start with B, and preceded by a root node restricted to

MFEPK :=
p

min
i=1

rootγi [∅]

anchors (a, b), without adverse consequences complex-
ity-wise. This yields the following entry point for the DP
of a fatgraph γ:

which can be used within a classic, pseudoknot-oblivious,
DP scheme for MFE structure prediction. Complexity-
wise, it can be shown that the additional base pair can at
most increase by 1 the treewidth (and frequently leaves it
unchanged).

Recursive substructures
Recursive substructures consist of secondary struc-
tures/occurrences of fatgraphs that are inserted, both in
between and within helices, usually through recursive
calls to the (augmented) 2D folding scheme.

To allow arbitrary sub-structures to be inserted in the
gaps between consecutive helices, one can again modify
the minimal helix expansion to distinguish the anchors
a, b associated with consecutive helices (instead of merg-
ing them into a single anchor in our initial exposition).
By connecting a and b, one ensures their simultane-
ous presence in a tagged bag B, whose DP recurrence
is then augmented to include an energy contribution
MFESS(a+ 1, b− 1).

To enable the insertion of substructures within a helix
requires modifications to the helix clique/diagonal rules
that are very similar to the ones enabling support for the
Turner energy model. Assuming the presence of a base
pair (i, j), an insertion can indeed be performed by delim-
iting a region [i, k] (resp. [k, j]) of arbitrary length, leading
to an overall MFE of MFESS(i, k)+ δ , where δ is the free-
energy contributed by the rest of the helix (e.g. to include
additional terms associated with multiloops).

More realistic energy models
For the sake of simplicity, we illustrated in Sect. "Auto-
matic derivation of dynamic programming equations
in a base pair-based energy model" the generation of a
dynamic programming algorithm within a fairly simple
base-pair based energy model. However, the procedure
can be adapted to capture more complex energy models
found in the literature. This includes stacking base pairs
models defined as:

with �Gi,i+1,j−1,j the energy of base pair (i + 1, j − 1)
stacking onto (i, j), or even the nearest-neighbor free-
energy model, also called Turner model.

MFEγ (i, j) := min
i<k1<k2<...<j

MB[i, k1, k2, . . . , j]

EStacking (S) =
∑

{(i, j), (i + 1, j − 1)} ⊂ S

�Gi,i+1,j−1,j

Page 17 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

In the Turner model, any pseudoknot-free structure
S is decomposed into loops, each rooted at a base pair
(i, j) ∈ S ∪ {(−1, n+ 1)} , and delimited by a set of base
pairs L(i, j) = {(i′, j′)} ∈ S such that [i′, j′] ⊂ [i, j] and
 ∃(i′′, j′′) ∈ S such that [i′, j′] ⊂ [i′′, j′′] ⊂ [i, j] . A loop
L(i, j) is then assigned a free-energy contribution �GL(i,j)
that depends on the nucleotide content of base pairs, and
unpaired regions between adjacent base pairs. The over-
all free energy of a structure in the Turner model is then
defined as

Rather than including independent values for all contents
and size of loops, the Turner model usually uses affine lin-
ear models for multiloops (|L(i, j)| ≥ 2), and interior loops
(|L(i, j)| = 1), the latter based on loop length and asymmetry.

Both of those models can be captured by a modified
version of the dynamic programming algorithm pre-
sented in Sect. "Automatic derivation of dynamic pro-
grammingequations in a base pair-based energy model".
In the stacking model, it suffices to duplicate the cliques
(resp. diagonal) matrices to keep track of (i, j) being
directly enclosed (⊥) or not (⊥) within a base pair
(i + 1, j − 1) . This results in a replacement (C⊠,C ′

⊠
) with

(C⊠,⊥,C
′
⊠,⊥,C⊠,�⊥,C

′
⊠,�⊥) (resp. (DH ,D

′
H) into (DH ,⊥,

D
′
H ,⊥,DH ,�⊥,D

′
H ,�⊥)), and the inclusion of suitable energy

contributions for the ⊥ cases, the only ones likely to form
stacking pairs. The time complexity remains identical, up
to a constant, to that of the BP energy model.

