
Jun et al. Algorithms for Molecular Biology           (2023) 18:10  
https://doi.org/10.1186/s13015-023-00235-1

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

A topology-marginal composite likelihood 
via a generalized phylogenetic pruning 
algorithm
Seong‑Hwan Jun1†, Hassan Nasif2†, Chris Jennings‑Shaffer3, David H Rich3, Anna Kooperberg3, 
Mathieu Fourment4, Cheng Zhang5, Marc A Suchard6,7,8 and Frederick A Matsen IV3,9,10,11* 

Abstract 

Bayesian phylogenetics is a computationally challenging inferential problem. Classical methods are based on random‑
walk Markov chain Monte Carlo (MCMC), where random proposals are made on the tree parameter and the con‑
tinuous parameters simultaneously. Variational phylogenetics is a promising alternative to MCMC, in which one fits 
an approximating distribution to the unnormalized phylogenetic posterior. Previous work fit this variational approxi‑
mation using stochastic gradient descent, which is the canonical way of fitting general variational approximations. 
However, phylogenetic trees are special structures, giving opportunities for efficient computation. In this paper we 
describe a new algorithm that directly generalizes the Felsenstein pruning algorithm (a.k.a. sum‑product algorithm) 
to compute a composite‑like likelihood by marginalizing out ancestral states and subtrees simultaneously. We show 
the utility of this algorithm by rapidly making point estimates for branch lengths of a multi‑tree phylogenetic model. 
These estimates accord with a long MCMC run and with estimates obtained using a variational method, but are much 
faster to obtain. Thus, although generalized pruning does not lead to a variational algorithm as such, we believe that it 
will form a useful starting point for variational inference.

†Seong‑Hwan Jun, Hassan Nasif have contributed equally to this work.

*Correspondence:
Frederick A Matsen IV
matsen@fredhutch.org
1 Department of Biostatistics and Computational Biology, University 
of Rochester, