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Abstract 

Background Molecular phylogenetics studies the evolutionary relationships among the individuals of a popula-
tion through their biological sequences. It may provide insights about the origin and the evolution of viral diseases, 
or highlight complex evolutionary trajectories. A key task is inferring phylogenetic trees from any type of sequencing 
data, including raw short reads. Yet, several tools require pre-processed input data e.g. from complex computational 
pipelines based on de novo assembly or from mappings against a reference genome. As sequencing technologies 
keep becoming cheaper, this puts increasing pressure on designing methods that perform analysis directly on their 
outputs. From this viewpoint, there is a growing interest in alignment-, assembly-, and reference-free methods 
that could work on several data including raw reads data.

Results We present phyBWT2, a newly improved version of phyBWT (Guerrini et al. in 22nd International Workshop 
on Algorithms in Bioinformatics (WABI) 242:23–12319, 2022). Both of them directly reconstruct phylogenetic trees 
bypassing both the alignment against a reference genome and de novo assembly. They exploit the combinatorial 
properties of the extended Burrows-Wheeler Transform (eBWT) and the corresponding eBWT positional cluster-
ing framework to detect relevant blocks of the longest shared substrings of varying length (unlike the k-mer-based 
approaches that need to fix the length k a priori). As a result, they provide novel alignment-, assembly-, and reference-
free methods that build partition trees without relying on the pairwise comparison of sequences, thus avoiding to use 
a distance matrix to infer phylogeny. In addition, phyBWT2 outperforms phyBWT in terms of running time, as the for-
mer reconstructs phylogenetic trees step-by-step by considering multiple partitions, instead of just one partition 
at a time, as previously done by the latter.

Conclusions Based on the results of the experiments on sequencing data, we conclude that our method can pro-
duce trees of quality comparable to the benchmark phylogeny by handling datasets of different types (short reads, 
contigs, or entire genomes). Overall, the experiments confirm the effectiveness of phyBWT2 that improves the perfor-
mance of its previous version phyBWT, while preserving the accuracy of the results.
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Background
Phylogenetics concerns the study of the evolution-
ary history and the relationships among individuals or 
groups of individuals, e.g., species or several popula-
tions of one species. These relationships are inferred 
from heritable traits or, for instance, DNA sequences. 
Phylogenies, in the form of rooted or unrooted trees, 
can be used for several purposes: to reconstruct the 
ancestry of the species (or other taxa) on the tree of life, 
to understand the epidemiological dynamics of patho-
gens, and to identify and study complex evolutionary 
events such as hybridisation  [1, 2], introgression  [3], 
and horizontal gene transfer  [4]. Thus, they are suc-
cessfully employed in almost every branch of biology, 
including e.g. population genomics and metagenom-
ics, ecology, and biogeography  [5]. Phylogeny has also 
important applications in the medical field, includ-
ing for instance epidemiology, drug discovery and 
drug design. Concerning public health, pathogen out-
breaks can be studied by molecular phylogenetic anal-
ysis. Indeed, the analysis of the epidemiological link 
between genetic sequences of a pathogen can be useful 
for understanding the possible sources of transmission.

A vast array of techniques for inferring phylogeny 
has been developed over the years [6]. Sequence-based 
methods analyze the DNA or RNA sequences of the 
taxa, and are based on their similarity or dissimilar-
ity detection. Most of them rely on a distance matrix 
by computing the pairwise evolutionary distances 
between every pair of input sequences. Standard algo-
rithms, such as the neighbour-joining algorithm [7], are 
then applied to the distance matrix to perform the tree 
reconstruction.

A key aspect is how to compute these evolutionary 
distances. Sequence alignment is often employed in dis-
tance computation, performed on either entire sequences 
or parts of them, with the optional usage of a reference 
genome. However, with the advent of high-throughput 
sequencing technologies and the completion of various 
genome projects, the amount of whole-genome sequenc-
ing data available has increased and a new era for phy-
logeny started. Owing to the rising cost of the alignment 
task, alignment-free approaches for quantifying the simi-
larity/dissimilarity between sequences have been intro-
duced. An advantage of these approaches is that they are 
robust for recombination and shuffling events [8–10]. As 
the majority of alignment-free approaches for phyloge-
netic reconstruction performs a preliminary extraction 
of the k-mers (i.e. substrings of length k) from the input 
sequences, they can analyze directly the reads obtained 
from the sequencing platforms, thus avoiding the assem-
bly of these reads and the extraction of the k-mers from 
the assembly.

Our contribution In this paper we present phyBWT2, 
a new version of our tool called phyBWT and previously 
introduced in [11] to reconstruct a phylogenetic tree for 
a set of taxa. The worst-case running time of phyBWT2 
is O(Nℓ) for ℓ taxa of total length N, using O(N + ℓ2) 
space. Like its predecessor, phyBWT2 combines many 
features in a single new method to reconstruct a phylo-
genetic tree starting from any type of data, e.g. assem-
bled sequences as well as raw reads. Firstly, phyBWT2 
is alignment-, assembly-, and reference-free, and thus it 
can work directly on raw sequencing reads. Secondly, it 
does not need a distance matrix as it does not rely on the 
pairwise comparison of sequences. Moreover, it exploits 
the combinatorial properties of the positional clustering 
framework recently introduced in  [12], overcoming the 
limitations of employing k-mers with fixed size k a priori.

The contribution of our approach is twofold, theo-
retical as well as practical. To the best of our knowledge, 
both phyBWT and phyBWT2 are the first to apply the 
properties of the Extended Burrows-Wheeler Transform 
(eBWT), employed in the positional clustering, to the 
idea of decomposition for phylogenetic inference. Not 
only they are oblivious to extra information, such as ref-
erence sequences or read mappings, but they also avoid 
the workload of assembling or aligning input sequences. 
Finally, they infer the tree structure by comparing all the 
sequences simultaneously and efficiently, instead of per-
forming their pairwise comparisons: they do not recon-
struct the tree in top-down or bottom-up directions, 
rather they refine the current structure simultaneously in 
both directions (so bottom up and top down are special 
cases of this more general reconstruction).

Despite these common ideas behind them, phyBWT2 
improves over phyBWT in several aspects. To see why, let 
us briefly recall how phyBWT works. It builds the phylo-
genetic tree through a series of partitions performed on 
groups of nodes. Each partition isolates groups of taxa 
from the others, and phyBWT always proceeds in two 
opposite directions while reconstructing the tree: it goes 
towards the leaves by dividing each part, and towards the 
root by grouping the parts. Each part actually generates a 
node of the phylogeny tree.

In phyBWT2, the tree reconstruction strategy is differ-
ent, as phyBWT2 does not consider a single partition at 
time, but it simultaneously handles several compatible 
cuts that correspond to an unrefined tree. The general 
idea is that an unrefined partition tree can be refined by 
taking one of its nodes and restricting phyBWT2 ’s atten-
tion to just the groups of taxa corresponding to its chil-
dren. This restriction allows phyBWT2 to look into them 
to estimate phylogenetic signals.

In Sect.  "Experimental evaluation", we show that 
phyBWT2 produces phylogenic trees of quality comparable 
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to the standard benchmarks by handling datasets of differ-
ent types (short reads, contigs, or entire genomes). Further-
more, we experimentally provide evidence that phyBWT2 
is more efficient than phyBWT in terms of the number of 
iterations performed to reconstruct a phylogenetic tree. 
Remarkably, phyBWT2 can keep the required data struc-
tures in external memory, thus alleviating the main mem-
ory usage. For these reasons, phyBWT2 can be considered 
as a replacement of our original tool phyBWT.

State of the art The Burrows-Wheeler Transform 
(BWT)  [13] of a string (and the eBWT of a set of 
strings [14, 15]) is a suitable permutation of the symbols 
of the string(s), whose output shows a local similarity, i.e. 
symbols preceding similar contexts tend to occur in clus-
ters. Both transformations have been intensively studied 
with important and successful applications in several 
areas. For instance, the eBWT has been used for defin-
ing alignment-free methods based on a pairwise distance 
matrix  [14, 16–18] in order to build up a phylogenetic 
tree for mitochondrial DNA genomes. The positional 
clustering detects “interesting” blocks in the output of 
the eBWT  [14, 15], so that the requirement on the fixed 
size k in k-mers is relaxed and becomes of variable-order, 
not fixed a priori, in an adaptive way according to the 
contexts. This framework has already been used in other 
bioinformatics tasks, such as for detecting SNPs and 
INDELs in short-read datasets  [19] and for lossy com-
pression of FASTQ datasets [20].

