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Abstract 

Background Species tree estimation is a basic step in many biological research projects, but is complicated 
by the fact that gene trees can differ from the species tree due to processes such as incomplete lineage sort-
ing (ILS), gene duplication and loss (GDL), and horizontal gene transfer (HGT), which can cause different regions 
within the genome to have different evolutionary histories (i.e., “gene tree heterogeneity”). One approach to esti-
mating species trees in the presence of gene tree heterogeneity resulting from ILS operates by computing trees 
on each genomic region (i.e., computing “gene trees”) and then using these gene trees to define a matrix of average 
internode distances, where the internode distance in a tree T between two species x and y is the number of nodes 
in T between the leaves corresponding to x and y. Given such a matrix, a tree can then be computed using methods 
such as neighbor joining. Methods such as ASTRID and NJst (which use this basic approach) are provably statistically 
consistent, very fast (low degree polynomial time) and have had high accuracy under many conditions that makes 
them competitive with other popular species tree estimation methods. In this study, inspired by the very recent work 
of weighted ASTRAL, we present weighted ASTRID, a variant of ASTRID that takes the branch uncertainty on the gene 
trees into account in the internode distance.

Results Our experimental study evaluating weighted ASTRID typically shows improvements in accuracy compared 
to the original (unweighted) ASTRID, and shows competitive accuracy against weighted ASTRAL, the state of the art. 
Our re-implementation of ASTRID also improves the runtime, with marked improvements on large datasets.

Conclusions Weighted ASTRID is a new and very fast method for species tree estimation that typically improves 
upon ASTRID and has comparable accuracy to weighted ASTRAL, while remaining much faster. Weighted ASTRID 
is available at https:// github. com/ RuneB laze/ inter node.

Keywords Species tree estimation, ASTRID, ASTRAL, Multi-species coalescent, Incomplete lineage sorting

Introduction
Species tree estimation is a common task in phylogenom-
ics and is a prior step in many downstream analyses 
(e.g., estimating divergence, understanding adaptation). 
Despite the recent increase in the availability of genome-
scale data, species tree estimation remains challenging 

due to gene tree heterogeneity, where gene trees (the 
evolutionary history of genes) differ from species trees 
[1]. Among common factors for gene tree heterogeneity, 
incomplete lineage sorting (ILS), a population-level pro-
cess modeled statistically by the multi-species coalescent 
(MSC) [2, 3], is extremely common and well-studied.

A standard approach to species-tree reconstruction 
under the presence of ILS is to concatenate the align-
ments of the individual genes and running a maximum 
likelihood (ML) heuristic on the combined alignment. 
This simple approach, however, has been established to 
be statistically inconsistent under the MSC, and can even 
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be positively misleading, returning a wrong topology 
with probability converging to 1 as the number of genes 
increases [4, 5]. Empirically, concatenation can also suffer 
from degraded accuracy under higher levels of ILS, and 
can be affected by scalability issues under large data [6, 
7]. In response, many accurate ILS-aware methods have 
since been developed. Those that are most commonly 
used in practice fall into a class of so-called “summary 
methods”, where gene trees are first independently esti-
mated from each genomic region, and the inferred gene 
trees are then used as input to the summary method, 
which outputs an estimated species tree (i.e., that sum-
marizes the information in the input gene trees).

In recent years, many summary methods that are sta-
tistically consistent under the MSC have been developed, 
such as MP-EST [8], NJst [9], ASTRAL [6], ASTRID [10], 
FASTRAL [11], and wQFM [12]. Many of these methods 
are scalable to thousands of species with genomic-scale 
data (i.e., with thousands of genes). Among these meth-
ods, ASTRAL is the most well known, and has shown 
improved accuracy in comparison to many other meth-
ods in many simulation studies [13, 14]. Moreover, when 
the gene trees are adequately accurate and ILS is suf-
ficiently high, ASTRAL tends to be more accurate than 
concatenation [7]. However, ASTRAL and summary 
methods more generally are not statistically consistent 
when given estimated gene trees and can be positively 
misleading in some model conditions [5]. Moreover, 
it is well known that accuracy for summary methods 
degrades as gene tree error increases [7, 15], and when 
gene tree error is sufficiently high, better accuracy may 
be obtained from concatenation, even under very high 
ILS, and even in the anomaly zone [7].

Alternative approaches to summary methods have also 
been developed that can be robust to conditions that lead 
to gene tree estimation error (e.g., gene alignments that 
have low phylogenetic signal due to being too short or 
evolving too slowly). Examples of such methods include 
methods that statistically co-estimate the gene trees and 
species trees, such as StarBeast [16] or StarBeast2 [17]. 
However, these co-estimation methods are very computa-
tionally intensive, as runtime is impacted by the number of 
genes as well as the number of species, so that StarBeast is 
limited to datasets that have perhaps 20 or 30 species and 
at most 100 genes [18]. Some other methods operate with-
out ever estimating gene trees, including SVDquartets [19] 
and LilyQ [20]; these operate by computing quartet trees 
from the alignment and then combine the quartet trees 
into a tree on the full set of species using quartet amalga-
mation methods. Of these, LilyQ has perhaps the best 
accuracy and can be more accurate than ASTRAL when 
gene tree estimation error is high. However, these quartet-
based methods are computationally intensive if all quartet 

trees must be computed, and subsampling quartet trees 

rather than computing and aggregating all 
(

n
4

)

 quartet 

trees is expected to reduce accuracy (see discussion in 
[21]). Thus, large-scale species tree estimation in the pres-
ence of ILS has substantial computational challenges, as 
surveyed in [22].

This sensitivity of summary methods to gene tree error 
has motivated approaches preprocessing the gene trees 
to improve the quality of the signal. Although throw-
ing out inaccurate gene trees generally does not help [7], 
statistical binning [23, 24] and contracting low-support 
branches [14] improved accuracy for summary meth-
ods on many conditions. Nonetheless, these approaches 
require setting arbitrary thresholds: statistical binning 
requires a threshold to determine which branches are 
trustworthy, and contracting low-support branches also 
requires such a threshold. Suboptimal parameter selec-
tion in either case can lead to little accuracy improve-
ment, or even worse, degraded accuracy compared to 
simply running on the original input [14, 24]. Thus, prag-
matically, accurately applying such methods faces the dif-
ficulty of parameter selection.

Very recently, Zhang and Mirarab introduced weighted 
ASTRAL [25]. By directly incorporating gene tree 
uncertainty into the ASTRAL optimization problem, 
weighted ASTRAL improved ASTRAL in accuracy 
under all of their tested conditions. Notably, under con-
ditions where concatenation proved more accurate than 
unweighted ASTRAL, weighted ASTRAL achieved the 
largest improvement, shrinking substantially the long 
known gap [13, 26, 27] between summary methods and 
concatenation under low gene signal. More specifically, 
(unweighted) ASTRAL heuristically searches for a spe-
cies tree that maximizes the amount of quartet trees 
(unrooted four-taxon tree) shared with the input gene 
trees. By using branch support and lengths to weigh 
the reliability of gene tree quartets, weighted ASTRAL 
instead heuristically maximizes the weighted agreement 
with respect to the input gene trees, effectively discount-
ing the contribution of unreliable quartets. Weighted 
ASTRAL is threshold-free, was shown to be more accu-
rate than running ASTRAL on contracted gene trees 
[25], and in fact might be the most accurate summary 
method under ILS that can scale to large datasets.

Here, inspired by weighted ASTRAL, we introduce 
weighted ASTRID, incorporating gene tree uncertainty 
into ASTRID. ASTRID, a fast and more accurate vari-
ant of NJst, is based on the internode distance, defined 
by ASTRID as the number of edges between two taxa in 
a gene tree. We explore variations of this internode dis-
tance where branch uncertainty is considered. Notably, 
ASTRID is shown to have competitive accuracy against 



Page 3 of 22Liu and Warnow  Algorithms for Molecular Biology            (2023) 18:6  

ASTRAL [7, 10] while having a much faster running time 
[10, 11], both of which we hope to generalize to weighted 
ASTRID when compared against weighted ASTRAL, 
obtaining a fast alternative to a very accurate method.

The rest of the study is organized as follows. We begin 
with a description of weighted ASTRID and introduce 
the two ways of weighting the internode distance matrix. 
We then describe our experimental study, choosing 
parameters for weighted ASTRID and comparing it to 
other methods, followed by the results for our experi-
mental study using both simulated and biological data. 
These results show in general that weighted ASTRID 
improves ASTRID accuracy under most conditions, and 
our implementation of weighted ASTRID is much faster 
than the unweighted ASTRID code. We also find that 
weighted ASTRID is faster than ASTRAL and weighted 
ASTRAL, and is competitive for accuracy with these 
methods. We conclude the paper with a discussion of our 
observations and directions for future work.

Materials and methods
Basic definitions
Let n denote the number of taxa and let k denote the 
number of genes assuming a set of gene trees. Given an 
unrooted phylogenetic tree T, we denote its leafset by 
L(T ) and its edge-set by E(T). For each edge e in E(T), 
deleting e from T partitions the leaves into two sets 
defined by the two connected components separated by 
e; we denote this bipartition by πe , and we denote the set 
of bipartitions of T by C(T ) = {πe | e ∈ E(T )} . We note 
that C(T) uniquely defines the (unrooted) topology of T. 
Note that the terms “branch” and “edge” have the same 
meaning, and we use both in this document.

