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Abstract 

Reconciling a non‑binary gene tree with a binary species tree can be done efficiently in the absence of horizontal 
gene transfers, but becomes NP‑hard in the presence of gene transfers. Here, we focus on the special case of endo-
symbiotic gene transfers (EGT), i.e. transfers between the mitochondrial and nuclear genome of the same species. 
More precisely, given a multifurcated (non‑binary) gene tree with leaves labeled 0 or 1 depending on whether the 
corresponding genes belong to the mitochondrial or nuclear genome of the corresponding species, we investigate 
the problem of inferring a most parsimonious Duplication, Loss and EGT (DLE) Reconciliation of any binary refinement 
of the tree. We present a general two‑steps method: ignoring the 0–1 labeling of leaves, output a binary resolution 
minimizing the Duplication and Loss (DL) Reconciliation and then, for such resolution, assign a known number of 0s 
and 1s to the leaves in a way minimizing EGT events. While the first step corresponds to the well studied non‑
binary DL‑Reconciliation problem, the complexity of the label assignment problem corresponding to the second 
step is unknown. We show that this problem is NP‑complete, even when the tree is restricted to a single polytomy, 
and even if transfers can occur in only one direction. We present a general algorithm solving each polytomy sepa‑
rately, which is shown optimal for a unitary cost of operation, and a polynomial‑time algorithm for solving a polytomy 
in the special case where genes are specific to a single genome (mitochondrial or nuclear) in all but one species. This 
work represents the first algorithmic study for reconciliation with endosymbiotic gene transfers in the case of a multi‑
furcated gene tree.
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Introduction
Reconciliation is the process of embedding a gene fam-
ily tree into a species tree (i.e. reconstructing a mapping 
between the gene tree and the species tree) to explain 
how the gene family evolved inside the species tree 
according to the gene tree model, through evolution-
ary events modifying gene contents in genomes, such as 
losses, duplications or horizontal gene transfers (HGTs). 
This allows deciphering the orthology (divergence 

through speciation), paralogy (divergence through dupli-
cation) or xenology (divergence through HGT) rela-
tion between genes, which has important implications 
on understanding functional specificity of gene copies. 
For this purpose, the most critical part is the construc-
tion of a “good” gene tree, i.e. a gene tree reflecting the 
true evolution of the nucleotide or amino acid sequences 
of genes. In fact, as shown in many studies [1], the result 
of a reconciliation model strongly depends on the con-
sidered trees. For example, due to potential errors in the 
trees, some of the plant datasets analysed in [2] produced 
unrealistic evolutionary histories with unexpected high 
number of gene duplications and losses.

Unfortunately, for many reasons related to sequence 
alignment, limitations of the considered phylogenetic 
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method or issues with the sequence dataset (not enough 
mutations or too many, both cases leading to absence of 
signal), gene trees are almost never inferred with abso-
lute certainty. As phylogenetic reconstruction methods 
are usually accompanied with statistical evaluations on 
branches, a solution for removing ambiguities in a tree 
is collapsing its weakly supported branches, leading to 
a non-binary tree (tree with multifurcated nodes, also 
called polytomies). The problem then becomes one of 
simultaneously finding a binary refinement and optimal 
reconciliation of the multifurcated tree, more precisely, 
inferring an optimal evolutionary scenario leading to 
a binary refinement of the tree. This strategy has been 
applied, for example, to infer the evolution of the gene 
families responsible for alkaloid accumulation in plants 
[3].

Reconciling a non-binary gene tree with a binary spe-
cies tree can be done efficiently in the absence of HGTs (a 
review can be found in [4]). As far as we know, the most 
efficient algorithm for minimizing a Duplication/Losses 
(DL) distance is PolytomySolver [5], which handles unit 
costs in linear time, improves the best complexity of pre-
vious algorithms for the general DL cost model by a lin-
ear factor and enables to account for various evolutionary 
rates across the branches of a species tree. However, the 
problem becomes NP-hard in the presence of gene trans-
fers [6]. Various heuristics have been developed for the 
DTL (Duplication, Transfer, Loss) reconciliation of a 
non-binary gene tree with a binary species tree [7–9].

In this paper, we focus on the particular case of DTL 
non-binary gene tree reconciliation, where transfers can 
only move genes between the mitochondrial and nuclear 
genome of the same species – called endosymbiotic gene 
transfers. In fact, it is well known that episodes of such 
gene transfers, mainly from the mitochondria to the 
nucleus, have marked the eukaryote evolution since an 
initial endosymbiotic event integrating an α−proteobac-
terial genome into an eukaryotic cell, which is known to 
be at the origin of all extent mitochondria. Such events 
resulted in a significant reduction of the mitochondrial 
genome. Understanding how both nuclear and mitochon-
drial genomes have been shaped by gene loss, duplication 
and transfer is important to shed light on a number of 
open questions regarding the origin, evolution, and char-
acteristics of gene coding capacity of eukaryotes, but also 
on the rooting of the eukaryotic tree.

From a computational point of view, EndoRex [2] is 
the first algorithm developed for integrating such endo-
symbiotic events in a reconciliation model. Given a 
gene family with gene copies labeled by 0 or 1 depend-
ing on whether they are encoded in the mitochondrial 
or nuclear genome of a given species, a binary gene tree 

for the gene family and a binary species tree for the 
considered species, EndoRex infers a most parsimoni-
ous scenario of duplications, losses and endosymbiotic 
gene transfers (EGT) explaining the gene tree given the 
species tree. It is an exact polynomial-time algorithm, 
which can be used to output all minimum cost solu-
tions, for arbitrary costs of operations.

Here, we explore the case of a non-binary gene tree. 
More precisely, given a multifurcated gene tree for a 
gene family with 0–1 labeled genes (leaflabels of the 
gene tree), the problem consists in inferring a most par-
simonious duplication, loss and EGT scenario leading 
to a binary refinement of the tree. Our method is in two 
steps: ignoring the 0–1 labeling of the gene tree leaves, 
output all resolutions minimizing the DL-Reconcilia-
tion cost and then, for each resolution (i.e. binary tree), 
assign a known number of 0s and 1s to the leaves in a 
way minimizing EGT events. Step one can be done effi-
ciently as recalled above. Therefore, we focus on the 
second step which consists in assigning a 0–1 labeling 
to the nodes of a binary tree, in a way minimizing the 
considered evolutionary distance. We show in "Com-
plexity of the dle-binl and dle-binl1 Problems" and 
"The one-direction DLE-reconciliation problem" sec-
tions that this problem is NP-complete, even when the 
tree is restricted to a single multifurcated node (also 
called polytomy) and, surprisingly, even if transfers can 
occur in a single direction (e.g. from the mitochondrial 
to the nuclear genome). It is polynomial in the very 
restricted case of a binary tree obtained as an optimal 
refinement (step 1) of a star-tree, and with each leafla-
bel present at most a fixed number of times. We then, 
in "A general algorithm for the dle-binl problem" sec-
tion, present a general algorithm solving each polytomy 
separately, which is shown optimal for a unitary cost of 
operations.

Except for species conserving the traces of an ances-
tral eukaryotic origin, few genes are expected to reflect 
an intermediate endosymbiotic integration of the mito-
chondrial gene content to the nucleus, with gene cop-
ies in both the nuclear and mitochondrial genome. 
This is the case of the eukaryotes with complete mito-
chondrial genomes explored in [10] (statistics summa-
rized in [2]): among the 2,486 species, only 52 species 
have mitochondrial-encoded genes also present in the 
nuclear genome. This motivates "An exact algorithm 
for the one-species version of the dle-binl1 problem" 
where we develop a polynomial-time algorithm for the 
b-labeling problem in the special case where, in each 
polytomy, genes are specific to a single genome (mito-
chondrial or nuclear) in all but one species. We first 
begin, in the next section, by formally defining our 
problems.
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Preliminaries, evolutionary model and definitions
All trees are considered rooted. Given a tree T, we 
denote by r(T) its root, by V(T) its set of nodes and by 
L(T ) ⊆ V (T ) its leafset. We call n = |L(T )| the size of T. 
A node x is a descendant of y if x is on the path from y to a 
leaf of T and an ancestor of y if x is on the path from r(T) 
to y; x is a strict descendant (respect. strict ancestor) of x′ 
if it is a descendant (respec. ancestor) of x′ different from 
x′ . Moreover, x is the parent of y  = r(T ) , denoted p(y), 
if it directly precedes y on this path. In this latter case, 
y is a child of x. We denote by E(T) the set of edges of T, 
where an edge is represented by its two terminal nodes 
(x, y), with x being the parent of y. More generally, if x is 
an ancestor of y, (x, y) denotes the path between x and y. 
The subtree of T rooted at x (i.e. containing all the nodes 
descendant from x in T) is denoted T[x]. The lowest com-
mon ancestor (LCA) in T of a subset L′ of L(T), denoted 
lcaT (L

′) , is the ancestor common to all the nodes in L′ 
which is the most distant from the root.

An internal node (a node which is not a leaf ) is said to 
be unary if it has a single child, binary if it has two chil-
dren, and a polytomy if it has at least two children. More-
over, a star-tree is a tree with a single internal node. We 
will denote by xl and xr the two children of a binary node. 
The node xl (respec. xr ) is called the sibling of xr (respec. 
xl).

A tree R is an extension of a tree T if it is obtained from 
T by grafting unary or binary nodes in T, where grafting a 
unary node x on an edge (u, v) consists in creating a new 
node x, removing the edge (u, v) and creating two edges 
(u, x) and (x, v), and in the case of grafting a binary node, 
also creating a new leaf y and an edge (x,  y). In the lat-
ter case, we say that y is a grafted leaf. Moreover, given 
a function f defined from U to V, an extension f ′ of f is a 
function defined from U ′ to V ′ with U ⊂ U ′ and V ⊆ V ′ 
such that for any x ∈ U  , f ′(x) = f (x).

A species tree for a set � of species is a tree S with 
a bijection between L(S) and � . In this paper, we 
assume that the species tree S for a given set of spe-
cies � is known, rooted and binary. For example, the 
tree S in Fig. 1.(1) is a species tree for the set of species 
� = {A,B,C} . A gene family is a set Ŵ of genes where each 
gene x ∈ Ŵ belongs to a given species sL(x) of � . A tree G 
is a gene tree for a gene family Ŵ if its leafset is in bijection 
with Ŵ . We write 〈G, sL〉 when each leaf of G is meant to 
be fully identified by its species labeling, i.e. the species 
sL(x) it belongs to (e.g. gene tree in Fig. 1.(3); lowercase 
letters represent genes in the genome represented by the 
same letter in uppercase).

In this paper, we will consider an additional b-labe-
ling for a gene x: bL(x) = 0 if x belongs to the mitochon-
drial genome of sL(x) , and bL(x) = 1 if x belongs to the 

Fig. 1 (1) A species tree S on � = {A, B, C} ; (2) A multifurcated gene tree GM where leaves are identified by a species mapping sM
L

 (a lowercase letter 
corresponds to the genome identified by the same uppercase letter) and a b‑mapping bM

L
 (the 0–1 index of each leaf ); (3) a 〈G, sL〉 binary refinement 

of 〈GM , sM
L
〉 (i.e. 〈GM , sM

L
, bM

L
〉 ignoring the b‑labeling) and (4) a 〈G, sL , bL〉 binary refinement of 〈GM , sM

L
, bM

L
〉 ; (5) A DL‑Reconciliation of 〈G, sL〉 and (6) 

a DLE‑Reconciliation of 〈G, sL , bL〉 . The internal node labeling corresponds to the LCA‑mapping with S, squares correspond to duplications, triangles 
to EGTs, dotted lines to losses and unary nodes to EGTLs. The s and b‑labeling of nodes with a lost child are omitted. For a unitary cost of operations, 
the DLE‑Reconciliation is of cost 9. It is optimal for the DLE-BinL problem
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nuclear genome of sL(x) . We write 〈G, sL, bL〉 when we 
want to specify that each leaf of G is fully identified by 
these two labels (e.g. trees (2) and (4) in Fig. 1). To sum-
marize, G, 〈G, sL〉 and 〈G, sL, bL〉 are three notations for a 
gene tree, the two last specifying the way the leaves of 
G are identified. Later, we will need to define labeling 
for internal nodes of G.

