
Chen and Shao
Algorithms for Molecular Biology (2023) 18:7
https://doi.org/10.1186/s13015-023-00234-2

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Locality-sensitive bucketing functions
for the edit distance
Ke Chen1 and Mingfu Shao1,2*

Abstract

Background Many bioinformatics applications involve bucketing a set of sequences where each sequence
is allowed to be assigned into multiple buckets. To achieve both high sensitivity and precision, bucketing methods are
desired to assign similar sequences into the same bucket while assigning dissimilar sequences into distinct buckets.
Existing k-mer-based bucketing methods have been efficient in processing sequencing data with low error rates,
but encounter much reduced sensitivity on data with high error rates. Locality-sensitive hashing (LSH) schemes are
able to mitigate this issue through tolerating the edits in similar sequences, but state-of-the-art methods still have
large gaps.

Results In this paper, we generalize the LSH function by allowing it to hash one sequence into multiple buckets. For-
mally, a bucketing function, which maps a sequence (of fixed length) into a subset of buckets, is defined to be (d1, d2)
-sensitive if any two sequences within an edit distance of d1 are mapped into at least one shared bucket, and any
two sequences with distance at least d2 are mapped into disjoint subsets of buckets. We construct locality-sensitive
bucketing (LSB) functions with a variety of values of (d1, d2) and analyze their efficiency with respect to the total
number of buckets needed as well as the number of buckets that a specific sequence is mapped to. We also prove
lower bounds of these two parameters in different settings and show that some of our constructed LSB functions are
optimal.

Conclusion These results lay the theoretical foundations for their practical use in analyzing sequences with high error
rates while also providing insights for the hardness of designing ungapped LSH functions.

Keywords Locality-sensitive hashing, Locality-sensitive bucketing, Long reads, Embedding

Background
Comparing a set of given sequences is a common task
involved in many bioinformatics applications, such as
homology detection [1], overlap detection and the con-
struction of overlap graphs [2–4], phylogenetic tree
reconstruction, and isoform detection from circular

consensus sequence (CCS) reads [5], to name a few. The
naive all-vs-all comparison gives the most comprehen-
sive information but does not scale well. An efficient
and widely-used approach that avoids unnecessary com-
parisons is bucketing: a linear scan is employed to assign
each sequence into one or multiple buckets, followed by
pairwise comparisons within each bucket. The procedure
of assigning sequences into buckets, which we refer to
as a bucketing function, is desired to be both “sensitive”,
i.e., two similar sequences ideally appear in at least one
shared bucket so that they can be compared, and “spe-
cific”, i.e., two dissimilar sequences ideally appear in
disjoint buckets so that they can be exempt from com-
parison. The criteria of similar/dissimilar sequences are

*Correspondence:
Mingfu Shao
mxs2589@psu.edu
1 Department of Computer Science and Engineering, The Pennsylvania
State University, State College, United States
2 Huck Institutes of the Life Sciences, The Pennsylvania State University,
State College, United States

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00234-2&domain=pdf

Page 2 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

application-dependent; in this work we study bucketing
functions for the edit distance (Levenshtein distance).

A simple yet popular bucketing function is to put a
sequence into buckets labeled with its own k-mers. The
popular seed-and-extend strategy [6, 7] implicitly uses
this approach. Various sketching methods such as mini-
mizer [8–11] and universal hitting set [12, 13] reduce
the number of buckets a sequence is assigned to by only
considering a subset of representative k-mers. These
bucketing methods based on exact k-mer matching
enjoyed tremendous success in analyzing next-generation
sequencing (NGS) data, but are challenged by the third-
generation long-reads sequencing data represented by
PacBio [14] and Oxford Nanopore [15] technologies; due
to the high error rates, sequences that should be assigned
to the same buckets hardly share any identical k-mers (for
a reasonably large k such as k = 21 with 15% error rate),
and therefore results in poor sensitivity.

To address this issue, it is required to be able to rec-
ognize similar but not necessarily identical sequences.
A general solution is locality-sensitive hashing (LSH)
[16, 17] where with high probability, similar sequences
are sent into the same bucket (i.e., there is a hash colli-
sion), and with high probability dissimilar sequences are
sent into different buckets. However, designing locality-
sensitive hashing functions for the edit distance is hard;
the state-of-the-art method Order Min Hash (OMH) is
proved to be a gapped LSH but admits a large gap [16].
Another related approach is embedding the metric space
induced by the edit distance into more well-studied nor-
med spaces [4, 18, 19]. However, such an embedding is
also hard; for example, it is known that the embedding
into L1 cannot be distortion-free [20]. In addition, there
are seeding/sketching methods such as spaced k-mer [21,
22], indel seeds [23], and the more recent strobemer [24]
that allow gaps in the extracted seeds to accommodate

some edits, but an edit that happens within the chosen
seed can still cause mismatches.

It is worth noting that locality-sensitive hashing
functions, when interpreted as bucketing functions,
assign a sequence into exactly one bucket: buckets are
labeled with hash values, and a sequence is put into
the single bucket where it is hashed to. In this work,
we propose the concept of locality-sensitive bucket-
ing (LSB) functions as a generalization of LSH func-
tions by allowing it to assign a sequence into multiple
buckets. Formally, a bucketing function, which maps
a sequence (of fixed length) into one or more buckets,
is defined to be (d1, d2)-sensitive if any two sequences
within an edit distance of d1 are mapped into at least
one shared bucket, and any two sequences with an edit
distance at least d2 are mapped into disjoint subsets of
buckets. While a stochastic definition by introducing a
distribution on a family of bucketing functions can be
made in a similar way as the definition of LSH func-
tions, here we focus on this basic, deterministic defini-
tion. We design several LSB functions for a variety of
values of (d1, d2) including both ungapped (d2 = d1 + 1)
and gapped (d2 > d1 + 1) ones. This demonstrates that
allowing one sequence to appear in multiple buck-
ets makes the locality-sensitive properties easier to
satisfy. Moreover, our lower bound proof shows that
any (1, 2)-sensitive bucketing function must put each
sequence (of length n) into at least n buckets (see
Lemma 2), suggesting that certain ungapped locality-
sensitive hashing functions, where each sequence is
sent to a single bucket, may not exist.

In the following sections, we first introduce the precise
definition of LSB functions and propose criteria to meas-
ure them. Two different approaches of designing LSB
functions are then presented with results summarized in
Table 1. We also show experimental studies of the perfor-
mance of gapped LSB functions.

Table 1 Results on (d1, d2)-sensitive bucketing functions of length-n sequence

 Entries with ≤ show the best known upper bounds. Entries marked with a single star cannot be reduced under the specific bucketing method. Entries marked with
double stars cannot be reduced in general. In column B, we use Bin to refer to a constructed (1, 1)-guaranteed subset

(d1, d2)-sensitive B |B| |f (s)| Ref.