A bipartition πe is said to be trivial if e is incident to 
a leaf, since in such case πe ∈ C(T ) for any T on the 
same leafset. A tree T is said to be a contraction of T ′ if 
C(T ) ⊂ C(T ′) . The Robinson-Foulds distance (RF dis-
tance) [28] between two trees T and T ′ on the same leaf-
set is the size of the symmetric difference between the 
bipartitions of T and T ′ , i.e., |C(T )△C(T ′)| . Given two 
binary trees T and T ′ , we define the nRF (error) rate as 
their RF distance normalized by 2n− 6 (the number of 
non-trivial bipartitions), obtaining a value that is between 
0 and 1.

For taxa u, v ∈ L(T ) , let PT (u, v) denote the set of edges 
on the unique path connecting u and v in T. Given an 
estimated gene tree G, we assume that each internal edge 
e is associated with a branch support value s(e) denot-
ing the confidence that this edge is correctly estimated, 
where s(e) ∈ [0, 1] . We say an edge is correctly estimated 
(in topology) if the bipartition associated with that 
edge is present in the true gene tree, thus s(e) = 1 if e is 

incident to a leaf. We also let l(e) denote the length of the 
edge e, normally given in substitution units.

NJst and ASTRID: distance‑based summary methods
One approach to species tree estimation is based on 
combining estimated gene trees, using a distance matrix 
computed for the input gene trees, and then applying a 
distance-based method, such as neighbor joining [29]. In 
this study, we will assume that any discordance between 
the true gene tree and the true species tree is due to 
incomplete lineage sorting, and so all gene trees are sin-
gle copy.We do not assume that the gene trees contain all 
the species, however, and we also assume that the gene 
trees are unrooted.

NJst In 2011, the NJst method was developed, which uses 
this approach [30]. In NJst, the distance between two taxa 
i and j within a tree is the number of nodes on the path 
between the leaves for those taxa. This “internode distance” 
is then averaged across all the gene trees, thus defining the 
“average internode-distance matrix”. Given the distance 
matrix, neighbor joining [29] is then used to compute a 
tree. This method, referred to as NJst, is polynomial time 
and statistically consistent under the MSC [31].

The proof that NJst is statistically consistent under the 
MSC for this approach has two parts: first, that the aver-
age internode distance matrix converges, as the number 
of genes increases, to an additive matrix for the species 
tree, and second, that neighbor joining return the spe-
cies tree when the average internode distance matrix is 
close enough to this additive distance matrix. The proof 
that the average internode distance matrix converges to 
an additive matrix for the species tree was provided in 
[31], and the guarantee for neighbor joining returning the 
species tree when the estimated distance matrix is close 
enough to an additive matrix was proven in [32]. This last 
condition is referred to by saying that neighbor joining 
has a “positive safety radius”, which means that for the 
true tree T with additive matrix D, there is some value 
ǫ > 0 so that when given a distance matrix d such that 
L∞(d,D) < ǫ , then neighbor joining is guaranteed to 
return the unrooted topology of T.

ASTRID Note that the proof that NJst is statistically 
consistent under the MSC enables any distance-based 
method to replace neighbor joining, as long as the sub-
stitute method also has a positive safety radius. Once 
such method is balanced minimum evolution (BME), 
which also has a positive safety radius [33, 34]. Moreover, 
BME has several theoretical properties that suggest that 
it will have a better sample complexity (and hence bet-
ter accuracy) than neighbor joining (see discussion about 
the edge safety radius in [34]). This observation led to the 
development of ASTRID, which we now describe.
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ASTRID is very similar to NJst in design in that it com-
putes a distance matrix from the gene trees and then 
computes a tree on the distance matrix. The major dif-
ference between ASTRID and NJst is that it uses a heu-
ristic for BME available in FastME [35] to construct a 
species tree from the distance matrix it computes instead 
of neighbor joining. A minor difference between ASTRID 
and NJst is that ASTRID uses a slightly different dis-
tance matrix: instead of using the number of nodes in a 
gene tree between the leaves for each pair of taxa, it uses 
the number of edges. It is trivial to see that this way of 
defining the distance matrix also converges to an addi-
tive matrix for the species tree; hence, this change does 
not impact statistical consistency. Because the matrix it 
computes is not exactly the same, we will refer to it as the 
intertaxon distance matrix.

Like NJst, ASTRID is statistically consistent under 
the MSC. However, the proof for statistical consist-
ency for ASTRID is somewhat more complicated than 
for NJst, since ASTRID uses a heuristic search within 
FastME for BME, which is NP-hard [36]. This heuris-
tic search begins with a greedy BME tree, followed by 
either NNI (nearest-neighbor interchange) or SPR (sub-
tree prune and regraft) moves, until a local optimum is 
found. Although this heuristic uses a local search strat-
egy, this approach is guaranteed to converge to the true 
species tree topology when the input distance matrix 
is sufficiently close to the additive matrix for the spe-
cies tree (i.e., like neighbor joining, it also has a posi-
tive safety radius) [33, 34]. Thus, we have the following 
theorem:

Theorem 1 ASTRID is statistically consistent under the 
MSC, provided that the default heuristic is used and run 
until convergence to a local optimum.

Several simulation studies have shown ASTRID has 
accuracy that can be comparable to that of ASTRAL 
and can scale to large datasets [7, 10]. Moreover, early 
implementations of ASTRID were shown to be much 
faster than early versions of ASTRAL on large datasets 
[10], and although ASTRAL has continued to improve in 
speed, there may still be a runtime advantage to ASTRID. 
Finally, ASTRID is a key technique used in FASTRAL for 
speeding up ASTRAL.

Here we describe how we run ASTRID on the datasets 
in this study. We begin with some notation that we will 
use throughout this paper.

Notation We let G denote a gene tree in the set G of 
gene trees. For u, v two taxa, we let dG(u, v) denote the 
number of edges in the path PG(u, v) between the leaves 
for u, v in G, and we let Gu,v denote the set of gene trees 
that have both u and v.

ASTRID given complete distance matrices We now 
describe how ASTRID operates when the average inter-
taxon distance matrix has no undefined entries; thus, we 
assume that for every pair of taxa u, v there is some gene 
tree that has both u and v, and so Gu,v  = ∅ for all u, v. We 
refer to this as saying that the distance matrix is com-
plete. ASTRID proceeds as follows: 

1 For each pair of taxa u,  v, we set D[u,  v] to be the 
empirical mean of dG(u, v) where G ranges over Gu,v . 
Thus, we set D[u, v] =

∑

G∈Gu,v
dG(u,v)

|Gu,v |
.

2 We run FastME’s heuristic for balanced minimum 
evolution [35], under the accurate setting of using 
extra rounds of NNI and SPR moves (referred to as 
FastME from here on) on D, outputting an unrooted 
species tree.

ASTRID given incomplete distance matrices To handle 
incomplete distance matrices, i.e., the case where some 
pair of taxa u, v do not appear together in any gene tree 
and so |Gu,v| = 0 , ASTRID instead first marks the corre-
sponding entry of D[u, v] as “missing” in Step 2. FastME 
requires complete distance matrices, and as such these 
missing entries must be imputed.

In the original version of ASTRID [10], this issue was 
addressed by using methods from the PhyD* family 
[37] of tree estimation methods, which are specifically 
designed to handle distance matrices that are incom-
plete (i.e., entries that are undefined). However, in 
subsequent research (published in Pranjal Vachaspati’s 
PhD dissertation [38]), a modification to this approach 
was found to produce better accuracy, which we now 
describe: 

a Run a variant of UPGMA [39] on D (that con-
tains missing entries) called UPGMA∗ . Recall that 
UPGMA is an agglomerative clustering algorithm 
defined on the “average” distance between two clus-
ters. In UPGMA∗ , two clusters A and B are candi-
dates for joining only if there exists taxa u ∈ A and 
v ∈ B such that the distance between u and v is 
defined (non-missing), and in such case the average 
distance between the clusters A and B is the aver-
age of all such distances between such pairs u, v. The 
resulting UPGMA∗ tree is denoted by U1 and we let 
A1 be the matrix of path lengths (counting the num-
ber of edges) between the leaves in U1.

b We define matrix D1 , a completion of D, as follows. 
For each u, v such that D[u, v] is undefined (because 
Gu,v = ∅ ), we set D[u, v] = A1[u, v] . We denote this 
filled-in matrix by D1 , and we note that the matrix D1 
is complete.
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c We run FastME with only NNI moves on D1 , obtain-
ing a tree U2 . As before, we let A2 denote the matrix 
of path lengths for U2 , and we complete D using A2 , 
thus producing complete matrix D2.

As described, the distance matrix D2 is complete, and 
can be used as input to any tree estimation method that 
operates using distances. In [38], FastME trees estimated 
using this distance matrix were more accurate than trees 
estimated using methods from PhyD* applied to the 
incomplete distance matrices given as input. This way 
of running ASTRID is available in the GitHub site [40], 
where it is referred to as ASTRID-2.