A binary tree is a tree with all internal nodes being 
binary. If internal nodes have one or two children, then 
the tree is said partially binary. A multifurcated tree is 
a tree containing at least one polytomy. For example, 
in Fig.  1, the tree (2) is a multifurcated tree with two 
polytomies.

Definition 1 (binary refinement) Let 〈GM , sML , bML 〉 
be a multifurcated tree. A binary tree 〈G, sL, bL〉 
is said to be a binary refinement of 〈GM , sML , bML 〉 
if V (GM) ⊆ V (G) and for every x ∈ V (GM) , 
L(�GM , sML, b

M
L�[x]) = L(�G, sL, bL�[x]) . We denote 

by B(〈GM , sML , bML 〉 the set of binary refinements of 
〈GM , sML , bML 〉.

As for a multifurcated tree 〈GM , sML 〉 , a binary refinement 
〈G, sL〉 and the set of binary refinements B(〈GM , sML 〉) are 
defined in the same way, just ignoring the b-labeling.

In Fig. 1, the tree in (4) is a binary refinement of the 
tree in (2), and the tree in (3) is the same binary refine-
ment, just ignoring the 0–1 labeling of leaves.

We need a final notation. Let X ⊆ L(�G, sL, bL�) . The 
count matrix Count(X) for X is a |�| × 2 matrix defined 
as follows:

DLE reconciliation
Inside the species’ genomes, genes undergo Speciation 
(Spe) when the species to which they belong do, but 
also Duplication (Dup) i.e. the creation of a new gene 
copy, Loss of a gene copy, and transfer when a gene is 
transmitted from a source to a target genome. In this 
paper, we only consider endosymbiotic gene transfers, 
denoted EGT, i.e. the special case of transfers only 
allowing the transmission of genes from the mitochon-
drial genome to the nuclear genome of the same spe-
cies, or vice-versa. If the transmission of a gene from 
a genome A to a genome B is accompanied by the loss 
of the gene in A, we refer to the event as an EGTL for 
( EGT − Loss ) event.

We are now ready to recall the definition of a DLE-
Reconciliation as introduced in [2].

{

Count(X)[σ , 0] = number of genes g ∈ X such that sL(g) = σ and bL(g) = 0
Count(X)[σ , 1] = number of genes g ∈ X such that sL(g) = σ and bL(g) = 1

Definition 2 (DLE-Reconciliation) Let 〈G, sL, bL〉 be 
a rooted binary gene tree for a gene family Ŵ and S be 
a rooted binary species tree for the species � the genes 
belong to. A DLE-Reconciliation of 〈G, sL, bL〉 with S (or 
simply DLE-Reconciliation if no ambiguity) is a quadru-
plet 〈R, s, b, e〉 where R is a partially binary extension of G, 
s is an extension of sL from V(R) to V(S), b is an extension 
of bL from V(R) to {0, 1} , and e is an event labeling of the 
internal nodes of R, such that: 

1 Each unary node x with a single child y is such that 
e(x) = EGTL , s(x) = s(y) and b(x)  = b(y) ; x is an 
EGTL event with source genome σb(x) and target 
genome σb(y) , where σ = s(x) (or equivalently s(y)).

2 For each binary node x of R with two children xl and 
xr , one of the following cases holds: 

(a) s(xl) and s(xr) are the two children of s(x) in 
S and b(xl) = b(xr) = b(x) , in which case 
e(x) = Spe;

(b) s(xl) = s(xr) = s(x) = σ and b(xl) = b(xr)

= b(x) in which case e(x) = Dup representing 
a duplication in σb(x);

(c) s(xl) = s(xr) = s(x) = σ and b(xl)  = b(xr) in 
which case e(x) = EGT  ; let y be the element 
of {xl , xr} verifying b(x)  = b(y) , then e(x) is 
an EGT with source genome σb(x) and target 
genome σb(y).

Grafted leaves in the extension R correspond to gene losses.
As R is as an extension of G, each node in G has a cor-

responding node in R. In particular, the s, b and e labeling 

on R induce an s, b and e labeling on the nodes of G. The 
difference between G and R are additional binary nodes 
with a child being a grafted leaf (a loss), and unary nodes 
corresponding to EGTL events.

A DL-reconciliation of 〈G, sL〉 is defined as in Defini-
tion  2, ignoring the b-labeling, i.e. it is a tuple 〈R, s, e〉 
where R is an extension of G. For example, in Fig. 1, (5) 
is a DL-Reconciliation of the gene tree in (3), and (6) is a 
DLE-Reconciliation of the tree in (4).

Optimal reconciliation: Let c be a function attributing a 
cost to each event in DLE = {Spe,Dup, Loss,EGT ,EGTL} . 
As it is usually the case, we will assume a 0 cost for spe-
ciations and positive costs for all the other events. 
Moreover, we assume that c(Dup) < c(EGT )+ c(EGTL) 
as otherwise duplications could be never inferred in a 
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most parsimonious reconciliation. Similarly, we assume 
c(EGT ) < c(Dup)+ c(EGTL) to allow for EGTs and 
c(EGTL) < c(EGT )+ c(Loss) to allow for EGTLs.

Given a DLE-Reconciliation R = �R, s, b, e� (respec. 
DL-Reconciliation 〈R, s, e〉 ), the cost C(R) of R is 
the sum of costs of the events labeling the inter-
nal nodes of R plus the sum of costs of the losses, i.e. 
C(R) =

∑

x∈V (R)\L(R) c(e(x))+ |L(R)Loss| ∗ c(Loss) where 
|L(R)Loss| is the number of losses in R . In this paper, we 
seek for a most parsimonious reconciliation, i.e. a rec-
onciliation of minimum cost, also called optimal rec-
onciliation. We denote by DLE(G,  S) (respec. DL(G,  S)) 
the cost of an optimal DLE-Reconciliation (respec. 
DL-Reconciliation).

From now on, we denote by δ , � , τ and ρ respectively, 
the cost of a duplication, a loss, an EGT and an EGTL 
event. The cost function is said to be unitary when 
δ = � = τ = ρ.

The following lemma makes the link between 
an optimal DLE-Reconciliation and the optimal 
DL-Reconciliation.

Lemma 1 Any optimal DLE-Reconciliation 
RDLE = �RDLE , sDLE , bDLE , eDLE� of 〈G, sL, bL〉 can 
be obtained from the optimal DL-Reconciliation 
RDL = �RDL, sDL, eDL� where RDLE is obtained from RDL 
by possibly adding unary nodes (corresponding to EGTLs), 
sDLE is an extension of sDL and eDLE is obtained from eDL 
by labeling unary nodes as EGTLs and possibly converting 
duplications into EGTs.

Proof Let’s consider, by contradiction, an optimal DLE-
Reconciliation RDLE of 〈G, sL, bL〉 that cannot be obtained 
from the optimal DL-Reconciliation by possibly adding 
unary nodes and possibly converting duplications into 
EGTs. Let’s now consider the DL-Reconciliation RDL 
obtained from RDLE by removing all unary nodes, con-
verting all EGTs into duplications and ignoring the binary 
assignement of genes. Let x be a duplication of RDL with 
at least one loss as a child. By construction of RDL , x is 
either a duplication or an EGT node in RDLE . 

1 If x is a duplication in RDLE , then removing this 
duplication and one of its loss child and connecting 
its other child to its parent (if the x is the root then 
its other child becomes the new root) would result in 
a DLE-Reconciliation R′

DLE which cost is lower than 
C(RDLE) . This contradicts the fact that RDLE is opti-
mal.

2 If x is an EGT in RDLE , then replacing this EGT by an 
EGTL node and removing its loss child from RDLE 
would result in a DLE-Reconciliation R′

DLE which 

cost is lower than C(RDLE) (because we assume 
c(EGT )+ c(Loss) > c(EGTL)). This also contradicts 
the fact that RDLE is optimal.

Therefore, RDL has no duplication node with a loss as a 
child and thus all duplication nodes of RDL have a cor-
responding node in G. Let R∗

DL be the optimal DL-Rec-
onciliation of G with S. Note that RDL cannot have less 
duplication nodes than R∗

DL as the optimal DL-Recon-
ciliation has the minimum number of duplication nodes 
possible for a DL-Reconciliation [11]. As each duplica-
tion node in RDL has a corresponding node in G, it has 
also a corresponding node in R∗

DL . If each such duplica-
tion node in RDL is also a duplication node in R∗

DL , then 
RDL = R∗

DL , which is in contradiction with the hypoth-
esis. Therefore, there is a least one duplication node x in 
RDL which corresponding node in R∗

DL is a speciation. 
Both the children of x in RDL must have a loss as a child 
as otherwise x would be a speciation. Similarly to the pre-
vious case, x is either a duplication or an EGT in RDLE 
and removing the loss children of its two children (and 
eventually adding an EGTL event if needed) results in a 
DLE-Reconciliation R′

DLE with x transformed into a spe-
ciation, and thus C(R′

DLE) < C(RDLE) . This is a contra-
diction as we supposed RDLE to be optimal.  �

Recall that the optimal DL-Reconciliation is 
unique and sDL is the LCA-mapping [4], i.e. for 
each node x of RDL corresponding to a node of G, 
sDL(x) = lcaS({sL(g) : g ∈ G[x]}) . Moreover, as sDLE is 
an extension of sDL and RDLE is an extension of RDL , for 
each node x of G, sDLE(x) = sDL(x) . See for an example 
the optimal DLE-Reconciliation in Fig.  1.(6), obtained 
from the optimal DL-Reconciliation (5) by converting 
two duplication nodes into EGT nodes and adding an 
EGTL unary node on the terminal edge leading to the 
gene in genome C.

Given a DLE-Reconciliation RDLE , removing an even 
number of consecutive EGTL nodes can only lead to a 
more parsimonious DLE-Reconciliation. Therefore, we 
assume that a reconciliation does not involve such nodes. 
This assumption is used in the following definition of a 
compressed reconciliation.

Definition 3 (Compressed reconciliation) A com-
pressed DLE-Reconciliation of 〈G, sL, bL〉 is a tuple 
〈G, s, b, eV , eE〉 obtained from a DLE-Reconciliation 
〈R, s, b, e〉 of 〈G, sL, bL〉 , where eV  is simply e restricted to 
the nodes of G and eE is a P/A (Presence/Absence) labe-
ling of the edges of G indicating the presence or absence 
of an EGTL node on that edge, i.e. obtained as follows: 
Let G′ be the tree obtained from R by removing grafted 
leaves and their parental nodes (i.e. ignoring losses). For 
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each edge (x, y) of G, let x′, y′ be the corresponding nodes 
in G′ ( G′ differs from G only by unary nodes). Then:

A compressed DL-Reconciliation of 〈G, sL〉 is defined 
similarly, ignoring b and the eE labeling. For example, in 
Fig. 1, the compressed DL-Reconciliation of (5) is simply 
that tree R(〈G, sL〉) where we ignore losses, i.e. dotted 
lines. Moreover, the compressed DLE-Reconciliation of 
(6) is that tree R(〈G, sL, bL〉) where we ignore losses and 
replace the unary node (EGTL) on the branch leading to 
c1 by a label on that branch.
For a compressed DLE-Reconciliation Rc = �G, s, b, eV , eE� , 
denote by |eVEGT | the number of EGT nodes, by 
|eE | the number of edges labeled P, i.e. the num-
ber of EGTL events, and define the cost of Rc as 
C(Rc) = DL(G, S)+ |eVEGT | ∗ (τ − δ)+ |eE | ∗ ρ.