(1, 2) {1, . . . , |B|} n|�|n−1⁎⁎ n⁎⁎ Theorem 1

(1, 3) Sn |�|n |N1
n(s)| = (|�| − 1)n+ 1 Lemma 6

(1, 3) B
i
n |�|n−1⁎

{

1 if s ∈ B

n if s �∈ B⁎

Lemma 9–11

(3, 5) B
i
n |�|n−1 ≤ |N2

n(s)| Theorem 2

(r , 2r + 1) , r > 1 B
i
n |�|n−1 ≤ |Nr

n(s)| Lemma 8, 10

(2r − 1, 2r + 1), r ≥ 3 odd Sn |�|n |Nr
n(s)| Lemma 6

(2r , 2r + 1), r ≥ 2 even Sn |�|n |Nr
n(s)| Lemma 6

Page 3 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

Basics of locality‑sensitive bucketing (LSB)
functions
Given an alphabet � with |�| > 1 and a natural number
n, let Sn = (�n, edit) be the metric space of all length-
n sequences equipped with the Levenshtein (edit) dis-
tance. Given a set B of buckets, a bucketing function f
maps Sn to P(B) , the power set of B. This can be viewed
as assigning a sequence s of length n to a subset of buck-
ets f (s) ⊂ B . Let d1 < d2 be two non-negative integers,
we say a bucketing function f is (d1, d2)-sensitive if for all
s, t ∈ Sn,

We refer to the above two conditions as LSB-proper-
ties (1) and (2) respectively. Intuitively, the LSB-prop-
erties state that, if two length-n sequences are within
an edit distance of d1 , then the bucketing function f
guarantees assigning them to at least one common
bucket, and if two length-n sequences have an edit dis-
tance at least d2 , then the bucketing function f guaran-
tees not assigning them to any shared bucket. In other
words, (d1, d2)-sensitive bucketing functions perfectly
distinguish length-n sequences within distance d1
from those with distances at least d2 . It is easy to show
that if f : Sn → P(B) is a (d1, d2)-sensitive bucketing
function, then f (s) = ∅ for all s ∈ Sn . In fact, since
edit(s, s) = 0 ≤ d1 , the LSB-property (1) implies that
f (s) = f (s) ∩ f (s) �= ∅ . If d1 = d2 − 1 then we say the
bucketing function is ungapped; otherwise it is called
gapped.

We note that the above definition of LSB functions gen-
eralizes the (deterministic) LSH functions: if we require
that |f (s)| = 1 for every sequence s ∈ Sn , i.e., f maps a
sequence to a single bucket, then f (s) ∩ f (t) �= ∅ implies
f (s) = f (t) and f (s) ∩ f (t) = ∅ implies f (s) = f (t).

Two related parameters can be used to measure an
LSB function: |B|, the total number of buckets, and |f (s)| ,
the number of different buckets that contain a specific
sequence s . From a practical perspective, it is desirable to
keep both parameters small. We therefore aim to design
LSB functions that minimize |B| and |f (s)| . Specifically,
in the following sections, we will construct (d1, d2)-sen-
sitive bucketing functions with a variety of values of
(d1, d2) , and analyze their corresponding |B| and |f (s)| ;
we will also prove lower bounds of |B| and |f (s)| in differ-
ent settings and show that some of our constructed LSB
functions are optimal, in terms of minimizing these two
parameters.

(1)edit(s, t) ≤ d1 =⇒ f (s) ∩ f (t) �= ∅,

(2)edit(s, t) ≥ d2 =⇒ f (s) ∩ f (t) = ∅.

The bounds of |B| and |f (s)| are closely related to the
structure of the metric space Sn . For a sequence s ∈ Sn ,
its d-neighborhood, denoted by Nd

n (s) , is the subspace
of all sequences of length n with edit distance at most
d from s ; formally Nd

n (s) = {t ∈ Sn | edit(s, t) ≤ d} .
The following simple fact demonstrates the connec-
tion between the bound of |f (s)| and the structure of Sn ,
which will be used later.

Lemma 1 Let s be a sequence of length n. If Nd1
n (s)

contains a subset X with |X | = x such that every two
sequences in X have an edit distance at least d2, then for
any (d1, d2)-sensitive bucketing function f we must have
|f (s)| ≥ x.

Proof Let f be an arbitrary (d1, d2)-sensitive bucketing
function. By the LSB-property (2), the x sequences in X
must be assigned to distinct buckets by f. On the other
hand, since they are all in Nd1

n (s) , the LSB-property (1)
requires that f (s) overlaps with f (t) for each sequence
t ∈ X . Combined, we have |f (s)| ≥ x . �

An optimal (1, 2)‑sensitive bucketing function
In the most general setting of LSB functions, the labels
of buckets in B are just symbols that are irrelevant to the
construction of the bucketing function. Hence we can let
B = {1, . . . , |B|} . The remaining of this section studies
(1, 2)-sensitive bucketing functions in this general case.
We first prove lower bounds of |B| and |f (s)| in this set-
ting; we then give algorithms to construct an optimal
(1, 2)-sensitive bucketing function f that matches these
bounds.

Lemma 2 If f : Sn → P(B) is (1, 2)-sensitive, then for
each s ∈ Sn , |f (s)| ≥ n.

Proof According to Lemma 1 with d1 = 1 and d2 = 2 ,
we only need to show that N 1

n (s) contains n different
sequences with pairwise edit distances at least 2. For
i = 1, . . . , n , let t i be a sequence obtained from s by a
single substitution at position i. If i = j , then t i differs
from t j at two positions, namely i and j. Then we must
have edit

(

t i, t j
)

≥ 2 as t i cannot be transformed into t j
with a single substitution or a single insertion or deletion.
Hence,

{

t1, . . . , tn
}

 forms the required set. �

Page 4 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

Lemma 3 If f : Sn → P(B) is (1, 2)-sensitive, then
|B| ≥ n|�|n−1.

Proof Consider the collection of pairs
H =

{

(s, b) | s ∈ Sn and b ∈ f (s)
}

 . We bound the size
of H from above and below. For an arbitrary sequence
s , let b ∈ f (s) be a bucket that contains s . According
to the LSB-property (2), any other sequence in b has
edit distance 1 from s , i.e., a substitution. Suppose that
the bucket b contains two sequences u and v that are
obtained from s by a single substitution at different posi-
tions. Then edit(u, v) = 2 and f (u) ∩ f (v) �= ∅ , which
contradicts the LSB-property (2). Therefore, all the
sequences in b can only differ from s at some fixed posi-
tion i. There are |�| such sequences (including s itself).
So each bucket b ∈ B can appear in at most |�| pairs in H.
Thus |H | ≤ |�| · |B|.

On the other hand, according to Lemma 2, each s ∈ Sn
needs to appear in at least n different buckets, and hence
at least n pairs in H. So |H | ≥ n|Sn| = n|�|n . Together,
we have |�| · |B| ≥ n|�|n , or |B| ≥ n|�|n−1 . �

We now construct a bucketing function f : Sn → P(B)
that is (1, 2)-sensitive using the algorithm given below. It
has exponential running time with respect to n but primar-
ily serves as a constructive proof that (1, 2)-sensitive buck-
eting functions exist. Assign to the alphabet � an arbitrary
order σ : {1, . . . , |�|} → � (for conciseness, we also write
σi = σ(i) and assume the inverse function σ−1(σi) = i).