A consideration of the full Turner model is more
involved, but can be achieved in O(n3) through an enu-
meration of all possible loops, as shown by Lyngsoe
et al [39], by exploiting the linear interpolation of loops
beyond a certain length threshold. Adapting the recur-
rence to consider all possible helix expansions of cliques
and diagonals will result in a O(n) time overhead for all
cliques and diagonals, leading to an increased time com-
plexity in O(|γ | · nmax(w⊠+1,w�+1,w′+1)) , or equivalently
O(|γ | · ntw+1) . A summary of the complexity of filling
the different kinds of DP table (transitional, clique and
diagonal) depending on the choice of energy is given
on Table 1. In any case, the space complexity is always
O(|γ | · ntw) , as stated below.

Lemma 3 The space complexity of the generated DP
schedule is O(|γ | · ntw) , regardless of the energy model.

Proof The set of indices of a table is the intersection
of the corresponding bag with its parent bag. Both bags
have size at most tw + 1 , and they are distinct, so their
intersection has size at most tw. Each index runs in the

ETurner(S) =
∑

(i,j)∈S∪{−1,n+1}

�GL(i,j).

range [0, n], so the size of each table is at most ntw . The
number of tables is bounded by the number of bags in the
tree decomposition of γ , which is itself in O(|γ |) . �

Partition functions and ensemble applications
For ensemble applications of our DP schemes, such as
computing the partition function [40] and statistical sam-
pling of the Boltzmann ensemble [41], it is imperative for
the DP scheme above to be complete and unambiguous
[42]. Fortunately, both properties are already guaranteed
by our DP schemes. Indeed, intuitively: the completeness
is ensured by the exhaustive investigation of all possible
anchor positions, i.e. all possible partitions; the unambi-
guity is guaranteed by the invariant that assigning a posi-
tion x to a given anchor (within a transitional or diagonal
bag), leads x to be paired within the (half-)helix imme-
diately to its right. Choosing different values for x thus
induces different innermost/outermost base pairs for the
associated helix, leading to disjoint sets of structures.

From these two properties, we conclude that the par-
tition function for a fatgraph (or several, possibly recur-
sively and/or within a ± realistic energy model) can be
obtained through the simple change of algebra pioneered
by McCaskill [40] in the pseudoknot-free case. Namely,
replace the (min,+,�G) terms into (

∑

,×, eβ�G) , with
β = RT being the Boltzmann constant multiplied by
some absolute temperature.

Automated (re‑)design of algorithms for specific
pseudoknot classes
Our pipeline for automated generation of DP folding
equations given a fatgraph has been implemented using
Python and Snakemake [43]. The implementation
is freely available at: https:// gitlab. inria. fr/ bmarc han/
auto- dp.

Since the algorithms in [12] have been described in
terms of a finite number of fatgraphs (called irreducible
shadows in the paper), one can directly apply our method
to obtain an efficient algorithm that covers the same class
as gfold, namely 1-structures that are recursive expan-
sions of the four fatgraphs of genus 1 corresponding to
simple PK ’H’ ([)], kissing hairpin ’K’ ([)(]), three-
knot ’L’ ({[)}] and ’M’ ([{)(]}) (here, represented
in dot-bracket notation, i.e. corresponding opening and
closing brackets correspond to arcs). The maximum
complexity of O(n6) of the four fatgraphs (see Table 2)
implies that the automatically derived algorithm cov-
ers the class of 1-structures in O(n6) time—the same
complexity as hand-crafted gfold. Note that [12] used
declarative methods in their algorithm design only to
the point of generating grammar rules, which without

https://gitlab.inria.fr/bmarchan/auto-dp
https://gitlab.inria.fr/bmarchan/auto-dp

Page 18 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

further optimization yield O(n18) (after applying alge-
braic dynamic programming; ADP [44]). In contrast, our
method obtains the optimal complexity in fully automatic
fashion. Beyond this re-design of gfold, remarkably our
method is equally prepared to automatically design a DP
algorithm with optimized efficiency for 2-structures,
which are based on all genus 2 fatgraphs. This is remark-
able, since the implementation of a practical algorithm
has been considered infeasible [12] due to the large num-
ber of genus 2 shadows (namely, there are 3472 shadows/
fatgraphs), whose grammar rules would have to be opti-
mized by hand. In contrast, due to full automation, our
method directly handles even the large number of fat-
graphs of genus 2 and yields an efficient, complexity opti-
mized, DP scheme.