Lemma 2 From a compressed DLE-Reconciliation 
Rc = �G, s, b, eV , eE� for 〈G, sL, bL〉 , we can obtain a DLE-
Reconciliation R of 〈G, sL, bL〉 of cost C(R) = C(Rc) in 
linear time.

Proof Let Rc = �G, s, b, eV , eE� be a compressed DLE-
Reconciliation for 〈G, sL, bL〉.

Let RDL = �RDL, s, eDL� be the optimal DL-Reconcili-
ation of G with S. We construct a DLE-Reconciliation 
R = �RDLE , sDLE , bDLE , eDLE� from RDL and Rc in linear 
time as follows:

• RDLE is obtained from RDL by grafting a unary node 
(EGTL) on the edge (p(x), x) (in RDL ) for each node 
x ∈ V (RDL) ∩ V (G) such that eE(p(x), x) = P.

• sDLE is the LCA-mapping.
• eDLE(x) = eDL(x) for each node x ∈ V (RDL)∩

V (RDLE) and eDLE(x) = EGTL for each unary node 
of RDLE . For each node x ∈ V (G) ∩ V (RDLE) , if 
eV (x) = EGT  then we set eDLE(x) = EGT .

• bDLE(x) = b(x) for each node x ∈ V (RDLE) ∩ V (G) . 
For each node x ∈ V (RDLE) \ V (G) , let y be the 
lowest ancestor of x such that y ∈ V (RDLE) ∩ V (G) . 
If y is not an EGT node, then set bDLE(x) = b(y) 
if there is no EGTL event in the path (y,  x) (in 

eE(x, y) =

{

P if the path (x′, y′) in G′ contains a unary node

A if the path (x′, y′) in G′ contains no unary node

RDLE ), and set bDLE(x) = 1− b(y) otherwise. Else 
if y is an EGT node, set bDLE(x) = b(y) if the EGT 
node y does not transfer in the direction of x and 
bDLE(x) = 1− b(y) otherwise.

As R is constructed from RDL , it is easy to see that the 
species labeling of the nodes of RDLE is correct. By con-
struction, the b-labeling of the nodes of RDLE is also 
correct, as the b-labeling b is assumed correct (thus the 
b-labeling of the nodes x ∈ V (RDLE) ∩ V (G) is correct) 
and the b-labeling of the nodes x ∈ V (RDLE) \ V (G) is set 
according to the definition.
Notice that there are |eE | EGTL events and |eVEGT | EGT 
events in R . Also, the number of loss events in R is the 
same as the number of loss events in RDL . Let |eDLDup | be 
the number of duplication nodes in the DL-Reconcilia-
tion. As an EGT event in R may only occur on a node 
that is a duplication in RDL , there are |eDLDup | − |eVEGT | 
duplication events in R . Therefore, the cost of R is: 
C(R) = DL(G, S)+ |eVEGT | ∗ (τ − δ)+ |eE | ∗ ρ  �

Corollary 1 From an optimal compressed DLE-Recon-
ciliation Rc = �G, s, b, eV , eE� , an optimal DLE-Reconcili-
ation R of 〈G, sL, bL〉 can be obtained in linear time.

Proof For a compressed DLE-Reconciliation 
Rc = �G, s, b, eV , eE� , a DLE-Reconciliation leading to Rc , 
of the same cost as Rc , can be found in linear-time by the 
constructive proof of Lemma 2. In particular, a DLE-Rec-
onciliation R can be obtained from an optimal compressed 
DLE-Reconciliation Rc , and this DLE-Reconciliation R is 
necessarily optimal. In fact, from Lemma 1, any optimal 
DLE-Reconciliation RDLE can be obtained from the opti-
mal DL-Reconciliation. Then, by construction of RDLE , 
C(RDLE) = DL(G, S)+ |eVEGT | ∗ (τ − δ)+ |eE | ∗ ρ  , 
which is also the cost of its compressed DLE-Reconcilia-
tion Rc

DLE . But as Rc is optimal, C(Rc) ≤ C(Rc
DLE) , and 

thus C(R) ≤ C(RDLE) , but as RDLE is by definition an 
optimal DLE-Reconciliation, we have C(R) = C(RDLE) 
and thus R is also optimal.  �

The problem of finding an optimal DLE-Reconcil-
iation is thus equivalent to that of finding an optimal 
compressed DLE-Reconciliation.

By default, we will consider compressed DLE-Reconcil-
iations unless we explicitly state that the considered rec-
onciliation is non-compressed.
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Problem statements
The general problem of simultaneously refining and rec-
onciling a multifurcated gene tree under the DLE evolu-
tionary model is formulated as follows.

DLE Non-binary Reconciliation problem:
Input: A binary species tree S, a multifurcated gene 

tree 〈GM , sML , bML 〉 and a cost function c on DLE.
Output: An optimal DLE-Reconciliation 〈G, s, b, eV , eE〉 

of 〈G, sL, bL〉 over all �G, sL, bL� ∈ B(�GM , sML , bML �).
The DL Non-binary Reconciliation problem 

is simply the restriction of the previous problem to 
DL-Reconciliation.

The complexity of the DLE Non-binary Reconcili-
ation problem Problem is unknown. Our resolution 
method for this problem operates in two steps:

Resolution method:
Step  1: Find a binary refinement 〈G, sL〉 of 〈GM , sML 〉 

leading to an optimal DL-Reconciliation.
Step  2: Given the binary tree 〈G, sL〉 obtained above, 

find a b-labeling bL such that 〈G, sL, bL〉 is a binary refine-
ment of 〈GM , sML , bML 〉 leading to an optimal DLE-Recon-
ciliation 〈G, s, b, eV , eE〉.

Although not guaranteed to be optimal, this method 
is a natural greedy heuristic for the DLE Non-binary 
Reconciliation problem. In fact, as stated in Lemma 1, 
an optimal DLE binary reconciliation (result of Step  2) 
is obtained from a DL binary reconciliation (result of 
Step 1) by simply converting some duplication nodes into 
EGT nodes and adding EGTL labels on branches. Moreo-
ver, Step  1 can be solved efficiently using existing algo-
rithms such as PolytomySolver [5].

Having a binary refinement 〈G, sL〉 of 〈GM , sML 〉 , the 
problem then reduces (Step 2) to finding a b-labeling for 
G allowing for an optimal DLE-Reconciliation.

Notice that, in contrast to the species labeling sL , the 
b-labeling bL of the leaves of G is unknown after Step 1. 
The problem is therefore not reduced to extending a bL 
labeling to the internal nodes, but rather consists in find-
ing an appropriate labeling bL of the leaves as well. This 
labeling is constrained by the b-labeling of GM , as formu-
lated in the next lemma which is directly deduced from 
the definition of a binary refinement (Definition 1).

Lemma 3 Let 〈GM , sML , bML 〉 be a multifurcated tree and 
〈G, sL〉 be a binary refinement of 〈GM , sML 〉 . Then 〈G, sL, bL〉 
is a binary refinement of 〈GM , sML , bML 〉 if and only if, for any 
node x of G with a corresponding node (also denoted x) in GM , 
Count(L(�GM , sML , bML �[x])) = Count(L(�G, sL, bL�[x])).

Therefore, in addition to 〈G, sL〉 corresponding to a 
binary refinement of 〈GM , sML 〉 , the input of Step  2 also 
includes a set of constraints induced by the b-labeling of 
V (GM) . These constraints can be represented as a set of 

|�| × 2 matrices M(x) for each x ∈ I , where I is the subset 
of V (G) \ L(G) with corresponding nodes in V (GM) . The 
pair (M, I) is called the b-constraint of G (Fig. 2. (1)).

Definition 4 Given a binary tree 〈G, sL〉 and a 
b-constraint labeling (M,  I) for G, a labeling bL is 
said to be consistent with (M,  I) if, for any x ∈ I , 
Count(L(�G, sL, bL�[x]) = M(x).

Moreover, recall from Lemma 1 and Definition 3 that 
an optimal DLE-Reconciliation of a tree 〈G, sL, bL〉 is 
obtained from an optimal DL-Reconciliation of 〈G, sL〉 by 
possibly converting duplication nodes to EGTs and add-
ing a P/A labeling on edges. Moreover, as noted before, 
the s labeling of an optimal DLE-Reconciliation should be 
the LCA-Mapping. We denote it slca.

The main problem (Step 2) can thus be defined as fol-
lows. See an example in Fig. 2 where (1) is the input of 
the DLE-BinL problem and (2) is its output.

DLE-BinL Problem:
Input: A binary tree 〈G, sL〉 , a b-constraint (M, I) and a 

species tree S;
Output: An optimal DLE-Reconciliation 

〈G, slca, b, eV , eE〉 of 〈G, sL, bL〉 with S, where bL is a b-labe-
ling consistent with (M, I).

Notice that, from Lemma  1, in the case of a unitary 
cost, the problem is equivalent to finding a minimum 
number of added EGTL events.

We call DLE-BinL1 the DLE-BinL problem where I is 
restricted to the root of G (which corresponds to consid-
ering a star-tree as the initial multifurcated tree).

Complexity of the DLE‑BinL and DLE‑BinL1 
problems
In this section, the considered cost is unitary; the com-
plexity results are then naturally extendable to a gen-
eral cost. The DLE-BinL problem in its decision version 
is defined bellow; the decision version of DLE-BinL1 is 
defined similarly.

DLE-BinL decision version:
Input: A binary tree 〈G, sL〉 , a b-Constraint (M,  I), a 

species tree S and an integer Cost;
Question: Is there a DLE-Reconciliation 〈G, slca, b, eV , eE〉 

of 〈G, sL, bL〉 with S where bL is a b-labeling consistent with 
(M, I) for which C(�G, slca, b, eV , eE�) ≤ Cost?

First observe that the DLE-BinL decision problem is in 
NP. In fact, given a DLE-Reconciliation 〈G, slca, b, eV , eE〉 
of 〈G, sL, bL〉 , we can compute the cost of the DLE-Rec-
onciliation (to verify if it is less than or equal to Cost) and 
verify if the b-labeling bL is consistent with (M, I) in poly-
nomial time by traversing the tree G.
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According to the considered Resolution method pre-
sented in "Problem statements" section, the input of 
Step  2 (finding an optimal DLE-Reconciliation of a 
binary gene tree) is not an arbitrary binary tree, but 
rather a binary refinement of an initial multifurcated tree 
〈GM , sML 〉 , leading to an optimal DL-Reconciliation. In 
this section, we show that the DLE-BinL problem is NP-
complete event with this requirement, in all but one very 
constrained version of the problem.

For a multifurcated tree 〈GM , sML 〉 , let BDL(〈G
M , sML 〉, S) 

be the set of binary refinements of 〈GM , sML 〉 leading to 
an optimal DL-Reconciliation with S. The DL-DLE-BinL 
(respec. DL-DLE-BinL1) decision problem is defined as 
the DLE-BinL (respec. DLE-BinL1) decision problem 
with the additional restriction that the binary tree given 
as input is in BDL(〈G

M , sML 〉, S).

Complexity of the DL‑DLE‑BinL1 problem
We first show, by reduction from Weighted Monotone 
one-in-three-satisfiability problem (Weighted Mono-
tone 1-in-3-SAT Problem), that the DL-DLE-BinL1 
decision problem is NP-complete. We can then deduce 
that DL-DLE-BinL is also NP-complete, as well as the 
more general DLE-BinL problem.

As the DLE-BinL decision problem is in NP, the 
DL-DLE-BinL1 decision problem is also in NP. The 
Weighted Monotone 1-in-3-SAT Problem is 

defined as follows (monotone meaning that there are 
no negation of variables in the clauses).