A toy example of the bucketing function f with n = 2
and � = {σ1 = A, σ2 = C, σ3 = G, σ4 = T} constructed
using the above algorithm (where the sequences are pro-
cessed in the lexicographical order induced by σ) is given
below, followed by the contained sequences in the result-
ing buckets.

f (AA) = {1, 2}, f (AC) = {2, 3}, f (AG) = {2, 4}, f (AT) = {2, 5},

f (CA) = {1, 6}, f (CC) = {3, 6}, f (CG) = {4, 6}, f (CT) = {5, 6},

f (GA) = {1, 7}, f (GC) = {3, 7}, f (GG) = {4, 7}, f (GT) = {5, 7},

f (TA) = {1, 8}, f (TC) = {3, 8}, f (TG) = {4, 8}, f (TT) = {5, 8}.

bucket # sequences bucket # sequences

1 AA, CA, GA, TA 2 AA, AC, AG, AT

3 AC, CC, GC, TC 4 AG, CG, GG, TG

5 AT, CT, GT, TT 6 CA, CC, CG, CT

7 GA, GC, GG, GT 8 TA, TC, TG, TT

Lemma 4 The constructed bucketing function f : Sn →

P(B) satisfies: (i) each bucket contains |�| sequences, (ii)
|f (s)| = n for each s ∈ Sn , and (iii) |B| = n|�|n−1.

Proof Claim (i) follows directly from the construc-
tion (the most inner for-loop). In the algorithm, each
sequence s ∈ Sn is added to n different buckets, one for
each position. Specifically, let s = s1s2 · · · sn , then s is
added to a new bucket when we process the sequence
si = s1s2 · · · si−1σ1si+1 · · · sn , 1 ≤ i ≤ n . Hence, |f (s)| = n .
To calculate |B|, observe that a new bucket is used when-
ever we encounter the smallest character σ1 in some

Page 5 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

sequence s . So |B| is the same as the number of occur-
rences of σ1 among all sequences in Sn . The total num-
ber of characters in Sn is n|�|n . By symmetry, σ1 appears
n|�|n−1 times. �

Lemma 5 The constructed bucketing function f is
(1, 2)-sensitive.

Proof We show that for s, t ∈ Sn , edit(s, t) ≤ 1 if
and only if f (s) ∩ f (t) �= ∅ . For the forward direction,
edit(s, t) ≤ 1 implies that s and t can differ by at most one
substitution at some position i. Let r be the sequence that
is identical to s except at the i-th position where it is sub-
stituted by σ1 (it is possible that r = s). According to the
algorithm, when processing r , both s and t are added to a
same bucket m. Therefore, m ∈ f (s) ∩ f (t).

For the backward direction, let m be an integer from
f (s) ∩ f (t) . By construction, all the |�| sequences in
the bucket m differ by a single substitution. Hence,
edit(s, t) ≤ 1 . �

Combining Lemmas 2–5, we have shown that the
above (1, 2)-sensitive bucketing function is optimal in the
sense of minimizing |B| and |f (s)| . This is summarized
below.

Theorem 1 Let B = {1, . . . , n|�|n−1} , there is a
(1, 2)-sensitive bucketing function f : Sn → P(B) with
|f (s)| = n for each s ∈ Sn . No (1, 2)-sensitive bucket-
ing function exists if |B| is smaller or |f (s)| < n for some
sequence s ∈ Sn.

An efficient construction algorithm
In practice, instead of considering the entire Sn , one is
often interested in some specific subset X. For example,
X can be the set of all length-n strings that appear in a
genome. Given an LSB function f on Sn , let f |X be its
restriction to X. Then f |X satisfies the LSB-properties (1)
and (2) for all s, t ∈ X . In the case that X is much smaller
in size comparing to Sn , it is desirable to compute f |X
directly.

The above algorithm constructs an optimal (1, 2)-sen-
sitive bucketing function by assigning n buckets to each
s ∈ Sn with a global counter. It runs in O(n|�|n) time. We

now show that the n buckets assigned to a sequence s can
be computed directly in O(n) time, implying a O(n|X|)-
time algorithm that computes a (1, 2)-sensitive bucketing
function for an arbitrary subset X ⊂ Sn.

Recall that in the above algorithm, a new integer bucket
is used whenever we encounter the smallest character
σ1 ∈ � in a sequence s , then all |�| sequences with a sin-
gle mutation at this position, including s itself, are added
to this bucket. If the sequences are processed in the lexi-
cographical order induced by σ , this integer is essentially
counting the number of occurrences of σ1 that come
before (in this lexicographical order) the current σ1 . For
instance, in the previous example, the character A in AT
triggers a new bucket 5 because there are four A’s come
before it in the lexicographical order; AT is also in bucket
2 because it can be obtained by a single mutation of AA
where the underlined A is the second in the lexicographi-
cal order. In general, the sequence s = s1s2 · · · sn ∈ Sn is
assigned to n buckets triggered by the underlined σ1 ’s in
the n (not necessarily distinct) sequences s1 = σ1s2 · · · sn ,
s2 = s1σ1s3 · · · sn , . . . , sn = s1 · · · sn−1σ1 , respectively.

For t ∈ Sn , let Sσ (t) be the set of sequences in Sn that
come before t in the lexicographical order induced
by σ , namely, Sσ (t) contains σ n

1 , σ
n−1
1 σ2, . . . up to

the length-n sequence immediately before t . Define
count(t) to be the total number of σ1 ’s among all
sequences in Sσ (t) . Let #1i (t) be the number of σ1 ’s in
the length-i prefix of t . Then s is added to the buckets
{

count
(

si
)

+ #1i−1(s)+ 1 | i = 1, . . . , n
}

.
We first consider the computation of count(t) =

count(t1t2 · · · tn) . If t1 = σ1 , then all sequences in
Sσ (t) begin with σ1 , there are |Sσ (t)| = |Sσ (t2 · · · tn)|
of them; removing the first character of all the
sequences in Sσ (t) produces the set Sσ (t2 · · · tn) . So
count(t1t2 · · · tn) = |Sσ (t)| + count(t2 · · · tn) . If t1 = σ1 ,
consider the sequence m = t̂1σ

n−1
|�| where t̂1 is the char-

acter precedes t1 according to σ . We compute count(t) by
partition Sσ (t) into three sets: the set of sequences come
before m , the set of sequences come after m (but before
t), and the singleton set {m} . For the first set, the num-
ber of σ1 is count(m) by definition. For the second set, all
the sequences begin with t1 = σ1 (note that the sequence
immediately after m is t1σ n−1

1), so removing the first
character does not affect the number of σ1’s; observe that
this produces the set Sσ (t2 · · · tn) . For the third set, the
only possible occurrence of σ1 is t̂1 . In summary, count(t)
can be computed by the following recursive formula:

Page 6 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

with base case count(ε) = 0 and Sσ (ε) = ∅ where ε
denotes the empty string.

In the first case, the number of length-(n− 1)
sequences before t2 · · · tn in the lexicographical order has
the closed-form expression (corresponds to the base-|�|
numeral encoding of the sequence t2 · · · tn with respect to
σ):

Expanding the second case by the recursion, we have

where in the second equation, the first term is by symme-
try of all characters from

{

σ
n−1
1 , . . . , σ n−1

|�|

}

= Sn−1
(technically, count

(

σ
n−1
|�|

)

 excludes σ1 ’s from σ n−1
|�| , but

there is none); and the second term is simply
∣

∣

∣
Sn−1 \

{

σ
n−1
|�|

}∣

∣

∣
 . Expanding the third case by the recur-

sion until the first character becomes σ1 , we have

For conciseness, define for i = 1, 2, . . . , n:

Then the recursion can be simplified to

count(t1t2 · · · tn)

= count(t2 · · · tn)

+















|Sσ (t2 · · · tn)| if t1 = σ1,

count
�

σ1σ
n−1
|�|

�

+ 1 if t1 = σ2,

count
�

t̂1σ
n−1
|�|

�

otherwise,

(3)|Sσ (t2 · · · tn)| =

n
∑

j=2

(

σ−1
(

tj
)

− 1
)

|�|n−j .

count
(

σ1σ
n−1
|�|

)

= count
(

σ
n−1
|�|

)

+

∣

∣

∣
Sσ

(

σ
n−1
|�|

)∣

∣

∣

= (n− 1)|�|n−2 + |�|n−1 − 1,

count
(

t̂1σ
n−1
|�|

)

= count
(

σ
n−1
|�|

)

+ count
(

ˆ̂t1σ
n−1
|�|

)

= . . .

