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Abstract 

Background Many bioinformatics applications involve bucketing a set of sequences where each sequence 
is allowed to be assigned into multiple buckets. To achieve both high sensitivity and precision, bucketing methods are 
desired to assign similar sequences into the same bucket while assigning dissimilar sequences into distinct buckets. 
Existing k-mer-based bucketing methods have been efficient in processing sequencing data with low error rates, 
but encounter much reduced sensitivity on data with high error rates. Locality-sensitive hashing (LSH) schemes are 
able to mitigate this issue through tolerating the edits in similar sequences, but state-of-the-art methods still have 
large gaps.

Results In this paper, we generalize the LSH function by allowing it to hash one sequence into multiple buckets. For-
mally, a bucketing function, which maps a sequence (of fixed length) into a subset of buckets, is defined to be (d1, d2)
-sensitive if any two sequences within an edit distance of d1 are mapped into at least one shared bucket, and any 
two sequences with distance at least d2 are mapped into disjoint subsets of buckets. We construct locality-sensitive 
bucketing (LSB) functions with a variety of values of (d1, d2) and analyze their efficiency with respect to the total 
number of buckets needed as well as the number of buckets that a specific sequence is mapped to. We also prove 
lower bounds of these two parameters in different settings and show that some of our constructed LSB functions are 
optimal.

Conclusion These results lay the theoretical foundations for their practical use in analyzing sequences with high error 
rates while also providing insights for the hardness of designing ungapped LSH functions.

Keywords Locality-sensitive hashing, Locality-sensitive bucketing, Long reads, Embedding

Background
Comparing a set of given sequences is a common task 
involved in many bioinformatics applications, such as 
homology detection [1], overlap detection and the con-
struction of overlap graphs [2–4], phylogenetic tree 
reconstruction, and isoform detection from circular 

consensus sequence (CCS) reads [5], to name a few. The 
naive all-vs-all comparison gives the most comprehen-
sive information but does not scale well. An efficient 
and widely-used approach that avoids unnecessary com-
parisons is bucketing: a linear scan is employed to assign 
each sequence into one or multiple buckets, followed by 
pairwise comparisons within each bucket. The procedure 
of assigning sequences into buckets, which we refer to 
as a bucketing function, is desired to be both “sensitive”, 
i.e., two similar sequences ideally appear in at least one 
shared bucket so that they can be compared, and “spe-
cific”, i.e., two dissimilar sequences ideally appear in 
disjoint buckets so that they can be exempt from com-
parison. The criteria of similar/dissimilar sequences are 
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application-dependent; in this work we study bucketing 
functions for the edit distance (Levenshtein distance).

A simple yet popular bucketing function is to put a 
sequence into buckets labeled with its own k-mers. The 
popular seed-and-extend strategy [6, 7] implicitly uses 
this approach. Various sketching methods such as mini-
mizer [8–11] and universal hitting set [12, 13] reduce 
the number of buckets a sequence is assigned to by only 
considering a subset of representative k-mers. These 
bucketing methods based on exact k-mer matching 
enjoyed tremendous success in analyzing next-generation 
sequencing (NGS) data, but are challenged by the third-
generation long-reads sequencing data represented by 
PacBio [14] and Oxford Nanopore [15] technologies; due 
to the high error rates, sequences that should be assigned 
to the same buckets hardly share any identical k-mers (for 
a reasonably large k such as k = 21 with 15% error rate), 
and therefore results in poor sensitivity.

To address this issue, it is required to be able to rec-
ognize similar but not necessarily identical sequences. 
A general solution is locality-sensitive hashing (LSH) 
[16, 17] where with high probability, similar sequences 
are sent into the same bucket  (i.e., there is a hash colli-
sion), and with high probability dissimilar sequences are 
sent into different buckets. However, designing locality-
sensitive hashing functions for the edit distance is hard; 
the state-of-the-art method Order Min Hash (OMH) is 
proved to be a gapped LSH but admits a large gap [16]. 
Another related approach is embedding the metric space 
induced by the edit distance into more well-studied nor-
med spaces [4, 18, 19]. However, such an embedding is 
also hard; for example, it is known that the embedding 
into L1 cannot be distortion-free [20]. In addition, there 
are seeding/sketching methods such as spaced k-mer [21, 
22], indel seeds [23], and the more recent strobemer [24] 
that allow gaps in the extracted seeds to accommodate 

some edits, but an edit that happens within the chosen 
seed can still cause mismatches.

It is worth noting that locality-sensitive hashing 
functions, when interpreted as bucketing functions, 
assign a sequence into exactly one bucket: buckets are 
labeled with hash values, and a sequence is put into 
the single bucket where it is hashed to. In this work, 
we propose the concept of locality-sensitive bucket-
ing  (LSB) functions as a generalization of LSH func-
tions by allowing it to assign a sequence into multiple 
buckets. Formally, a bucketing function, which maps 
a sequence (of fixed length) into one or more buckets, 
is defined to be (d1, d2)-sensitive if any two sequences 
within an edit distance of d1 are mapped into at least 
one shared bucket, and any two sequences with an edit 
distance at least d2 are mapped into disjoint subsets of 
buckets. While a stochastic definition by introducing a 
distribution on a family of bucketing functions can be 
made in a similar way as the definition of LSH func-
tions, here we focus on this basic, deterministic defini-
tion. We design several LSB functions for a variety of 
values of (d1, d2) including both ungapped (d2 = d1 + 1 ) 
and gapped (d2 > d1 + 1 ) ones. This demonstrates that 
allowing one sequence to appear in multiple buck-
ets makes the locality-sensitive properties easier to 
satisfy. Moreover, our lower bound proof shows that 
any (1,  2)-sensitive bucketing function must put each 
sequence  (of length n) into at least n buckets (see 
Lemma  2), suggesting that certain ungapped locality-
sensitive hashing functions, where each sequence is 
sent to a single bucket, may not exist.

In the following sections, we first introduce the precise 
definition of LSB functions and propose criteria to meas-
ure them. Two different approaches of designing LSB 
functions are then presented with results summarized in 
Table 1. We also show experimental studies of the perfor-
mance of gapped LSB functions.

Table 1 Results on (d1, d2)-sensitive bucketing functions of length-n sequence

 Entries with ≤ show the best known upper bounds. Entries marked with a single star cannot be reduced under the specific bucketing method. Entries marked with 
double stars cannot be reduced in general. In column B, we use Bin to refer to a constructed (1, 1)-guaranteed subset

(d1, d2)-sensitive B |B| |f (s)| Ref.