Weighted ASTRID
In the definition of the intertaxon distance, each edge 
contributes equally to the intertaxon distance for each 
pair of taxa it separates. Intuitively, under the realistic 
assumption that gene trees are estimated with a non-
trivial amount of error, some branches will be more reli-
ably estimated than the others. As such it makes sense 
to assign weights to branches as some confidence of 
them correctly contributing to the intertaxon distance. 
The branch lengths could also be used as such a proxy, 
because short branches are empirically hard to esti-
mate. Thus, our problem becomes to choose appropriate 
weighting schemes for the edges based on information 
already annotated in the gene trees, that is, the branch 
support and branch lengths. Because branch support is 
already designed as some statistical confidence of the 
correctness of some branch, it seems natural to naively 
assign the support directly as the weight for each branch. 
We alternatively explore simply assigning the branch 
length as the weight. The details are presented as follows.

Distance defined by branch support
We now formally introduce wASTRID-s (weighted 
ASTRID by support), analogous to the naming of 
weighted ASTRAL by support. Here we try one sim-
ple approach, defining each branch’s contribution to the 
intertaxon distance as its support instead of 1, which 
gives rise to the following definition of dG(u, v) , the new 
support-weighted intertaxon distance replacing the inter-
taxon distance from step 2 of ASTRID:

In reality, several different measures of support exist with 
different running time and accuracy trade-offs [41]. As 
reported in [25], the approximate Bayesian support [41] 

dG(u, v) =
∑

e∈PG(u,v)

s(e)

of IQ-TREE led to the most accurate species tree recon-
struction, although other measures of support also led to 
accuracy improvements over unweighted ASTRAL. We 
leave this choice of support as a parameter to be decided 
later for wASTRID-s in an experiment for parameter 
exploration (Experiment 1).

Distance defined by branch lengths
Unlike branch support, which is designed to be a meas-
ure of statistical confidence on the correctness of a 
branch, branch lengths can only serve as proxies to such 
information, where shorter branches are empirically 
harder to estimate likely as a result of shorter branches 
containing less information (fewer substitutions) [42]. 
We do not attempt a complex conversion here, and sim-
ply just assign the branch length as the confidence similar 
to how we use the support values:

Notably, this definition of dG(u, v) coincides with STEAC 
[43] (motivated by a different perspective of the coales-
cence time between genes), and potentially under a more 
accurate setting when paired with the FastME step of 
ASTRID. In addition, we also explore whether and how 
to normalize the input branch lengths of the gene trees 
for the weighting. We name this final algorithm wAST-
RID-pl (weighted ASTRID by path-lengths).

Running time
The runtime for wASTRID-s and wASTRID-pl has two 
parts: the calculation of the distance matrix and then run-
ning FastME. Here we derive the runtime for each part.

Theorem 2 The average intertaxon distance matrix of 
wASTRID-s and wASTRID-pl can be obtained in O(kn2) 
time, where n is the number of species and k is the number 
of genes. The runtime using FastME on this input matrix, 
and using p NNI or SPR moves, is O(pn2) . Hence, the total 
runtime is O((k + p)n2).

Proof We begin by demonstrating that the asymptotic 
runtime for calculating the distance matrix is the same 
for wASTRID-s, wASTRID-pl, and ASTRID. For each 
gene tree, our metricization simply assigns already-com-
puted values as lengths to each edge; thus, using dynamic 
programming, calculating the intertaxon distance across 
all pairs of taxa per gene tree takes O(n2) time (for nor-
malizing branch lengths in wASTRID-pl, we only explore 

dG(u, v) =
∑

e∈PG(u,v)

l(e)
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ways to normalize that do not affect this asymptotic run-
ning time). Hence, the average intertaxon distance matrix 
can be calculated in O(kn2) time.
The runtime for FastME, given the distance matrix, 
depends on the number p of NNI or SPR moves. 
According to [35, 44], FastME optimizing BME, using 
NNI or SPR moves, uses O(n2) for the starting tree and 
O(n2 + pn× diam(T )) , where diam(T) is the topologi-
cal diameter of the output tree and p is the number of 
moves, for the heuristic search. Since diam(T ) ≤ n− 1 , 
this is O(pn2) . �

We also re-implemented the calculation of the distance 
matrix to improve empirical runtime compared to the 
available version of ASTRID in [40]. The asymptotically 
optimal algorithm is easy to devise because the naive 
algorithm, which, given a gene tree, starts a tree traversal 
at each leaf to obtain the all-pairs intertaxon distance, is 
already quadratic time per gene and also asymptotically 

optimal due to each gene tree having 
(

n
2

)

 distances. The 

original ASTRID implementation, in this vein, uses an 
algorithm which implicitly performs multiple traversals 
in the tree. We instead implemented an intertaxon-dis-
tance algorithm from TreeSwift [45] based on post-order 
traversal, through which we hope to achieve better 
empirical performance due to better cache locality in its 
simultaneous maintenance of multiple distances from the 
leaves in an array. This produces for us a speed advantage 
for wASTRID as well as an alternative way of running 
ASTRID, which we refer to as ASTRID-3.

Experimental study
Overview
We conduct five experiments. The first experiment is 
parameter exploration and uses training data; all subse-
quent experiments use the testing data, which are dis-
joint from the training data.

• Experiment 1: we explore parameter choices (choice 
of branch support for wASTRID-s and normalization 
scheme for wASTRID-pl) for weighted ASTRID.

• Experiment 2: we compare the accuracy and running 
time of weighted ASTRID against other methods on 
a diverse set of simulated conditions, where all genes 
are complete, and so have all the species.

• Experiment 3: we compare ASTRID, wASTRAL-h, 
and the best variant of wASTRID (as determined by 
previous experiments) on the Jarvis et al. [46] avian 
biological dataset.

• Experiment 4: we explore weighted and unweighted 
ASTRAL and ASTRID on datasets where the aver-
age intertaxon distance matrix might be incomplete 

(i.e., where there is at least one pair of taxa that do 
not appear together in any gene tree). Specifically, we 
explored two models of missing data, one uniformly 
deleting a fixed number of taxa across gene trees, and 
also a “clade-based” model of missing data, denoted by 
Mclade from [47]. Both types of missing data results in 
gene trees that each almost always has taxa missing.

• Experiment 5: we conducted a detailed running time 
comparison between ASTRID-2 and ASTRID-3, 
where ASTRID-3 differs from ASTRID-2 by a faster 
implementation for calculating the average inter-
taxon distance matrix.

Datasets
We assembled a set of diverse data from prior studies 
(see Table 1), consisting of various simulated conditions 
with estimated gene trees and one biological dataset 
(“avian biological”) from the avian phylogenomics project 
[46]. We separate the datasets into training (Experiment 
1) and testing (Experiments 2–5).

We use the nomenclature of the original ASTRID study 
and refer to the SimPhy-simulated datasets from the 
ASTRAL-II study [13] by an “MC” name (where “MC” 
refers to “model condition”). We additionally replaced 
some ASTRAL-II datasets by some “H” variants gener-
ated by a prior separate study [48] to induce a level of 
GTEE closer to the rest of the conditions, which span 
from 23% to 55%. The ILS levels of the datasets are meas-
ured in average discordance (AD), defined as the average 
nRF rate between the true species tree and the true gene 
trees. Like the original ASTRID study [10], we classify 
the ILS levels of the datasets into four categories accord-
ing to their AD values, where below 25% is classified 
as low ILS (L), between 26% and 39% medium ILS (M), 
between 40% and 59% high ILS (H), and higher AD con-
sidered very high ILS (VH). For the simulated conditions, 
we subsample k of the gene trees with k = 50, 200, 1000 , 
except for the mammalian simulation where we sam-
ple k = 50, 100, 200 instead, as only 200 gene trees were 
provided.

In Experiment 4, we evaluate methods on datasets 
where some gene trees are missing one or more spe-
cies. For this experiment, we created missing data vari-
ants of the S100 (seqlen = 400) dataset under two models 
of missing data: the i.i.d. model and the Mclade model. 
For the i.i.d. case, we deleted a fixed number of taxa 
( 20%, 40%, 60%, 80% of the total number of taxa) from 
each gene; thus, every gene tree is incomplete (i.e., misses 
at least one species). For the Mclade model, the process is 
more complicated. Briefly, each gene tree uniformly sam-
ples a clade from the species tree above a certain size (a 
parameter x relative to the number of taxa in the species 
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tree), and only retains taxa from this clade. We varied x 
in 0.2, 0.4 and 0.6, which resulted in an average percent-
age of taxa being deleted of 46%, 23% and 10% , respec-
tively for the Mclade model. Thus, for the Mclade model, it 
is possible for a gene tree to be complete (i.e., have all the 
species), but not very likely for this to occur.