Recall that we cover all other pseudoknot classes that
are recursive expansions of a finite number of fatgraphs
(in the same way as we cover the design of prediction
algorithms for 1- and 2-structures). In this way, among
the previously existing DP algorithms, we cover the class
of Dirks &Pierce (D &P) [11], simply by specifying the
H-type as single input fatgraph. Consequently, we auto-
matically re-design the D &P algorithm in the same com-
plexity of O(n5) . Even more interestingly, we can design
algorithms covering specific (sets of) crossing configu-
rations. This results in an infinite class of efficient algo-
rithms that have not been designed before. Again the
complexity of such algorithms is dominated by the most
complex fatgraph; where results for interesting ones are
given in Table 2. Most remarkably, we design an algorithm
optimizing over recursive expansions of kissing hairpins
in O(n4) , whereas CCJ [13, 45], which was specifically
designed to cover kissing hairpins, requires O(n5).

A special case, which further showcases the flexibil-
ity, is the extension of existing classes by specific cross-
ing configurations. For example, extending D &P by
kissing hairpin covers a much larger class while stay-
ing in the same complexity. Extending 1-structures by
5-chain yields a new algorithm with a complexity below
of 2-structures (namely only O(n7) instead of O(n8) [12]).
The complexity of 5-chain is remarkably low, when con-
sidering that previously described algorithms covering
this configuration take O(n8) (e.g. gfold’s generalization
to 2-structures and a hypothetical blow-up of the Rivas
and Eddy algorithm [10] to 6-dimensional instead of
4-dimensional DP matrix elements—both of which have
never been implemented).

Conclusions and discussion
In this work, we provided an algorithm that takes a family
of fatgraphs, i.e. pseudoknotted structures, and returns
DP equations that efficiently predict arc annotations

minimizing the free energy. The DP equations are auto-
matically generated based on an expansion of the fat-
graph, designed to capture helices of arbitrary length.
The DP tables in the equations use a number of indices
smaller than or equal to the treewidth of the minimal
expansion. This very general framework recovers the
complexity of prior, hand-crafted algorithms, and lays
the foundation for a purely declarative approach to RNA
folding with pseudoknots.

In addition to the extensions described in Sect. "Exten-
sions", this work suggests perspectives that will be
explored in future work. Indeed, the choice of an optimal
decomposition/DP scheme for the input fatgraph can be
seen as the automated design of an optimal table strategy
in the context of algebraic dynamic programming [44, 46,
47]. This would enable extensions to multiple context free
grammars or tree grammars when describing the prob-
lem in the ADP framework.

Our automated design of pseudoknot folding algo-
rithms could naturally be extended to RNA–RNA inter-
actions, since the joint conformation of two interacting
RNA sequences can be seen as a pseudoknot when con-
catenating the two structures [48]. More ambitiously,
categories of pseudoknots inducing an infinite family of
fatgraphs, e.g. as covered by the seminal Rivas & Eddy
algorithm [10], could be captured by allowing the intro-
duction of recursive gapped structures in prescribed
parts of the fatgraph. This could be addressed by adding
cliques to the minimal completion graph which would
ensure the availability of the relevant anchors in some
bags of the tree decomposition, allowing to score such
non-contiguous, recursive substructures.

Another avenue for future research includes a proof
of optimality, in term of polynomial complexity, for the
produced DP algorithms. Of course, it would be far too
ambitious (and erroneous) to expect our DP schemes to
be optimal within general computational models. How-
ever, it may be possible to prove optimality within a for-
mally-defined subset of DP schemes, e.g. by contradiction
since the existence of a better algorithm would imply the
existence of a tree decomposition having smaller width.
More precisely, given a fatgraph γ , one could imagine that
a DP scheme (with DP tables indexed by anchor variables
as is typically the case) capable of exploring all recursive
expansions of γ would in particular induce a decomposi-
tion of the minimal representative expansion of γ , from
the parsing of this structure by the DP grammar. If this
decomposition can be reinterpreted as a tree decomposi-
tion, then the treewidth of the minimal expansion would
become a lower bound on the number of indices to use in
such a DP scheme.