(1, 2) {1, . . . , |B|} n|�|n−1⁎⁎ n⁎⁎ Theorem 1

(1, 3) Sn |�|n |N1
n(s)| = (|�| − 1)n+ 1 Lemma 6

(1, 3) B
i
n |�|n−1⁎

{

1 if s ∈ B

n if s �∈ B⁎

Lemma 9–11

(3, 5) B
i
n |�|n−1 ≤ |N2

n(s)| Theorem 2

(r , 2r + 1) , r > 1 B
i
n |�|n−1 ≤ |Nr

n(s)| Lemma 8, 10

(2r − 1, 2r + 1), r ≥ 3 odd Sn |�|n |Nr
n(s)| Lemma 6

(2r , 2r + 1), r ≥ 2 even Sn |�|n |Nr
n(s)| Lemma 6
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Basics of locality‑sensitive bucketing (LSB) 
functions
Given an alphabet � with |�| > 1 and a natural number 
n, let Sn = (�n, edit) be the metric space of all length-
n sequences equipped with the Levenshtein (edit) dis-
tance. Given a set B of buckets, a bucketing function f 
maps Sn to P(B) , the power set of B. This can be viewed 
as assigning a sequence s of length n to a subset of buck-
ets f (s) ⊂ B . Let d1 < d2 be two non-negative integers, 
we say a bucketing function f is (d1, d2)-sensitive if for all 
s, t ∈ Sn,

We refer to the above two conditions as LSB-proper-
ties (1) and (2) respectively. Intuitively, the LSB-prop-
erties state that, if two length-n sequences are within 
an edit distance of d1 , then the bucketing function f 
guarantees assigning them to at least one common 
bucket, and if two length-n sequences have an edit dis-
tance at least d2 , then the bucketing function f guaran-
tees not assigning them to any shared bucket. In other 
words, (d1, d2)-sensitive bucketing functions perfectly 
distinguish length-n sequences within distance d1 
from those with distances at least d2 . It is easy to show 
that if f : Sn → P(B) is a (d1, d2)-sensitive bucketing 
function, then f (s)  = ∅ for all s ∈ Sn . In fact, since 
edit(s, s) = 0 ≤ d1 , the LSB-property  (1) implies that 
f (s) = f (s) ∩ f (s) �= ∅ . If d1 = d2 − 1 then we say the 
bucketing function is ungapped; otherwise it is called 
gapped.

We note that the above definition of LSB functions gen-
eralizes the (deterministic) LSH functions: if we require 
that |f (s)| = 1 for every sequence s ∈ Sn , i.e., f maps a 
sequence to a single bucket, then f (s) ∩ f (t) �= ∅ implies 
f (s) = f (t) and f (s) ∩ f (t) = ∅ implies f (s)  = f (t).

Two related parameters can be used to measure an 
LSB function: |B|, the total number of buckets, and |f (s)| , 
the number of different buckets that contain a specific 
sequence s . From a practical perspective, it is desirable to 
keep both parameters small. We therefore aim to design 
LSB functions that minimize |B| and |f (s)| . Specifically, 
in the following sections, we will construct (d1, d2)-sen-
sitive bucketing functions with a variety of values of 
(d1, d2) , and analyze their corresponding |B| and |f (s)| ; 
we will also prove lower bounds of |B| and |f (s)| in differ-
ent settings and show that some of our constructed LSB 
functions are optimal, in terms of minimizing these two 
parameters.

(1)edit(s, t) ≤ d1 =⇒ f (s) ∩ f (t) �= ∅,

(2)edit(s, t) ≥ d2 =⇒ f (s) ∩ f (t) = ∅.

The bounds of |B| and |f (s)| are closely related to the 
structure of the metric space Sn . For a sequence s ∈ Sn , 
its d-neighborhood, denoted by Nd

n (s) , is the subspace 
of all sequences of length n with edit distance at most 
d from s ; formally Nd

n (s) = {t ∈ Sn | edit(s, t) ≤ d} . 
The following simple fact demonstrates the connec-
tion between the bound of |f (s)| and the structure of Sn , 
which will be used later.

Lemma 1 Let s be a sequence of length n. If Nd1
n (s) 

contains a subset X with |X | = x such that every two 
sequences in X have an edit distance at least d2, then for 
any (d1, d2)-sensitive bucketing function f we must have 
|f (s)| ≥ x.

Proof Let f be an arbitrary (d1, d2)-sensitive bucketing 
function. By the LSB-property  (2), the x sequences in X 
must be assigned to distinct buckets by f. On the other 
hand, since they are all in Nd1

n (s) , the LSB-property  (1) 
requires that f (s) overlaps with f (t) for each sequence 
t ∈ X . Combined, we have |f (s)| ≥ x .  �

An optimal (1, 2)‑sensitive bucketing function
In the most general setting of LSB functions, the labels 
of buckets in B are just symbols that are irrelevant to the 
construction of the bucketing function. Hence we can let 
B = {1, . . . , |B|} . The remaining of this section studies 
(1,  2)-sensitive bucketing functions in this general case. 
We first prove lower bounds of |B| and |f (s)| in this set-
ting; we then give algorithms to construct an optimal 
(1,  2)-sensitive bucketing function f that matches these 
bounds.

Lemma 2 If f : Sn → P(B) is (1,  2)-sensitive, then for 
each s ∈ Sn , |f (s)| ≥ n.

Proof According to Lemma 1 with d1 = 1 and d2 = 2 , 
we only need to show that N 1

n (s) contains n different 
sequences with pairwise edit distances at least 2. For 
i = 1, . . . , n , let t i be a sequence obtained from s by a 
single substitution at position i. If i  = j , then t i differs 
from t j at two positions, namely i and j. Then we must 
have edit

(

t i, t j
)

≥ 2 as t i cannot be transformed into t j 
with a single substitution or a single insertion or deletion. 
Hence, 

{

t1, . . . , tn
}

 forms the required set.  �
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Lemma 3 If f : Sn → P(B) is (1,  2)-sensitive, then 
|B| ≥ n|�|n−1.

Proof Consider the collection of pairs 
H =

{

(s, b) | s ∈ Sn and b ∈ f (s)
}

 . We bound the size 
of H from above and below. For an arbitrary sequence 
s , let b ∈ f (s) be a bucket that contains s . According 
to the LSB-property  (2), any other sequence in b has 
edit distance 1 from s , i.e., a substitution. Suppose that 
the bucket b contains two sequences u and v that are 
obtained from s by a single substitution at different posi-
tions. Then edit(u, v) = 2 and f (u) ∩ f (v) �= ∅ , which 
contradicts the LSB-property  (2). Therefore, all the 
sequences in b can only differ from s at some fixed posi-
tion i. There are |�| such sequences (including s itself ). 
So each bucket b ∈ B can appear in at most |�| pairs in H. 
Thus |H | ≤ |�| · |B|.