We now describe how we compute branch support in 
our experiments. The weighted ASTRAL study [25] pro-
vided gene trees reannotated with aBayes support [41] 
and edge lengths inferred using IQ-TREE [49] for the 
ASTRAL-II and ASTRAL-III datasets. We also reanno-
tated the avian and mammalian simulation with aBayes 
support and IQ-TREE edge lengths, because aBayes 
was determined as the best measure of support also for 
wASTRID-s. We use the MC2 condition as the training 
data for both wASTRID-s and wASTRID-pl, where to 
explore the choice of edge support for wASTRID-s, we 
took the original gene trees estimated using FastTree [50] 
and estimated branch support using two techniques: the 
default FastTree SH-like support and also bootstrap sup-
port [51] using 100 bootstrap trees. For Experiment 4, we 
only used the IQ-TREE aBayes support, computed on the 
reduced gene trees and using the reduced alignments. See 
Appendix for additional discussion about branch support.

Methods
We ran weighted and unweighted versions of ASTRAL 
and ASTRID.

• ASTRID (v2.2.1), available at [40]. With the excep-
tion of Experiment 4, we turn off missing data impu-
tation.

• wASTRID, available at [52], missing data imputa-
tion will be automatically turned on by the software 
when necessary.

• ASTRAL(-III) (v5.7.8), available at [53]. Although 
ASTRAL-III enables analyses of gene trees with 
low-support branches collapsed, we use the fully 
resolved gene trees as input, as this allows us the 
fully explore the impact of weighting.

• wASTRAL-h (hybrid weighted ASTRAL, v.1.4.2.3). 
This was the most accurate version of weighted 
ASTRAL from the original study [25], using both 
branch lengths and support to weight gene tree 
quartets. wASTRAL-h supports parallelization, so 
we run wASTRAL-h with 16 threads. wASTRAL-
h is available as part of the ASTER [54] software 
suite.

For all analyses using wASTRID and ASTRID, when we 
ran FastME to search for a BME solution, we ran FastME 
with the most accurate setting that uses the same greedy 
BME starting tree and follows with both NNI and SPR 
moves to improve the score.

Many of the datasets in our study have FastTree-
inferred gene trees that were reannotated with IQ-
TREE approximate Bayesian support. FastTree-inferred 

Table 1 Dataset statistics. All but the avian dataset from [46] are simulated datasets, with known true gene trees and species trees. The 
ILS levels of the datasets are categorized according to their AD percentages, where below 25% is low ILS (L), between 26% and 39% 
mid ILS (M), between 40% and 59% high ILS (H), and higher AD very high ILS (VH). SH-like denotes FastTree default support; BS denotes 
standard bootstrap support using FastTree or RAxML; aBayes denotes IQ-TREE approximate Bayesian support

Dataset # taxa # genes # reps AD % (ILS) Branch support Exp.

ASTRAL-II MC2 [13] 201 1000 10 33 (M) SH, BS, aBayes 1

ASTRAL-III S100 [14] 101 1000 50 46 (H) aBayes 2,5

   Mclade missing data 101 200 50 46 (H) aBayes 4

   iid missing data 101 200 50 46 (H) aBayes 4

ASTRAL-II MC3 [13] 201 1000 50 21 (L) aBayes 2

ASTRAL-II MC5 [13] 201 1000 50 34 (M) aBayes 2,5

ASTRAL-II MC1 [13] 201 1000 50 69 (VH) aBayes 2

ASTRAL-II MC6H [48] 201 1000 50 9 (L) aBayes 2

ASTRAL-II MC11H [48] 1001 1000 50 35 (M) aBayes 2,5

Avian 2x [23] 48 1000 20 29 (M) aBayes 2

Avian 1x [23] 48 1000 20 47 (H) aBayes 2

Avian 0.5x [23] 48 1000 20 60 (VH) aBayes 2

Mammalian 2x [23] 37 200 20 21 (L) aBayes 2

Mammalian 1x [23] 37 200 20 29 (M) aBayes 2

Mammalian 0.5x [23] 37 200 20 50 (H) aBayes 2

Jarvis et al. avian [46] 48 14446 1 not known BS 3
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trees have polytomies when the input has identical 
sequences, but these polytomies will be resolved when 
the trees are reannotated by IQ-TREE. Since polytomy 
resolution may add false positive edges that adversely 
affect the accuracy of the unweighted methods, in these 
cases, we run the unweighted methods on the original 
FastTree gene trees.

Evaluation criterion
For simulated datasets, we report the topological error 
rate of the reconstructed species trees using the nor-
malized Robinson-Foulds error (nRF error) [28] with 
respect to the true species trees, where the nRF error 
rate is the number of bipartitions in the estimated and 
true species trees that do not appear in both trees, nor-
malized by the total number of non-trivial bipartitions 
in the two trees. Because all the inferred and true spe-
cies trees are binary, the nRF error rate is the same as 
the missing branch rate (i.e., the fraction of the non-
trivial bipartitions in the true species tree that are miss-
ing from the reconstructed tree). For these calculations, 
the non-trivial bipartitions of a tree are defined by the 
internal edges in the tree, i.e., the edges that are not 
incident to leaves.

On the avian biological dataset, as the true tree is 
not known, we compare the estimated species trees 
against prior topologies (wASTRAL tree and published 
trees). We also compute the local posterior-probability 
(localPP) branch support [55] for the reconstructed 
species trees obtained using wASTARL-h to assess the 
reliability of the branches.

On all datasets, we keep track of the wall-clock run-
ning time of the methods, the time taken from con-
suming the input gene trees (that may have been 
preprocessed with new branch support values) until 
outputting the species tree.

Experimental environment
All experiments before Experiment 5 were conducted on 
the Illinois Campus Cluster, a heterogeneous cluster that 
has a four-hour running time limit. The heterogeneity 
of the hardware makes the wall-clock running times not 
directly comparable across runs, but can still be used to 
gather obvious running time trends.

All runs in Experiment 5 were performed serially on 
an Apple M1 Macbook Pro (model Z11B000E3LL/A) to 
ensure accurate comparison of running times.

Results
Experiment 1: parameter selection
In Fig.  1, we explore the choice of branch support among 
the default FastTree SH-like support, IQ-TREE approximate 
Bayesian (aBayes) support (normalized to the [0, 1] range), 
and bootstrap support (100 FastTree replicates) on the train-
ing datasets. The best accuracy of wASTRID-s is obtained 
by using the normalized aBayes support on gene trees. All 
measures of support, however, improved the species tree 
estimation error in general. The superiority of (normalized) 
aBayes support is consistent with the support chosen for 
weighted ASTRAL, where it was also found superior to SH-
like support and bootstrap support. This advantage is even 
more pronounced when considering that aBayes support can 
be obtained much faster than bootstrap support [41].

Fig. 1 Comparison of the choice of branch support and the choice of branch length normalization strategy for wASTRID-s and wASTRID-pl 
respectively on the training data, showing the species tree topological error rates (nRF error). “SH-like” is FastTree SH-like support. “aBayes” is IQ-TREE 
approximate Bayesian support. “BS” is bootstrap support using 100 FastTree trees. The x-axis varies in the number of genes k in the input. Results are 
shown averaged across ten replicates. Error bars show standard error
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On this training dataset, wASTRID-pl attained the 
highest accuracy when normalizing the branch lengths 
in each gene tree by the maximum path length in that 
gene tree (better than no normalization). Interestingly, 
while worse than ASTRID with fewer genes k ∈ {50, 200} , 
wASTRID-pl attained higher accuracy than ASTRID 
when k = 1000 . However, when comparing wASTRID-s 
and wASTRID-pl, wASTRID-pl was always less accurate.

Experiment 2: results on simulated datasets
In this experiment, we show four-way comparisons 
among ASTRID, ASTRAL, weighted ASTRAL (wAST-
RAL-h), and weighted ASTRID (wASTRID-s). We addi-
tionally show wASTRID-pl on S100 but omit showing 

its results later as wASTRID-pl was discovered to be on 
all datasets less accurate than wASTRID-s. We put an 
emphasis on the accuracy (nRF error), while later revisit-
ing the problem of running time.

ASTRAL‑III S100
This 101-species dataset contains four conditions that 
varied in the gene tree estimation error (GTEE, meas-
ured by the average nRF error between the estimated 
gene trees and their corresponding true gene trees) by 
varying the sequence lengths. We show the results in 
Fig.  2. We show the unweighted methods (i.e., ASTRID 
and ASTRAL) in dotted lines.

Fig. 2 Topological error of species tree across methods on the ASTRAL-III S100 dataset ( n = 101, AD = 46% ). Subfigures vary the sequence lengths, 
affecting the gene tree estimation error (measured in GTEE, the average distance between estimated gene trees and true gene trees). The x-axis 
varies in the number of genes. Results are shown averaged across 50 replicates with standard error bars. All weighted methods (wASTRID, wASTRAL) 
ran on gene trees reannotated with IQ-TREE aBayes support branch support and lengths. All methods achieve better accuracy when given more 
gene trees (larger k) or more accurate gene trees (lower GTEE). Weighted methods are more accurate than unweighted ones. wASTRID-s 
and wASTRAL-h have almost the same accuracy
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Many trends are as expected. For example, sum-
mary methods become more accurate as k (the num-
ber of genes) increases, and all methods also improve 
in accuracy when given more accurate estimated gene 
trees. These two trends are unsurprising and well-doc-
umented across studies for summary methods in gen-
eral (e.g., [7]).