Page 19 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Appendix
See Figs. 10, 11

Fig. 10 Minimal representative expansions and final equations for the examples of Table 2. The equations have been automatically generated,
and the pipeline code is freely available at https:// gitlab. inria. fr/ bmarc han/ auto- dp. In particular, the optimal tree decompositions were computed
using an exact algorithm proposed by Tamaki [31]

https://gitlab.inria.fr/bmarchan/auto-dp

Page 20 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Author contributions
BM should be considered the leading author in this study. All authors
contributed to all aspects of the research, and were involved in writing and
proofreading the manuscript.

Funding
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant

agreement No 101,029,676, and from the French-Austrian PaRNAssus project
(ANR-19-CE45–0023; I 4520-N) supported by the ANR/FWF agencies.

Availability of data and materials
A prototype implementation of our algorithm is available at https:// gitlab. inria.
fr/ bmarc han/ auto- dp

Fig. 11 Example of two tree decompositions of the same width, yielding different complexities. The decomposition on the left has w� = 0 ,
w⊠ = 4 and w′ = 4 , which gives a complexity of O(n5) (Theorem 4). On the other hand, the decomposition on the right has w� = 4 , w⊠ = 0
and w′ = 3 , which yields O(n4)

https://gitlab.inria.fr/bmarchan/auto-dp
https://gitlab.inria.fr/bmarchan/auto-dp

Page 21 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 1 April 2023 Accepted: 10 June 2023

References
 1. Zuker M. Mfold web server for nucleic acid folding and hybridization

prediction. Nucleic Acids Res. 2003;31(13):3406–15.
 2. Lorenz R, Höner Bernhart S, Zu Siederdissen C, Tafer H, Flamm C, Stadler P,

Hofacker I. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011. https:// doi.
org/ 10. 1186/ 1748- 7188-6- 26.

 3. Reuter JS, Mathews DH. RNAstructure: software for rna secondary struc-
ture prediction and analysis. BMC Bioinform. 2010;11(1):1–9.

 4. Do CB, Woods DA, Batzoglou S. CONTRAfold: RNA secondary struc-
ture prediction without physics-based models. Bioinformatics.
2006;22(14):90–8.

 5. Zakov S, Goldberg Y, Elhadad M, Ziv-Ukelson M. Rich parameterization
improves RNA structure prediction. J Comput Biol. 2011;18(11):1525–42.

 6. Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction
using deep learning with thermodynamic integration. Nature Commun.
2021;12(1):1–9.

 7. Ten Dam E, Pleij K, Draper D. Structural and functional aspects of RNA
pseudoknots. Biochemistry. 1992;31(47):11665–76.

 8. Akutsu T. Dynamic programming algorithms for RNA secondary
structure prediction with pseudoknots. Discrete Appl Mathemat.
2000;104(1–3):45–62.

 9. Cao S, Chen S-J. Predicting RNA pseudoknot folding thermodynamics.
Nucleic Acids Res. 2006;34(9):2634–52. https:// doi. org/ 10. 1093/ nar/
gkl346.

 10. Rivas E, Eddy SR. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. J Mol Biol. 1999;285(5):2053–68.

 11. Dirks RM, Pierce NA. A partition function algorithm for nucleic
acid secondary structure including pseudoknots. J Comput Chem.
2003;24(13):1664–77.

 12. Reidys CM, Huang FW, Andersen JE, Penner RC, Stadler PF, Nebel
ME. Topology and prediction of RNA pseudoknots. Bioinformatics.
2011;27(8):1076–85.

 13. Jabbari H, Wark I, Montemagno C, Will S. Knotty: efficient and accurate
prediction of complex RNA pseudoknot structures. Bioinformatics.
2018;34(22):3849–56.

 14. Ren J, Rastegari B, Condon A, Hoos HH. HotKnots: heuristic predic-
tion of RNA secondary structures including pseudoknots. RNA.
2005;11(10):1494–504.

 15. Sato K, Kato Y, Hamada M, Akutsu T, Asai K. IPknot: fast and accurate
prediction of RNA secondary structures with pseudoknots using inte-
ger programming. Bioinformatics. 2011;27(13):85–93.