Both phyBWT2 and phyBWT exploit the underlying 
properties of the eBWT: (i) the clustering effect, i.e. the 
fact that the eBWT tends to group together equal sym-
bols in the transformed string that occur in similar con-
texts in the input string collection; (ii) the fact that if a 
substring x occurs in one or more strings, then the suf-
fixes of the input dataset starting with x-occurrence are 
close in the sorted list of suffixes. In other words, the 
greater the number of these substrings shared by two 
taxa is, the more they are similar.

Although phyBWT2 and phyBWT do not use a dis-
tance matrix, they have some resemblance with split 
decomposition methods when reconstructing the tree 
from the information gathered through the eBWT. We 
recall that split decomposition relies on a solid mathe-
matical ground [21, 22], and has been successfully applied 
to phylogeny [23]. The idea is to score the possible splits 
(i.e. bipartitions) of the taxa, and assign an isolation index 
to each split based on the distances in the given matrix. 
Compatible splits are those with an empty intersection 
on one of the parts in the splits, and the isolation index 
is treated as a priority weight in making a (greedy) choice 
among the splits. Compatible splits induce a tree and 
vice versa. However, a residual error is generated on real-
world data, and a notion of weak split compatibility is 

preferred to create a weighted phylogeny network instead 
of a phylogeny tree: the shortest weighted part between 
any two nodes in this network gives the isolation index in 
the corresponding split. For ℓ taxa, only O(ℓ2) splits are 
needed for split decomposition instead of 2ℓ ones [21].

As the original algorithm in the seminal papers on 
split decomposition [21, 23] requires O(ℓ6) comparisons, 
further papers have addressed efficiency and extended 
these ideas. The recent alignment-free method SANS [24, 
25] uses the notions of the split decomposition theory 
to greedily build a list of weakly compatible splits from 
which to infer phylogenies. In the list, each split has its 
own weight computed by counting k-mers that are stored 
in a colored de Bruijn graph [24] (this has been improved 
later by hashing [25], leaving the colored de Bruijn graph 
as input option). The calculated list of splits ordered by 
weight is then filtered according to two strategies that 
are described and implemented in the software tool 
SplitsTree  [26]. In our experimental study, we compare 
the trees obtained by SANS and phyBWT2. It should be 
noted that SANS is also able to reconstruct phylogenetic 
networks whereas phyBWT2 reconstructs phylogenetic 
trees only.

As previously mentioned, a plethora of methods have 
been designed for phylogeny reconstruction (e.g. DBLP 
reports over 500 papers having “phylogeny” in the title). 
We refer the reader to  [6, 27, 28] for a complete and 
detailed review of various methods for phylogeny estima-
tion. We briefly mention here that among the alignment-
based approaches are character-based methods  [5], that 
generally produce alignments of the input sequences and 
compare all sequences simultaneously considering one 
character per time (e.g. using maximum parsimony or 
maximum likelihood).

A preliminary version of this paper appeared in [11] 
with limited experiments performed using our prototype 
tool phyBWT   .1 The new version phyBWT2 replaces 
phyBWT.

Preliminaries
In this section, we define the general terminology we will 
use throughout this paper.

Let s be a string (also called sequence) of length n on 
the alphabet � . We denote the i-th symbol of s by s[i]. A 
substring of any s is denoted as s[i, j] = s[i] · · · s[j] , with 
s[1,  j] being called a prefix and s[i, n+ 1] a suffix of s. A 
k-mer is a string of length k.

Let S = {s1, s2, . . . , sℓ} be a collection of ℓ strings. We 
assume that each string si ∈ S has length ni and is fol-
lowed by a special end-marker symbol Si[ni + 1] = $i , 

1 https:// github. com/ veron icagu errini/ phyBWT.

https://github.com/veronicaguerrini/phyBWT


Page 4 of 26Guerrini et al. Algorithms for Molecular Biology           (2023) 18:11 

which is lexicographically smaller than any other symbol 
in S , and does not appear in S elsewhere.2

Basic data structures
The Burrows-Wheeler Transform (BWT)  [13] is a well-
known widely used reversible string transformation that 
can be extended to a collection of strings. Such an exten-
sion, introduced in  [14], is a reversible transformation 
whose output string (denoted by ebwt(S) ) is a permuta-
tion of the symbols of all strings in S . In [15], the authors 
introduced a variant of this transformation for string 
collection in which a distinct end-marker is appended to 
each string, making the collection ordered. Such trans-
formations are known as eBWT or multi-string BWT.

The length of ebwt(S) is denoted by N =
∑ℓ

i=1(ni + 1) , 
and ebwt(S)[i] = x , with 1≤ i≤N  , if x circularly pre-
cedes the i-th suffix Sj[k , nj + 1] (for some 1 ≤ j ≤ ℓ and 
1 ≤ k ≤ nj+1 ), according to the lexicographic sorting of 
the suffixes of all strings in S.

Usually the output string ebwt(S) is enhanced with the 
document array (DA) and longest common prefix (LCP) 
array of S.

The document array of S (denoted by da(S) ) is the 
array of length N such that da(S)[i] = j , with 1 ≤ j ≤ ℓ 
and 1 ≤ i ≤ N  , where ebwt(S)[i] is a symbol of the string 
sj.

The longest common prefix (LCP) array [29] of S is the 
array lcp(S) of length N + 1 , such that lcp(S)[i] , with 
2 ≤ i ≤ N  , is the length of the longest common prefix 
between the suffixes associated with the positions i and 
i − 1 in ebwt(S) , and lcp(S)[1] = lcp(S)[N + 1] = 0 by 
default. The set S can be omitted when it is clear from 
the context.

The following is an important property of the eBWT, 
and thus of the related data structures DA and LCP, that 
will be used in our method:

Remark 1 The eBWT, DA and LCP data structures for 
a subset of S can be obtained by linearly scanning those 
built for S.
In  [15], the authors prove that given a collection 
S = {S1, S2, . . . , Sℓ} of strings and ebwt(S) , one can 
obtain the eBWT of a subset R of S by removing all the 
characters not in R , without constructing the eBWT 
from scratch, as the relative order of suffixes holds. One 
can obtain the DA for R analogously by scanning da(S) 
and removing entries not in R.

Similarly, one can obtain the LCP of a subset of S by 
using the properties of the LCP array: for any pair of indi-
ces i < j , the longest common prefix between the suffix 
associated with position i and the suffix associated with 
position j is given by min{lcp[i + 1], . . . , lcp[j]}.

Let R ⊂ S . We denote by ebwt(S)|R (resp. da(S)|R , 
lcp(S)|R ) the restriction of the data structure ebwt(S) 
(resp. da(S) , lcp(S) ) to the set of strings R.

LCP‑interval and k‑mer vs positional cluster
We denote by LCP-intervals   of LCP-value k maxi-
mal intervals [i,  j] that satisfy lcp(S)[r] ≥ k for 
i < r ≤ j (slightly different definition from [30]). The suf-
fixes associated with LCP-intervals of LCP-value k have a 
common k-mer as prefix.

In any string collection, thus, LCP-intervals of LCP-
value k are in a one-to-one correspondence with the set 
of all k-mers.

Note that the common prefix w in a LCP-interval is of 
length at least k, but it could be longer. So, to overcome the 
limitation of strategies based on LCP-intervals that require 
to fix the length k, the authors of [12, 19] introduced a new 
framework called “positional clustering”. In this framework 
the intervals do not depend on a value k fixed a-priori, but 
they are enclosed between two “local minima” in the LCP-
array (thus, their boundaries are data-driven).

Crucially, the length k of the common prefix w of the 
suffixes inside such intervals is not the same, but it differs 
interval by interval. Hence, there is no one-to-one corre-
spondence between such intervals and the set of k-mers.

However, as to exclude intervals corresponding to 
some short random contexts w, one needs to set a mini-
mum length for w, which we denote by km.

According to  [19], an eBWT positional cluster 
eBWTclust[i,  j] is a maximal substring ebwt[i, j] where 
lcp[r] ≥ km , for all i < r ≤ j , and none of the indices r, 
i < r ≤ j , is a local minimum of the LCP array.