On the other hand, according to Lemma  2, each s ∈ Sn 
needs to appear in at least n different buckets, and hence 
at least n pairs in H. So |H | ≥ n|Sn| = n|�|n . Together, 
we have |�| · |B| ≥ n|�|n , or |B| ≥ n|�|n−1 .  �

We now construct a bucketing function f : Sn → P(B) 
that is (1,  2)-sensitive using the algorithm given below. It 
has exponential running time with respect to n but primar-
ily serves as a constructive proof that (1, 2)-sensitive buck-
eting functions exist. Assign to the alphabet � an arbitrary 
order σ : {1, . . . , |�|} → � (for conciseness, we also write 
σi = σ(i) and assume the inverse function σ−1(σi) = i).

A toy example of the bucketing function f with n = 2 
and � = {σ1 = A, σ2 = C, σ3 = G, σ4 = T} constructed 
using the above algorithm (where the sequences are pro-
cessed in the lexicographical order induced by σ ) is given 
below, followed by the contained sequences in the result-
ing buckets.

f (AA) = {1, 2}, f (AC) = {2, 3}, f (AG) = {2, 4}, f (AT) = {2, 5},

f (CA) = {1, 6}, f (CC) = {3, 6}, f (CG) = {4, 6}, f (CT) = {5, 6},

f (GA) = {1, 7}, f (GC) = {3, 7}, f (GG) = {4, 7}, f (GT) = {5, 7},

f (TA) = {1, 8}, f (TC) = {3, 8}, f (TG) = {4, 8}, f (TT) = {5, 8}.

 

bucket # sequences bucket # sequences

1 AA, CA, GA, TA 2 AA, AC, AG, AT

3 AC, CC, GC, TC 4 AG, CG, GG, TG

5 AT, CT, GT, TT 6 CA, CC, CG, CT

7 GA, GC, GG, GT 8 TA, TC, TG, TT

Lemma 4 The constructed bucketing function f : Sn →

P(B) satisfies: (i) each bucket contains |�| sequences, (ii) 
|f (s)| = n for each s ∈ Sn , and (iii) |B| = n|�|n−1.

Proof Claim  (i) follows directly from the construc-
tion  (the most inner for-loop). In the algorithm, each 
sequence s ∈ Sn is added to n different buckets, one for 
each position. Specifically, let s = s1s2 · · · sn , then s is 
added to a new bucket when we process the sequence 
si = s1s2 · · · si−1σ1si+1 · · · sn , 1 ≤ i ≤ n . Hence, |f (s)| = n . 
To calculate |B|, observe that a new bucket is used when-
ever we encounter the smallest character σ1 in some 



Page 5 of 13Chen and Shao  Algorithms for Molecular Biology            (2023) 18:7  

sequence s . So |B| is the same as the number of occur-
rences of σ1 among all sequences in Sn . The total num-
ber of characters in Sn is n|�|n . By symmetry, σ1 appears 
n|�|n−1 times.  �

Lemma 5 The constructed bucketing function f is 
(1, 2)-sensitive.

Proof We show that for s, t ∈ Sn , edit(s, t) ≤ 1 if 
and only if f (s) ∩ f (t) �= ∅ . For the forward direction, 
edit(s, t) ≤ 1 implies that s and t can differ by at most one 
substitution at some position i. Let r be the sequence that 
is identical to s except at the i-th position where it is sub-
stituted by σ1 (it is possible that r = s ). According to the 
algorithm, when processing r , both s and t are added to a 
same bucket m. Therefore, m ∈ f (s) ∩ f (t).

For the backward direction, let m be an integer from 
f (s) ∩ f (t) . By construction, all the |�| sequences in 
the bucket m differ by a single substitution. Hence, 
edit(s, t) ≤ 1 .  �

Combining Lemmas  2–5, we have shown that the 
above (1, 2)-sensitive bucketing function is optimal in the 
sense of minimizing |B| and |f (s)| . This is summarized 
below.

Theorem  1 Let B = {1, . . . , n|�|n−1} , there is a 
(1,  2)-sensitive bucketing function f : Sn → P(B) with 
|f (s)| = n for each s ∈ Sn . No (1,  2)-sensitive bucket-
ing function exists if |B| is smaller or |f (s)| < n for some 
sequence s ∈ Sn.

An efficient construction algorithm
In practice, instead of considering the entire Sn , one is 
often interested in some specific subset X. For example, 
X can be the set of all length-n strings that appear in a 
genome. Given an LSB function f on Sn , let f |X be its 
restriction to X. Then f |X satisfies the LSB-properties (1) 
and (2) for all s, t ∈ X . In the case that X is much smaller 
in size comparing to Sn , it is desirable to compute f |X 
directly.

The above algorithm constructs an optimal (1, 2)-sen-
sitive bucketing function by assigning n buckets to each 
s ∈ Sn with a global counter. It runs in O(n|�|n) time. We 

now show that the n buckets assigned to a sequence s can 
be computed directly in O(n) time, implying a O(n|X|)-
time algorithm that computes a (1, 2)-sensitive bucketing 
function for an arbitrary subset X ⊂ Sn.

Recall that in the above algorithm, a new integer bucket 
is used whenever we encounter the smallest character 
σ1 ∈ � in a sequence s , then all |�| sequences with a sin-
gle mutation at this position, including s itself, are added 
to this bucket. If the sequences are processed in the lexi-
cographical order induced by σ , this integer is essentially 
counting the number of occurrences of σ1 that come 
before (in this lexicographical order) the current σ1 . For 
instance, in the previous example, the character A in AT 
triggers a new bucket 5 because there are four A’s come 
before it in the lexicographical order; AT is also in bucket 
2 because it can be obtained by a single mutation of AA 
where the underlined A is the second in the lexicographi-
cal order. In general, the sequence s = s1s2 · · · sn ∈ Sn is 
assigned to n buckets triggered by the underlined σ1 ’s in 
the n (not necessarily distinct) sequences s1 = σ1s2 · · · sn , 
s2 = s1σ1s3 · · · sn , . . . , sn = s1 · · · sn−1σ1 , respectively.

For t ∈ Sn , let Sσ (t) be the set of sequences in Sn that 
come before t in the lexicographical order induced 
by σ , namely, Sσ (t) contains σ n

1 , σ
n−1
1 σ2, . . . up to 

the length-n sequence immediately before t . Define 
count(t) to be the total number of σ1 ’s among all 
sequences in Sσ (t) . Let #1i (t) be the number of σ1 ’s in 
the length-i prefix of t . Then s is added to the buckets 
{

count
(

si
)

+ #1i−1(s)+ 1 | i = 1, . . . , n
}

.
We first consider the computation of count(t) =

count(t1t2 · · · tn) . If t1 = σ1 , then all sequences in 
Sσ (t) begin with σ1 , there are |Sσ (t)| = |Sσ (t2 · · · tn)| 
of them; removing the first character of all the 
sequences in Sσ (t) produces the set Sσ (t2 · · · tn) . So 
count(t1t2 · · · tn) = |Sσ (t)| + count(t2 · · · tn) . If t1  = σ1 , 
consider the sequence m = t̂1σ

n−1
|�|  where t̂1 is the char-

acter precedes t1 according to σ . We compute count(t) by 
partition Sσ (t) into three sets: the set of sequences come 
before m , the set of sequences come after m (but before 
t ), and the singleton set {m} . For the first set, the num-
ber of σ1 is count(m) by definition. For the second set, all 
the sequences begin with t1  = σ1 (note that the sequence 
immediately after m is t1σ n−1

1  ), so removing the first 
character does not affect the number of σ1’s; observe that 
this produces the set Sσ (t2 · · · tn) . For the third set, the 
only possible occurrence of σ1 is t̂1 . In summary, count(t) 
can be computed by the following recursive formula:
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with base case count(ε) = 0 and Sσ (ε) = ∅ where ε 
denotes the empty string.