Weighted Monotone 1-in-3-SAT:
Instance: A set of clauses C = (C1 ∧ C2 ∧ · · · ∧ Ck) 

on a finite set Ł = {ℓ1, ℓ2, . . . , ℓm} of variables where 
each Ci , 1 ≤ i ≤ k , is a clause of the form (x ∨ y ∨ z) 
with {x, y, z} ⊆ Ł and a positive integer n ( n ≤ m);

Question: Is there a truth assignment with exactly n 
variables set to True satisfying C such that exactly one 
literal in each clause is set to True?

As the Monotone 1-in-3-SAT problem is NP-com-
plete, the Weighted Monotone 1-in-3-SAT problem 
is also NP-complete.

Given an instance I = (C, Ł, n) of the Weighted 
Monotone 1-in-3-SAT problem, we compute, 
in polynomial time, a corresponding instance 
I ′ = (�G, sL�, (M, I), S,Cost) of the DL-DLE-BinL1 deci-
sion problem.

First, the set of species � is computed as follows:

• For each clause Ci ∈ C , 1 ≤ i ≤ k , � contains the 
species Ci.

• For each clause Ci ∈ C , 1 ≤ i ≤ k and for each 
s ∈ {1, . . . ,m− 1+ (m− 3) ∗ k} , � contains the 
species Tis.

Let d = m− 1+ (m− 3) ∗ k . The species tree S is:
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  For 1 ≤ j ≤ m , let Sj be a gene tree species label iso-
morphic to S from which we removed all leaves Ci 
( 1 ≤ i ≤ k ) such that ℓj is not in present the clause Ci.

The gene tree G is then:

Notice that for each species Ci , 1 ≤ i ≤ k , G contains 
exactly 3 leaves mapped to Ci and that for each species 
Tis , 1 ≤ i ≤ k , 1 ≤ s ≤ d , G contains exactly m leaves 
mapped to Tis.

The b-constraint (M, I) is defined as follows:

• I = {r(G)}

• For each species Ci , 1 ≤ i ≤ k , we require that one of 
the three leaves mapped to Ci be labeled by 1 and that 
the remaining two leaves mapped to Ci be labeled by 
0.

• For each species Tis , 1 ≤ i ≤ k , 1 ≤ s ≤ d , we require 
that n of the m leaves mapped to Tis be labeled by 1 
and that the remaining m− n leaves mapped to Tis be 
labeled by 0.

Finally, Cost is set to DL(G, S).

Lemma 4 The gene tree 〈G, sL〉 computed in the reduc-
tion is in BDL(〈G, sL〉, S).

Proof Let GM be a star tree on the leaves of G and let R∗
DL 

be the optimal DL-Reconciliation of G with S. Notice that 

R∗
DL contains m− 1 duplication nodes and (m− 3) ∗ k 

losses and thus C(R∗
DL) = m− 1+ (m− 3) ∗ k.

We will now show that for any binary refinement G′ of 
the star tree GM , if the optimal reconciliation of G′ with 
S contains less than (m− 3) ∗ k losses, then it contains 
at least m− 1+ (m− 3) ∗ k duplication nodes. Let 
RDL = �R, slca, e� be the optimal DL-Reconciliation of G′ 
with S. Note that we consider here a non-compressed 
DL-Reconciliation. If the number of losses in RDL is 
less than (m− 3) ∗ k , then there must exist i ( 1 ≤ i ≤ k ) 
such that there are less than m− 3 losses in the species 
in {Ci,Ti1 ,Ti2 , . . . ,Tid , p(Ci), p(Ti1), p(Ti2), . . . , p(Tid )} in 
RDL . Let ℓ0 be the number of losses in Ci in RDL and let 
ℓs ( 1 ≤ s ≤ d ) be the number of losses in Tis in RDL . As 
exactly 3 leaves of G′ are mapped to Ci , there are 3+ ℓ0 
non-duplication nodes of RDL mapped to Ci . There is 
thus at most 3+ ℓ0 speciation nodes mapped to p(Ci) 
in RDL because a speciation node mapped to p(Ci) must 
have one child mapped to Ci (that child may be a dupli-
cation node mapped to Ci , but then this duplication 
node has at least two non-duplication nodes descendant 
mapped to Ci that are not children of a speciation node 
mapped to p(Ci) ). Using the same reasoning, there are at 
most 3+ ℓ0 + ℓ1 speciation nodes mapped to p(Ti1) in 
RDL . The same reasoning can be applied to show that for 
each node x in {p(Ti1), p(Ti2), . . . , p(Tid )} , there are less 
than m speciation nodes of RDL mapped to x because 
3+

∑d
s=0 ℓs < m . For 1 ≤ s ≤ d , as the m leaves of R 

mapped to Tis cannot all have a speciation node as a par-
ent, there is at least one duplication node mapped to Tis in 
RDL . Therefore, there is at least d = m− 1+ (m− 3) ∗ k 
duplication nodes in RDL and the cost of RDL cannot be 
lower than the cost of R∗

DL.

Fig. 2 (1) A binary refinement 〈G, sL〉 of the multifurcated tree of Fig. 1.(2) and the corresponding b‑constraint labeling (M, I): I is the set of nodes 
indicated by crosses, and for each such node x, M(x) is the table represented at that node; (2) The bL assignment leading to the optimal 
DLE‑Reconciliation, also represented in Fig. 1.(6). Here, the compressed DLE‑Reconciliation is illustrated, where the edge labeled P is the only one 
where an EGTL event is present
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If otherwise, for a binary refinement G′ of the star 
tree GM , the optimal reconciliation of G′ with S con-
tains at least (m− 3) ∗ k losses, then its cost is at least 
m− 1+ (m− 3) ∗ k because it contains at least m− 1 
duplication nodes as there are m leaves of G′ mapped to 
T11 . It thus cannot have a cost lower than C(R∗

DL).

We conclude that the gene tree 〈G, sL〉 computed in the 
reduction is in BDL(G, S) .  �

We next show that I  is a satisfiable instance of 
the Weighted Monotone 1-in-3-SAT problem if 
(Lemma  5) and only if (Lemma  6) its corresponding 
instance I ′ of the DL-DLE-BinL1 decision problem 
admits a DLE-Reconciliation of cost lower than or equal 
to Cost.

Lemma 5 Let I  be a satisfiable instance of the 
Weighted Monotone 1-in-3-SAT problem. Then its 
corresponding instance I ′ of the DL-DLE-BinL1 decision 
problem admits a DLE-Reconciliation of cost lower than 
or equal to Cost.

Proof Let RDL = �G, slca, e� be the optimal DL-Recon-
ciliation of G with S. We will show that we can obtain a 
DLE-Reconciliation RDLE of cost lower than or equal to 
Cost from RDL by converting some duplication events 
into EGT events. Recall that because the costs are uni-
tary, converting a duplication event into an EGT event 
does not change the cost of the reconciliation.

Let TA be a truth assignment with exactly n variables set 
to True satisfying C such that exactly one literal in each 
clause is set to True (we know that such truth assignment 
exists because I  is a satisfiable instance).

We now construct the b-labeling b (and bL ) and the map-
pings eV  and eE as follows:

Let eV = e . Let eE(x, y) = A for all edge (x, y) of G.

For all j, 1 ≤ j ≤ m , such that ℓj is True (resp. False) in 
TA, we set b(x) = 1 (resp. b(x) = 0 ) for each node x of 
the subtree Sj . Let j∗ be the smallest index such that ℓj∗ is 
set to False in TA (this index exists, as a truth assignment 
setting all variables to True cannot be a solution to the 
Weighted Monotone 1-in-3-SAT problem). If j∗ > 2 
we set b(x) = 1 for each node x on the path from the par-
ent of r(S1) to the parent of r(Sj∗−1) and we set b(y) = 0 
for each node y on the path from the parent of r(Sj∗) to 
r(G). Else (when j∗ ∈ {1, 2} ), we set b(x) = 0 for each 
node x on the path from the parent of r(S1) to r(G).

There are no EGTL events in the subtrees Sj ( 1 ≤ j ≤ m ) 
because all nodes in a given subtree Sj have the same 
b-label. Notice that all nodes on the the path from 
the parent of r(S1) to r(G) are duplication nodes in 
RDL and we can convert them to EGT events in RDLE . 
If j∗ ∈ {1, 2} , then, for 1 ≤ j ≤ m , if ℓj is set to True 
in TA, we set eV (parent of r(Sj)) = EGT  (which is a 
transfer from 0 to 1). Else (when j∗ > 2 ), then we set 
eV (parent of r(Sj∗)) = EGT  (which is a transfer from 0 to 
1) and for j∗ + 1 ≤ j ≤ m , if ℓj is set to True in TA, we 
set eV (parent of r(Sj)) = EGT  (which is a transfer from  
0 to 1).

In both case, it is easy to see that this mapping is valid 
and that no EGTL events are required in RDLE.

As there are no EGTL events in RDLE , the cost of RDLE is 
DL(G, S) and thus C(RDLE) ≤ Cost.

For each leaf x of G, we set bL(x) = b(x) . As exactly n 
variables are set to true in TA and as one variable per 
clause is set to True in TA, we know, by construction, 
that for each species Ci , 1 ≤ i ≤ k , one of the three leaves 
mapped to Ci is labeled by 1 and the remaining two leaves 
mapped to Ci are labeled by 0 and that for each species 
Tis , 1 ≤ i ≤ k , 1 ≤ s ≤ d , n of the m leaves mapped to Tis 
are labeled by 1 and the remaining m− n leaves mapped 
to Tis are labeled by 0. The b-labeling b we constructed is 
thus consistent with (M, I).

We then obtain a DLE-Reconciliation RDLE = �G, slca,

b, eV , eE〉 of 〈G, sL, bL〉 where bL is a b-labeling consistent 
with (M,  I) for which C(RDLE) ≤ Cost and we conclude 
that the instance I ′ of the DL-DLE-BinL1 decision prob-
lem admits a DLE-Reconciliation of cost lower than or 
equal to Cost.  �

Lemma 6 Let I  be an unsatisfiable instance of the 
Weighted Monotone 1-in-3-SAT problem. Then its 
corresponding instance I ′ of the DL-DLE-BinL1 deci-
sion problem does not admit a DLE-Reconciliation of cost 
equal or lower than Cost.

Proof By contradiction, let us suppose that for an 
unsatisfiable instance I  of the Weighted Monotone 
1-in-3-SAT problem, its corresponding instance I ′ of the 
DL-DLE-BinL1 decision problem does admit an optimal 
DLE-Reconciliation RDLE of cost equal or lower than 
Cost. In that case, RDLE does not contain EGTL events as 
otherwise its cost would be greater than DL(G, S) = Cost 
by Lemma 1.
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As there are no duplication nodes in the DL-Reconcilia-
tion of the subtrees Sj ( 1 ≤ j ≤ m ) with S, we know from 
Lemma 1 that no EGT events occur in those subtrees in 
RDLE . Therefore, by definition of a DLE-Reconciliation, 
for 1 ≤ j ≤ m , the nodes in Sj have the same b-label.

We now define a truth assignment TA as follows: for all 
1 ≤ j ≤ m , set the variable ℓj to True if the b-label of the 
nodes in Sj is 1, and set the variable ℓj to False otherwise.

For each species Ci (corresponding to the clause Ci ), 
1 ≤ i ≤ k , we know by construction that one of the three 
leaves mapped to Ci is labeled by 1 and the remaining two 
leaves mapped to Ci are labeled by 0 in G. Therefore the 
truth assignment TA satisfies C and for each clause Ci , 
one literal is set to True and two literals are set to False 
in TA. We know that exactly n variables are set to True in 
TA, as exactly n subtrees Si have their nodes labeled by 1 
because of the b-constraint (M, I) requiring exactly n of 
the m leaves mapped to T11 to be labeled by 1.

I  is then a satisfiable instance which is a contradiction. 
We thus conclude that if I  is an unsatisfiable instance of 
the Weighted Monotone 1-in-3-SAT problem, then 
its corresponding instance I ′ of the DL-DLE-BinL1 deci-
sion problem does not admit a DLE-Reconciliation of 
cost equal or lower than Cost.  �

Since Weighted Monotone 1-in-3-SAT is NP-com-
plete, Lemmas 5 and 6 lead to the following results.