By definition, we have that:

Remark 2 Any two different eBWT positional clusters, 
eBWTclust[i, j] and eBWTclust [i′, j′] , such that i  = i′ are 
disjoint, i.e. it holds that either j < i′ or j′ < i.

Here, we define a local minimum of the LCP 
array (of length N) any index i, 1 < i < N  such that 
lcp[i − 1] > lcp[i] and lcp[i] < lcp[i + j] , where j > 1 is 
the number of adjacent occurrences of the value lcp[i] from 
position i. For instance, let lcp = [2, 1, 3, 3, 5, 4, 2, 2, 7] . The 
local minima are indices 2 and 7, corresponding to LCP 
values of 1  and 2, respectively.

Note that the above definition differs from that 
in  [19], where local minima in the LCP array (of length 
N) are detected searching for indices r such that 

2 Note that, in the implementations, one can use a single symbol as end-
marker for all strings, but end-markers from different strings are then 
sorted on the basis of their index and the relative order of the strings in the 
collection they belong to.
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lcp[r − 1] > lcp[r] ≤ lcp[r + 1] , for all 1 < r ≤ N  . 
According to such definition, local minima can be 
detected in any non-increasing sequence where some 
values are repeated. For instance, for the first occurrence 
of 4 in the sequence 5, 4, 4, 2 yields the definition of local 
minimum. Therefore, the slightly different notion of local 
minima we use is to maximize the length of the non-
increasing sequence described in the following Remark 3.

Remark 3 ([12, Thm 3.3]) In any eBWT positional 
cluster, the LCP-value form a sequence of non-
decreasing values followed by a (possibly empty) 
sequence of non-increasing values.

From the above remark follows that the length l of the 
longest common prefix shared by the suffixes associ-
ated with a eBWT positional cluster ebwt[i, j] is given by 
the minimum value in lcp[i + 1, j] , which could be sim-
ply obtained by taking the minimum between the values 
lcp[i + 1] and lcp[j].

In general, if we set the minimum length km equal to k, 
the set of eBWT positional clusters forms a refinement of 
the set of ebwt[i, j] with [i, j] LCP-interval of LCP-value k.

In fact, any ebwt[i, j] , where [i, j] is a LCP-interval, can be 
subdivided in correspondence of the local minima of lcp[i, j] , 
thus giving rise to a sequence of consecutive eBWT posi-
tional clusters (see Fig. 1). Clearly, such subdivision depends 
only on the trend of the LCP values inside the LCP-interval 
[i, j]. Hence, more than one positional cluster can be related 
to the same LCP-interval, and equivalently, to the same 
k-mer.

Example 4 (running example) In Fig. 1, we represent 
the data structures used in our tool (cda, ebwt, lcp), 
the auxiliary array da and the sorted list of suffixes, for 
the sake of clarity. The LCP-intervals of LCP-value k = 1 
correspond to the following intervals: [4, 10, 11, 17, 
18, 28, 29, 34]. Whereas the horizontal lines delimit 
eBWTclust for km = 1 . Note that when km = k , the 
eBWTclust can refine the LCP-intervals. For example 
the LCP-interval [18, 28] includes five positional 
clusters: eBWTclust[18, 19] , eBWTclust[20, 21] , 
eBWTclust[22, 23] , eBWTclust[24, 25] , eBWTclust[26, 28].

Methods
In this section, we describe the proposed method for 
building a phylogenetic tree where each leaf is a set of 
strings (sequencing reads, contigs, genome).

The idea behind our method is to reconstruct the tree 
through a series of refinement steps performed on groups 
of taxa.

The inner refinement algorithm groups together 
nodes whose associated strings share long common sub-
strings of varying length which are not present in other 
nodes, and we interpret the presence of such substrings 
as a common feature of the group that differentiates it 
from the others. As mentioned in the introduction, the 
method is not restricted to work in a top-down or bot-
tom-up fashion, but can act on several levels at once, 
according to which ones appear to be most prominent.

The final algorithm, described in Sect.  "Tree recon-
struction", suitably applies refinement to portions of 
the data, and iteratively converges to the reconstructed 

Fig. 1 Extended Burrows-Wheeler Transform (EBWT), LCP array, and the auxiliary data structures DA and CDA for the set S = {GGC GTA CCA, ACG 
AGT ACG ACT , GGG GCG TATT}
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tree. Here refinement is a black box to group taxa, and 
is described in Sect. "The refinement procedure".

Given ℓ taxa, our method  produces an unrooted 
tree without fixing an outgroup.

For ease of explanation, we describe the method con-
sidering the tree as rooted. Indeed, we start from a tree 
that has ℓ+ 1 nodes: one root node, with ℓ children (one 
per taxon). Alternatively, we can imagine it as a star tree.

Before describing the reconstruction procedure, we 
introduce some notation and definitions.

Formally, we denote the set of leaves as 
S = {S1, S2, . . . , Sℓ} where each Si corresponds to a taxon.

The tree T is defined as a partition tree of the set S:

• Each node of T corresponds to a nonempty set of 
taxa S′ ⊆ S

• The root of T corresponds to S
• Each leaf of T corresponds to a distinct taxon Si ∈ S

• For each node corresponding to S′ , its children form 
a partition of S′

It is convenient to define the operation of adding a node 
to T by a set: a set S′ ⊆ S can be added to T only if is 
compatible, i.e., if every other node of T corresponds to 
a set S′′ that satisfies one of these conditions: S′′ ⊂ S′ , 
S′′ ⊃ S′ , or S′′ ∩ S′ = ∅ (i.e. no partial overlap between S′′ 
and S′ ). If this is the case, there is only one way to add S′ 
to T, namely, S′ becomes a child of the smallest set P ⊃ S′ 
of T (by cardinality), and all the other children of P that 
are contained in S′ become the children of S′ . It is easy to 
see that the resulting T is still a partition tree.

In our framework, each Si is a collection of strings, as 
for each taxon we can have multiple strings (like reads, 
contigs, a genome, and so on) possibly augmented by 
their reverse-complement, however in the structure of T 
it is just represented as an identifier.

Let S = {S1, S2, . . . , Sℓ} and each set Si ∈ S contain mi 
strings, i.e. Si = {si,1, . . . , si,mi} . Note that the definitions 
of eBWT, LCP and DA given in Sect.  "Preliminaries" 
apply also to this case:

• ebwt(S) = ebwt({S1, S2, . . . , Sℓ})

= ebwt({s1,1, . . . , s1,m1
, . . . , sℓ,1, . . . , sℓ,mℓ

}),
• lcp(S) = lcp({S1, S2, . . . , Sℓ}) = lcp({s1,1, . . . , sℓ,mℓ

}),
• da(S) = da({S1, S2, . . . , Sℓ}) = da({s1,1, . . . , sℓ,mℓ

}).

For our purposes, we extend the notion of DA to Color Doc-
ument Array (CDA), where cda(S)[j] = r if da(S)[j] = u 
and su belongs to the set Sr . In other words, we assign the 
same color to the strings belonging to the same set Sr , so we 
have a distinct color r for each set Sr ∈ S.

Example 5 (running example) In Fig. 1, cda coincides 
with da assuming that each taxon is a single string.

Tree reconstruction
In this subsection we show how our method reconstructs 
a phylogenetic tree for S by suitably applying refine-
ment. We consider refinement as a blackbox with the 
following properties: given a list of sets C = C1, . . . ,Ch , 
such that any Ck is a subset of S and disjoint from all 
other Ck ′ , for 1 ≤ k < k ′ ≤ h , refinement returns a list 
of sets L = L1, . . . , L|L| of compatible subsets of 

⋃

k Ck : i.e., 
each Li is the union of some Ck’s, and each Li is either a 
subset of, a superset of, or disjoint from any other Lj , for 
1 ≤ i < j ≤ |L|.

The key idea is that once an intermediate partition tree 
is obtained, we may take one of its nodes and restrict 
our attention to just the groups of taxa corresponding 
to its children ( C1, . . . ,Ch ) and repeat refinement: this 
allows us to look at the subtree with a greater detail, by 
restricting the input data structures and changing the 
ebwt, thus bringing new tree refinements to light. This is 
repeated until all internal nodes in the partition tree have 
only two children, or no more refinements can be identi-
fied by refinement.

Our algorithm is described in Algorithm  1, and one 
possible iteration is depicted in Fig. 2.