=

(

σ−1
(

t̂1
)

− 1
)

· count
(

σ
n−1
|�|

)

+ count
(

σ1σ
n−1
|�|

)

+ 1

= σ−1
(

t̂1
)

(n− 1)|�|n−2 + |�|n−1.

µi(t) = µ(ti · · · tn)

=

{

|Sσ (ti+1 · · · tn)| if ti = σ1,

σ−1(ti)(n− i)|�|n−i−1 + |�|n−i if ti �= σ1.

By equation (3), the µi(t) ’s can be computed iteratively
from n to 1 yielding a linear time algorithm for comput-
ing count(t1 · · · tn) . (Here we assume that all arithmitic
operations involved take constant time.)

For the n buckets
{

count
(

s
i
)

+ #1i−1(s)+ 1 |
{

count
(

si
)

+ #1i−1(s)+ 1 | i = 1, . . . , n
}

 , comput-
ing each count

(

si
)

 separatedly takes O
(

n2
)

 time in
total. We aim to reduce the running time by explor-
ing the similarity between count(s) and count

(

si
)

 . For
j < i , consider µj(s) = µ

(

sj · · · si−1sisi+1 · · · sn
)

 and
µj

(

si
)

= µ
(

sj · · · si−1σ1si+1 · · · sn
)

 , if sj = σ1 , according
to equation (3), their values differ by (σ−1(si)− 1)|�|n−i ;
and if sj = σ1 , they are the same by definition. Recall that
the number of occurrences of σ1 among the first i − 1
characters in s is #1i−1(s) , hence the values of

∑i−1
j=1 µj(s)

and
∑i−1

j=1 µj

(

si
)

 differ by #1i−1(s)(σ
−1(si)− 1)|�|n−i . For

j > i , µj(s) = µj

(

si
)

 because the two suffixes starting
from position j are identical. Therefore, we have

The following pseudocode first calculates and stores
in linear time and space the values of µi(s) , #1i (s) , and
νi(s) = |Sσ (si · · · sn)| ; then each of the n buckets is com-
puted in constant time. We also provide an implemen-
tation of both the global counter algorithm and this
efficient individual bucketing algorithm at [25].

count(t) = count(t1t2 · · · tn)

= count(t2 · · · tn)+ µ1(t) = . . . =

n
∑

i=1

µi(t).

count
(

s
i
)

=

i−1
∑

j=1

µj

(

s
i
)

+ µi

(

s
i
)

+

n
∑

j=i+1

µj

(

s
i
)

=

i−1
∑

j=1

µj(s)− #1i−1(s)(σ
−1(si)− 1)|�|n−i

+ µi

(

s
i
)

+

n
∑

j=i+1

µj(s)

=

n
∑

j=1

µj(s)− µi(s)− #1i−1(s)

(σ−1(si)− 1)|�|n−i + µi

(

s
i
)

= count(s)− µi(s)− #1i−1(s)

(σ−1(si)− 1)|�|n−i

+ |Sσ (si+1 · · · sn)|.

Page 7 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

Mapping to sequences of length n
We continue to explore LSB functions with different val-
ues of d1 and d2 . Here we focus on a special case where
B ⊂ Sn , namely, each bucket in B is labeled by a length-n
sequence. The idea of designing such LSB functions is to
map a sequence s to its neighboring sequences that are in
B. Formally, given a subset B ⊂ Sn and an integer r ≥ 1 ,
we define the bucketing function f rB : Sn → P(B) by

We now derive the conditions for f rB to be an LSB func-
tion. For any sequence s , all the buckets in f rB (s) are
labeled by its neighboring sequences within radius r.
Therefore, if two sequences s and t share a bucket labeled
by v , then edit(s, v) ≤ r and edit(t , v) ≤ r . Recall that Sn is
a metric space, in particular, the triangle inequality holds.
So edit(s, t) ≤ edit(s, v)+ edit(t , v) ≤ 2r . In other words,
if s and t are 2r + 1 edits apart, then they will be mapped
to disjoint buckets. Formally, if edit(s, t) ≥ 2r + 1 , then
f rB (s) ∩ f rB (t) = ∅ . This implies that f rB satisfies the LSB-
property (2) with d2 = 2r + 1 . We note that this state-
ment holds regardless of the choice of B.

Hence, to make f rB a (d1, 2r + 1)-sensitive bucket-
ing function for some integer d1 , we only need to deter-
mine a subset B so that f rB satisfies the LSB-property (1).

f rB (s) = Nr
n(s) ∩ B =

{

v ∈ B | edit(s, v) ≤ r
}

for each s ∈ Sn.

Specifically, B should be picked such that for any two
length-n sequences s and t within an edit distance of d1 ,
we always have

For the sake of simplicity, we say a set of buckets B ⊂ Sn
is (d1, r)-guaranteed if and only if Nr

n(s) ∩ Nr
n(t) ∩ B �= ∅

for every pair of sequences s and t with edit(s, t) ≤ d1 .
Equivalently, following the above arguments, B is (d1, r)
-guaranteed if and only if the corresponding bucket-
ing function f rB is (d1, 2r + 1)-sensitive. Note that the
(d1, r)-guaranteed set is not a new concept, but rather
an abbreviation to avoid repeating the long phrase “a set
whose corresponding bucketing function is guaranteed
to be (d1, 2r + 1)-sensitive”. In the following sections, we
show several (d1, r)-guaranteed subsets B ⊂ Sn for differ-
ent values of d1.

(2r, r)-guaranteed and (2r − 1, r)-guaranteed subsets
We first consider an extreme case where B = Sn.

Lemma 6 Let B = Sn . Then B is (2r, r)-guaranteed if r is
even, and B is (2r − 1, r)-guaranteed if r is odd.

f rB (s) ∩ f rB (t) =
(

Nr
n(s) ∩ B

)

∩
(

Nr
n(t) ∩ B

)

= Nr
n(s) ∩ Nr

n(t) ∩ B �= ∅.

Page 8 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

Proof First consider the case that r is even. Let s and
t be two length-n sequences with edit(s, t) ≤ 2r . Then
there are 2r edits that transforms s to t . (If edit(s, t) < 2r ,
we can add in trivial edits that substitute a character
with itself.) Because s and t have the same length, these
2r edits must contain the same number of insertions
and deletions. Reorder the edits so that each inser-
tion is followed immediately by a deletion (i.e., a pair
of indels) and all the indels come before substitutions.
Because r is even, in this new order, the first r edits
contain an equal number of insertions and deletions.
Namely, applying the first r edits on s produces a length-
n sequence v . Clearly, edit(s, v) ≤ r and edit(t , v) ≤ r , i.e.,
v ∈ Nr

n(s) ∩ Nr
n(t) = Nr

n(s) ∩ Nr
n(t) ∩ B.