Theorem  1 The DL-DLE-BinL1 decision problem is 
NP-complete.

Corollary 2 The DL-DLE-BinL and DLE-BinL decision 
problems are NP-complete.

A tractable version of the DL‑DLE‑BinL1 problem
Given σ ∈ � , the multiplicity M〈G,sL〉(σ ) of σ in 〈G, sL〉 
is the cardinality of the set {x ∈ L(G) : sL(x) = σ } . 
The multiplicity factor M〈G,sL〉 is the constant defined as 
maxσ∈� M�G,sL�(σ ).

The two following lemmas make the link between the 
maximum number of non-loss nodes in an optimal DL-
Reconciliation RDL of �G, sL� ∈ BDL(�G

M , sML �, S) mapped 
to a given node in S, and the multiplicity factor M〈G,sL〉 . 
We will then show that the DL-DLE-BinL1 Problem is 
fixed parameter tractable with respect to the multiplicity 
factor M〈G,sL〉.

Lemma 7 Let GM be a star-tree. For any optimal DL-
Reconciliation RDL of a tree �G, sL� ∈ BDL(�G

M , sML �, S) , 
there are at most M〈G,sL〉 speciation nodes of RDL that are 
mapped to any given node in S.

Proof We consider for this proof non-compressed 
reconciliations.

Let k = M�G,sL� . Suppose there exists an opti-
mal DL-Reconciliation RDL = �R, slca, e� of a tree 
�G, sL� ∈ BDL(�G

M , sML �, S) for which, for a given node σ 
in V(S), there are more than k speciation nodes of R that 
are mapped to σ . Let x1 , x2,..., xk+1 be any choice of k + 1 
speciation nodes among them. Note that the subtrees 
R[x1],R[x2], . . . , and R[xk+1] are separated, i.e. for any 
node v of R, v belongs to at most one of these subtrees.
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Consider Algorithm 1 above. We show that it transforms 
RDL into another DL-Reconciliation R′

DL of another 
binary refinement of GM with one less speciation node 
mapped to σ than RDL and such that R′

DL has a lower 
cost than RDL . This contradicts the fact that RDL is a rec-
onciliation of a tree 〈G, sL〉 belonging to BDL(〈G

M , sML 〉, S).

It is straighfoward to see that this procedure leads to a 
valid DL-Reconciliation of a binary refinement of GM as 
all it does is replace the subtree R[x1] by a loss in σ and 
place all the leaves belonging to R[x1] elsewhere in R in 
a position respecting definition 2 (because the procedure 
only replaces losses in R by subtrees of R[x1] which roots 
are mapped to the same species as the loss it replaces). 
In fact, every non-loss leaf of R[x1] belongs to a species 
which, by the hypothesis, cannot be the species label of 
more than k − 1 other non-loss leaves of RDL , i.e. should 
be missing in at least one of the all separated subtrees 
R[x2],R[x3], . . .R[xk+1] of R.

This procedure never increases the number of dupli-
cation nodes in the reconciliation as it only replaces 
losses in R by subtrees of R[x1] whose root is mapped 
to the same species as the loss it replaces. It adds one 
new loss to the DL-Reconciliation as the subtree R[x1] 
is replaced by a loss in σ , and removes one loss every 
time a subtree of R[x1] replaces a loss in one of the sub-
trees R[x2],R[x3], . . . , or R[xk+1] (line 4 of Algorithm  2) 
and every time x1i is a loss at line 2 of Algorithm 2. This 

happens at least twice: once for the left and once for 
the right subtree of x1 . Therefore in total, R′

DL has one 
less loss and no more duplications than RDL and thus 
C(R′

DL) < C(RDL) . The result follows.  �

Lemma 8 Let GM be a star-tree. For any optimal DL-
Reconciliation RDL of a tree �G, sL� ∈ BDL(�G

M , sML �, S) 
with S, there are at most 2M�G,sL� − 1 non-loss nodes of 
RDL that are mapped to any given node in S.

Proof As noted in the proof of Lemma  1, in an optimal 
DL-Reconciliation R , a duplication node cannot have a 
loss as a child. It follows from that fact and from the defi-
nition of a DL-Reconciliation that for a given species σ in 
V (S) \ L(S) (respectively σ ∈ L(S) ), the number of specia-
tion nodes (respectively non-loss leaves) in R mapped to σ 
is at least one more than the number of duplication nodes 
mapped to σ and the number of non-loss leaves (respec-
tively speciation nodes) mapped to σ is 0. By Lemma  7, 
we know that for any optimal DL-Reconciliation RDL of a 
tree �G, sL� ∈ BDL(�G

M , sML �, S) with S, the number of spe-
ciation nodes mapped to a given species is at most M〈G,sL〉 
(and, by definition, the number of non-loss leaves mapped 
to a given species is at most M〈G,sL〉 ). Therefore the number 
of duplication nodes mapped to a given species is at most 
M�G,sL� − 1 . Thus, there are at most 2M�G,sL� − 1 non-loss 
nodes of RDL that are mapped to any given node in S.  �
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Lemma 9 Let GM be a star-tree. For any optimal DL-
Reconciliation RDL of a tree �G, sL� ∈ BDL(�G

M , sML �, S) 
with S, there are at most 3M�G,sL� − 1 nodes of RDL that 
are mapped to any given node in S.

Proof From Lemma 8, for any optimal DL-Reconcilia-
tion RDL of a tree �G, sL� ∈ BDL(�G

M , sML �, S) with S, the 
number of non-loss nodes mapped to a given species x 
is at most 2M�G,sL� − 1 . Moreover, in RDL , the parent of 
a loss node mapped to x is a speciation node mapped 
to p(x). By Lemma 7, we know that the number of spe-
ciation nodes mapped to p(x) is at most M〈G,sL〉 . There-
fore, the number of nodes in RDL mapped to x is at most 
3M�G,sL� − 1 . �

Lemma 10 Let RDL = �RDL, slca, eDL� be the optimal 
DL-Reconciliation (in its non-compressed form) of a gene 
tree 〈G, sL〉 with a species tree S and bDL a b-labeling for 
the non-loss nodes of R. The optimal DLE-Reconciliation 
RDLE = �RDLE , slca, bDLE , eDLE� of 〈G, sL〉 “consistent” with 
bDL , i.e. with bDLE being an extension of bDL , can be com-
puted in O(n) time where n = |L(G)|.

Proof We can do so by using Algorithm 1 in [2]. Note 
that in that paper, EGTcopy holds for an EGT event and 
EGTcut holds for an EGTL event.  �

Let RDL = �R, slca, e� be a non-compressed DL-Rec-
onciliation of a tree 〈G, sL〉 with S. For the proof of the 
next Theorem, given a node σ of S, we denote by b[σ ] a 
given b-labeling for all non-loss nodes of R mapped to 
σ . Note that if there are k such nodes, then the number 
of possible b[σ ] labelings is 2k . For a node σ of S, we 
define MaxTrees(σ ) to be the set of “maximum” sub-
trees of R which roots are mapped to σ , i.e. such that 
the parent of these roots are not mapped to σ . For a 
node σ ∈ V (S) \ L(S) , we define CutMaxTrees(σ ) as the 
set of subtrees obtained from MaxTrees(σ ) by remov-
ing from the subtrees all strict descendants of the roots 
of the trees in MaxTrees(σl) and MaxTrees(σr) . We also 
define, for any labeling b[σ ] , CostMaxTrees(σ , b[σ ]) 
to be the sum of costs of the optimal DLE-Rec-
onciliations consistent with b[σ ] of all subtrees in 
MaxTrees(σ ) . In addition, for any labelings b[σ ] , b[σl] 
and b[σr] , CostCutMaxTrees(σ , b[σ ], b[σl], b[σr]) is 
the sum of costs of the optimal DLE-Reconciliations 
consistent with b[σ ] , b[σl] and b[σr] of all subtrees in 
CutMaxTrees(σ ) with S.

Fig. 3 (1) A species tree S on � = {A, B, C} ; (2) A binary gene tree G where leaves are identified by a species mapping s, and a b‑Constraint (M, I) 
where I = r(G) ; (3) An optimal DL‑Reconciliation of G with S; (4) The tree G accompanied with the arrays computed by Algorithm 6 (we consider 
here the costs δ = � = 1 and ρ = τ = 2 ) and the pointers for an optimal solution; (5) The optimal DLE‑Reconciliation RDLE (G, S) of 〈G, sL , bL〉 (where 
bL is consistent with (M, I)) returned by Algorithm 5. The cost minCostTransfer(RDLE(G, S)) is 3. Events are represented as in Fig. 1
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Theorem  2 The DL-DLE-BinL1 decision problem is 
fixed-parameter tractable with respect to the multiplicity 
factor M〈G,sL〉.

Proof Here, we consider non-compressed reconciliations.

We can solve the DL-DLE-BinL1 decision problem using 
Algorithm 3.

We show by induction that Algorithm  3 computes the 
correct cost CostMaxTrees(σ , b[σ ]) for a given node σ in 
S and all possible b-labelings b[σ ].

If the node σ is a leaf of S, then Algorithm 3 computes the 
correct CostMaxTrees(σ , b[σ ]) by definition.

We may suppose now by the induction hypothesis that 
Algorithm  3 computes the correct cost for all possible 
b-labelings for the two children σl and σr of a given inter-
nal node σ of S. Let show that Algorithm 3 is correct for 
σ . By the hypothesis, the algorithm correctly computes 
CostMaxTrees(σl , b[σl]) and CostMaxTrees(σr , b[σr]) for 
all possible b[σl] and b[σr] . Note that in R, the two chil-
dren of a non-loss and non-leaf node mapped to the node 
σ are either mapped to σ (if the node is a duplication) or 
to the children of σ (if the node is a speciation). From that 
fact and by definition of a DLE-Reconciliation, for a given 
b[σ ] , b[σl] and b[σr] , 

For a given b[σ ] , the algorithm tests all possibilities for 
b[σl] and b[σr] and thus the optimal one is found by the 
algorithm.

Note that, MaxTrees(slca(r(G)) = {R} . Thus, costOp 
computed in line 24 of Algorithm 3 is the cost of an opti-
mal DLE-Reconciliation of 〈G, sL〉 with S.

As for the complexity of the algorithm, from Lemma  8, 
we know that there are at most 2M�G,sL� − 1 non-loss 
nodes of RDL that are mapped to any given node σ in S. 
The number of possible b-labelings for the nodes mapped 
to σ is thus at most 22M�G,sL�

−1 . If σ is a leaf of S, then all 
nodes of the subtrees in MaxTrees(σ ) are mapped to σ . 
Thus, for any b-labeling b[σ ] , the Lemma 10 applies and 
the optimal DLE-reconciliation consistent with b[σ ] 
of each tree in MaxTrees(σ ) can be computed in linear 
time with its size. Moreover, the sum of the sizes of the 

CostMaxTrees(σ , b[σ ])

= CostMaxTrees(σl , b[σl])+ CostMaxTrees(σr , b[σr])

+ CostCutMaxTrees(σ , b[σ ], b[σl], b[σr])

subtrees in MaxTrees(σ ) is in O(M〈G,sL〉) by Lemma  9. 
CostMaxTrees(σ , b[σ ]) in line 6 can thus be computed in 
time O(M〈G,sL〉) . It follows that Lines 4 to 7 can thus be 
computed in time O(M〈G,sL〉2

2M〈G,sL〉).