More interestingly, the weighted methods (wASTRID-
s, wASTRAL-h) are clearly more accurate than their 
unweighted counterparts, especially at higher levels of 
GTEE (GTEE = 0.55, 0.42 ). The improvement in accuracy 
from the weighted methods does not seem to depend on 
the number of genes, suggesting that the noise brought 
by low-quality gene trees is not resolved by having ample 
data. This advantage of the weighted methods, however, 
is smaller as more accurate gene trees are used (GTEE = 
0.31), as expected.

wASTRID-s clearly improves upon ASTRID on this 
dataset, across all conditions and all numbers of genes. 
wASTRID-s notably almost matches the accuracy of 
wASTRAL-h. With k ∈ {200, 1000} , no clear benefit 
exists for using wASTRAL-h on the shown conditions.

On this dataset, wASTRID-pl, similar to trends seen 
in the training dataset, attains better accuracy than 
ASTRID when k = 1000 , but is almost always worse than 
wASTRID-s.

ASTRAL‑II SimPhy
We show the results of the ASTRAL-II SimPhy data-
sets in Fig.  3. Across all conditions in this dataset, 
the weighted methods are more accurate than the 
unweighted methods. This advantage does not seem to 
depend on the level of ILS or the number of species. Even 
under the easiest condition (MC3), wASTRAL-h and 
wASTRID-s still consistently achieved better accuracy. 
All methods also performed worse in accuracy as ILS 
increased, as expected.

While wASTRID-s still consistently improved upon 
ASTRID in accuracy on this dataset, we also see datasets 
where wASTRID-s is worse than wASTRAL-h. The rela-
tive performance of wASTRID-s and wASTRAL-h seems 
related to the relative performance of the base methods: 
MC1 and MC6H are the two conditions that ASTRAL is 
in general more accurate than ASTRID, but the relative 

Fig. 3 Topological error (nRF error rate) of species tree across methods on selected conditions on the ASTRAL-II SimPhy conditions 
( n = 201, 1001, 201 , AD = 21, 35, 69% respectively). Each subfigure depicts a different model condition. The x-axis varies in the number of genes. 
Results are shown averaged across 50 replicates with standard error bars. ASTRAL did not finish 24 out of the 50 replicates within four hours 
for k = 1000 on MC11H and thus the data point was omitted. All weighted methods (wASTRID, wASTRAL) were run on gene trees reannotated 
with IQ-TREE aBayes support branch support and lengths. Weighted methods are more accurate than unweighted ones. wASTRID-s on MC1 
was less accurate than wASTRAL-h and otherwise has the same accuracy



Page 11 of 22Liu and Warnow  Algorithms for Molecular Biology            (2023) 18:6  

performance of the base methods does not explain the 
whole picture – for MC1 going to k = 1000 , ASTRID 
became more accurate than ASTRAL yet wASTRID-s 
is still worse than wASTRAL-h. More positively, on the 
other conditions of this dataset, wASTRAL-h has nearly 
the same accuracy as wASTRID-s, although wASTRAL-h 
is marginally more accurate, which might be due to the 
hybrid weighting of wASTRAL-h, which also incorpo-
rates the branch lengths for better accuracy.

The model condition with the largest number of spe-
cies, i.e., MC11H with 1001 species, presented compu-
tational challenges for ASTRAL. Specifically, on roughly 
half of the replicates of model condition MC11H with 
k = 1000 genes, ASTRAL did not finish under our four-
hour time limit (see Appendix Sect. "Failures to com-
plete" for more details), but wASTRAL-h did.

Avian and mammalian simulations
The avian and mammalian simulation have model trees 
inferred on biological datasets. Both datasets have three 
conditions with varying ILS by scaling the model tree 
branch lengths by 2X, 1X, or 0.5X, with shorter branch 
lengths leading to higher degrees of ILS. Notably, prior 
results [10] showed that ASTRID outperformed ASTRAL 
on the avian simulation in accuracy, while on the mam-
malian simulation ASTRAL was more accurate. Also, the 
mammalian simulation only has 200 genes available, so 
we vary k among 50, 100, 200 unlike the other datasets.

On the avian simulation (Fig.  4), aside from obvious 
trends (ILS increases difficulty; more genes leads to more 
accurate reconstruction), same as the original study [10], 

ASTRID is consistently more accurate than ASTRAL. 
Strangely, although the weighted methods inherit the 
relative performance of their base methods, in a few 
cases the weighted methods do not help in accuracy, 
but they do not erode accuracy either. Even on condi-
tions where the weighted methods improved accuracy, 
the improvement was small. For example, wASTRAL-h, 
even though improving upon ASTRAL, is even less accu-
rate than ASTRID, whereas on previously shown data 
wASTRAL-h was consistently the best in accuracy. This 
avian simulation does carry substantial GTEE ( > 50% ), 
so it is not clear what led to the weighted methods 
underperforming.

The results for the mammalian simulation (Fig. 5) paint 
a more perplexing picture. On the 2X condition, surpris-
ingly, the weighted methods are less accurate than their 
unweighted counterparts in general. This trend con-
tinues with the 1X condition, where wASTRAL-h only 
mostly matches ASTRAL in accuracy, and wASTRID-
s is worse than ASTRID in accuracy. Only on the 0.5X 
condition do both weighted methods clearly help in 
accuracy. wASTRAL-h is clearly better than wASTRID-s 
on this dataset, but this difference can be explained by 
the accuracy advantage of ASTRAL on ASTRID. While 
it is again unclear why the weighted methods underper-
formed, this dataset is relatively easy, compared to the 
previously shown datasets, with all methods achieving 
at most 0.05 nRF error rate at k = 200 ; thus, despite 
the puzzling relative performance of weighted and 
unweighted methods, the difference in accuracy among 
methods is very small.

Fig. 4 Topological error (nRF error rate) of species tree across methods on the avian simulation ( n = 48 ). Each subfigure depicts a different model 
condition. The x-axis varies in the number of genes. Results are shown averaged across 20 replicates with standard error bars. All weighted methods 
(wASTRID, wASTRAL) ran on gene trees reannotated with IQ-TREE aBayes support branch support and lengths. ASTRID and wASTRID-s are more 
accurate than ASTRAL and wASTRAL-h, with a slight accuracy advantage to the weighted methods over the unweighted ones
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Running time
We show the wall-clock running time of the four 
methods under three representative conditions 
( n = 101, 201, 1001 ) in Table  2, with a direct compari-
son of the two most accurate methods visualized in 
Fig.  6. While the heterogeneity of the hardware dilutes 
the comparability of the running times, clearly wAST-
RID-s and ASTRID are much faster than wASTRAL-h 
and ASTRAL, with wASTRID-s on average taking less 
than 12 s even on the largest input, whereas on the same 
input wASTRAL-h on average takes roughly two hours. 
In general, wASTRID-s is around two orders of magni-
tude faster than wASTRAL-h. Although we note that 
the default flags of both ASTRAL and wASTRAL-h (that 
we used in the experiments) also calculate support and 
lengths for reconstructed species tree, in practice, this is 

a fast step relative to the species tree reconstruction, and 
does not affect our running time analysis in any substan-
tial way. On MC11H, wASTRID-s and ASTRID took less 
time going from k = 50 to 200, likely due to the k = 50 
species trees having larger diameters, negatively impact-
ing the FastME step running time which has a linear 
dependency on the diameter of the output tree.

The weighted methods are faster than their unweighted 
counterparts. For example on S100 (seqlen = 400 ) with 
1000 genes, wASTRAL-h is more than ten times faster 
than ASTRAL. In addition ASTRAL did not finish for 
approximately half of the datasets for the largest input 
(MC11H, k = 1000 ). Aside from the benefit of paral-
lelization (we ran wASTRAL-h using 16 threads, but 
off-the-shelf ASTRAL does not support parallelization), 
this speed advantage under a large number of genes of 

Fig. 5 Topological error (nRF error rate) of species tree across methods on the mammalian simulation ( n = 37 ). Each subfigure depicts a different 
model condition. The x-axis varies in the number of genes. Results are shown averaged across 20 replicates with standard error bars. All weighted 
methods (wASTRID, wASTRAL) ran on gene trees annotated with IQ-TREE aBayes support branch support and lengths. ASTRAL and wASTRAL-h are 
more accurate than ASTRID and wASTRID-s. The weighted methods have mixed accuracy compared to the unweighted ones

Table 2 Wall-clock running time (sec) across methods on selected representative simulated conditions on n = 101, 201, 1001 for k 
ranging in 50, 200, 1000. Data points show averages across 50 replicates. ASTRAL did not finish on 24 out of the 50 replicates within 
four hours for k = 1000 on MC11H, and thus the data point was omitted. The methods, sorted by the fastest to the slowest, are almost 
always wASTRID-s, ASTRID, wASTRAL-h, and ASTRAL across all shown conditions. ASTRID and wASTRID-s are much faster than ASTRAL 
and wASTRAL-h

Running time (s) k (# genes) ASTRAL ASTRID wASTRAL‑h wASTRID‑s

S100 ( n = 101) 50 12.1 0.1 4.6 0.1

200 29.6 0.2 6.6 0.1

1000 300.7 1.4 22.8 0.2

MC5 ( n = 201) 50 20.3 0.2 12.3 0.1

200 57.5 0.6 25.6 0.2

1000 600.7 1.8 106.9 0.5

MC11H ( n = 1001) 50 552.9 18.0 611.8 11.3

200 2059.6 14.9 1333.4 8.8

1000 – 27.5 7191.0 11.8
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wASTRAL-h over ASTRAL can also be attributed to 
the algorithmic change implemented in wASTRAL-
h. The new weighted ASTRAL algorithm removes the 
in-practice quadratic dependency of ASTRAL’s search 
algorithm on the number of genes [56] and instead has a 
linear dependency on k for the running time. wASTRID-
s is consistently faster (at least two times faster on most 
conditions) than ASTRID, showing that the new distance 
calculation algorithm implemented is more efficient than 
the original one.