 16. Jabbari H, Condon A. A fast and robust iterative algorithm for predic-
tion of RNA pseudoknotted secondary structures. BMC Bioinform.
2014;15(1):1–17.

 17. Reidys CM, Wang RR. Shapes of RNA pseudoknot structures. J Comput
Biol. 2010;17(11):1575–90.

 18. Möhl M, Will S, Backofen R. Lifting prediction to alignment of RNA
pseudoknots. J Comput Biol. 2010;17(3):429–42.

 19. Alkan C, Karakoç E, Nadeau JH, Sahinalp SC, Zhang K. RNA-RNA
interaction prediction and antisense RNA target search. J Comput Biol.
2006;13(2):267–82. https:// doi. org/ 10. 1089/ cmb. 2006. 13. 267.

 20. Fornace ME, Porubsky NJ, Pierce NA. A unified dynamic program-
ming framework for the analysis of interacting nucleic acid

strands: enhanced models, scalability, and speed. ACS Synt Biol.
2020;9(10):2665–78. https:// doi. org/ 10. 1021/ acssy nbio. 9b005 23.

 21. Bodlaender HL, Koster AM. Combinatorial optimization on graphs of
bounded treewidth. Comp J. 2008;51(3):255–69.

 22. Rinaudo P, Ponty Y, Barth D, Denise A Tree decomposition and param-
eterized algorithms for RNA structure-sequence alignment including
tertiary interactions and pseudoknots. In: International Workshop on
Algorithms in Bioinformatics, 149–164 (2012). Springer

 23. Bodlaender HL. A linear-time algorithm for finding tree-decomposi-
tions of small treewidth. SIAM J Comput. 1996;25(6):1305–17.

 24. Huang F, Reidys C, Rezazadegan R. Fatgraph models of RNA structure.
Comput Mathemat Biophy. 2017;5(1):1–20.

 25. Loebl M, Moffatt I. The chromatic polynomial of fatgraphs and its
categorification. Adv Mathemat. 2008;217(4):1558–87.

 26. Penner RC, Knudsen M, Wiuf C, Andersen JE. Fatgraph models of pro-
teins. Commun Pure Appl Mathemat. 2010;63(10):1249–97.

 27. Giegerich R, Voß B, Rehmsmeier M. Abstract shapes of rna. Nucleic
Acids Res. 2004;32(16):4843–51.

 28. Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilip-
czuk M, Saurabh S. Parameterized Algorithms. Cham: Springer; 2015.

 29. Arnborg S, Corneil DG, Proskurowski A. Complexity of finding embed-
dings in ak-tree. SIAM J Algeb Discrete Meth. 1987;8(2):277–84.

 30. Bodlaender HL, Koster AM. Treewidth computations i. upper bounds.
Inform Comput. 2010;208(3):259–75.

 31. Tamaki H. Positive-instance driven dynamic programming for tree-
width. J Comb Optim. 2019;37(4):1283–311.

 32. Gogate V, Dechter R. A complete anytime algorithm for treewidth.
arXiv. 2012. https:// doi. org/ 10. 48550/ arXiv. 1207. 4109.

 33. Yao H-T, Waldispühl J, Ponty Y, Will S. 2021. Taming Disruptive Base
Pairs to Reconcile Positive and Negative Structural Design of RNA. In:
RECOMB 2021-25th International Conference on Research in Computa-
tional Molecular Biology.

 34. Scornavacca C, Weller M. Treewidth-based algorithms for the small
parsimony problem on networks. Algorit Mole Biol. 2021. https:// doi. org/
10. 1186/ s13015- 022- 00216-w.

 35. Lovász L. Graph minor theory. Bull Am Mathemat Soc. 2006;43(1):75–86.
 36. Bodlaender HL, Koster AM. Safe separators for treewidth. Discrete Math-

emat. 2006;306(3):337–50.
 37. Bouchitté V, Todinca I. Treewidth and minimum fill-in: grouping the

minimal separators. SIAM J Comput. 2001;31(1):212–32.
 38. Nussinov R, Jacobson AB. Fast algorithm for predicting the secondary

structure of single-stranded rna. Proc Nat Acad Sci. 1980;77(11):6309–13.
 39. Lyngsø RB, Zuker M, Pedersen CN. Fast evaluation of internal loops in RNA

secondary structure prediction. Bioinformatics. 1999;15(6):440–5. https://
doi. org/ 10. 1093/ bioin forma tics/ 15.6. 440.