Now for internal nodes, in line 13, CostMaxTrees(σl , b[σl]) 
and CostMaxTrees(σl , b[σl]) were previously computed 
and can be retrieved in constant time. Note that b[σ ] , 
b[σl] and b[σr] label all the nodes in CutMaxTrees(σ ) . 
Thus, as shown previously, from Lemma 10 and Lemma 9, 
we deduce that CostCutMaxTrees(σ , b[σ ], b[σl], b[σr]) 
can be computed in time O(M〈G,sL〉) . Thus, CurrentCost 
in line 13 can be computed in time O(M〈G,sL〉) . It follows 
that lines 9 to 20 can be computed in O(M〈G,sL〉8

2M〈G,sL〉).

The problem can thus be solved in time 
O(n×M�G,sL�8

2M�G,sL�) where n = |L(S)| .  �

Finally, the next theorem states that, in contrast to DL-
DLE-BinL1 and DL-DLE-BinL, the general problems 
DLE-BinL1 and DLE-BinL remain NP-complete even if 
the multiplicity factor of 〈G, sL〉 is restricted to two.

Theorem  3 The DLE-BinL1 decision problem is NP-
complete, even for M�G,sL� = 2.

The proof, given in Appendix, uses a reduction to the 
Monotone not-all-equal 3-satisfiability problem. The next 
corollary follows.

Corollary 3 The DLE-BinL decision problem is NP-
complete, even for M�G,sL� = 2.

The one‑direction DLE‑reconciliation problem
As endosymbiotic transfer events often move genes from 
the mitochondrial to the nuclear genome, and rarely in 
the opposite direction, we address the specific case where 
transfers are only allowed in one direction, i.e. when 
b-labels can only switch from 0 to 1, or only from 1 to 0. 
In the following definition, with no loss of generality, we 
assume transitions from 0 to 1.

Definition 5 (One-direction DLE-Reconciliation) Let 
〈G, sL, bL〉 be a rooted binary gene tree. A One-direction 
DLE-Reconciliation for 〈G, sL, bL〉 is a DLE-Reconciliation 
〈G, slca, b, eV , eE〉 verifying: for each edge (x,  y) of G, if 
b(x)  = b(y) then b(x) = 0.

One-DLE-BinL Problem:
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Input: A binary tree 〈GL, sL〉 , a b-Constraint (M, I) and 
a species tree S;

Output: An optimal One-direction DLE-Reconcil-
iation 〈G, slca, b, eV , eE〉 of 〈G, sL, bL〉 with S where bL is a 
b-labeling consistent with (M, I).

We also define, in a similar way as before, the One-
DLE-BinL1 problem where I is restricted to the root of 
G, and the corresponding decision problems. We next 
show that even this very restricted version of our initial 
problem is intractable. Moreover, the One-DL-DLE-
BinL (respec.One-DL-DLE-BinL1) problem is defined as 
the One-DLE-BinL (respec. One-DLE-BinL1) problem 
with the additional restriction that the binary tree given 
as input is in BDL(〈G

M , sML 〉, S).
We show that One-DL-DLE-BinL1 and One-DL-DLE-

BinL are NP-hard but fixed parameter tractable with 
the multiplicity factor, while One-DLE-BinL1 and One-
DLE-BinL are NP-hard even with a multiplicity factor of 
two.

Theorem 4 The One-DL-DLE-BinL decision problem is 
NP-complete.

Proof The proof for NP-completeness of One-DL-
DLE-BinL1 is the same as that of Theorem 1, as the DLE-
Reconciliation in the proof verifies the One-direction 
condition. The NP-completeness of One-DL-DLE-BinL 
follows.  �

Theorem 5 The One-DL-DLE-BinL1 is fixed parameter 
tractable with respect to the multiplicity factor M〈G,sL〉.

Proof Note that the proof of Lemma  1 holds for a 
One-direction DLE-Reconciliation, i.e. an optimal One-
direction DLE-Reconciliation can be obtained from the 
optimal DL-Reconciliation. Therefore, we can solve the 
One-DL-DLE-BinL1 Problem using the algorithm in the 
proof of Theorem 2, just giving an infinite cost for a tran-
sition from 1 to 0.  �

It follows from Theorem 4 that One-DLE-BinL is NP-
complete. However, as for DLE-BinL1 and DLE-BinL, 
One-DLE-BinL1 and One-DLE-BinL remain NP-com-
plete even if the multiplicity factor of 〈G, sL〉 is restricted 
to two. The proof is given in Appendix.

Theorem  6 The One-DLE-BinL1 and One-DLE-BinL 
decision problems are NP-complete, even for M�G,sL� = 2.

A general algorithm for the DLE‑BinL problem
A natural heuristic for the DLE-BinL problem for 
〈G, sL〉 , where G is a binary resolution of an initial mul-
tifurcated tree with initial polytomies reflected by a 
b-Constraint (M,  I), would be to solve each polytomy, 
i.e. each subtree rooted at a node x of I, individually, in 
a post-order traversal of the tree. In fact, this strategy 
leads to an exact algorithm for the DL Non-binary 
Reconciliation Problem [5]. However, in the case of 
DLE-Reconciliation, the b-labeling of internal nodes 
introduces a dependency between polytomies, avoiding 
the heuristic to be exact in general, i.e. for an arbitrary 
cost of operations. In this section, we present the gen-
eral heuristic (Algorithm 4) and show that it is exact in 
the case of a unitary cost of operations.

Algorithm  4 traverses the tree G in post-order and 
each time it encounters a node x ∈ I  , it “solves” the cor-
responding subtree G[x] and replaces it by a single leaf, 
with an appropriate b-label.

Once the tree G has been completely traversed, the 
subtrees are put back in the tree. Notice that on line 
13, the algorithm adds a new intermediate species to 
� , but does not extend the species labeling slca to this 
new species. The reason is that the new added species 
is eventually removed from the tree (line 25), i.e. does 
not remain in the returned reconciliation. Moreover, on 
line 9, the algorithm adds a new intermediate leaf with-
out a b-label. Such nodes are technically ignored for the 
rest of the traversal of G and just used to re-graft the 
corresponding subtrees at the end (line 27).

Algorithm  4 calls a function DLEBinL1(〈G, sL〉

[x],M(x), S,Bin) where Bin ∈ {0, 1} , returning an opti-
mal solution of the DLE-BinL1 Problem such that 
b(x) = Bin . Recall that the DLE-BinL1 Problem is 
also NP-complete. In the next section, we will pre-
sent DLEBinL1OneSpecies which can be substituted 
to DLEBinL1 in Algorithm  4 for a restriction of the 
problem, where, for each polytomy, genes belonging to 
the same species have the same b-label for all but one 
species.
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Theorem  7 Let 〈G, sL〉 be a binary tree, (M,  I) be a 
b-Constraint for 〈G, sL〉 , S be a species tree. Then, with 
the input (〈G, sL〉, (M, I), S) and for a unitary cost, Algo-
rithm  4 returns an optimal DLE-Reconciliation of 
〈G, sL, bL〉 where bL is a b-labeling consistent with (M, I).

Proof The proof is by induction on the number of node 
x ∈ V (G) such that x ∈ I.

Notice that the DLE-Reconciliation 〈G, slca, b, eV , eE〉 
returned by Algorithm  4 is such that b is a b-labeling 
consistent with (M, I) by construction.

If there is only one node x ∈ V (G) such that x ∈ I , then 
this node x is the root of G by definition. The algorithm 
then returns an optimal solution, as we assume that 
we can solve DLEBinLR(�G, sL�,M

′(r(G)), S, i) (where 
M′(r(G)) = M(r(G)) ) for i ∈ {0, 1}.

If there is more than one node x ∈ V (G) such that x ∈ I , 
then the root of G is in I by definition. By induction, we 
may assume that for each node x ∈ V (G) \ r(G) such 
that x ∈ I , the reconciliation of G[x] computed by the 
algorithm is exact. For each of those subtrees G[x], we 
then know the possible b-label(s) at the root leading to 
an optimal reconciliation of G[x] and the corresponding 
optimal reconciliation of G[x]. We now give the index 1 
to |I | − 1 to the elements of I\r(G) . For all 1 ≤ j ≤ |I | − 1 , 
there is then two cases for xj ∈ I \ r(G) : 

1 G[xj] is such that both b(xj) = 0 and b(xj) = 1 can 
lead to an optimal reconciliation of G[xj] . In that 
case, Algorithm  4 will remove G[xj] from G and 
replace it by a new leaf without a b-label. It solves 
G(xj) separately and then replace the new leaf in G 
by the solved G[xj] (after the rest of G is solved). G[xj] 
can be solved separately in that case, because regard-
less of the b-label of the parent of G[xj] in an opti-
mal reconciliation of (the rest of ) G we can obtain 
an optimal reconciliation of G[xj] with r(G[xj]) hav-
ing the same b-label as its parent (and thus we can 
obtain an optimal solution to the problem by putting 
the solved G[xj] with r(G[xj]) having the same b-label 
as its parent back in G).

2 G[xj] is such that only b(xj) = ij (where ij ∈ {0, 1} ) 
can lead to an optimal reconciliation of G[xj] . In 
that case, Algorithm 4 will remove G[xj] from G and 
replace it by a new leaf with b-label by ij.

Then, Algorithm 4 solves DLEBinLR(�G′, s�,M′(r(G)), S, k) 
( k ∈ {0, 1} ) where G′ is the tree obtained after all the xj are 
visited by the algorithm. By construction, it will return the 

solution of lowest cost such that b(xj) = ij , for all xj belong-
ing to Case 2.
Let’s show that this solution is optimal. By contradiction, 
suppose that there is xj ∈ I\r(G) ( xj belonging to Case 
2) such that there is no optimal solution of the problem 
for which b(xj) = ij . Then, the optimal solution R∗ of the 
problem is such that b(xj)  = ij . In R∗ , if we set b(xj) = ij 
and replace the reconciliation of the subtree G[xj] by 
the optimal reconciliation of G[xj] (that we can obtain 
because b(xj) = ij ), we obtain a new solution R′ of the 
problem with at most one more EGTL event (on the edge 
(p(xj), xj) ) and such that the reconciliation of G[xj] in R′ 
has a strictly lower cost than the reconciliation of G[xj] in 
R∗ . There is then at least one less event in the reconcilia-
tion of G[xj] in R′ and as the cost are unitary, the solution 
R′ is such that C(R′) ≤ C(R∗) and thus R′ is optimal. 
Contradiction. We then conclude that there is an optimal 
solution of the problem for which b(xj) = ij.

Thus, Algorithm  4 returns an optimal solution for the 
input (〈G, sL〉, slca, (M, I), S).

We conclude, by induction, that the solution returned by 
Algorithm 4 is optimal.  �

An exact algorithm for the one‑species version 
of the DLE‑BinL1 problem
We consider a restriction of the DLE-BinL1 Problem 
where genes are specific to a single genome (the mito-
chondrial or nuclear genome) in all but one species. We 
call it the DLE-BinL1-OneSpecies problem. In its sim-
plest version where a single species is present, the prob-
lem reduces to assigning a multiset of two labels (a given 
number of 0  s and a given number of 1  s) to the leaves 
of a tree-shape (i.e. a tree with no leaf labels), in a way 
minimizing 0–1 transitions in the tree. Similar problems 
on assigning leaves to tree-shapes or to multilabeled 
trees (MUL-trees) have been considered in the context of 
other tree distances (Robinson Foulds distance, path dis-
tance, maximum agreement subtree), most of them being 
NP-complete [12, 13]. Here, we present an exact poly-
nomial-time algorithm for the DLE-BinL1-OneSpecies 
Problem.

Let σ ∈ � be the only species for which the genes 
belonging to it are not specific to a single genome. We 
will call the leaves ℓ ∈ L(G) for which s(ℓ) = σ free leaves 
and the leaves ℓ ∈ L(G) for which s(ℓ)  = σ fixed leaves. 
For a fixed leaf ℓ , b(ℓ) is fixed and known in advance, 
as all leaves whose species label is s(ℓ) have the same 
b-label which is known from the matrix M. The DLE-
BinL1-OneSpecies problem is then reduced to finding 



Page 19 of 26Gascon and El‑Mabrouk  Algorithms for Molecular Biology            (2023) 18:9  

an optimal DLE-Reconciliation for which exactly k free 
leaves are labeled by 0, where k = M(r(G))[σ , 0] (the 
(σ , 0) entry of M(r(G))).