Experiment 3: results on the avian biological dataset
Jarvis et al. studied the phylogeny of birds using a data-
set on 48 taxa using 14,446 genes [46]. The original gene 
trees were annotated with RAxML [58] bootstrap sup-
port, which we directly use in our wASTRID-s analysis. 
This dataset is known to have very low gene tree resolu-
tion, with the average branch support only 32% [23].

ASTRAL on the original set of gene trees reconstructed 
a species tree that failed to reproduce a few well-sup-
ported clades from prior studies, such as the Columbea 
clade. Nonetheless, contracting low support branches 
in the gene trees enabled ASTRAL to construct a very 
plausible topology in agreement with prior studies [14]. 
In a subsequent study, Zhang and Mirarab reanalyzed the 
original gene trees using wASTRAL-h and reconstructed 
the same topology as ASTRAL running on contracted 
gene trees [25].

We computed trees using both ASTRID and wAST-
RID on the Jarvis et al. [46] dataset, and compare them 
to these other estimated trees. We also compute the 
number of differing branches between the inferred trees 
and the two published trees of the Jarvis et al. study [46]: 
the ExaML-based concatenation tree, called the TENT 
(“total evidence nucleotide tree”), and the coalescent-
based published tree based on the result of running 

MP-EST with statistical binning [23] (i.e., the MP-EST* 
tree). We also examine whether these trees include the 
six clades that are proposed by Braun & Kimball to be 
strongly corroborated [57] for the avian phylogeny.

The wASTRID-s and wASTRAL trees are shown in 
Fig.  7 and the ASTRID tree is shown in Fig.  8, with 
branch support given by the localPP criterion. Note that 
all trees display the six reliable avian clades of Braun & 
Kimball. Nevertheless, some interesting differences do 
appear.

The ASTRID tree (shown in Fig.  8) differed in eight 
or nine edges with each of the wASTRAL-h, TENT, and 
MP-EST* trees. The ASTRID tree did not recover the 
Columbea clade, which has also seen strong support in 
various analyses of this data [14, 46, 59].

Using wASTRID-s, we recovered a topology that is 
much more in agreement with the other trees, differing 
in two branches ( 4.4% of the branches) with the wAST-
RAL-h tree. It displays the six well-corroborated clades, 
and is also in much higher agreement with the pub-
lished trees (differing in three branches with the TENT, 
two branches with the MP-EST* tree). Looking closer, 
the two branches where it differs from the wASTRAL-h 
tree coincide with the only two extremely low support 
branches (no more than 5% in bootstrap support), and 
thus contracting these branches in the wASTRID-s tree 
arrives at a topology that is a contraction of the wAST-
RAL-h tree. Both wASTRID-s and wASTRAL-h recover 
the Columbea-Passerea split, a major conclusion in the 
original analysis of this data, and even agree on the place-
ment of the hard-to-place Hoatzin.

For running time, both ASTRID and wASTRID-s fin-
ished quickly. ASTRID completed in 6.4  s, and wAST-
RID-s completed in 1.1 s. Our rerun of wASTRAL-h on 
this data finished in 294.2  s, showcasing the much bet-
ter scalability of the new weighted ASTRAL optimization 

Fig. 6 Wall-clock running time (s) comparison of wASTRID-s and wASTRAL-h on selected representative simulated conditions on n = 101, 201, 1001 
for k ranging in 50, 200, 1000. Bars and labels show averages across 50 replicates. wASTRID-s is dramatically faster than wASTRAL-h
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algorithm in the number of genes, whereas ASTRAL on 
the same input took 32 h in [14].

In summary, on this dataset, wASTRID-s inferred a 
more accurate tree compared to ASTRID, is much faster 
than wASTRAL-h, and is compatible with wASTRAL-h 
after contraction of two very low support branches.

Experiment 4: accuracy given incomplete gene trees
In real-world datasets, genes that are incomplete, so that 
they miss some species, are commonplace. This “missing 
data” condition can reduce accuracy, as shown in [7, 47], 
and the impact of this is studied in this experiment.

Random missing data We show the impact of missing 
data using a model of uniformly deleting a fixed number 
of taxa across gene trees in Fig. 9. As the percentage of 
missing data increases, all methods increase in error, an 
expected trend as the amount of information in the input 
decreases. Comparing the weighted and unweighted 
versions, weighted methods were more accurate than 
their unweighted counterparts under low to moderate 
(20% to 60% taxa randomly missing) missing data. How-
ever, under the highest level of missing data (80% taxa 

missing), ASTRAL achieved the best accuracy across all 
methods, showing a robustness against extreme miss-
ing data while wASTRAL-h achieved the worst accuracy 
at this extreme. Comparing horizontally between the 
ASTRID and ASTRAL variants, we see a slight advan-
tage of ASTRAL in accuracy across levels of randomly 
deleted taxa, suggesting ASTRAL might be more robust 
to this i.i.d. model of missing data. Although we only 
show results on one condition, our results suggest that 
the weighted methods still offer accuracy advantages 
except on the more extreme conditions of missing data, 
and both ASTRID variants and ASTRAL variants dem-
onstrate reasonable robustness against missing data.

Clade-based missing data We show the results under 
the Mclade based missing data in Fig. 10. Recall that each 
gene tree uniformly samples a clade from the species tree 
above a certain size (a parameter x = 0.2, 0.4, 0.6 rela-
tive to the number of taxa in the species tree), and only 
retains taxa from this clade. This process resulted in aver-
age percentage of taxa being deleted of 46%, 23% and 10% 
across the genes.

Fig. 7 Results on the avian biological dataset ( n = 48, k = 14446 ). In (a) and (b), we show the reconstructed species tree topology of wASTRID-s 
and wASTRAL-h, annotated with local posterior-probability branch support (localPP) computed using wASTRAL-h. The red branches show 
where the two trees differ. The six well corroborated clades according to Braun and Kimball [57] are displayed by both trees and highlighted 
in gradients. For wASTRID-s, the red branches also coincide with the only two low support branches. Contracting the very low support branches 
for wASTRID-s arrives at a topology compatible with wASTRAL-h. wASTRAL-h took around 294 s to infer its tree. wASTRID-s was very fast and took 1 s 
to infer its topology
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Under these clade-based missing data conditions, the 
weighted methods are consistently more accurate than 
the unweighted variants. The most accurate method is 
wASTRID-s (tied with wASTRAL-h under the lowest 
level of missing data, the most accurate under higher 
levels). The ASTRID variants do not observably degrade 
in accuracy as the percentage of deleted taxa increases 
while the ASTRAL variants do. This relative robustness 

of weighted ASTRID to the clade-based missing data is 
largely expected given ASTRID’s robustness shown in the 
prior study of [47].

Experiment 5: detailed comparison of the distance matrix 
algorithm
Recall that ASTRID variants first calculate an average 
distance matrix D from the gene trees, and then run 
FastME on D. From previously shown results in Table 2, 
wASTRID-s is clearly faster than ASTRID, only possible 
due to our change in the distance matrix calculation algo-
rithm. To better benchmark this running time difference 
brought by this new algorithm for producing D, we broke 
down the running time of ASTRID-2 (the most efficient 
known implementation) and ASTRID-3, which is the 
ASTRID algorithm implemented inside our wASTRID 
software. We show the results in Fig. 11, benchmarking 
on 1000 gene trees.