For the case that r is odd. Let s and t be two length-n
sequences with edit(s, t) ≤ 2r − 1 . By the same argument
as above, s can be transformed to t by 2r − 1 edits and
we can assume that all the indels appear in pairs and they
come before all the substitutions. Because r is odd, r − 1
is even. So applying the first r − 1 edits on s produces
a length-n sequence v such that edit(s, v) ≤ r − 1 < r
and edit(t , v) ≤ 2r − 1− (r − 1) = r . Therefore,
v ∈ Nr

n(s) ∩ Nr
n(t) = Nr

n(s) ∩ Nr
n(t) ∩ B . �

By definition, setting B = Sn makes f rB (2r, 2r + 1)-sen-
sitive if r is even and (2r − 1, 2r + 1)-sensitive if r is odd.
This provides nearly optimal bucketing performance in
the sense that there is no gap (when r is even) or the gap is
just one (when r is odd). It is evident from the proof that
the gap at 2r indeed exists when r is odd because if s can
only be transformed to t by r pairs of indels, then there
is no length-n sequence v with edit(s, v) = edit(t , v) = r.

Properties of (r, r)-guaranteed subsets
In the above section all sequences in Sn are used as buck-
ets. A natural question is, can we use a proper subset
of Sn to achieve (gapped) LSB functions? This can be
viewed as down-sampling Sn such that if two length-n
sequences s and t are similar, then a length-n sequence
is always sampled from their common neighborhood
Nr
n(s) ∩ Nr

n(t).
Here we focus on the case that d1 = r , i.e., we aim to

construct B that is (r, r)-guaranteed. Recall that this
means for any s, t ∈ Sn with edit(s, t) ≤ r , we have
Nr
n(s) ∩ Nr

n(t) ∩ B �= ∅ . In other words, f rB is (r, 2r + 1)

-sensitive. To prepare the construction, we first inves-
tigate some structural properties of (r, r)-guaranteed
subsets. We propose a conjecture that such sets form a
hierarchical structure with decreasing r:

Conjecture 1 If B ⊂ Sn is (r, r)-guaranteed, then B is
also (r + 1, r + 1)-guaranteed.

We prove a weaker statement:

Lemma 7 If B ⊂ Sn is (r, r)-guaranteed, then B is
(r + 2, r + 2)-guaranteed.

Proof Let s and t be two length-n sequences
with edit(s, t) ≤ r + 2 ; we want to show that
Nr+2
n (s) ∩ Nr+2

n (t) ∩ B �= ∅ . Consider a list of edits
that transforms s to t : skipping a pair of indels or
two substitutions gives a length-n sequence m such
that edit(s,m) ≤ r and edit(t ,m) = 2 . Because s
and m are within a distance of r and B is (r, r)-guar-
anteed, we have that Nr

n(s) ∩ Nr
n(m) ∩ B �= ∅ , i.e.,

there exists a length-n sequence v ∈ B such that
edit(s, v) ≤ r and edit(m, v) ≤ r . By triangle ine-
quality, edit(t , v) ≤ edit(t ,m)+ edit(m, v) ≤ r + 2 .
Hence, we have v ∈ Nr+2

n (t) . Clearly, v ∈ Nr
n(s)

implies that v ∈ Nr+2
n (s) . Combined, we have

v ∈ Nr+2
n (s) ∩ Nr+2

n (t) ∩ B . �

The next lemma shows that (1, 1)-guaranteed subsets
have the strongest condition.

Lemma 8 If B ⊂ Sn is (1, 1)-guaranteed, then B is (r, r)-
guaranteed for all r ≥ 1.

Proof According to the previous lemma, we only need
to show that B is (2, 2)-guaranteed. Given two length-
n sequences s and t with edit(s, t) = 2 , consider a list
Q of two edits that transforms s to t . There are two
possibilities:

• If both edits in Q are substitutions, let i be the posi-
tion of the first substitution.

• If Q consists of one insertion and one deletion, let
i be the position of the character that is going to be
deleted from s.

In either case, let m be a length-n sequence obtained by
replacing the i-th character of s with another character
in � . Then edit(s,m) = 1 . Because B is (1, 1)-guaranteed,
there is a length-n sequence v ∈ B such that edit(s, v) ≤ 1
and edit(m, v) ≤ 1 . Observe that either s = v or v is
obtained from s by one substitution at position i. So
applying the two edits in Q on v also produces t , i.e.,
edit(t , v) ≤ 2 . Therefore, v ∈ N 2

n (s) ∩ N 2
n (t) ∩ B . �

Now we bound the size of a (1, 1)-guaranteed subset
from below.

Page 9 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

Lemma 9 If B is (1,1)-guaranteed, then

Proof Let B ⊂ Sn be an arbitrary (1, 1)-guaran-
teed subset. For part (i), because s ∈ N 1

n (s) , if s
is also in B, then s is in their intersection, hence
∣

∣N 1
n (s) ∩ B

∣

∣ ≥ 1 . If s = s1s2 . . . sn �∈ B , then it must
have at least n 1-neighbors vi ∈ B , one for each posi-
tion 1 ≤ i ≤ n , where vi = s1 . . . si−1visi+1 . . . sn ,
vi = si . Suppose conversely that this is not the
case for a particular i. Let t = s1 . . . si−1tisi+1 . . . sn
where ti = si . We have edit(s, t) = 1 . Also,
N 1
n (s) ∩ N 1

n (t) = {x ∈ � | s1 . . . si−1xsi+1 . . . sn} , but
none of them is in B (consider the two cases x = si and
x = si), i.e., N 1

n (s) ∩ N 1
n (t) ∩ B = ∅ . This contradicts the

assumption that B is (1, 1)-guaranteed.

For part (ii), consider the set of pairs
H =

{

(s, v)
∣

∣ s ∈ Sn and v ∈ N 1
n (s) ∩ B

}

 . For all v ∈ B ,
the number of sequences s ∈ Sn with edit(s, v) ≤ 1 is
n(|�| − 1)+ 1 . So |H | = (n(|�| − 1)+ 1)|B| . On the
other hand, part (i) implies that |H | ≥ |B| + n(|�|n − |B|) .
Combined, we have |B| ≥ |�|n−1 , as claimed. �

Next, we give an algorithm to construct a (1, 1)-guar-
anteed subset B that achieves the size |B| = |�|n−1 ; fur-
thermore, the corresponding (1, 3)-sensitive bucketing
function f 1B satisfies

∣

∣f 1B (s)
∣

∣ = 1 if s ∈ B and
∣

∣f 1B (s)
∣

∣ = n if
s ∈ B . This shows that the lower bounds proved above in
Lemma 9 are tight and that the constructed (1, 1)-guaran-
teed subset B is optimal in the sense of minimizing both

(i) for each s ∈ Sn,

∣

∣

∣
N 1
n (s) ∩ B

∣

∣

∣
≥

{

1 if s ∈ B
n if s �∈ B

, (ii) |B| ≥ |Sn|/|�| = |�|n−1.

|B| and
∣

∣f 1B (s)
∣

∣ . Notice that this result improves Lemma 6
with r = 1 where we showed that Sn is a (1, 1)-guaran-

teed subset of size |�|n . According to Lemma 8, this con-
structed B is also (r, r)-guaranteed. So the corresponding

bucketing function f rB is (r, 2r + 1)-sensitive for all inte-
gers r ≥ 1.