In the first case, the number of length-(n− 1) 
sequences before t2 · · · tn in the lexicographical order has 
the closed-form expression (corresponds to the base-|�| 
numeral encoding of the sequence t2 · · · tn with respect to 
σ):

Expanding the second case by the recursion, we have

where in the second equation, the first term is by symme-
try of all characters from 

{

σ
n−1
1 , . . . , σ n−1

|�|

}

= Sn−1 
(technically, count

(

σ
n−1
|�|

)

 excludes σ1 ’s from σ n−1
|�|  , but 

there is none); and the second term is simply 
∣

∣

∣
Sn−1 \

{

σ
n−1
|�|

}∣

∣

∣
 . Expanding the third case by the recur-

sion until the first character becomes σ1 , we have

For conciseness, define for i = 1, 2, . . . , n:

Then the recursion can be simplified to

count(t1t2 · · · tn)

= count(t2 · · · tn)

+















|Sσ (t2 · · · tn)| if t1 = σ1,

count
�

σ1σ
n−1
|�|

�

+ 1 if t1 = σ2,

count
�

t̂1σ
n−1
|�|

�

otherwise,

(3)|Sσ (t2 · · · tn)| =

n
∑

j=2

(

σ−1
(

tj
)

− 1
)

|�|n−j .

count
(

σ1σ
n−1
|�|

)

= count
(

σ
n−1
|�|

)

+

∣

∣

∣
Sσ

(

σ
n−1
|�|

)∣

∣

∣

= (n− 1)|�|n−2 + |�|n−1 − 1,

count
(

t̂1σ
n−1
|�|

)

= count
(

σ
n−1
|�|

)

+ count
(

ˆ̂t1σ
n−1
|�|

)

= . . .

=

(

σ−1
(

t̂1
)

− 1
)

· count
(

σ
n−1
|�|

)

+ count
(

σ1σ
n−1
|�|

)

+ 1

= σ−1
(

t̂1
)

(n− 1)|�|n−2 + |�|n−1.

µi(t) = µ(ti · · · tn)

=

{

|Sσ (ti+1 · · · tn)| if ti = σ1,

σ−1(ti)(n− i)|�|n−i−1 + |�|n−i if ti �= σ1.

By equation  (3), the µi(t) ’s can be computed iteratively 
from n to 1 yielding a linear time algorithm for comput-
ing count(t1 · · · tn) . (Here we assume that all arithmitic 
operations involved take constant time.)

For the n buckets 
{

count
(

s
i
)

+ #1i−1(s)+ 1 |
{

count
(

si
)

+ #1i−1(s)+ 1 | i = 1, . . . , n
}

 , comput-
ing each count

(

si
)

 separatedly takes O
(

n2
)

 time in 
total. We aim to reduce the running time by explor-
ing the similarity between count(s) and count

(

si
)

 . For 
j < i , consider µj(s) = µ

(

sj · · · si−1sisi+1 · · · sn
)

 and 
µj

(

si
)

= µ
(

sj · · · si−1σ1si+1 · · · sn
)

 , if sj = σ1 , according 
to equation (3), their values differ by (σ−1(si)− 1)|�|n−i ; 
and if sj  = σ1 , they are the same by definition. Recall that 
the number of occurrences of σ1 among the first i − 1 
characters in s is #1i−1(s) , hence the values of 

∑i−1
j=1 µj(s) 

and 
∑i−1

j=1 µj

(

si
)

 differ by #1i−1(s)(σ
−1(si)− 1)|�|n−i . For 

j > i , µj(s) = µj

(

si
)

 because the two suffixes starting 
from position j are identical. Therefore, we have

The following pseudocode first calculates and stores 
in linear time and space the values of µi(s) , #1i (s) , and 
νi(s) = |Sσ (si · · · sn)| ; then each of the n buckets is com-
puted in constant time. We also provide an implemen-
tation of both the global counter algorithm and this 
efficient individual bucketing algorithm at [25].

count(t) = count(t1t2 · · · tn)

= count(t2 · · · tn)+ µ1(t) = . . . =

n
∑

i=1

µi(t).

count
(

s
i
)

=

i−1
∑

j=1

µj

(

s
i
)

+ µi

(

s
i
)

+

n
∑

j=i+1

µj

(

s
i
)

=

i−1
∑

j=1

µj(s)− #1i−1(s)(σ
−1(si)− 1)|�|n−i

+ µi

(

s
i
)

+

n
∑

j=i+1

µj(s)

=

n
∑

j=1

µj(s)− µi(s)− #1i−1(s)

(σ−1(si)− 1)|�|n−i + µi

(

s
i
)

= count(s)− µi(s)− #1i−1(s)

(σ−1(si)− 1)|�|n−i

+ |Sσ (si+1 · · · sn)|.
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Mapping to sequences of length n
We continue to explore LSB functions with different val-
ues of d1 and d2 . Here we focus on a special case where 
B ⊂ Sn , namely, each bucket in B is labeled by a length-n 
sequence. The idea of designing such LSB functions is to 
map a sequence s to its neighboring sequences that are in 
B. Formally, given a subset B ⊂ Sn and an integer r ≥ 1 , 
we define the bucketing function f rB : Sn → P(B) by

We now derive the conditions for f rB to be an LSB func-
tion. For any sequence s , all the buckets in f rB (s) are 
labeled by its neighboring sequences within radius r. 
Therefore, if two sequences s and t share a bucket labeled 
by v , then edit(s, v) ≤ r and edit(t , v) ≤ r . Recall that Sn is 
a metric space, in particular, the triangle inequality holds. 
So edit(s, t) ≤ edit(s, v)+ edit(t , v) ≤ 2r . In other words, 
if s and t are 2r + 1 edits apart, then they will be mapped 
to disjoint buckets. Formally, if edit(s, t) ≥ 2r + 1 , then 
f rB (s) ∩ f rB (t) = ∅ . This implies that f rB satisfies the LSB-
property  (2) with d2 = 2r + 1 . We note that this state-
ment holds regardless of the choice of B.