Let RDL = �G, slca, e� be the optimal DL-Reconcil-
iation for 〈G, sL〉 . From Lemma  1, any optimal DLE-
Reconciliation RDLE = �G, slca, b, eV , eE� with exactly 
k free leaves labeled by 0 can be obtained from RDL by 
converting some duplications into EGTs and adding 
EGTL events, i.e. a P/A labeling on edges. We define 
minCostTransfer(�G, slca, b, eV , eE�) = |eVEGT

| ∗ (τ − δ)

+|eE | ∗ ρ . Then recall from "Preliminar-
ies, evolutionary model and definitions" sec-
tion that, by construction of RDLE , we have: 
C(RDLE) = DL(G, S)+minCostTransfer(�G, slca, b, eV , eE�).

The problem thus reduces to minimizing 
minCostTransfer(〈G, slca, b, eV , eE〉).

We will need to consider the two possible b-labe-
lings i ∈ {0, 1} for the root of G. We therefore denote by 
minCostTransfer(〈G, slca, e〉, i, k) the minCostTransfer 
function for an optimal DLE-Reconciliation RDLE with 
exactly k free leaves labeled by 0 and with the additional 
constraint that b(r(G)) = i.

We are now ready to present Algorithm  5. It pro-
ceeds in two steps: (1) a bottom-up step (Algo-
rithm 6) in which we assign an array of size 2× (k + 1) 
to each node x of G where the (i,  j)th entry equals 
minCostTransfer(�G[x], slca, e�, i, j) ; (2) a top-down step 
(not given in pseudo-code) in which the algorithm 
assigns the b-labeling of nodes and locates the EGT and 
EGTL events in the optimal solution. See Fig. 3 for an 
execution of Algorithm 5.

 

Fig. 4 A valid b‑labeling of Ti requiring one EGTL event
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Theorem  8 The output of Algorithm  5 is a solution of 
the DLE-BinL1-OneSpecies problem.

Proof Assume that, for each entry of x.array of each 
internal node x, Algorithm  6 keeps in memory point-
ers to the entries of the arrays of the children of x from 
which the value of the entry was obtained.

Once the optimal arrays are computed for all nodes, the 
optimal solution is easily reconstructed from the entry 
min(r(G).array(0,  k),  r(G).array(1,  k)) by following the 
pointers from the root to the leaves.

The key point is therefore showing that the arrays com-
puted by Algorithm  6 are exact, i.e., for each node x, 
x.array(i, j) is equal to minCostTransfer(�G[x], slca, e�, i, j) 
where �G[x], slca, e� is the optimal DL-Reconciliation of 
G[x] with S. The proof is by induction.

If x is a leaf (either free or fixed), it is easy to see that 
x.array is correct.

Now, if x is an internal node, we may assume that xl .array 
and xr .array are correct by the induction hypothesis. 
By contradiction, let’s assume that there is (i,  j) such 
that x.array(i, j)  = minCostTransfer(�G[x], slca, e�, i, j) . 
Let R be the optimal DLE-Reconciliation leading to 
minCostTransfer(�G[x], slca, e�, i, j) . Then, in R , b(x) = i , 
b(xl) = ℓ1 where ℓ1 ∈ {0, 1} and b(xr) = ℓ2 where 
ℓ2 ∈ {0, 1} . Also, as there are j free leaves labeled by 0 
under x, the sum of the numbers of free leaves labeled by 0 
under xl and xr must be equal to j. If the genome labels of 
the children of x are not the same as i, x is converted as an 
EGT event if x is a duplication node in the DL-Reconcilia-
tion (and possibly an EGTL event is added) and if x is not 
a duplication node then some EGTL events may be added 
on the edges between x and its children. As the algorithm 
considers all possibilities of genome labels for xl and xr 
and all possibilities of number of free leaves labeled by 0 
under xr and xl leading to j free leaves under x labeled to 0 
(and considers the optimal assignation of EGT and EGTL 
events for the transfer(s) needed from x to its children), the 
particular possibility leading to R will be considered and 
then x.array(i, j) = minCostTransfer(�G[x], slca, e�, i, j) . 
This is a Contradiction. Thus, there is no such (i,  j) and 
x.array is exact.

We conclude, by induction, that the arrays computed by 
Algorithm 6 are exact.  �

Theorem  9 Algorithm  5 computes the solution of the 
DLE-BinL1-OneSpecies problem in O(nk2) time, where 
n = |L(G)|.

Proof For each leaves of G, the associated array is com-
puted in time O(k). For each internal node of G, the asso-
ciated array is computed in time O(k2) . The time com-
plexity to compute the arrays for all the nodes is then 
O(nk2).

Once all the arrays are computed, the algorithm finds the 
optimal assignation of the internal nodes with a preorder 
traversal of G in time O(n)

We conclude that the time complexity of Algorithm 5 is 
O(nk2) .  �

Conclusion

In this paper, we present the first method for DLE-Rec-
onciliation, that is a reconciliation accounting for dupli-
cations, losses, but also EGTs, for a multifurcated gene 
tree. It is a natural extension of the DL-Reconciliation of 
a multifurcated tree, where we first consider a solution for 
this problem, i.e. an optimal DL-Reconciliation, and then 
appropriately assign the binary b-labeling (0/1 for mito-
chondrial/nuclear) to the nodes of the tree in a way mini-
mizing a total DLE (Duplications, Losses and EGTs) cost.

We show that the optimal b-labeling assignment step 
is NP-complete even if the gene tree in input is a binary 
refinement of a star-tree, and even when genes are pre-
sent in only two copies in each species. Moreover, the 
problem remains NP-complete when the transfers are 
allowed in a single direction (e.g. only from 0 to 1) and 
even if the gene tree in input is an optimal resolution for 
the DL-Reconciliation. In this latter case, the problem is 
shown fixed-parameter tractable with respect to the gene 
tree’s multiplicity factor. We then present a greedy heu-
ristic for the general version of the problem solving each 
polytomy independently in a bottom-up traversal of the 
tree. This heuristic is shown to be exact for a unitary cost 
of operations. Moreover, we give a polynomial-time algo-
rithm for the resolution of a single polytomy in the case 
where genes are specific to a single genome in all but one 
species. We did not explore the case where genes are spe-
cific to a single genome in all but a fixed number of spe-
cies, but we believe Algorithm 5 can be extended to solve 
this problem in polynomial time.

From a biological point of view, the next step will be to 
apply our method to the orthologous mitochondrial pro-
tein-coding genes (MitoCOGs) dataset [2, 10].

From a theoretical and algorithmic point of view, many 
open questions remain. Apart from the fact that a heu-
ristic combining accuracy and time-efficiency should be 
developed for both the DLE-BinL and DLE-BinL1 prob-
lems in the general case, a more fundamental question 
is whether an exact one-step method, considering all the 



Page 22 of 26Gascon and El‑Mabrouk  Algorithms for Molecular Biology            (2023) 18:9 

events at once, can be developed. In fact, the complex-
ity results obtained here do not allow to conclude on the 
complexity of the DLE Non-binary Reconciliation 
problem. It is indeed not excluded that the polynomial-
time PolytomySolver algorithm [5] can be extended for 
solving a multifurcated tree with a b-labeling of leaves, 
at least in special cases. In the near future, we will first 
explore the extension of PolytomySolver to the one spe-
cies restriction of the model, before considering generali-
zation to an arbitrary number of species.

Appendix
Proof of theorem 3
We show, by reduction from the Monotone not-all-equal 
3-satisfiability problem (Monotone NAE3SAT Prob-
lem), that the DLE-BinL1 decision problem is NP-com-
plete, even for M�G,sL� = 2.

Recall that the DLE-BinL1 decision problem is in NP 
as shown in "Complexity of the dle-binl and dle-binl1 
Problems" section.

The Monotone NAE3SAT problem is the following 
(monotone meaning that there are no negation of vari-
ables in the clauses):

Monotone NAE3SAT:
Instance: A set of clauses C = (C1 ∧ C2 ∧ · · · ∧ Ck) on 

a finite set Ł = {ℓ1, ℓ2, . . . , ℓm} of variables where each 
Ci , 1 ≤ i ≤ k , is a clause of the form (x ∨ y ∨ z) with 
{x, y, z} ⊆ Ł;

Question: Is there a truth assignment satisfying C such 
that the values in each clause are not all equal to each 
other?

Given an instance I = (C, Ł) of the Monotone NAE-
3SAT problem, we compute, in polynomial time, a cor-
responding instance I ′ = (�G, sL�, (M, I), S,Cost) of the 
DLE-BinL1 decision problem. First, the set of species � is 
computed as follows:

• For 1 ≤ j ≤ m , � contains a species ℓj and for each 
clause Ci ∈ C , 1 ≤ i ≤ k such that ℓj is in Ci , � con-
tains a species ℓji.

• For each clause Ci ∈ C , 1 ≤ i ≤ k , � contains the spe-
cies Si1 , Si2 , Si3 , Si4 , Si5 and Si6.

For 1 ≤ j ≤ m , let Lj be a caterpillar tree on the leaves ℓji 
for all i such that ℓj is in the clause Ci . For 1 ≤ i ≤ k , let Si 
be the tree computed as follows:

Then, the species tree S is:

Let now turn to defining the gene tree. For each 
clause Ci = (x ∨ y ∨ z) ∈ C , 1 ≤ i ≤ k , let Ti be the fol-
lowing tree:
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For 1 ≤ j ≤ m , let L′j be a gene tree which is species 
label isomorphic to Lj . For 1 ≤ j ≤ m , let Uj be the tree 
computed as follows:

The gene tree G is then:

Notice that for each species s ∈ � , G contains exactly 
2 leaves mapped to s and thus M�G,sL� = 2.

We set M(r(G)) equal to a matrix of ones of size 
|�| × 2 (meaning that for each pair of leaves mapped to 
a given species s, we require one leaf to have a b-label 
0 and the other to have a b-label 1). Also recall that 
I = {r(G)} . Finally, Cost is set to DL(G, S)+ k.

We next show that I  is a satisfiable instance of the 
Monotone NAE3SAT problem if (Lemma  12) and 
only if (Lemma  13) its corresponding instance I ′ of 
DLE-BinL1 decision problem admits a DLE-Reconcil-
iation of cost lower than or equal to Cost.

Lemma 11 Let I  be an instance of the Monotone NAE-
3SAT problem. For its corresponding instance I ′ of DLE-
BinL1 decision problem, the optimal DLE-Reconciliation 
RDLE is such that there is at least 1 EGTL event in each 
subtree Ti of G (i.e. eE(x, y) = P for an edge (x, y) of Ti ) for 
1 ≤ i ≤ k.

Proof For the optimal DLE-Reconciliation RDLE , for 
each clause Ci = (x ∨ y ∨ z) ∈ C , 1 ≤ i ≤ k , for any 
b-labeling bL consistent with (M, I), there will be at least 
one EGTL event in the three following subtrees of Ti 
(regardless of the labeling b of the internal nodes of these 
subtrees):

 

 

This is the case because there are no duplication node in 
the DL reconciliation of these subtrees with S (so no EGT 
events can occur in these subtrees in RDLE by Lemma 1) 
and we know that at least one of these subtrees will 
not have all its leaves labeled by the same genome label 
(because two leaves with the same species label can’t have 
the same genome label by construction of the instance) 
so at least one EGTL will be required.  �

Lemma 12 Let I  be an unsatisfiable instance of the 
Monotone NAE3SAT problem. Then its correspond-
ing instance I ′ of DLE-BinL1 decision problem does not 
admit a DLE-Reconciliation of cost equal or lower than 
Cost.