At the beginning we initialize the unrefined partition 
tree T (Line 1) as a rooted star with root S (non-final), 
and leaves labelled by S1, . . . , Sℓ marked as final. As the 
names suggests, final indicates that no more refinement 
is needed at that node.

The algorithm iteratively processes a non-final node 
X of T (Line  3), meaning that its children C1, . . . ,Ch 
(which correspond to disjoint sets) are fed to refine-
ment to create new nodes that further partition the 
children. All nodes produced with two children are 
marked final; also, if refinement fails to create new 
nodes, then X is marked final.

Line 6 calls the refinement function to create a list 
L of compatible subsets of X =

⋃

k Ck , and then the 
draw_and_mark function is called to add the corre-
sponding new nodes to T (Line 7).

By the aforementioned assumptions on the sets in L, 
they are always compatible with T: each Li is a subset of 
X (and all its ancestors in T), it is a superset of some Ci 
(and all their descendants in T), and it is disjoint from 
all other nodes in T. Thus, draw_and_mark only 
needs to consider two cases:

• Case (i) T is not changed (i.e. the list L is empty): 
node X is marked as final (Line 10).

• Case (ii) L is not empty: a new internal node is cre-
ated for each Li ∈ L , by adding the set Li to the par-
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Fig. 2 A possible iteration of Algorithm 1 where final nodes are in bold
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tition tree T as described before. A node is marked 
final if it has only two children; otherwise, it needs 
to be further refined and is added to the queue (this 
also applies to the node X).

Figure  2 depicts the procedure of adding nodes to T, 
while a possible execution of the algorithm is shown in 
Fig. 3.

Fig. 3 A possible execution of Algorithm 1 on a set of taxa S = {1, 2, 3, 4, 5, 6} . Each panel in the top shows an execution of the refinement 
procedure, with input on top and the list of subsets generated in the bottom. Below, the corresponding refinement of the partition tree, 
where dashed nodes are non-final. Note how nodes are marked final when they are leaves, or they have 2 children, or refinement fails to further 
cluster their children (see 4, 5, 6 in execution III)

The refinement procedure
In this subsection, we describe the approach we use as 
inner refinement function that starting from a set of 
sibling nodes C1, . . . ,Ch returns a list L of compatible 
subsets. This is a direct evolution of the partition proce-
dure of phyBWT, that allows to process multiple levels at 
once.

According to Subsect. "Tree reconstruction", the sibling 
nodes C1, . . . ,Ch of T to be refined correspond to some 
(not necessarily all) taxa: each Ck can be either a leaf of 
T (thus corresponding to only one taxon) or an internal 
node of T corresponding to a subset S′ ⊂ S.
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appearing in cda[i, j] is “large enough”. Formally, we 
define a support threshold τ ( 0 < τ ≤ 1 ) that determines 
the minimum required portion for each Ck ∈ γQ to be in 
cda[i, j] . Intuitively, the support threshold guarantees that 
all the elements of Q appearing in any eBWTclust[i, j] are 
sufficiently represented. In fact, when τ approaches the 
value of 1, all the elements of the subset Ck are required 
to be in the cluster. In other words, we aim at measur-
ing how similar the shared history of the phylogeny is in 
terms of common substrings. On the other hand, when 
τ approaches the value of 0, at least one of the elements 
of the subset Ck is required to be in the cluster consid-
ered. Thus, we are observing how similar all the evolu-
tion events are. That provides two different viewpoints of 
their phylogenetic relationships.

Example 10 (Continued from Example 8) Let 
Q = {{1, 3, 4}, {2}, {5}, {6}} and τ = 0.5 . The eBWTclust 
[i, j] = ACAAGT  with cda[i, j] = [1 2 1 1 3 3] is a 
relevant cluster, since for any element of γQ , its portion 
in cda[i, j] is above τ.

Example 11 (running example) We highlight in 
bold, in Fig. 1, the relevant eBWTclust, that are 
eBWTclust[11, 14] and eBWTclust[22, 23]. Every 
other eBWTclust is either a run of a same symbol or 
the associated cda contains only one color or all of them.

Now, we use the notion of relevant eBWTclust to 
obtain a list of compatible subsets of Q = {C1, . . . ,Ch} , 
having size at most h− 1.

The whole strategy is summarized in the following 
three steps: 

1 Scan input data structures computed on S , and 
detect only the relevant eBWTclust of the restricted 
eBWT(S)|Q (denoted by eBWTclust Q[i, j] , for 
some i < j).

2 For each eBWTclust Q[i, j] , incrementally assign a 
score to the subset of Q corresponding to γQ . Intui-
tively, we use the score to determine the order in 
which the subsets of Q must be processed to output 
the list L.

3 Output L by selecting compatible subsets of Q that 
record the highest scores.

By Remark 1, any relevant eBWTclust Q detected at the 
first step can be inferred by a linear scan of the input data 
structures ebwt(S), lcp(S), cda(S).

In general, any γQ-colored eBWTclust Q[i, j] may not be 
relevant, and thus, it does not provide a score to its cor-
responding subset γQ . In our framework, each relevant 

We can consider each Ck as the set of colors (i.e. the set 
of taxa) to which it corresponds. Let Q = {C1, . . . ,Ch} . 
We define a function χQ that associates a color r (i.e. any 
taxon in S ) to the element of Q to which it belongs (if one 
exists).

Definition 6 Given Q = {C1, . . . ,Ch} , we define χQ 
from {1, . . . , ℓ} to {C1, . . . ,Ch} ∪ {∅} , such that

Let [i,  j] be a positional cluster. Recall that we denote by 
eBWTclust[i,  j] the concatenation of the symbols in the 
eBWT associated with the range [i,  j] (i.e. ebwt(S)[i, j] ). 
Then, for each eBWTclust[i,  j], the corresponding interval 
in the CDA, cda(S)[i, j] , stores the colors (i.e. indices of the 
taxa) to which the symbols in eBWTclust[i, j]  belong.

Definition 7 An eBWTclust[i,  j] is γQ-colored if γQ 
is the set of elements of Q appearing in cda(S)[i, j] , i.e. 
γQ = {χQ(r): r ∈ cda(S)[i, j]}.

Note that if eBWTclust and CDA are restricted to the 
strings in Q (see Remark 1), then γQ contains only non-
empty sets.

Example 8 Let Q = {{1, 3, 4}, {2}, {5}, {6}} and eBWT-
clust [i, j] = ACAAGT  with cda[i, j] = [1 2 1 1 3 3] . 
Then, eBWTclust[i, j] is γQ-colored and 
γQ = {{1, 3, 4}, {2}}.

The main idea is to detect and analyze only eBWT 
positional clusters associated with left-maximal contexts 
shared by a sufficiently large number of taxa (but not by 
all of them).

Definition 9 A γQ-colored eBWTclust[i, j] is relevant, if 
the following properties hold: 

i) ebwt[i, j] is not a concatenation of a same symbol (i.e. 
it is not a run),

ii) 1 < card(γQ) < h,
iii) card(cda[i, j] ∩ Ck) ≥ τ · card(Ck) , for all Ck ∈ γQ 

and some 0 < τ ≤ 1.

In ii), we cut off the eBWT positional clusters asso-
ciated with left-maximal contexts shared by only one 
element of Q or by all of them. Indeed, such contexts 
provide no significant information about how to group 
together elements of Q.

In iii), we require that any element Ck in γQ is suf-
ficiently supported, i.e. the number of colors of Ck 

χQ(r) =

{

Ck if there exists k s.t. r belongs toCk

∅ otherwise.
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eBWTclust Q[i, j] contributes to the score of the subset γQ 
by one.

Steps  1 and  2 are in fact performed simultaneously, 
and only subsets of Q that provide at least one score are 
accounted for (without considering all the 2h possibilities).

To build up the list L we greedily select the subsets of 
Q having a high score and that are compatible with each 
other. In particular, we first order the subsets obtained 
by the positional clustering by their score, and then, by 
scanning the sorted scores we consider subsets one-by-
one. For each γQ we compute the subset U =

⋃

γQ , and 
add it to L if it is compatible with what added so far (i.e., 
a subset of, superset of or disjoint from all elements in L).

Example 12 (Continued from Example 10) Suppose 
γQ = {{1, 3, 4}, {2}} is found to be compatible with 
what we have added to L so far. Then we add the set 
U = {1, 3, 4} ∪ {2} = {1, 2, 3, 4} to L.

We stop adding subsets to L in some cases: 
i) the maximum possible number of elements is 

reached (that is h− 2 ), 
ii) the score decreases too much with respect to the 

highest score (e.g. two order of magnitude lower than the 
highest score) meaning that the subset associated is not 
trustworthy, 

iii) the number of consecutive unsuccessful attempts 
to add elements to L exceeds a threshold value f (we set 
this as min{2h, 100} , so that it scales with the size of the 
instance, with the limit of 100 to prevent excessive degen-
eration of quality).

Complexity
We observe here how the pre-processing step of our 
method, which consists in building the eBWT, LCP and 
DA data structures, can be computed in time and space 
linear in the number N of all symbols of the strings in S.

The refinement procedure described in Subsect. 
"The refinement procedure" can be computed in O(N) 
time and space: Indeed, given Q = {C1, ...,Ch} and 
X =

⋃

{C1, ...,Ch} , the eBWT (resp. LCP and CDA) for 
X ⊆ S can be deduced in linear time in the length N of 
ebwt(S) (resp. lcp(S) and cda(S) ), including at the same 
time the detection of all positional clusters [12]. Given an 
element of a eBWTclust[i,  j] and τ , we can determine in 
O(1) time its color using the CDA; as we can pre-com-
pute the size of all Ci , this lets us easily determine the γQ
-coloring of the cluster and whether it is relevant or not 
(Definitions 7 and 9) in time proportional to the cluster’s 
length. Overall, detecting positional clusters and assign-
ing scores to subsets of Q has a total cost of O(N) time.

While potentially there could be up to 2h ≤ 2ℓ possible 
subsets of Q , we observe that each positional cluster can 
in fact define at most one of them, of size not greater than 

the length of the cluster. It follows that the list of subsets 
of Q , from which we select the elements of L, has < N  
elements, and the sum of their sizes is too at most N.

Next, the algorithm sorts by score the subsets of Q 
found by the positional clustering, which using a bucket 
sort takes O(N) time. Finally, we need to scan the sorted 
subsets as to obtain the output list L of compatible sub-
sets, and insert new nodes in the partition tree T (draw_
and_mark procedure).

To check whether a subset Q′ ⊆ Q is compatible with 
the ones inserted in T so far, we proceed as follows: taken 
any element y ∈ Q′ , take the leaf-to-root path from y to 
the root,3 and consider for each node the cardinality of its 
set. If Q′ is compatible, it must be inserted at one specific 
point in this path, i.e., where the cardinality of the lower 
node is < |Q′| and that of the upper node is > |Q′| (the 
path has length ≤ ℓ and we only need to scan it once to 
find the spot, so this can be obtained in O(ℓ) time). At this 
point, we identified the potential parent P of Q′ , and we 
only need to verify that indeed Q′ ⊂ P (O(|P|) time), and 
that, for each child Pi of P, either Pi ⊂ Q′ or |P ∩ Q′| = 0 ; 
this latter step also takes O(

∑

|Q′|) = O(|P|) time, with 
|P| ≤ ℓ since P ⊆ S . This means we can identify whether 
Q′ is compatible, and in case already identify the nodes 
that should become children of Q′ , in O(ℓ) time.

Since the maximum number of subsets we analyze 
from the sorted list is limited by f · s , where s ≤ h is the 
number of successful insertions in L, and f the limit of 
consecutive failures allowed, the total cost of this step is 
O(fsℓ) , meaning that the total cost of each execution of 
refinement is O(N + fsℓ).

The number of executions of refinement is bounded 
by the final number of nodes in T, that is O(ℓ) . Further-
more, the total cost of the O(fsℓ) factors can be amortized 
to O(f ℓ2) in that only up to ℓ successful insertions can be 
performed in total on T. It follows that the total cost is 
bounded by O(Nℓ+ f ℓ2) . Finally, as f is a constant (no 
greater than 100) and ℓ ≤ N  since each taxon has a posi-
tive length, we have O(Nℓ+ f ℓ2) = O(Nℓ).

As for the space requirement, it is that of refinement 
plus the maximum size of the Queue and the tree T: refine-
ment requires O(N) space for the ebwt structures; the 
Queue only holds up to ℓ pointers to the tree T, and the latter 
tree has O(ℓ) nodes each of size O(ℓ) . The following holds:

Lemma 13 Given a set S of ℓ taxa, whose total length 
is N, phyBWT2 reconstructs a phylogenetic tree for S in 
O(Nℓ) time and O(N + ℓ2) space.

3 In practice, we can stop at X instead of the root to consider fewer nodes, 
but the worst-case complexity is the same.
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We observe that N is the dominant factor in this com-
plexity, as the length of the strings representing a taxon 
is -in known applications- many orders of magnitude 
greater than the number ℓ of taxa.

Furthermore, O(Nℓ) time corresponds to the worst 
case in which the refinement procedure only gener-
ates one new node each time. As refinement is able 
to create nodes on various levels at once, this is not the 
expected behaviour: as showcased in Sect. "Experimental 
evaluation" the number of calls of the refinement pro-
cedure is far less than ℓ in practice.

Experimental evaluation
In this section we test the performance of phyBWT2 for 
reconstructing phylogenetic trees from short-reads and 
de novo assembled sequences. Indeed, as for the previous 
version phyBWT, its usage is not limited to a particular 
type of input since both types of data are accepted as input. 
However, the diversity between the two type of input data 
requires a tuning of the parameters ( kmin and τ).

For comparison, we selected the recently introduced 
tool SANS  [24, 25] since it shares several features 
with phyBWT2: both are whole-genome based, align-
ment- and reference-free approaches for phylogenetic 
reconstruction that do not use or produce pairwise com-
parisons of the sequences or their characteristics. We 
used the latest version4 of SANS  [25], a stand-alone re-
implementation of the theoretical approach presented 
in  [24] that improves both running time and memory 
usage.

Differently from phyBWT2, SANS is based on the con-
struction of a list of splits obtained by computing all the 
k-mers of the dataset, which are either directly extracted 
or stored in a colored de Bruijn graph. Thus, it requires 
to fix a-priori the value k. Then, the list of splits is post-
processed according to filtering strategies (options pro-
posed in SplitsTree  [26]) that allow to limit the output 
splits in order to show phylogenetic networks or to cal-
culate a subset of them representing a tree. For the sake 

of comparison, we applied to SANS the last filtering 
approach for drawing trees.

In our experiments, in order to improve the sensitivity 
of our tool (note that SANS performs implicitly this step 
by adding the reverse-complement of the k-mers), we 
added the reverse-complement of the strings to each set 
of taxa.

Implementation Our tool has been implemented in 
C++. All tests were done on a DELL PowerEdge R750 
machine, used in non exclusive mode. Our platform is 
a 24-core machine with 2 Intel(R) Xeon(R) Gold 5318Y 
24C/48T CPUs at 2.10 GHz, with 629 GB. The system is 
Ubuntu 22.04.1 LTS.

Input and Output phyBWT2 takes as input ebwt ( S ), 
lcp ( S ) and cda ( S ), the parameter km that is used to 
remove the noise during the construction of the posi-
tional clusters and the support threshold value τ in (0, 1] 
used for each positional cluster coloring. Such data struc-
tures can be computed via the bash script that we provide 
in the phyBWT2 repository. In the current implementa-
tion, the data structures are given in uncompressed form, 
but phyBWT2 can be adapted to directly take as input 
compressed data structures [31].

Our tool outputs an unrooted tree in newick format. 
The trees5 reported in this paper are drawn by using the 
Interactive Tree Of Life (iTOL) tool [32].