Hence, to make f rB a (d1, 2r + 1)-sensitive bucket-
ing function for some integer d1 , we only need to deter-
mine a subset B so that f rB satisfies the LSB-property (1). 

f rB (s) = Nr
n(s) ∩ B =

{

v ∈ B | edit(s, v) ≤ r
}

for each s ∈ Sn.

Specifically, B should be picked such that for any two 
length-n sequences s and t within an edit distance of d1 , 
we always have

For the sake of simplicity, we say a set of buckets B ⊂ Sn 
is (d1, r)-guaranteed if and only if Nr

n(s) ∩ Nr
n(t) ∩ B �= ∅ 

for every pair of sequences s and t with edit(s, t) ≤ d1 . 
Equivalently, following the above arguments, B is (d1, r)
-guaranteed if and only if the corresponding bucket-
ing function f rB is (d1, 2r + 1)-sensitive. Note that the 
(d1, r)-guaranteed set is not a new concept, but rather 
an abbreviation to avoid repeating the long phrase “a set 
whose corresponding bucketing function is guaranteed 
to be (d1, 2r + 1)-sensitive”. In the following sections, we 
show several (d1, r)-guaranteed subsets B ⊂ Sn for differ-
ent values of d1.

(2r, r)-guaranteed and (2r − 1, r)-guaranteed subsets
We first consider an extreme case where B = Sn.

Lemma 6 Let B = Sn . Then B is (2r, r)-guaranteed if r is 
even, and B is (2r − 1, r)-guaranteed if r is odd.

f rB (s) ∩ f rB (t) =
(

Nr
n(s) ∩ B

)

∩
(

Nr
n(t) ∩ B

)

= Nr
n(s) ∩ Nr

n(t) ∩ B �= ∅.
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Proof First consider the case that r is even. Let s and 
t be two length-n sequences with edit(s, t) ≤ 2r . Then 
there are 2r edits that transforms s to t . (If edit(s, t) < 2r , 
we can add in trivial edits that substitute a character 
with itself.) Because s and t have the same length, these 
2r edits must contain the same number of insertions 
and deletions. Reorder the edits so that each inser-
tion is followed immediately by a deletion (i.e., a pair 
of indels) and all the indels come before substitutions. 
Because r is even, in this new order, the first r edits 
contain an equal number of insertions and deletions. 
Namely, applying the first r edits on s produces a length-
n sequence v . Clearly, edit(s, v) ≤ r and edit(t , v) ≤ r , i.e., 
v ∈ Nr

n(s) ∩ Nr
n(t) = Nr

n(s) ∩ Nr
n(t) ∩ B.

For the case that r is odd. Let s and t be two length-n 
sequences with edit(s, t) ≤ 2r − 1 . By the same argument 
as above, s can be transformed to t by 2r − 1 edits and 
we can assume that all the indels appear in pairs and they 
come before all the substitutions. Because r is odd, r − 1 
is even. So applying the first r − 1 edits on s produces 
a length-n sequence v such that edit(s, v) ≤ r − 1 < r 
and edit(t , v) ≤ 2r − 1− (r − 1) = r . Therefore, 
v ∈ Nr

n(s) ∩ Nr
n(t) = Nr

n(s) ∩ Nr
n(t) ∩ B .  �

By definition, setting B = Sn makes f rB (2r, 2r + 1)-sen-
sitive if r is even and (2r − 1, 2r + 1)-sensitive if r is odd. 
This provides nearly optimal bucketing performance in 
the sense that there is no gap (when r is even) or the gap is 
just one (when r is odd). It is evident from the proof that 
the gap at 2r indeed exists when r is odd because if s can 
only be transformed to t by r pairs of indels, then there 
is no length-n sequence v with edit(s, v) = edit(t , v) = r.

Properties of (r, r)-guaranteed subsets
In the above section all sequences in Sn are used as buck-
ets. A natural question is, can we use a proper subset 
of Sn to achieve (gapped) LSB functions? This can be 
viewed as down-sampling Sn such that if two length-n 
sequences s and t are similar, then a length-n sequence 
is always sampled from their common neighborhood 
Nr
n(s) ∩ Nr

n(t).
Here we focus on the case that d1 = r , i.e., we aim to 

construct B that is (r,  r)-guaranteed. Recall that this 
means for any s, t ∈ Sn with edit(s, t) ≤ r , we have 
Nr
n(s) ∩ Nr

n(t) ∩ B �= ∅ . In other words, f rB is (r, 2r + 1)

-sensitive. To prepare the construction, we first inves-
tigate some structural properties of (r,  r)-guaranteed 
subsets. We propose a conjecture that such sets form a 
hierarchical structure with decreasing r:

Conjecture 1 If B ⊂ Sn is (r,  r)-guaranteed, then B is 
also (r + 1, r + 1)-guaranteed.

We prove a weaker statement:

Lemma 7 If B ⊂ Sn is (r,  r)-guaranteed, then B is 
(r + 2, r + 2)-guaranteed.

Proof Let s and t be two length-n sequences 
with edit(s, t) ≤ r + 2 ; we want to show that 
Nr+2
n (s) ∩ Nr+2

n (t) ∩ B �= ∅ . Consider a list of edits 
that transforms s to t : skipping a pair of indels or 
two substitutions gives a length-n sequence m such 
that edit(s,m) ≤ r and edit(t ,m) = 2 . Because s 
and m are within a distance of r and B is (r,  r)-guar-
anteed, we have that Nr

n(s) ∩ Nr
n(m) ∩ B �= ∅ , i.e., 

there exists a length-n sequence v ∈ B such that 
edit(s, v) ≤ r and edit(m, v) ≤ r . By triangle ine-
quality, edit(t , v) ≤ edit(t ,m)+ edit(m, v) ≤ r + 2 . 
Hence, we have v ∈ Nr+2

n (t) . Clearly, v ∈ Nr
n(s) 

implies that v ∈ Nr+2
n (s) . Combined, we have 

v ∈ Nr+2
n (s) ∩ Nr+2

n (t) ∩ B .  �

The next lemma shows that (1,  1)-guaranteed subsets 
have the strongest condition.

Lemma 8 If B ⊂ Sn is (1, 1)-guaranteed, then B is (r, r)-
guaranteed for all r ≥ 1.

Proof According to the previous lemma, we only need 
to show that B is (2,  2)-guaranteed. Given two length-
n sequences s and t with edit(s, t) = 2 , consider a list 
Q of two edits that transforms s to t . There are two 
possibilities:

• If both edits in Q are substitutions, let i be the posi-
tion of the first substitution.

• If Q consists of one insertion and one deletion, let 
i be the position of the character that is going to be 
deleted from s.