Proof By contradiction, let us suppose that for an 
unsatisfiable instance I  of the Monotone NAE3SAT 
problem, its corresponding instance I ′ of the DLE-BinL1 
decision problem does admit a DLE-Reconciliation of 
cost equal or lower than Cost. Let’s consider the opti-
mal DLE-Reconciliation RDLE . RDLE is optimal and thus 
C(RDLE) ≤ DL(G, S)+ k as I ′ does admit a DLE-Recon-
ciliation of cost equal or lower than Cost = DL(G, S)+ k . 
By Lemma 11, RDLE is such that there is at least 1 EGTL 
event in each subtree Ti of G for 1 ≤ i ≤ k . There is 
then at least k EGTL events in the reconciliation RDLE . 
As the cost of RDLE is equal to DL(G, S) plus the num-
ber of EGTL events in RDLE (from Lemma 4 in [2]), 
C(RDLE) must be higher than or equal to DL(G, S)+ k 
and we conclude that C(RDLE) = DL(G, S)+ k . Thus, 
there is exactly one EGTL event in each subtree Ti of G 
for 1 ≤ i ≤ k and no EGTL event elsewhere in the tree as 
otherwise C(RDLE) would be higher than DL(G, S)+ k . 
In particular, there is no EGTL event in the subtrees Uj , 
1 ≤ j ≤ m , and we can conclude that all nodes in the sub-
tree L′j , 1 ≤ j ≤ m , have the same genome label (there is 
no EGT event in the subtree L′j as there is no duplication 
in the DL-Reconciliation of L′j with S).
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We now define a truth assignment TA as follows: for all 
1 ≤ j ≤ m , set the variable ℓj to True if the genome label 
of the nodes in L′j is 1, and set the variable ℓj to False oth-
erwise. We now show that TA satisfies I  . For each clause 
Ci = (x ∨ y ∨ z) ∈ C , 1 ≤ i ≤ k , we need to show that x, 
y and z are not all equal to each other. Let us suppose 
by contradiction that this is false, and that there exists 
a clause Ci = (x ∨ y ∨ z) ∈ C such that x, y and z are all 
equal to each other. Then, by construction, the genome 
labels of the leaves xi , yi and zi in the corresponding sub-
trees Ti are all equal to each other. Then, there is at least 
2 EGTL events in Ti , as at least two of the following three 
subtrees of Ti will not have all their leaves labeled by the 
same genome label and there are no EGT events in those 
subtrees (by construction) because there are no duplica-
tion node in the DL reconciliation of these subtrees with 
S:

 

 

This is a contradiction, as there must be exactly one 
EGTL event in the subtree Ti . We then conclude that for 
each clause Ci = (x ∨ y ∨ z) ∈ C , 1 ≤ i ≤ k , x, y and z are 
not all equal to each other. Thus, the truth assignment 
TA satisfies I  , and we conclude by contradiction that if 
I  is an unsatisfiable instance of the Monotone NAE3SAT 
problem, then its corresponding instance I ′ of the DLE-
BinL1 decision problem does not admit a DLE-Reconcil-
iation of cost equal or lower than Cost.  �

Lemma 13 Let I  be a satisfiable instance of the Mono-
tone NAE3SAT problem. Then its corresponding instance 
I ′ of DLE-BinL1 decision problem admits a DLE-Recon-
ciliation of cost lower than or equal to Cost.

Proof Let RDL = �G, slca, e� be the optimal DL-Rec-
onciliation of G with S. We recall that, by definition, 
C(RDL) = DL(G, S) . We will show that we can obtain a 
DLE-Reconciliation RDLE of cost lower than or equal to 
Cost from RDL by converting some duplication events 
into EGT events and by adding EGTL events. Notice that 
because the costs are unitary, converting a duplication 
event into an EGT event does not change the cost of the 
reconciliation. Thus, the cost of RDLE is DL(G, S) plus the 
number of EGTL events in RDLE.

Let TA be a truth assignment satisfying C such that the 
values in each clause are not all equal to each other (we 
know that such truth assignment exists because I  is a 
satisfiable instance).

We now construct the b-labeling b (and bL ) and the map-
pings eV  and eE as follows:

Let eV = e . Let eE(x, y) = A for all edge (x, y) of G.

For all j, 1 ≤ j ≤ m , such that ℓj is True (resp. False) in 
TA, we set b(x) = 0 (resp. b(x) = 1 ) for each nodes x of 
the left subtree of Uj.

Notice that for each σ ∈ �\{Sij|1 ≤ i ≤ k , 1 ≤ j ≤ 6} , 
we have set the genome label of exactly one of the two 
leaves of G for which the species label is σ . For each 
σ ∈ �\{Sij|1 ≤ i ≤ k , 1 ≤ j ≤ 6} , we then set the genome 
label of the leaf with species label σ whose genome label 
have not been set yet to 1− i where i is the genome label 
of the other leaf with species label σ.

For each nodes x on the path from the parent of r(T1) to 
r(G), we set b(x) = 0 . We set b(r(Ti)) = 0 for 1 ≤ i ≤ k 
and we set b(r(Uj)) = 0 for 1 ≤ j ≤ m.

Therefore, there is no EGTL event on edges that are not 
in the subtrees Uj ( 1 ≤ j ≤ m ) or Ti ( 1 ≤ i ≤ k ), as all the 
nodes connected by those edges are labeled by 0.

We now show that no EGTL event is required in the sub-
tree Uj of G, for 1 ≤ j ≤ m . By construction, all the nodes 
in the left subtree of Uj have the same genome label i 
( i ∈ {0, 1} ) and the node in the right subtree of Uj has the 
genome label 1− i . Thus, b(r(Uj)l)  = b(r(Uj)r) . Notice 
that r(Uj) is a duplication node in RDL and recall that 
b(r(Uj)) = 0 . We then set eV (r(Uj)) = EGT  which is a 
transfer from 0 to 1. Therefore, there is no EGTL event in 
the subtree Uj.
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We now show that exactly one EGTL event is required 
in the subtree Ti of G, for 1 ≤ i ≤ k . Notice that for any 
clause Ci = (x ∨ y ∨ z) ∈ C , x, y and z can’t be all equal 
to each other in TA (because TA is a solution of the 
instance) and so, by construction, the genome labels of xi , 
yi and zi in Ti are not all equal to each other. Without loss 
of generality, let’s assume that b(xi) = 0 , b(yi) = 1 and 
b(zi) = 0 (the other possible cases are very similar). Then, 
the b-labeling of Ti shown in Fig. 4 is correct and requires 
exactly one EGTL event.

We set eE(x, y) = P where (x,  y) is the edge with 
a triangle on it in the tree above. We also set 
eV (lcaTi({xi, Si4})) = EGT  , eV (lcaTi({yi, Si5})) = EGT  
and eV (lcaTi({zi, Si6})) = EGT  (those are the nodes rep-
resented by a triangle in the tree above). We can do so 
because those nodes are duplication nodes in RDL.

There is then exactly k EGTL events in RDLE . Thus, the 
cost of RDLE is DL(G, S)+ k and C(RDLE) ≤ Cost.

For each leaf x of G, we set bL(x) = b(x) . Notice that the 
b-labeling bL we constructed is consistent with (M, I) as 
for each σ ∈ � , there is one leaf labeled σ whose genome 
label is 1 and one leaf labeled σ whose genome label is 0, 
as required.

We then obtain a DLE-Reconciliation RDLE =

〈G, slca, b, eV , eE〉 of 〈G, sL, bL〉 where bL is a b-labeling con-
sistent with (M, I) for which C(RDLE) ≤ Cost and we con-
clude that the instance I ′ of the DLE-BinL1 decision prob-
lem admits a DLE-Reconciliation of cost lower than or equal 
to Cost.  �

Note that, by construction, the instance of the DLE-
BinL1 decision problem in the reduction contains a gene 
tree with no more than two leaves having the same species 
label. From this remark, and since Monotone NAE3SAT 
is NP-complete, Lemmas 12 and 13 lead to the result.

Proof of theorem 6
First observe that the One-DLE-BinL1 decision prob-
lem is in NP because the DLE-BinL1 decision Problem 
is in NP and because we can verify the one-direction 
condition in polynomial time.

We show that the One-DLE-BinL1 decision problem 
is NP-complete by reduction from the Monotone one-
in-three 3-satisfiability problem (Monotone 1-in-
3-SAT Problem) defined as follows (monotone meaning 
that there are no negation of variables in the clauses):

Monotone 1-in-3-SAT:

Instance: A set of clauses C = (C1 ∧ C2 ∧ · · · ∧ Ck) on 
a finite set Ł = {ℓ1, ℓ2, . . . , ℓm} of variables where each 
Ci , 1 ≤ i ≤ k , is a clause of the form (x ∨ y ∨ z) with 
{x, y, z} ⊆ Ł;

Question: Is there a truth assignment satisfying 
C such that exactly one literal in each clause is set to 
True?

Given an instance I = (C, Ł) of the Monotone 1-in-
3-SAT problem, we compute, in polynomial time, a cor-
responding instance I ′ = (�G, sL�, (M, I), S,Cost) of the 
One-DLE-BinL1 decision problem. The correspond-
ing instance I ′ is the same as in the proof that the DLE-
BinL1 decision problem is NP-complete (see"Complexity 
of the dle-binl and dle-binl1 Problems" section).

We next show that I  is a satisfiable instance of the 
Monotone 1-in-3-SAT problem if (Lemma  14) and 
only if (Lemma 15) its corresponding instance I ′ of the 
One-DLE-BinL1 decision problem admits a DLE-Rec-
onciliation of cost lower than or equal to Cost.

Lemma 14 Let I  be an unsatisfiable instance of the 
Monotone 1-in-3-SAT problem. Then its corresponding 
instance I ′ of the One-DLE-BinL1 decision problem does 
not admit a DLE-Reconciliation of cost equal or lower than 
Cost.

Proof The proof is similar to the proof of Lemma  12. 
All that is left to add to the proof for this restricted ver-
sion is to show the following:

If for a given clause Ci = (x ∨ y ∨ z) ∈ C there are two of 
b(xi) , b(yi) , b(zi) equal to 1 and the other one equals to 
0 (corresponding to a clause for which two variables are 
set to True and one variable is set to False), then the cor-
responding subtree Ti will contain at least 2 EGTL events.

This is the case, as the only way to have only one EGTL 
event in the following subtrees of Ti is to have an EGTL 
that transfers from 1 to 0, which is not allowed here 
(recall that there can be no EGT event in those subtrees 
because there are no duplication node in the DL-Recon-
ciliation of these subtrees with S):
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Then, I ′ cannot admit a DLE-Reconciliation of cost equal 
or lower than Cost if I  is an unsatisfiable instance of the 
Monotone 1-in-3-SAT problem.  �

Lemma 15 Let I  be a satisfiable instance of the 
Monotone 1-in-3-SAT problem. Then its correspond-
ing instance I ′ of the One-DLE-BinL1 decision problem 
admits a DLE-Reconciliation of cost lower than or equal 
to Cost.

Proof The proof is the same as the proof of Lemma 13. 
Indeed, if I  is a satisfiable instance of the Monotone 
1-in-3-SAT problem, then there is a truth assignment 
satisfying C such that the values in each clause are not 
all equal to each other (exactly one variable is set to True 
and two variables are set to False in each clause). In that 
case, for any clause Ci = (x ∨ y ∨ z) ∈ C , one of b(xi) , 
b(yi) , b(zi) is equal to 1 and the other two are equal to 0. 
The proof of Lemma 13 then shows how to obtain a DLE-
Reconciliation of cost lower than or equal to Cost verify-
ing the One-direction transition condition.  �

Notice that, by construction, the instance of restricted 
the One-DLE-BinL1 decision problem in the reduction 
contains a gene tree with no more than two leaves hav-
ing the same species label. From this remark, and since 
Monotone 1-in-3-SAT is NP-complete, Lemmas  14 
and 15 lead to the result.
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