Fig. 8 Reconstructed species tree on the Jarvis et al. avian biological 
data using ASTRID. Branch support values are in localPP values 
calculated by wASTRAL-h

Fig. 9 Topological error of species trees estimated for sets of incomplete gene trees due to deletion of a fixed number of taxa on the ASTRAL-III 
S100 dataset ( n = 101 , AD = 46% ) given k = 200 genes with sequences of length 400 (GTEE = 42% ). Results are shown averaged across 50 replicates 
with standard error bars. x-axis varies in the percentage of taxa deleted across gene trees, under the model where for each gene, a random subset 
of taxa of a fixed size is deleted from each gene tree

Fig. 10 Topological error of species trees estimated for sets 
of incomplete gene trees due to clade-based missing data, 
on the ASTRAL-III S100 dataset ( n = 101 , AD = 46% ) given k = 200 
genes with sequences of length 400 (GTEE = 42% ), varying 
the percentage of randomly deleted taxa. Results are averaged 
across 50 replicates with standard error bars. x-axis varies 
in the average percentage of deleted taxa in the gene trees
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The runtimes for both ASTRID-2 and ASTRID-3 
on the two smaller datasets are both small, but with an 
advantage to ASTRID-3. However, on the largest data-
set with 1001 species and 1000 genes, we see large dif-
ferences in runtime. Unsurprisingly perhaps, the running 
time for FastME is essentially the same for both ASTRID 
and wASTRID, so that the runtime difference between 
the two methods is due to the time used to calculate the 
distance matrix, D. A detailed examination of that runt-
ime (Table 3) shows that ASTRID-2 takes at least 3 times 
as long as ASTRID-3 to compute the distance matrix, 
across all conditions. The constant-time speed up is con-
sistent with the fact that both ASTRID and wASTRID 
implement O(n2k) algorithms for calculating D.

Discussion
Here we discuss the trends seen in this study, and how 
they compare to trends from previous studies. We begin 
with a discussion about accuracy before turning to com-
putational performance.

Accuracy
Overall trends
For all model conditions, all tested methods achieved 
better accuracy when given more genes or as ILS or 
GTEE decreased. These trends are well known and quite 
expected for all summary methods [7]. The accuracy 
advantage of weighted methods over unweighted meth-
ods is present in nearly all conditions, but is larger for 
the conditions with shorter sequences (equivalently, the 
higher GTEE conditions) and fewer genes. This trend 
was already established for wASTRAL-h compared to 
ASTRAL in [25], but shows that wASTRID-s, just like 

ASTRAL, is able to better interpret the signal in the input 
through taking branch support into consideration.

In most cases, weighting improved accuracy for both 
ASTRAL and ASTRID, but not for the simulated mam-
malian dataset, where both ASTRAL and ASTRID had 
conditions where they were more accurate than their 
weighted versions, and not for the extreme missing data 
condition (80% taxa missing), where ASTRAL (but not 
ASTRID) had a condition where it was more accurate 
than its weighted version. While we do not understand 
why this occurs, it is noteworthy that both ASTRAL and 
ASTRID had conditions where they were more accurate 
than their weighted versions.

wASTRAL‑h vs. wASTRID‑s
ASTRAL and ASTRID are known to be among the most 
accurate summary methods under ILS, and their rela-
tive accuracy is dataset dependent, as also shown in our 
results. The relative accuracy of their weighted coun-
terparts is clearly influenced by the accuracy of their 
base methods, as seen in the performance differences 
in the avian and mammalian simulation, where either 
wASTRID-s and wASTRAL-h can be the more accurate 
method. On the ASTRAL simulated datasets (ASTRAL-
III S100, ASTRAL-II SimPhy), wASTRID-s and wAST-
RAL-h have comparable accuracy, with a small advantage 
to wASTRAL-h.

The improvement of wASTRAL-h over wASTRID-
s may be due to its weighting also incorporating branch 
lengths. A branch-length weighted version of ASTRID 
(wASTRID-pl) has mixed accuracy compared to ASTRID, 
and does not compete against the support-weighted 

Fig. 11 Wall-clock running times (in seconds) for ASTRID-2 and ASTRID-3, which differ only in the calculation of the distance matrix, on three 
different model conditions. Left: S101 with 101 species; middle: MC5 with 201 species; right: MC1H with 10001 species. Results shown are medians 
across 50 replicates. The portion in blue is for calculating the distance matrix, and the portion in orange is for running FastME
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wASTRID-s in accuracy. In general, wASTRID-s and 
wASTRAL-h serve as accurate species tree inference 
methods under ILS and are more robust to GTEE than 
ASTRID and ASTRAL, two of the most accurate sum-
mary methods. Both can scale very well, with wAST-
RID-s much faster. However, the differences in accuracy 
are dataset dependent, just as the comparison between 
ASTRAL and ASTRID for accuracy seems dataset 
dependent.

Impact of missing data
In this study, we examined two models of missing data: 
the more commonly studied i.i.d. model and the Mclade 
model. As expected, error rates increase with deletions 
of taxa, a trend that arises from reduction in informa-
tion content (and has been noted in other studies [7, 47]). 
Of greater interest, however, is the relative impact on 
ASTRAL and ASTRID, and on their weighted versions. 
We see that ASTRAL (weighted and unweighted) is more 
accurate than ASTRID (weighted or unweighted) under 
the i.i.d. model of missing data, but the reverse occurs 
for the clade-based model of missing data; this trend was 
already observed in [47, 60] for ASTRID and ASTRAL, 
and it is noteworthy that it appears for their weighted 
versions as well.

We also see that weighted versions are generally more 
accurate than unweighted versions under missing data, 
except that ASTRAL is more accurate than wASTRAL-
h for the condition of a very high degree of i.i.d. missing 
data. This trend was not reported in [25], but we note 
that they only examined very low levels of missing data 
(5% of the taxa deleted per gene). Thus, overall our find-
ings are consistent with prior studies, and show both that 
the weighted versions of ASTRID and ASTRAL have 
comparable levels of robustness to missing data (with 
advantage to wASTRID for clade-based missing data and 
advantage to wASTRAL for i.i.d. missing data).

Given these trends, it is interesting to consider the sta-
tistical consistency guarantees for these methods under 
these models of missing data. Under the i.i.d. model, 
ASTRAL is statistically consistent while ASTRID is not 
[9, 47], but both methods are statistically consistent 
under the clade-based model. That said, the condition 
under which ASTRAL is consistent for the clade-based 
model requires that it be run in exact mode, rather than 
the heuristic mode where a set of allowed bipartitions is 
computed and the returned tree must draw its biparti-
tions from that set [47]. In this experiment, we explored 
ASTRAL only in heuristic mode (and hence not in 
such a way as to guarantee statistical consistency), and 
yet wASTRAL-h and ASTRAL both showed relatively 
good robustness, for both types of missing data. Simi-
larly, it is worth noting that ASTRID is not statistically 

consistent under the i.i.d. model, and yet both ASTRID 
and wASTRID-s had accuracy that was fairly close to that 
of both ASTRAL and wASTRAL-h. Thus, all four meth-
ods (weighted and unweighted versions of ASTRAL and 
ASTRID) exhibited comparable robustness to missing 
data.

Computational performance
All tested methods, with the exception of ASTRAL, 
exhibit good scalability for large datasets, as wAST-
RAL-h, wASTRID-s, and ASTRID can efficiently handle 
genome-scale data. For instance, wASTRAL-h, wAST-
RID-s, and ASTRID completed the analysis of the avian 
biological dataset, a genome-scale dataset, in under five 
minutes, while ASTRAL required more than a day [14]. 
On simulated conditions, ASTRAL was the only method 
that ever exceeded our computational constraints during 
experimentation. This may be due to ASTRAL’s quadratic 
dependency [56] on the number of allowed bipartitions 
for the constrained search, which includes all the biparti-
tions from the input gene trees. Given many gene trees 
and high ILS or high GTEE, this set of allowed biparti-
tions can be large, which can increase the runtime for 
ASTRAL.

While wASTRID-s and wASTRAL-h are both very 
scalable, wASTRID-s is clearly faster than wASTRAL-h. 
Despite wASTRAL-h’s improved algorithm and parallel-
ism, wASTRID-s is still two orders of magnitude faster 
than wASTRAL-h, and hence might provide better scal-
ability on large-scale data.

Conclusions
While the estimation of species trees using summary 
methods, such as ASTRAL, ASTRID, MP-EST, and 
others, is now commonplace, it is known that gene 
tree estimation error reduces the accuracy of the esti-
mated species tree. We presented support-weighted 
ASTRID (wASTRID-s), an improvement over ASTRID 
that incorporates uncertainty in gene tree branches 
into its estimation of the average intertaxon distance 
matrix. The development of wASTRID-s is inspired by 
the recent work of weighted ASTRAL (wASTRAL-h), 
which improved upon ASTRAL, and we showed that 
wASTRID-s obtained similar accuracy improvements 
over ASTRID. The advantage provided by wASTRID-s 
over ASTRID is most noteworthy under higher degrees 
of gene tree estimation error. wASTRID-s has very close 
accuracy to wASTRAL-h and is sometimes more accu-
rate, but overall wASTRAL-h has a small advantage in 
accuracy, while wASTRID-s has an advantage in speed.

Although weighting usually helped accuracy for both 
ASTRID and ASTRAL, there were cases where it did not 
help, and even some cases where it reduced accuracy. All 
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tested methods show a degree of robustness to missing 
data, but ASTRAL variants and ASTRID variants differ 
in their relative performance depending on the model of 
missing data.

This study was limited to datasets where the only cause 
for gene tree discordance with the species tree was ILS and 
gene tree estimation error. When considering real world 
datasets that may have other sources of gene tree hetero-
geneity, such as GDL or HGT, it seems likely that ASTRAL 
and other quartet-based methods may have an advantage 
over ASTRID and wASTRID-s, due to the theoretical 
proofs of statistical consistency for quartet-based methods 
for conditions involving gene duplication and loss or HGT 
(and the lack of such proofs for distance-based species tree 
estimation methods under the same conditions) [61–64].