In either case, let m be a length-n sequence obtained by 
replacing the i-th character of s with another character 
in � . Then edit(s,m) = 1 . Because B is (1, 1)-guaranteed, 
there is a length-n sequence v ∈ B such that edit(s, v) ≤ 1 
and edit(m, v) ≤ 1 . Observe that either s = v or v is 
obtained from s by one substitution at position i. So 
applying the two edits in Q on v also produces t , i.e., 
edit(t , v) ≤ 2 . Therefore, v ∈ N 2

n (s) ∩ N 2
n (t) ∩ B .  �

Now we bound the size of a (1,  1)-guaranteed subset 
from below.
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Lemma 9 If B is (1,1)-guaranteed, then

Proof Let B ⊂ Sn be an arbitrary (1,  1)-guaran-
teed subset. For part  (i), because s ∈ N 1

n (s) , if s 
is also in B, then s is in their intersection, hence 
∣

∣N 1
n (s) ∩ B

∣

∣ ≥ 1 . If s = s1s2 . . . sn �∈ B , then it must 
have at least n 1-neighbors vi ∈ B , one for each posi-
tion 1 ≤ i ≤ n , where vi = s1 . . . si−1visi+1 . . . sn , 
vi  = si . Suppose conversely that this is not the 
case for a particular i. Let t = s1 . . . si−1tisi+1 . . . sn 
where ti  = si . We have edit(s, t) = 1 . Also, 
N 1
n (s) ∩ N 1

n (t) = {x ∈ � | s1 . . . si−1xsi+1 . . . sn} , but 
none of them is in B  (consider the two cases x = si and 
x  = si ), i.e., N 1

n (s) ∩ N 1
n (t) ∩ B = ∅ . This contradicts the 

assumption that B is (1, 1)-guaranteed.

For part  (ii), consider the set of pairs 
H =

{

(s, v)
∣

∣ s ∈ Sn and v ∈ N 1
n (s) ∩ B

}

 . For all v ∈ B , 
the number of sequences s ∈ Sn with edit(s, v) ≤ 1 is 
n(|�| − 1)+ 1 . So |H | = (n(|�| − 1)+ 1)|B| . On the 
other hand, part (i) implies that |H | ≥ |B| + n(|�|n − |B|) . 
Combined, we have |B| ≥ |�|n−1 , as claimed.  �

Next, we give an algorithm to construct a (1, 1)-guar-
anteed subset B that achieves the size |B| = |�|n−1 ; fur-
thermore, the corresponding (1,  3)-sensitive bucketing 
function f 1B  satisfies 

∣

∣f 1B (s)
∣

∣ = 1 if s ∈ B and 
∣

∣f 1B (s)
∣

∣ = n if 
s  ∈ B . This shows that the lower bounds proved above in 
Lemma 9 are tight and that the constructed (1, 1)-guaran-
teed subset B is optimal in the sense of minimizing both 

(i) for each s ∈ Sn,

∣

∣

∣
N 1
n (s) ∩ B

∣

∣

∣
≥

{

1 if s ∈ B
n if s �∈ B

, (ii) |B| ≥ |Sn|/|�| = |�|n−1.

|B| and 
∣

∣f 1B (s)
∣

∣ . Notice that this result improves Lemma 6 
with r = 1 where we showed that Sn is a (1,  1)-guaran-

teed subset of size |�|n . According to Lemma 8, this con-
structed B is also (r, r)-guaranteed. So the corresponding 

bucketing function f rB is (r, 2r + 1)-sensitive for all inte-
gers r ≥ 1.

Construction of optimal (1, 1)-guaranteed subsets
Let m = |�| and denote the characters in � by 
c1, c2, . . . , cm . We describe a recursive procedure to 
construct a (1,  1)-guaranteed subset of Sn . In fact, 
we show that Sn can be partitioned into m subsets 
B1
n ⊔ B2

n ⊔ · · · ⊔ Bm
n  such that each Bi

n is (1, 1)-guaranteed. 
Here the notation ⊔ denotes disjoint union. The partition 
of Sn is built from the partition of Sn−1 . The base case is 
S1 = {c1} ⊔ · · · ⊔ {cm}.

Suppose that we already have the partition for 
Sn−1 = B1

n−1 ⊔ B2
n−1 ⊔ · · · ⊔ Bm

n−1 . Let

where c ◦ B is the set obtained by prepending the charac-
ter c to each sequence in the set B. For B2

n , the construc-
tion is similar where the partitions of Sn−1 are shifted 
(rotated) by one such that c1 is paired with B2

n−1 , c2 is 
paired with B3

n−1 , and so on. In general, for 1 ≤ i ≤ m,

B1
n =

(

c1 ◦ B
1
n−1

)

⊔

(

c2 ◦ B
2
n−1

)

⊔ · · · ⊔
(

cm ◦ Bm
n−1

)

,

Bi
n =

(

c1 ◦ B
i
n−1

)

⊔

(

c2 ◦ B
i+1

n−1

)

⊔ · · · ⊔
(

cm−i+1 ◦ B
m
n−1

)

⊔

(

cm−i+2 ◦ B
1

n−1

)

⊔ · · · ⊔

(

cm ◦ Bi−1

n−1

)

.

Examples of this partition for � = { A, C, G, T } and 
n = 2, 3 are shown below.

B1
2 = {AA, CC, GG, TT}

B2
2 = {AC, CG, GT, TA}

B3
2 = {AG, CT, GA, TC}

B4
2 = {AT, CA, GC, TG}
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It remains to show that for each s ∈ Sn , 
∣

∣N 1
n (s) ∩ Bi

n

∣

∣ 
matches the lower bound in Lemma  9. Together with 
Lemma  10, this proves that each constructed Bi

n yields 
an optimal (1,  3)-sensitive bucketing function in terms 
of minimizing both the total number of buckets and the 
number of buckets each length-n sequence is sent to.

Lemma 11 For s ∈ Sn , each constructed Bi
n satisfies

Proof We proceed by induction on n. The base case 
n = 1 is trivially true because |Bi

1| = 1 and all single-char-
acter sequences are within one edit of each other. Sup-
pose that the claim is true for n− 1 . Consider an arbi-
trary index i. If s ∈ Bi

n , we show that any other length-n 
sequence t ∈ Bi

n has edit distance at least 2 from s , 
namely N 1

n (s) ∩ Bi
n = {s} . Let s′ and t ′ be the (n− 1)-suf-

fixes of s and t respectively. According to the construc-
tion, if s and t have the same first character, then s′ and t ′ 
are in the same Bj

n−1 for some index j. By the induction 
hypothesis, edit

(

s′, t ′
)

≥ 2 (otherwise 
∣

∣N 1
n−1

(

s
′
)

∩B
j
n−1

∣

∣

∣
≥ 2 ), and therefore edit(s, t) = edit

(

s′, t ′
)

≥ 2 . If 

s and t are different at the first character, then s′ and t ′ are 
not in the same Bj

n−1 , so s′  = t ′ (recall that Bj
n−1 and Bk

n−1 
are disjoint if j  = k ), namely edit

(

s′, t ′
)

≥ 1 . Together 
with the necessary substitution at the first character, we 
have edit(s, t) = 1+ edit

(

s′, t ′
)

≥ 2.