Datasets To show the effectiveness of our method, 
we have chosen six datasets with a diverse number of 
taxa, composition and different length of the strings 
(Table 1). More in details, we used six different types of 
datasets: i) Illumina sequencing data (short reads) for 
seven S. cerevisiae and five S. paradoxus strains from 
the study in  [33]; ii) assemblies from 12 species of the 
genus Drosophila from the FlyBase database (largely 
accepted phylogeny shown in  [34]) (also analyzed 
in  [24]); iii) Illumina sequencing data (short reads) for 
42 S. cerevisiae strains selected from the studies in [35, 
36] and from the public repository under accession 
code PRJEB50706. iv) 43 HIV-1 complete genomes used 

Table 1 Datasets

Datasets Composition Number
of taxa

Number
of sequences

Number
of bp

12 yeasts Illumina paired-end reads 12 60,000,000 9,060,000,000

Drosophila assemblies 12 121,491 4,323,268,803

42 yeasts Illumina paired-end reads 42 119,641,704 15,664,843,102

HIV-1 genomes 43 43 388,535

Ebolavirus genomes 20 20 378,002

E. coli—Shigella genomes 27 27 132,466,506

4 https:// gitlab. ub. uni- biele feld. de/ gi/ sans, downloaded in January 2023. 5 Except the trees in Figs. 4, 5,  and 6 already in the conference paper [11].

https://gitlab.ub.uni-bielefeld.de/gi/sans
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in the literature  [37]; v) 20 sequences from Ebolavirus 
genus selected in  [38, 39]. vi) 27 genomes from E. coli 
and Shigella from the studies in [40, 41].

Resource usage The new version phyBWT2 improves 
the performance of the former version phyBWT by 
reducing the internal memory usage and the running 
time on large datasets. Indeed, phyBWT2 does not load 
in main memory the data structures: it performs the 
clustering detection by reading portions of the input 
data structures computed for the whole dataset and by 
(possibly) reducing them to a subset of strings at the 
same time.

In Table  2 we report the running times of both 
phyBWT2 and SANS on the tested datasets. We separate 
the running time required to build the data structures 
from the running time of phyBWT2 for several reasons.

First, the input data structures eBWT, LCP and CDA 
are well-known structures in string algorithms and 
in bioinformatics, and efficiently building these data 
structures is a well-studied problem (  [15, 42–49]). 
Thus, analyzing the best way to compute them effi-
ciently does not fall within the goal of this paper.

Second, the data structures do not depend on the km
-value used to remove the noise during the construc-
tion of the positional clusters. Therefore, they need to 
be built only once for each input dataset. One can try 
different parameters or techniques for inferring con-
fidence values on phylogenetic trees (based on recon-
structing many trees) without having to rebuild the data 
structures.

The last feature does not hold for k-mers-based meth-
ods, such as SANS, whose data structures must be rec-
omputed when varying the input parameter k.

Nevertheless, we experimentally observed that the pre-
processing step (see Table  2) is computationally more 
expensive than the phylogeny construction.

Experiments on 12 yeasts
This dataset comprises 12 Illumina 151-bp paired-end 
sequencing experiments obtained from the study in [33], 
and deposited in the public repository SRA (Short 
Reads Archive) under accession code PRJNA340312. We 
selected seven sequencing data from the S. cerevisiae 
strains and five from the S. paradoxus strains. We per-
formed adaptor-removing and quality-based trimming 
using trimmomatic  [50], as described in  [33]. Then, for 
each sequencing experiment, we extracted 5 million of 
151-bp paired-end reads as to form a dataset with 60× 
coverage on average per strain and a total FASTA file size 
of 26 GB.

Table 2 Running times and RAM both phyBWT2 and SANS

We also show the the resources needed to build the data structures during the preprocessing using the tool BCR [15] and bwt2lcp [46] for short reads and 
gsufsort [45] for long sequences. All tools were run using one core only. The wall clock time and RAM usage are taken from the output of the /usr/bin/time 
command.

Datasets PhyBWT2 SANS

Preprocessing Phylogeny RAM Wall clock

RAM (Kb) Wall clock (hh:mm:ss) RAM (Kb) Wall clock 
(hh:mm:ss)

(Kb) (hh:mm:ss)

12 yeasts 27,559,652 3:19:03 6752 3:12 2,779,692 35:58

Drosophila 92,536,548 26:11 9516 8:50 30,107,232 21:04

42 yeasts 47,696,220 (BCR+bwt2lcp) 08:06:08 1,874,388 01:26:17 14,128,724 32:48:43 (k=32)

4,461,196 (only BCR) 16:27:45 12,368,416 45:52:01 (k=25)

HIV-1 18,996 < 1s 8452 < 1s 9,020 < 1s

Ebolavirus 18,256 < 1s 8460 < 1s 9,112 < 1s

E. coli—Shigella 5,484,644 1:21 12,648 1:38 303,868 3:06

Fig. 4 Benchmark phylogeny for the yeasts dataset. Figure redrawn 
from [33]
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Validation and results As benchmark tree we used 
the one reported in Fig.  4 obtained from the original 
study  [33]. Remarkably, the benchmark was built using 
nuclear one-to-one orthologs, i.e. the sequences of 

nuclear genes which are shared among (i) the seven S. 
cerevisiae, (ii) the five S. paradoxus strains sequenced in 
the study, and (iii) six outgroups from the Saccharomyces 
genus.

Fig. 5 Yeasts phylogeny by phyBWT and phyBWT2 (a) and by SANS (b)

Fig. 6 Drosophila phylogeny: a by our method; b benchmark redrawn from [34]
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The tree depicted in Fig. 5a has been obtained by the 
first version phyBWT, for any km ≥ 14 , and τ = 0.6 and 
t being the number of taxa. By running phyBWT2 on 
the same input we obtain the same reconstructed phy-
logeny with similar parameters, i.e. for any km > 15 
and τ = 0.6 (parameter t being removed in phyBWT2). 
For running SANS, analogously to [11], we use default 
parameters that corresponds to setting the k-mer 
length to 32 (-DmaxN=32), and in addition, we set the 
option -f strict in order to output a tree in the 
Newick format (see Fig. 5b).

Both phyBWT2 and SANS separate the S. cerevisiae 
and the S. paradoxus strains, which show an aver-
age whole-genome sequence divergence of ∼ 10%. As 
expected, by taking into account the relatively high 
divergence among S. paradoxus strains (0.5% - 4.5%), 
also the same S. paradoxus partition is obtained. On 
the other hand, a few differences are shown in the 
S. cerevisiae partition which groups strains with a 
sequence divergence ∼ 0.5%. Compared to SANS, 
phyBWT2 produces a tree which is closer to the 
benchmark although the differences with the bench-
mark shown by both SANS and our method can be 
explained considering the relatively low divergence 
among S. cereviasiae strains as well as the partially 
admixed genomes of some of the trains (e.g. S288C and 
DBVPG6044) [51].

For a fair comparison, we also run SANS with differ-
ent values of the input parameter k (i.e. by varying k 
in the range [15,  50]). The unrooted phylogenetic tree 
obtained for k in [15, 27] is topologically equivalent to 
the one obtained from our approach depicted in Fig. 5a, 
but the UWOPS034614 strain is clustered with the S. 
paradoxus clade rather than S. cerevisiae clade. Instead, 
for k > 40 , either the strain UWOPS919171 is mis-
placed or the stains Y12 and YPS128 are not grouped 
together, differently from the benchmark tree.

Time and memory Given the necessary data structures 
for this dataset, the former version phyBWT runs in 
approximately 12 min with a memory peak of 81 GB by 
loading the whole data structures in the main memory. 
The new version phyBWT2 uses only 6.5 MB of internal 
memory and fulfills the task in 3:12  min reducing the 
number of performed iterations from 6 to 1 (using the 
same parameter setting km = 22 and τ = 0.6 for both 
versions). On the same datasets, using default param-
eters, SANS runs in 30:29 min by using 3.7 GB of internal 
memory. However, a direct time and memory compari-
son between phyBWT2 and SANS is not completely fair, 
as they take different inputs: if we do not assume avail-
ability of the data structures, computing them for this 
dataset takes over 3 hours, so SANS would be faster (see 
Table 2 for details).

Experiments on Drosophila
Drosophila data are downloaded from the FlyBase data-
base.6 This dataset includes assemblies from 12 species of 
the genus Drosophila: D. melanogaster (mel), D. ananas-
sae (ana), D. erecta (ere), D. grimshawi (gri), D. mojaven-
sis (moj), D. persimilis (per), D. pseudoobscura (pse), D. 
sechellia (sec), D. simulans (sim), D. virilis (vir), D. willis-
toni (wil), and D. yakuba (yak). Nine of these species fall 
within the Sophophora subgenus, which includes mem-
bers of the melanogaster, obscura and willistoni groups.

The number of strings for each species varies: it ranges 
from 1, 870 for D. melanogaster to 17, 440 for D. grim-
shawi. The obtained dataset is a medium-sized input 
with a total number of symbols of more than 2, 161 Mbp. 
More details are reported in Additional file 1.