Construction of optimal (1, 1)-guaranteed subsets
Let m = |�| and denote the characters in � by
c1, c2, . . . , cm . We describe a recursive procedure to
construct a (1, 1)-guaranteed subset of Sn . In fact,
we show that Sn can be partitioned into m subsets
B1
n ⊔ B2

n ⊔ · · · ⊔ Bm
n such that each Bi

n is (1, 1)-guaranteed.
Here the notation ⊔ denotes disjoint union. The partition
of Sn is built from the partition of Sn−1 . The base case is
S1 = {c1} ⊔ · · · ⊔ {cm}.

Suppose that we already have the partition for
Sn−1 = B1

n−1 ⊔ B2
n−1 ⊔ · · · ⊔ Bm

n−1 . Let

where c ◦ B is the set obtained by prepending the charac-
ter c to each sequence in the set B. For B2

n , the construc-
tion is similar where the partitions of Sn−1 are shifted
(rotated) by one such that c1 is paired with B2

n−1 , c2 is
paired with B3

n−1 , and so on. In general, for 1 ≤ i ≤ m,

B1
n =

(

c1 ◦ B
1
n−1

)

⊔

(

c2 ◦ B
2
n−1

)

⊔ · · · ⊔
(

cm ◦ Bm
n−1

)

,

Bi
n =

(

c1 ◦ B
i
n−1

)

⊔

(

c2 ◦ B
i+1

n−1

)

⊔ · · · ⊔
(

cm−i+1 ◦ B
m
n−1

)

⊔

(

cm−i+2 ◦ B
1

n−1

)

⊔ · · · ⊔

(

cm ◦ Bi−1

n−1

)

.

Examples of this partition for � = { A, C, G, T } and
n = 2, 3 are shown below.

B1
2 = {AA, CC, GG, TT}

B2
2 = {AC, CG, GT, TA}

B3
2 = {AG, CT, GA, TC}

B4
2 = {AT, CA, GC, TG}

Page 10 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

It remains to show that for each s ∈ Sn ,
∣

∣N 1
n (s) ∩ Bi

n

∣

∣
matches the lower bound in Lemma 9. Together with
Lemma 10, this proves that each constructed Bi

n yields
an optimal (1, 3)-sensitive bucketing function in terms
of minimizing both the total number of buckets and the
number of buckets each length-n sequence is sent to.

Lemma 11 For s ∈ Sn , each constructed Bi
n satisfies

Proof We proceed by induction on n. The base case
n = 1 is trivially true because |Bi

1| = 1 and all single-char-
acter sequences are within one edit of each other. Sup-
pose that the claim is true for n− 1 . Consider an arbi-
trary index i. If s ∈ Bi

n , we show that any other length-n
sequence t ∈ Bi

n has edit distance at least 2 from s ,
namely N 1

n (s) ∩ Bi
n = {s} . Let s′ and t ′ be the (n− 1)-suf-

fixes of s and t respectively. According to the construc-
tion, if s and t have the same first character, then s′ and t ′
are in the same Bj

n−1 for some index j. By the induction
hypothesis, edit

(

s′, t ′
)

≥ 2 (otherwise
∣

∣N 1
n−1

(

s
′
)

∩B
j
n−1

∣

∣

∣
≥ 2), and therefore edit(s, t) = edit

(

s′, t ′
)

≥ 2 . If

s and t are different at the first character, then s′ and t ′ are
not in the same Bj

n−1 , so s′ = t ′ (recall that Bj
n−1 and Bk

n−1
are disjoint if j = k), namely edit

(

s′, t ′
)

≥ 1 . Together
with the necessary substitution at the first character, we
have edit(s, t) = 1+ edit

(

s′, t ′
)

≥ 2.

If s ∈ Bi
n , Lemma 9 and 10 guarantee that s has at least n

1-neighbors vk in Bi
n , k = 1, . . . , n , where vk is obtained

from s by a single substitution at position k. Let t = s be
a 1-neighbor of s . Since t can only differ from s by a sin-
gle substitution at some position ℓ , we know that either
t = vℓ or the edit distance between t and vℓ is 1. In the lat-
ter case, t cannot be in Bi

n otherwise
∣

∣N 1
n

(

vℓ
)

∩ Bi
n

∣

∣ ≥ 2 ,
contradicting the result of the previous paragraph. There-
fore, N 1

n (s) ∩ Bi
n =

{

v1, . . . vn
}

 which has size n. �

We end this section by showing that a membership
query can be done in O(n) time on the (1, 1)-guaran-
teed subset B constructed above (i.e., B = Bi

n for some i).

∣

∣

∣
N 1
n (s) ∩ Bi

n

∣

∣

∣
=

{

1 if s ∈ Bi
n

n if s �∈ Bi
n
.

Note that each sequence in Sn appears in exactly one of
the subsets Bi

n , justifying the use of the disjoint union
notation. (The induction proof of this claim has identical
structure as the following proofs of Lemma 10 and 11, so
we leave it out for conciseness.) Now we prove the cor-
rectness of this construction.

Lemma 10 Each constructed Bi
n is a minimum

(1, 1)-guaranteed subset of Sn.

Proof By Lemma 9, we only need to show that each Bi
n is

(1, 1)-guaranteed and has size |�|n−1 = mn−1 . The proof
is by induction on n. The base case S1 = {c1} ⊔ · · · ⊔ {cm}
is easy to verify.

As the induction hypothesis, suppose that Sn−1 =⊔m
j=1

B
j
n−1

 , where each Bj
n−1 is (1, 1)-guaranteed and has

size mn−2 . Consider an arbitrary index 1 ≤ i ≤ m . By
construction, we have

∣

∣Bi
n

∣

∣ =
∑m

j=1

∣

∣

∣
B
j
n−1

∣

∣

∣
= mn−1 . To

show that Bi
n is (1, 1)-guaranteed, consider two sequences

s, t ∈ Sn with edit(s, t) = 1 . If the single substitution hap-
pens on the first character, let x ∈ Sn−1 be the common
(n− 1)-suffix of s and t . Since

⊔m
j=1 B

j
n−1 is a partition of

Sn−1 , x must appear in one of the subsets Bℓ
n−1 . In Bi

n , it is
paired with one of the characters ck . Let y = ck ◦ x , then
y ∈ Bi

n . Furthermore, s and t can each be transformed to
y by at most one substitution on the first character. Thus,
y ∈ N 1

n (s) ∩ N 1
n (t) ∩ Bi

n.

If the single substitution between s and t does not hap-
pen on the first position, then they share the com-
mon first character ck . In Bi

n , ck is paired with one of
the subsets Bℓ

n−1 . Let s′ and t ′ be (n− 1)-suffixes of s
and t , respectively. It is clear that edit

(

s′, t ′
)

= 1 . By
the induction hypothesis, Bℓ

n−1 is (1, 1)-guaranteed.
So there is a sequence x ∈ Bℓ

n−1 of length n− 1 such
that edit

(

s′, x
)

≤ 1 and edit
(

t ′, x
)

≤ 1 . Let y = ck ◦ x ,
then y ∈ Bi

n by the construction. Furthermore,
edit(s, y) = edit

(

s′, x
)

≤ 1 and edit(t , y) = edit
(

t ′, x
)

≤ 1 .
Thus, y ∈ N 1

n (s) ∩ N 1
n (t) ∩ Bi

n . Therefore, Bi
n is

(1, 1)-guaranteed. Since the index i is arbitrary, this com-
pletes the proof. �

B
1

3 = {AAA, ACC, AGG, ATT, CAC, CCG, CGT, CTA,GAG, GCT, GGA, GTC, TAT, TCA, TGC, TTG}

B
2

3 = {AAC, ACG, AGT, ATA, CAG, CCT, CGA, CTC,GAT, GCA, GGC, GTG, TAA, TCC, TGG, TTT}

B
3

3 = {AAG, ACT, AGA, ATC, CAT, CCA, CGC, CTG,GAA, GCC, GGG, GTT, TAC, TCG, TGT, TTA}

B
4

3 = {AAT, ACA, AGC, ATG, CAA, CCC, CGG, CTT,GAC, GCG, GGT, GTA, TAG, TCT, TGA, TTC}

Page 11 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

Thanks to its regular structure, the query is performed
without explicit construction of B. Consequently, the
bucketing functions using B can be computed without
computing and storing this subset of size |�|n−1.

Specifically, suppose that we choose B = Bi
n for some

fixed 1 ≤ i ≤ m . Let s be a given length-n sequence;
we want to query if s is in B or not. This is equivalent
to determining whether the index of the partition of
Sn that s falls into is i or not. Write s = s1s2 . . . sn and
let s′ = s2 . . . sn be the (n− 1)-suffix of s . Suppose that
it has been determined that s′ ∈ B

j
n−1 for some index

1 ≤ j ≤ m , i.e., the sequence s′ of length n− 1 comes
from the j-th partition of Sn−1 . By construction, the index
ℓ for which s ∈ Bℓ

n is uniquely determined by the charac-
ter s1 = ck ∈ � and the index j according to the formula
ℓ = (j +m+ 1− k) mod m . The base case n = 1 is trivi-
ally given by the design that cp ∈ B

p
1 for all 1 ≤ p ≤ m .

This easily translates into a linear-time algorithm that
scans the input length-n sequence s backwards and com-
pute the index ℓ such that s ∈ Bℓ

n . To answer the mem-
bership query, we only need to check whether ℓ = i . We
provide an implementation of both the construction and
the efficient membership query of a (1, 1)-guaranteed
subset at [25].

A (3, 5)-sensitive bucketing function
Let B ⊂ Sn be one of the constructed (1, 1)-guaranteed
subsets. Recall that the resulting bucketing function f rB is
(r, 2r + 1)-sensitive for all integers r ≥ 1 ; in particular, f 2B
is (2, 5)-sensitive. We are able to strengthen this result by
showing that f 2B is in fact (3, 5)-sensitive.

Theorem 2 Let B ⊂ Sn be a (1, 1)-guaranteed subset.
The bucketing function f 2B is (3, 5)-sensitive.

Proof As f rB is already proved to be (2, 5)-sensi-
tive, to show it is (3, 5)-sensitive, we just need to prove
that, for any two sequences s, t ∈ Sn with edit(s, t) = 3 ,
f 2B (s) ∩ f 2B (t) = N 2

n (s) ∩ N 2
n (t) ∩ B �= ∅ . If the three edits

are all substitutions, then there are length-n sequences
x and y such that edit(s, x) = edit(x, y) = edit(y, t) = 1 .
Since B is (1, 1)-guaranteed, there is a length-n sequence
z ∈ B with edit(x, z) ≤ 1 and edit(y, z) ≤ 1 . By triangle
inequality, edit(s, z) ≤ edit(s, x)+ edit(x, z) ≤ 2 ; edit(t , z)
≤ edit(t , y)+ edit(y, z) ≤ 2 . So z ∈ N 2

n (s) ∩ N 2
n (t) ∩ B.

If the three edits are one substitution and a pair of indels,
then there is a length-n sequence x such that edit(s, x) = 1
and edit(x, t) = 2 where the two edits between x and t
can only be achieved by one insertion and one deletion.
Let i be the position in x where the deletion between x

and t takes place. Let y be a length-n sequence obtained
from x by a substitution at position i, so edit(x, y) = 1 .
Since B is (1, 1)-guaranteed, there is a length-n sequence
z ∈ B with edit(x, z) ≤ 1 and edit(y, z) ≤ 1 . Then
edit(s, z) ≤ edit(s, x)+ edit(x, z) ≤ 2 . Observe that
x and z differ by at most one substitution at position i,
which will be deleted when transforming to t . So the
two edits from x to t can also transform z to t , namely,
edit(t , z) ≤ 2 . Thus, z ∈ N 2

n (s) ∩ N 2
n (t) ∩ B . �

Summary of proved LSB functions
We proposed two sets of LSB functions and studied
the efficiency of them in terms of |B|, the total number
of buckets, and |f (s)| , the number of buckets a specific
length-n sequence s occupies. The results are summa-
rized in Table 1.

Experimental results on the gapped LSB functions
Now we experimentally investigate the behavior of the
gapped LSB functions at their respective gaps. We pick 3
LSB functions to experiment, corresponding to the rows
2–4 in Table 1. For d = 1, 2, . . . , 6 , we generate 100, 000
random pairs (s, t) of sequences of length 20 with edit
distance d. Each one of the picked LSB functions f rB
is applied and the number of pairs that share a bucket
under f rB is recorded. The code can be found at [25]. The
results are shown in Fig. 1.

Recall that Lemma 6 implies f r
Sn

 is (2r − 1, 2r + 1)

-sensitive when r is odd. The discussion after the proof
shows that the gap at 2r indeed exists. In particular,
if s can only be transformed to t by r pairs of indels,
then Nr

n(s) ∩ Nr
n(t) = ∅ . On the other hand, if there are

some substitutions among the 2r edits between s and
t , then by a similar construction as in the case where
r is even, we can find a length-n sequence v such that
edit(s, v) = edit(v, t) = r . Motivated by this observa-
tion, we further explore the performance of the LSB
functions at the gap for different types of edits. Given
a gapped LSB function f, for the gap at d, define cat-
egories 0, . . . , ⌊d/2⌋ corresponding to the types of edits:
a pair of length-n sequences with edit distance d is in
the i-th category if they can be transformed to each
other with i pairs of indels (and d − 2i substitutions)
but not i − 1 pairs of indels (and d − 2i + 2 substitu-
tions). Figure 2 shows the results for the three LSB
functions in Fig. 1 at their respective gaps with respect
to different types of edits. Observe that the result for
f 1
Sn

 (in red) agrees with our analysis above.

Page 12 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

Conclusions
We introduce locality-sensitive bucketing (LSB) func-
tions, that generalize locality-sensitive hashing (LSH)
functions by allowing it to map a sequence into multiple
buckets. This generalization makes the LSB functions
easier to construct, while guaranteeing high sensitivity
and specificity in a deterministic manner. We construct
such functions, prove their properties, and show that
some of them are optimal under proposed criteria. We
also reveal several properties and structures of the metric
space Sn , which are of independent interests for studying
LSH functions and the edit distance.