If s  ∈ Bi
n , Lemma 9 and 10 guarantee that s has at least n 

1-neighbors vk in Bi
n , k = 1, . . . , n , where vk is obtained 

from s by a single substitution at position k. Let t  = s be 
a 1-neighbor of s . Since t can only differ from s by a sin-
gle substitution at some position ℓ , we know that either 
t = vℓ or the edit distance between t and vℓ is 1. In the lat-
ter case, t cannot be in Bi

n otherwise 
∣

∣N 1
n

(

vℓ
)

∩ Bi
n

∣

∣ ≥ 2 , 
contradicting the result of the previous paragraph. There-
fore, N 1

n (s) ∩ Bi
n =

{

v1, . . . vn
}

 which has size n. �

We end this section by showing that a membership 
query can be done in O(n) time on the (1,  1)-guaran-
teed subset B constructed above (i.e., B = Bi

n for some i). 

∣

∣

∣
N 1
n (s) ∩ Bi

n

∣

∣

∣
=

{

1 if s ∈ Bi
n

n if s �∈ Bi
n
.

Note that each sequence in Sn appears in exactly one of 
the subsets Bi

n , justifying the use of the disjoint union 
notation. (The induction proof of this claim has identical 
structure as the following proofs of Lemma 10 and 11, so 
we leave it out for conciseness.) Now we prove the cor-
rectness of this construction.

Lemma 10 Each constructed Bi
n is a minimum 

(1, 1)-guaranteed subset of Sn.

Proof By Lemma 9, we only need to show that each Bi
n is 

(1, 1)-guaranteed and has size |�|n−1 = mn−1 . The proof 
is by induction on n. The base case S1 = {c1} ⊔ · · · ⊔ {cm} 
is easy to verify.

As the induction hypothesis, suppose that Sn−1 =⊔m
j=1

B
j
n−1

 , where each Bj
n−1 is (1, 1)-guaranteed and has 

size mn−2 . Consider an arbitrary index 1 ≤ i ≤ m . By 
construction, we have 

∣

∣Bi
n

∣

∣ =
∑m

j=1

∣

∣

∣
B
j
n−1

∣

∣

∣
= mn−1 . To 

show that Bi
n is (1, 1)-guaranteed, consider two sequences 

s, t ∈ Sn with edit(s, t) = 1 . If the single substitution hap-
pens on the first character, let x ∈ Sn−1 be the common 
(n− 1)-suffix of s and t . Since 

⊔m
j=1 B

j
n−1 is a partition of 

Sn−1 , x must appear in one of the subsets Bℓ
n−1 . In Bi

n , it is 
paired with one of the characters ck . Let y = ck ◦ x , then 
y ∈ Bi

n . Furthermore, s and t can each be transformed to 
y by at most one substitution on the first character. Thus, 
y ∈ N 1

n (s) ∩ N 1
n (t) ∩ Bi

n.

If the single substitution between s and t does not hap-
pen on the first position, then they share the com-
mon first character ck . In Bi

n , ck is paired with one of 
the subsets Bℓ

n−1 . Let s′ and t ′ be (n− 1)-suffixes of s 
and t , respectively. It is clear that edit

(

s′, t ′
)

= 1 . By 
the induction hypothesis, Bℓ

n−1 is (1,  1)-guaranteed. 
So there is a sequence x ∈ Bℓ

n−1 of length n− 1 such 
that edit

(

s′, x
)

≤ 1 and edit
(

t ′, x
)

≤ 1 . Let y = ck ◦ x , 
then y ∈ Bi

n by the construction. Furthermore, 
edit(s, y) = edit

(

s′, x
)

≤ 1 and edit(t , y) = edit
(

t ′, x
)

≤ 1 . 
Thus, y ∈ N 1

n (s) ∩ N 1
n (t) ∩ Bi

n . Therefore, Bi
n is 

(1, 1)-guaranteed. Since the index i is arbitrary, this com-
pletes the proof.  �

B
1

3 = {AAA, ACC, AGG, ATT, CAC, CCG, CGT, CTA,GAG, GCT, GGA, GTC, TAT, TCA, TGC, TTG}

B
2

3 = {AAC, ACG, AGT, ATA, CAG, CCT, CGA, CTC,GAT, GCA, GGC, GTG, TAA, TCC, TGG, TTT}

B
3

3 = {AAG, ACT, AGA, ATC, CAT, CCA, CGC, CTG,GAA, GCC, GGG, GTT, TAC, TCG, TGT, TTA}

B
4

3 = {AAT, ACA, AGC, ATG, CAA, CCC, CGG, CTT,GAC, GCG, GGT, GTA, TAG, TCT, TGA, TTC}
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Thanks to its regular structure, the query is performed 
without explicit construction of B. Consequently, the 
bucketing functions using B can be computed without 
computing and storing this subset of size |�|n−1.

Specifically, suppose that we choose B = Bi
n for some 

fixed 1 ≤ i ≤ m . Let s be a given length-n sequence; 
we want to query if s is in B or not. This is equivalent 
to determining whether the index of the partition of 
Sn that s falls into is i or not. Write s = s1s2 . . . sn and 
let s′ = s2 . . . sn be the (n− 1)-suffix of s . Suppose that 
it has been determined that s′ ∈ B

j
n−1 for some index 

1 ≤ j ≤ m , i.e., the sequence s′ of length n− 1 comes 
from the j-th partition of Sn−1 . By construction, the index 
ℓ for which s ∈ Bℓ

n is uniquely determined by the charac-
ter s1 = ck ∈ � and the index j according to the formula 
ℓ = (j +m+ 1− k) mod m . The base case n = 1 is trivi-
ally given by the design that cp ∈ B

p
1 for all 1 ≤ p ≤ m . 

This easily translates into a linear-time algorithm that 
scans the input length-n sequence s backwards and com-
pute the index ℓ such that s ∈ Bℓ

n . To answer the mem-
bership query, we only need to check whether ℓ = i . We 
provide an implementation of both the construction and 
the efficient membership query of a (1,  1)-guaranteed 
subset at [25].

A (3, 5)-sensitive bucketing function
Let B ⊂ Sn be one of the constructed (1,  1)-guaranteed 
subsets. Recall that the resulting bucketing function f rB is 
(r, 2r + 1)-sensitive for all integers r ≥ 1 ; in particular, f 2B  
is (2, 5)-sensitive. We are able to strengthen this result by 
showing that f 2B  is in fact (3, 5)-sensitive.

Theorem  2 Let B ⊂ Sn be a (1,  1)-guaranteed subset. 
The bucketing function f 2B  is (3, 5)-sensitive.