Validation and results As benchmark tree we used the 
accepted phylogeny [34] which we report in Fig. 6b. For 
this dataset, phyBWT2 produces the same tree as the one 
obtained in [11] by using phyBWT for any km in [23, 45] 
and τ = 0.5 (Fig. 6a). The same parameter settings used 
for phyBWT also hold for phyBWT2. The Sophophora 
subgenus as well as the Drosophila subgenus are cor-
rectly detected, and inside the Sophophora subgenus, the 
melanogaster subgroup is correctly isolated. The only dif-
ference with respect to the benchmark tree by [34] is the 
taxon D. ananassae that represents the ananassae sub-
group. Such subgroup is part of the melanogaster group 
together with D. melanogaster, D. sechellia, D. simulans, 
D. erecta and D. yakuba. However, our method places 
D. ananassae closer to the obscura group rather than 
the melanogaster subgroup. SANS was run with default 
values as described in  [24], and the reconstructed tree 
obtained by option -f strict is topologically equiva-
lent to the benchmark reference tree.

Time and memory phyBWT2 improves upon phyBWT 
by reducing the memory usage from 24 GB to 9 MB, 
and by reducing the number of iterations from 4 to 2 for 
km = 23 and τ = 0.5 . Nevertheless, the running time of 
phyBWT2 is  around 9 min, more than phyBWT which 
ends in less than 2 min; this is  mainly due to the fact 
that input data structures are kept on the disk. By using 
default parameters, SANS uses an amount of inter-
nal memory similar to phyBWT (28.7 GB) and ends in 
around 21 min.

Experiments on 42 yeasts
In order to test the accuracy of phyBWT2 in discerning 
closely related populations (with sequence divergence 
varying between 0.5% and 1%), we selected 42 repre-
sentative S. cerevisiae strains and produced their phylo-
genetic tree.

6 http:// flyba se. org/

http://flybase.org/
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This dataset comprises 42 Illumina paired-end 
sequencing experiments obtained from the study in [52]. 
More details about the public repositories to download 
them are provided in Additional file 1. For each sequenc-
ing experiment, we extracted paired-end reads yielding 
an average coverage of 30× per strain and a total FASTA 
file size of 38 GB.

Validation and results As a benchmark we used IQ-
TREE [53] with model selection [54] and ultrafast boot-
strapping  [55] (Fig.  7) and compared its results with 
those obtained from phyBWT2 and SANS. As shown in 

Fig. 8, phyBWT2 captured several features of the phylog-
eny produced with IQ-TREE.

Overall, the structure of the tree generated by 
phyBWT2 for sufficiently large km and τ ( km = 25 and 
τ = 0.6 ) is very similar to the structure of the bench-
mark tree. All the main non-admixed clades [51], namely 
the “Wine/European” strains (AIF, BPK, ALS_1a, ADI, 
CKB, AFI, CAS_1a) and the Asian ones (BAQ_1a, BAH, 
BAL_1a, AMH_1a, BAP_1a), are correctly identified by 
phyBWT2. Remarkably, also the other two main classes 
of strains, namely the “ale beer” strains (AAC, ATV) and 
the “African palm wine” clade (BAD, BAF), are correctly 

Fig. 7 Bootstrapping phylogenetic tree on the 42 yeasts sequences
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clustered close to the Wine/European and the Asian 
clades respectively.

Finally, all the other strains related to the Wine/Euro-
pean clade are correctly clustered. Moreover, compar-
ing the results of phyBWT2 with the literature [52] we 
observe that only phyBWT2 is able to correctly detect 
the outgroup strain (AMH_1a).

On the contrary, the tree generated by SANS with 
default parameters (Fig. 9) fails to grasp both the general 
structure of the benchmark tree and the fine structure 
of the different clades. Remarkably, we observe strains 

related to the Wine/European group, such as the cider 
strain AMP_1a, clustered very close to Asian strains and 
also the other way round, e.g. the Asian strain CDG_1a 
that is clustered close to Wine/European strains.

We also ran SANS using a smaller value for the k-mer 
length (option -k 25). As reported in Fig. 10 the general 
structure of the tree improved with respect to the default 
parameter, since the clustering of the non-admixed 
strains (both the Wine/European and the Asian) is cor-
rectly determined. Also the fine structure improved with 
the African palm wine strains (BAD and BAF) correctly 

Fig. 8 The phylogenetic tree on the 42 yeasts sequences by phyBWT
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clustered with the Asian clade. On the other hand, the ale 
beer strains (AAC and ATV) are still incorrectly placed. 
The same holds for the outgroup (AMH_1a) that is not 
identified.

Time and memory Given the necessary data struc-
tures for this dataset, phyBWT2 reconstructs the pro-
posed phylogeny in approximately 1  h and half with a 
memory peak of 1.8 GB by using km = 25 and τ = 0.6 . 
phyBWT2 largely improves upon phyBWT not only but 
showing a better phylogeny reconstruction (by using 

similar parameter settings), but also in its performance. 
The former version runs in 5 h by using a large amount of 
memory (more than 175 GB) and performs 33 iterations 
against the only 5 carried out by phyBWT2. On the same 
dataset, SANS needs 13.5 GB of internal memory and 
more than 32 h to reconstruct the phylogenetic tree for 
k = 32 , and even more time (around more than 45 h) for 
k = 25 . Although a direct time and memory comparison 
between phyBWT2 and SANS is not fair, since phyBWT2 
requires data structures whose computation does not 

Fig. 9 The phylogenetic tree on the 42 yeasts sequences by SANS with default parameters
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depends on the choice of k, in this case even including 
the computation of the data structures phyBWT2 is more 
efficient than SANS: for this dataset, we can compute the 
eBWT and CDA array using the semi-external memory 
approach proposed by BCR [15] taking about 7 h and 4.3 
GB of internal memory, and deduce the LCP array from 
the eBWT using the tool bwt2lcp  [46] taking around 
1 h and 20 min and 45 GB of memory (see Table 2).

Experiments on HIV
Clade classification is an important task also in the field 
of virology, as each clade (also termed subtype) corre-
sponds to a cluster of genetic similarity. Thus, we stud-
ied the phylogeny of the Human immunodeficiency virus 
(HIV).

There are two main types of HIV, and among them, 
HIV-1 is the most virulent and predominant. This dataset 

Fig. 10 The phylogenetic tree on the 42 yeasts sequences by SANS with option -k=25 
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is obtained by selecting 43 HIV-1 complete genomes used 
in the literature [37]. In particular, it comprises thirty-five 
sequences from the major group (Group M) divide into 
subtypes A, B, C, D, F, G, H, J, K, seven sequences from 
the minor Groups N and O, and one CPZ sequence as an 
outgroup. Accession number, subtype, length (bp), and 
area of the HIV-1 sequences are reported in Table  S1. 
These reference sequences have been carefully selected 
in  [56] according to several criteria, and can be down-
loaded from the Los Alamos National Laboratory HIV 
Sequence Database.7

Validation and results For this experiment, we use as 
benchmark the phylogeny depicted in [37, Fig. 2], which 
is the Neighbor-Joining phylogenetic tree on the 43 ref-
erence sequences where the CPZ sequence (CIV strain 
AF447763) is used as an outgroup. We run phyBWT2 and 
SANS on this dataset by using different parameter set-
tings. We compared the reconstructed phylogenetic trees 
by using the functions ClusteringInfoDistance() 
and SharedPhylogeneticInfo() provided in the 
R package TreeDist  [57], which implements a suite 
of metrics to quantify the topological distance between 
pairs of unweighted phylogenetic trees.

Figures  11 and 12 depict the trees that obtained the 
best scores according to the above measures based 
on the amount of phylogenetic or clustering informa-
tion that two trees hold incommon. More in details, 
we set km = 16 and τ = 0.6 in phyBWT2 and k = 16 in 
SANS. For both tools, subtypes are distinctly grouped 
together in different branches. The phylogeny produced 
by phyBWT2 is consistent with the one in [37]. The rela-
tionships among the subtypes are well demonstrated, for 
instance subtypes B and D (resp. C and H) are closer to 
each other than to the others, and subtype F (resp. A) 
contains two distinguishable sub-subtypes F1 and F2 
(resp. A1 and A2) that are close related to subtypes K and 
J (resp. G).