Our results for LSB functions can be improved in
several aspects. An obvious open problem is to design
(d1, d2)-sensitive functions that are not covered here.
For this purpose, one direction is to construct opti-
mal (r, r)-guaranteed subsets for r > 1 . As an implica-
tion of Lemma 11, it is worth noting that the optimal

(1, 1)-guaranteed subset is a maximal independent set in
the undirected graph G1

n whose vertex set is Sn and each
sequence is connected to all its 1-neighbors. It is natural
to suspect that similar results hold for (r, r)-guaranteed
subsets with larger r. Another approach is to use other
more well-studied sets as buckets and define LSB func-
tions based on their connections with Sn . This is closely
related to the problem of embedding Sn which is difficult
as noted in the introduction. Our results suggest a new
angle to this challenging problem: instead of restricting
our attention to embedding Sn into metric spaces, it may
be beneficial to consider a broader category of spaces that
are equipped with a non-transitive relation (here in LSB
functions we used subsets of integers with the “have a
nonempty intersection” relation). Yet another interesting
future research direction would be to explore the possi-
bility of improving the practical time and space efficiency
of computing and applying LSB functions.

Fig. 2 Probabilities (estimated by frequencies) that two sequences share a bucket with respect to their edit type under three gapped LSB functions.
The types of edits are labeled in the format a+ b× 2 where a is the number of substitutions and b is the number of pairs of indels. Left: two
(1, 3)-sensitive bucketing functions (rows 2 and 3 of Table 1). Right: the (3, 5)-sensitive bucketing function (row 4 of Table 1)

Fig. 1 Probabilities (estimated by frequencies) that two sequences share a bucket with respect to their edit distance under three gapped LSB
functions (red, green, and blue bars correspond to the rows 2–4 of Table 1)

Page 13 of 13Chen and Shao Algorithms for Molecular Biology (2023) 18:7

A technique commonly used to boost the sensitivity
of an LSH function is known as the OR-amplification. It
combines multiple LSH functions in parallel, which can
be viewed as sending each sequence into multiple buck-
ets such that the probability of having similar sequences
in one bucket is higher than using the individual func-
tions separately. However, as a side effect, the OR-
amplification hurts specificity: the chance that dissimilar
sequences share a bucket also increases. It is therefore
necessary to combine it with other techniques and choos-
ing parameters to balance sensitivity and specificity is a
delicate work. On contrast, the LSB function introduced
in this paper achieves a provably optimal separation of
similar and dissimilar sequences. In addition, the OR-
amplification approach can also be applied on top of the
LSB functions as needed.

Abbreviations
LSH Locality-sensitive hashing
LSB Locality-sensitive bucketing

Acknowledgements
Not applicable.

Author contributions
Both authors contributed to the conception and design of the presented
algorithms as well as other theoretical results. Both authors drafted and
approved the manuscript.

Funding
This work is supported by the US National Science Foundation (DBI-2019797
to M.S.) and the US National Institutes of Health (R01HG011065 to M.S.).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 31 March 2023 Accepted: 13 June 2023

References
 1. Chen J, Guo M, Wang X, Liu B. A comprehensive review and comparison

of different computational methods for protein remote homology detec-
tion. Briefings Bioinform. 2018;19(2):231–44.

 2. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics. 2018;34(18):3094–100.

 3. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. Assem-
bling large genomes with single-molecule sequencing and locality-
sensitive hashing. Nature Biotechnol. 2015;33(6):623–30.

 4. Song Y, Tang H, Zhang H, Zhang Q. Overlap detection on long,
error-prone sequencing reads via smooth q-gram. Bioinformatics.
2020;36(19):4838–45.

 5. Sahlin K, Tomaszkiewicz M, Makova KD, Medvedev P. Deciphering highly
similar multigene family transcripts from Iso-Seq data with IsoCon. Nature
Commun. 2018;9(1):1–12.

 6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215(3):403–10.

 7. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman
DJ. Gapped blast and psi-blast: a new generation of protein database
search programs. Nucl Acids Res. 1997;25(17):3389–402.

 8. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage
requirements for biological sequence comparison. Bioinformatics.
2004;20(18):3363–9.

 9. Schleimer S, Wilkerson DS, Aiken A. Winnowing: local algorithms for
document fingerprinting. In: Proceedings of the 2003 ACM SIGMOD
(International Conference on Management of Data), 2003;pp. 76–85.

 10. Roberts M, Hunt BR, Yorke JA, Bolanos RA, Delcher AL. A preprocessor for
shotgun assembly of large genomes. J Comput Biol. 2004;11(4):734–52.

 11. Marçais G, DeBlasio D, Kingsford C. Asymptotically optimal minimizers
schemes. Bioinformatics. 2018;34(13):13–22.

 12. Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C. Designing small
universal k-mer hitting sets for improved analysis of high-throughput
sequencing. PLoS Comput Biol. 2017;13(10):1005777.

 13. DeBlasio D, Gbosibo F, Kingsford C, Marçais G. Practical universal k-mer
sets for minimizer schemes. In: Proceedings of the 10th ACM Interna-
tional Conference on Bioinformatics, Computational Biology and Health
Informatics (BCB’19). Association for Computing Machinery. New York.
2019.

 14. Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom
Bioinform. 2015;13(5):278–89.

 15. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs
AD, Dilthey AT, Fiddes IT, et al. Nanopore sequencing and assem-
bly of a human genome with ultra-long reads. Nature Biotechnol.
2018;36(4):338–45.

 16. Marçais G, DeBlasio D, Pandey P, Kingsford C. Locality-sensitive hashing
for the edit distance. Bioinformatics. 2019;35(14):127–35.

 17. McCauley S. Approximate similarity search under edit distance using
locality-sensitive hashing. In: 24th International Conference on Data-
base Theory (ICDT 2021) 2021; Schloss Dagstuhl-Leibniz-Zentrum für
Informatik

 18. Bar-Yossef Z, Jayram TS, Krauthgamer R, Kumar R. Approximating edit
distance efficiently. In: 45th Annual IEEE Symposium on Foundations of
Computer Science, 2004;pp. 550–559.

 19. Ostrovsky R, Rabani Y. Low distortion embeddings for edit distance. J
ACM (JACM). 2007;54(5):23.

 20. Krauthgamer R, Rabani Y. Improved lower bounds for embeddings into l1 .
SIAM J Comput. 2009;38(6):2487–98.

 21. Califano A, Rigoutsos I. FLASH: A fast look-up algorithm for string homol-
ogy. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 1993;pp. 353–359. IEEE

 22. Ma B, Tromp J, Li M. Patternhunter: faster and more sensitive homology
search. Bioinformatics. 2002;18(3):440–5.

 23. Mak D, Gelfand Y, Benson G. Indel seeds for homology search. Bioinfor-
matics. 2006;22(14):341–9.

 24. Sahlin K. Effective sequence similarity detection with strobemers.
Genome Res. 2021;31(11):2080–94.

 25. Chen K, Shao M. Implementation and evaluation of the locality-sensitive
bucketing functions. https:// github. com/ Shao- Group/ lsbuc keting 2022;
Accessed 27 Mar 2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/Shao-Group/lsbucketing

	Locality-sensitive bucketing functions for the edit distance
	Abstract
	Background
	Results
	Conclusion

	Background
	Basics of locality-sensitive bucketing (LSB) functions
	An optimal (1, 2)-sensitive bucketing function
	An efficient construction algorithm

	Mapping to sequences of length n
	(2r, r)-guaranteed and -guaranteed subsets
	Properties of (r, r)-guaranteed subsets
	Construction of optimal (1, 1)-guaranteed subsets
	A (3, 5)-sensitive bucketing function

	Summary of proved LSB functions
	Experimental results on the gapped LSB functions
	Conclusions
	Acknowledgements
	References