 40. McCaskill JS. The equilibrium partition function and base pair binding
probabilities for rna secondary structure. Biopolymers. 1990;29(6–
7):1105–19. https:// doi. org/ 10. 1002/ bip. 36029 0621.

 41. Ding Y, Lawrence CE. A statistical sampling algorithm for RNA secondary
structure prediction. Nucleic Acids Res. 2003;31(24):7280–301. https:// doi.
org/ 10. 1093/ nar/ gkg938.

 42. Ponty Y, Saule C. A combinatorial framework for designing (pseudo-
knotted) RNA algorithms. In: Przytycka TM, Sagot M-F, editors. Algorit
Bioinform. Berlin, Heidelberg: Springer; 2011. p. 250–69.

 43. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V,
Forster J, Lee S, Twardziok SO, Kanitz A, et al. Sustainable data analysis
with snakemake. F1000Research. 2021. https:// doi. org/ 10. 12688/ f1000
resea rch. 29032.2.

 44. Riechert M, Stadler PF. Algebraic dynamic programming for multiple
context-free grammars. Theoret Comp Sci. 2016;639:91–109. https:// doi.
org/ 10. 1016/j. tcs. 2016. 05. 032.

 45. Chen H-L, Condon A, Jabbari H. An O (n5) algorithm for MFE predic-
tion of kissing hairpins and 4-chains in nucleic acids. J Comput Biol.
2009;16(6):803–15.

https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1093/nar/gkl346
https://doi.org/10.1093/nar/gkl346
https://doi.org/10.1089/cmb.2006.13.267
https://doi.org/10.1021/acssynbio.9b00523
http://arxiv.org/abs/2012
https://doi.org/10.48550/arXiv.1207.4109
https://doi.org/10.1186/s13015-022-00216-w
https://doi.org/10.1186/s13015-022-00216-w
https://doi.org/10.1093/bioinformatics/15.6.440
https://doi.org/10.1093/bioinformatics/15.6.440
https://doi.org/10.1002/bip.360290621
https://doi.org/10.1093/nar/gkg938
https://doi.org/10.1093/nar/gkg938
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1016/j.tcs.2016.05.032
https://doi.org/10.1016/j.tcs.2016.05.032

Page 22 of 22Marchand et al. Algorithms for Molecular Biology (2023) 18:18

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 46. Quadrini M, Tesei L, Merelli E. An algebraic language for RNA pseudoknots
comparison. BMC Bioinform. 2019;20(4):1–18.

 47. Berkemer SJ, Siederdissen C, Stadler PF. Algebraic dynamic programming
on trees. Algorithms. 2017;10(4):135.

 48. Dirks RM, Bois JS, Schaeffer JM, Winfree E, Pierce NA. Thermodynamic
analysis of interacting nucleic acid strands. SIAM Rev. 2007;49(1):65–88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Automated design of dynamic programming schemes for RNA folding with pseudoknots
	Abstract
	Introduction
	Definitions and main result
	Minimal representative expansion of a fatgraph
	Treewidth and tree decompositions
	Helices of length 5 are sufficient to obtain generalizable tree decompositions

	Interpreting the tree decomposition of a fatgraph expansion as a DP algorithm
	Canonical form of fatgraph tree decompositions
	Automatic derivation of dynamic programming equations in a base pair-based energy model
	Helix table 1: “Clique” cases
	Helix tables 2: “Diagonal” cases
	Transitional tables: Non-helix bags
	Complexity analysis

	Automated C code generation

	Extensions
	Integration with classic DP algorithms for MFE structure prediction
	Enriching classic schemes with fatgraphs
	Recursive substructures

	More realistic energy models
	Partition functions and ensemble applications

	Automated (re-)design of algorithms for specific pseudoknot classes
	Conclusions and discussion
	Appendix
	References