Time and memory Given the necessary data structures 
for this dataset, both phyBWT and phyBWT2 recon-
struct the proposed phylogeny very quickly (less than 1 
second). However, phyBWT2 improves on phyBWT by 
showing a phylogeny reconstruction closer to the bench-
mark philogeny (by using similar parameter settings), 
and by reducing the number of iterations from 8 to 3.

Experiments on Ebolavirus
For this experiment, we used the 20 published sequences 
from [38] selected in [39].

The Ebolavirus genus includes five viral species: Ebola 
virus (Zaire ebolavirus, EBOV), Sudan virus (SUDV), 

Tai Forest virus (TAFV), Bundibugyo virus (BDBV), and 
Reston virus (RESTV). Ebola viruses are single-stranded 
RNA whose genomes consist of about 19 kilobases. 
Details for each sequence in Additional file 1.

Validation and results For this experiment, we use as 
benchmark the phylogeny trees depicted in [39, Fig. 4].

Figures  13 and  14 depict the trees that obtained the 
best scores according to the measures based on the 
shared amount of phylogenetic or clustering information 
provided in the R package TreeDist [57] and described 
for the HIV-1 dataset. More in details, we setkm = 16 and 
τ = 0.6 in phyBWT2 and k = 21 in SANS.

Both phyBWT2 and SANS exactly separated the five 
species. According to the four trees in  [39, Fig.  4], the 
EBOV sequences are clustered into a monophyletic clade, 
and BDBV and TAFV viruses are positioned close and 
then clustered with the EBOV branch. These trees also 
show the phylogenetic uncertainty in the placement of 
the SUDV clade (red).

Our method (Fig.  13) places the SUDV clade as sis-
ter to the EBOV, TAFV and BDBV clade, in accord-
ing with  [39, Fig.  4E], whereas SANS (Fig.  14) places it 
as sister to RESTV clade in according with [39, Fig. 4A]. 
Differently from the study in  [39, Fig.  4], the phylogeny 
reconstructed by SANS keeps the EBOV branch and the 
TAFV-BDBV clade separated (Fig. 14).

Time and memory Also in this second dataset of viral 
genomes, both phyBWT and phyBWT2 reconstruct the 
proposed phylogeny very quickly (less than 1 second). 
The phylogeny reconstructed by phyBWT is similar to 
the one produced by phyBWT2, but the number of itera-
tions performed by phyBWT2 is much smaller (from 13 
to 2).

Experiments on E. coli—Shigella
For this experiment, we used a real-world dataset col-
lected in the study [41] to assess the accuracy of the align-
ment-free methods in phylogenetic reconstruction of 
sequences that underwent horizontal gene trasfer events 
and genome rearrangements. It comprises 27 genomes of 
E. coli and Shigella whose reference supertree  [40] was 
generated based on thousands of single-copy protein 
trees. Details for each sequence in Additional file 1.

Validation and results As benchmark we use the phy-
logeny tree depicted in  [41, Additional file 2: Figure S8] 
where E. coli reference groups and Shigella (S) are indi-
cated. Indeed, the 27 taxa are attributed to six distinct 
groups (the E. coli reference, or ECOR, strains) [40].

Figures 15a and b depict the trees we selected among 
them obtaining the higher scores according to the clus-
tering information measure described above and com-
puted by using the R package TreeDist  [57]. More in 
details, we choose k = 16 for SANS, and km = 16 and 7 http:// www. hiv. lanl. gov/

http://www.hiv.lanl.gov/
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τ = 0.5 for phyBWT2 (parameter setting similar to other 
datasets).

We observe that phyBWT2 clusters in clades each 
ECOR group (i.e. groups A, B1, B2, D, E and S), apart 
from S. dysenteriae that is placed externally to Group S, 
more precisely as sister to Group E.

However, we note that also in the reference tree S. dys-
enteriae is placed externally, as sister to the pathogenic 

E. coli O157:H7 isolates (Group E). Also the tree recon-
structed by SANS shows such a relationship between S. 
dysenteriae and Group E.

Differently from the reference tree, both phyBWT2 and 
SANS placed groups A and B1 as sister groups.

Time and memory The time usage of phyBWT 2 and 
SANS for this dataset is comparable (including the time 
for the preprocessing step completed by the internal 

Fig. 11 The phylogenetic tree on the 42 HiV-1 sequences by phyBWT2. Re-root the tree in CIV strain AF447763, as it is set outgroup in the reference 
tree in [37]
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memory approach gsufsort [45]), which is also com-
parable to the time spent by the older version phyBWT. 
By keeping the data structures on disk, phyBWT2 
improves the memory usage of phyBWT. Finally, also 
for this datasets the number of iterations performed by 
phyBWT2 improves on those performed by the previ-
ous version.

Conclusions and further work
In this paper, we proposed phyBWT2 an alignment-, 
assembly- and reference-free method to build the phy-
logeny inference of a set of taxa. The phyBWT2 method 
is a new version of phyBWT  [11] that includes improve-
ments on the phylogenetic reconstruction strategy, as 
well as on the performance in both running time and 
memory usage. In fact, phyBWT2 is shown to reduce 

Fig. 12 The phylogenetic tree on the 42 HIV-1 sequences by SANS. Re-root the tree in CIV strain AF447763, as it is set outgroup in the reference 
tree in [37]
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the number of iterations performed, and by keeping the 
data structures on disk it extremely reduces the main 
memory usage. To this extent, the implementation of 
phyBWT2 reads portions of lcp(S) , as well as of ebwt(S) 
and cda(S) , and without the need of loading them in 
main memory, it performs the cluster detection by reduc-
ing on-the-fly the input data structures to any R ⊂ S (i.e. 
by deducing lcp(R) , ebwt(R) and cda(R) ) from lcp(S) , 
ebwt(S) and cda(S).

To the best of our knowledge, phyBWT and phyBWT2 
are the first methods that apply the properties of the 
Extended Burrows-Wheeler Transform (eBWT) to the 
idea of phylogenetic reconstruction. Both approaches 
are based on the eBWT positional cluster framework 
introduced in [19], which allowed us to consider longest 
shared substrings of varying length, unlike k-mer-based 
approaches such as SANS.

Fig. 13 The phylogenetic tree on Ebolavirus dataset by phyBWT2

Fig. 14 The phylogenetic tree on Ebolavirus dataset by SANS
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Fig. 15 The phylogenetic tree on the 27 E. coli—Shigella genomes by phyBWT (a) and by SANS (b)
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Differently from phyBWT, phyBWT2 combines the 
inner algorithm based on the eBWT positional clustering 
to a refinement procedure that reconstructs a phylogeny 
step-by-step by considering multiple partitions at each 
step, instead of just one partition as done by phyBWT.

We tested our method on several sequencing datasets, 
with short reads and de novo assembled sequences. The 
experimental results show that our algorithm produces 
trees comparable to the benchmark phylogeny and to the 
recently introduced tool SANS.

Our current implementation requires a preprocess-
ing phase in order to compute the input data structures 
( ebwt , lcp and cda ), which are at the heart of several 
other text and string algorithms. Thus, evaluating the 
best tool or the combination of tools for the pre-process-
ing phase is out of the scope of this work. More efficient 
tools for computing them can appear in the literature 
improving both the time and the memory requirements.

Moreover, the input data structures we used are 
independent of the parameter settings, so they can be 
computed only once and re-used for different runs of 
phyBWT2. Indeed, by using different types of data (e.g. 
genomes rather than short reads) phyBWT2 parame-
ters may need to be fine-tuned, and there is no need of 
rebuilding from scratch the input data structures when 
changing phyBWT2 parameters. The same remarkable 
feature does not hold for k-mer-based approach, such as 
for instance SANS.

Phylogenetic analysis is a common practice in HIV 
studies  [56, 58]. Experimentally we show phyBWT2 is 
able to distinctly group together the HIV-1 subtypes and 
to grasp the relationships among the subtypes. Virus sub-
types can be clinically significant owing to their associa-
tions with variation in pathogenesis.

While the worst-case complexity of the method is 
competitive with existing methods, there are interesting 
directions for further optimization, such as using Colored 
Range Queries [59] to speed up identification of colors in 
the various clusters, or exploiting the bounded length of 
the reads to overcome the computational bottleneck of 
computing the eBWT and related data structures. A fur-
ther improvement could include internally to phyBWT2 
the bootstrapping of the reconstructed tree, for instance 
by ranging the value km to vary eBWT positional clusters.
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