Although wASTRID-s is highly accurate and very fast, we 
recommend using wASTRID-s in conjunction with wAST-
RAL-h and other species tree estimation methods. Due to 
its speed, the inclusion of wASTRID-s adds little computa-
tional burden, and having multiple different approaches for 
estimating the species tree, each based on a very different 
technique, can provide insights into what parts of the spe-
cies tree are most reliably recovered, and which parts may 
need further data in order for full resolution.

This study suggests several directions for future work. 
Most importantly, finding a way to incorporate branch 
lengths into the branch certainty scoring for wASTRID-s, 
i.e. a hybrid weighting, could improve accuracy and might 
close the accuracy gap between wASTRID-s and wAST-
RAL-h under some conditions.

Another direction for future work is species tree estima-
tion in the presence of gene duplication and loss, where 
gene family trees have multiple copies of species and so are 
called MUL-trees [65]. The combination of DISCO [66], a 
method for decomposing the MUL-trees into single-copy 
gene trees, with ASTRID produced very good accuracy 
and scalability [66], suggesting that combining DISCO 
with wASTRID might be even more accurate.

We also note that wASTRID might be useful for super-
tree estimation, a major challenge that currently has no 
fast and accurate methods that can scale to large datasets 
[67, 68]. Although ASTRID performed poorly as a super-
tree method for some model conditions [68], the reason for 
its poor accuracy may have been its reliance on the PhyD∗ 
methods for handling missing data (i.e., constructing trees 
from incomplete matrices). Given the more accurate han-
dling of missing data introduced in this updated version of 
ASTRID and our introduced accuracy improvement taking 
branch support into account, wASTRID might prove to be 
a more accurate method for supertree estimation.

It may also be useful to use wASTRID to develop a 
weighted version of FASTRAL [11], a technique for speeding 
up ASTRAL. In FASTRAL, rather than building the set X of 

allowed bipartitions for the ASTRAL optimization criterion 
using the default setting (which can make X very large, as it 
includes by default all the bipartitions from all the input gene 
trees), the set of allowed bipartitions is taken from the spe-
cies trees computed using ASTRID on random subsets of the 
gene trees. As shown in [11], FASTRAL maintains accuracy 
(and in some cases improves accuracy) compared to default 
ASTRAL, and can greatly reduce the runtime. Given the 
potential improvements in accuracy and the demonstrated 
improvement in speed, replacing ASTRID by wASTRID to 
produce a weighted version of FASTRAL might provide sub-
stantial improvements over FASTRAL.

Another direction for future work is to modify wAST-
RID to enable improved robustness to missing data, using 
(for example) the approach in Asteroid [60], which replaces 
the BME criterion by a revised criterion that better handles 
missing data.

This study explored accuracy using normalized Robin-
son-Foulds distances. Other studies [69], have suggested 
the use of alternative criteria, including quartet-similarity, 
to evaluate accuracy, when tree estimation is hampered by 
the presence of rogue taxa (i.e., taxa that can be added to a 
tree in many places). While these conditions did not arise 
in this study, which was largely based on simulated data, 
real-world datasets often do have such rogue taxa, and so 
subsequent studies should examine this question more 
carefully. As noted in particular in [69], this question may 
be particularly relevant for analyses of very large datasets, 
with more than 1000 species (the limit explored in this 
study). Hence, future work should also evaluate species tree 
estimation on biological datasets where rogue taxa are con-
jectured or known to create challenges, and use alternative 
accuracy criteria in those cases.

Although this study examined relatively large datasets 
(up to 1001 species and 1000 genes), larger datasets may 
create additional challenges.

For example, branch support in gene trees is known to be 
very low on large datsets, as discussed in [70], potentially 
making it difficult to reliably use weighted versions of sum-
mary methods, such as weighted ASTRAL and weighted 
ASTRID. Very large datasets also present computational 
challenges, and improving the speed for the distance matrix 
calculation through parallelization is a natural direction. 
Thus, future work should examine these questions in even 
larger phylogenomic datasets.

Appendix A: commands
Weighted ASTRID
The commands differ depending on the type of support 
annotated on the gene trees. For FastTree SH-like, boot-
strap support, and aBayes support, the commands for 
wASTRID-s are respectively:
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For the final setting of wASTRID-pl (distance defined 
by path lengths, with branch lengths normalized by 
the maximum path-length in tree), the above com-
mands need to be appended with an additional flag: -m 
n-length (distance using “normalized branch length” 
instead of the default -m support).

Other summary methods
Weighted ASTRAL
We ran hybrid-weighted ASTRAL (v1.4.2.3) using the 
following command on trees annotated with aBayes 
support:

ASTRID
For all experiments except for Experiment 4, we ran 
ASTRID-2 compiled from scratch from [40] without 
missing data imputation, using the following command:

 In Experiment 4, we instead used the following 
command:

ASTRAL
We ran ASTRAL (v5.7.8) using the following command:

wastrid -i $genes -o $output # FastTree SH-like

wastrid -x 100-i $genes-o $output # bootstrap

wastrid -n 0.333 -i $genes -o $output # aBayes

astral-hybrid -x 1 -n 0.333 -i $genes -o $output

ASTRID -s -i $genes -o $output

ASTRID -u -n -s -i $genes -o $output

java -jar astral.5.7.8.jar -i $genes -o $output

FastME
ASTRID and wASTRID bind into and call subroutines 
inside FastME directly instead of calling FastME’s CLI 
interface. We bundle our software with FastME (v2.1.5). 
See https:// github. com/ RuneB laze/ inter node/ blob/ 3791b 
7e344 869f3 beb9f 11e3d 588e5 e4eff 788ba/ src/ inter node. 
rs# L345 for how wASTRID binds into FastME, which is a 
translation of the C++ code from ASTRID.

Obtaining gene tree branch support
Approximate Bayesian support
We computed IQ-TREE (v2.1.2) aBayes support using the 
following command:

where $aln is the alignment file for the gene tree, and 
$gtree is the path to the gene tree topology.

Bootstrap support
We computed bootstrap support (on the training data-
set) using FastTree (v2.1.11) on bootstrap replicates 
generated by Goalign (v0.3.5) [75].

The following command was used to generate boot-
strap replicates ($aln is the original gene alignment):

The FastTree command used for inferring a tree from 
one bootstrap replicate is ($bs_aln is one bootstrap 
alignment replicate generated by Goalign):

The FastTree bootstrap trees are then randomly 
resolved to eliminate polytomies, and then mapped by 
RAxML-NG [76] to the original gene trees using the 
following command:

https://github.com/RuneBlaze/internode/blob/3791b7e344869f3beb9f11e3d588e5e4eff788ba/src/internode.rs#L345
https://github.com/RuneBlaze/internode/blob/3791b7e344869f3beb9f11e3d588e5e4eff788ba/src/internode.rs#L345
https://github.com/RuneBlaze/internode/blob/3791b7e344869f3beb9f11e3d588e5e4eff788ba/src/internode.rs#L345
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where $gtree is the path to the original gene tree, 
and $bs_trees contains new-line separated newick 
trees inferred on the bootstrap replicates.

Appendix B: additional text
Failures to complete
ASTRAL failed to complete 24/50 replicates (replicates 
2, 4, 6, 8, 9, 11, 13, 15, 16, 17, 20, 23, 27, 28, 29, 30, 32, 
36, 38, 39, 40, 41, 48, and 49) on the MC11H condition 
( n = 1001)under k = 1000 . The 24 log files indicate that 
ASTRAL timed out on each of the replicates. An exam-
ple of the last three lines of the log files is attached:

Branch support
Many techniques are available to assess branch support. 
In the following paragraph, let T  denote the gene tree 
that we aim to annotate each non-leaf edge e ∈ E(T ) 
with support, and let A be the gene alignment that we 
used to infer T .

The most common approach is the bootstrap method 
first proposed by Joe Felsenstein [51]. Briefly, a fixed num-
ber of “bootstrap alignments” {A1, . . . ,Ak} (kaparameter 
commonly set to 100 or 1000) are sampled with replace-
ment from columns of A. Each bootstrap alignment Ai 
has same number of columns as A. Boot straptrees {Ti} 
are then infer red fromt. Variants of Felsenstein’s sup-
port exists, including Rapid Bootstrap Support [77] and 
Ultrafast Bootstrap [78] designed for speed. A different 
approach, the Transfer Bootstrap Expectation [69], was 
proposed in order to enable robustness to rogue taxa in 
large phylogenies.

This study extensively uses the approximate Bayes branch 
support [41], available in the IQ-TREE [49] software, which 
is an approximated version of the posterior probability of 
an NNI configuration at a particular branch. Similarly 
only exploring the NNI configurations around a branch, 

FastTree SH-like support, which relies on a Shimodaira-
Hasegawa-like procedure [79, 80], was also explored in this 
study.

The Bayesian posterior probability support [81], a well 
known form of support approximating the posterior prob-
ability of the bipartition, seems computationally infeasible 
for datasets in this study (n ≥ 200) and is thought to be an 
overconfident form of support [82].

Appendix C: additional table
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