Proof As f rB is already proved to be (2,  5)-sensi-
tive, to show it is (3, 5)-sensitive, we just need to prove 
that, for any two sequences s, t ∈ Sn with edit(s, t) = 3 , 
f 2B (s) ∩ f 2B (t) = N 2

n (s) ∩ N 2
n (t) ∩ B �= ∅ . If the three edits 

are all substitutions, then there are length-n sequences 
x and y such that edit(s, x) = edit(x, y) = edit(y, t) = 1 . 
Since B is (1, 1)-guaranteed, there is a length-n sequence 
z ∈ B with edit(x, z) ≤ 1 and edit(y, z) ≤ 1 . By triangle 
inequality, edit(s, z) ≤ edit(s, x)+ edit(x, z) ≤ 2 ; edit(t , z)
≤ edit(t , y)+ edit(y, z) ≤ 2 . So z ∈ N 2

n (s) ∩ N 2
n (t) ∩ B.

If the three edits are one substitution and a pair of indels, 
then there is a length-n sequence x such that edit(s, x) = 1 
and edit(x, t) = 2 where the two edits between x and t 
can only be achieved by one insertion and one deletion. 
Let i be the position in x where the deletion between x 

and t takes place. Let y be a length-n sequence obtained 
from x by a substitution at position i, so edit(x, y) = 1 . 
Since B is (1, 1)-guaranteed, there is a length-n sequence 
z ∈ B with edit(x, z) ≤ 1 and edit(y, z) ≤ 1 . Then 
edit(s, z) ≤ edit(s, x)+ edit(x, z) ≤ 2 . Observe that 
x and z differ by at most one substitution at position i, 
which will be deleted when transforming to t . So the 
two edits from x to t can also transform z to t , namely, 
edit(t , z) ≤ 2 . Thus, z ∈ N 2

n (s) ∩ N 2
n (t) ∩ B .  �

Summary of proved LSB functions
We proposed two sets of LSB functions and studied 
the efficiency of them in terms of |B|, the total number 
of buckets, and |f (s)| , the number of buckets a specific 
length-n sequence s occupies. The results are summa-
rized in Table 1.

Experimental results on the gapped LSB functions
Now we experimentally investigate the behavior of the 
gapped LSB functions at their respective gaps. We pick 3 
LSB functions to experiment, corresponding to the rows 
2–4 in Table 1. For d = 1, 2, . . . , 6 , we generate 100, 000 
random pairs (s, t) of sequences of length 20 with edit 
distance d. Each one of the picked LSB functions f rB 
is applied and the number of pairs that share a bucket 
under f rB is recorded. The code can be found at [25]. The 
results are shown in Fig. 1.

Recall that Lemma  6 implies f r
Sn

 is (2r − 1, 2r + 1)

-sensitive when r is odd. The discussion after the proof 
shows that the gap at 2r indeed exists. In particular, 
if s can only be transformed to t by r pairs of indels, 
then Nr

n(s) ∩ Nr
n(t) = ∅ . On the other hand, if there are 

some substitutions among the 2r edits between s and 
t , then by a similar construction as in the case where 
r is even, we can find a length-n sequence v such that 
edit(s, v) = edit(v, t) = r . Motivated by this observa-
tion, we further explore the performance of the LSB 
functions at the gap for different types of edits. Given 
a gapped LSB function f, for the gap at d, define cat-
egories 0, . . . , ⌊d/2⌋ corresponding to the types of edits: 
a pair of length-n sequences with edit distance d is in 
the i-th category if they can be transformed to each 
other with i pairs of indels (and d − 2i substitutions) 
but not i − 1 pairs of indels (and d − 2i + 2 substitu-
tions). Figure  2 shows the results for the three LSB 
functions in Fig. 1 at their respective gaps with respect 
to different types of edits. Observe that the result for 
f 1
Sn

 (in red) agrees with our analysis above. 
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Conclusions
We introduce locality-sensitive bucketing  (LSB) func-
tions, that generalize locality-sensitive hashing  (LSH) 
functions by allowing it to map a sequence into multiple 
buckets. This generalization makes the LSB functions 
easier to construct, while guaranteeing high sensitivity 
and specificity in a deterministic manner. We construct 
such functions, prove their properties, and show that 
some of them are optimal under proposed criteria. We 
also reveal several properties and structures of the metric 
space Sn , which are of independent interests for studying 
LSH functions and the edit distance.

Our results for LSB functions can be improved in 
several aspects. An obvious open problem is to design 
(d1, d2)-sensitive functions that are not covered here. 
For this purpose, one direction is to construct opti-
mal (r,  r)-guaranteed subsets for r > 1 . As an implica-
tion of Lemma  11, it is worth noting that the optimal 

(1, 1)-guaranteed subset is a maximal independent set in 
the undirected graph G1

n whose vertex set is Sn and each 
sequence is connected to all its 1-neighbors. It is natural 
to suspect that similar results hold for (r,  r)-guaranteed 
subsets with larger r. Another approach is to use other 
more well-studied sets as buckets and define LSB func-
tions based on their connections with Sn . This is closely 
related to the problem of embedding Sn which is difficult 
as noted in the introduction. Our results suggest a new 
angle to this challenging problem: instead of restricting 
our attention to embedding Sn into metric spaces, it may 
be beneficial to consider a broader category of spaces that 
are equipped with a non-transitive relation (here in LSB 
functions we used subsets of integers with the “have a 
nonempty intersection” relation). Yet another interesting 
future research direction would be to explore the possi-
bility of improving the practical time and space efficiency 
of computing and applying LSB functions.

Fig. 2 Probabilities (estimated by frequencies) that two sequences share a bucket with respect to their edit type under three gapped LSB functions. 
The types of edits are labeled in the format a+ b× 2 where a is the number of substitutions and b is the number of pairs of indels. Left: two 
(1, 3)-sensitive bucketing functions (rows 2 and 3 of Table 1). Right: the (3, 5)-sensitive bucketing function (row 4 of Table 1)

Fig. 1 Probabilities (estimated by frequencies) that two sequences share a bucket with respect to their edit distance under three gapped LSB 
functions (red, green, and blue bars correspond to the rows 2–4 of Table 1)
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A technique commonly used to boost the sensitivity 
of an LSH function is known as the OR-amplification. It 
combines multiple LSH functions in parallel, which can 
be viewed as sending each sequence into multiple buck-
ets such that the probability of having similar sequences 
in one bucket is higher than using the individual func-
tions separately. However, as a side effect, the OR-
amplification hurts specificity: the chance that dissimilar 
sequences share a bucket also increases. It is therefore 
necessary to combine it with other techniques and choos-
ing parameters to balance sensitivity and specificity is a 
delicate work. On contrast, the LSB function introduced 
in this paper achieves a provably optimal separation of 
similar and dissimilar sequences. In addition, the OR-
amplification approach can also be applied on top of the 
LSB functions as needed.
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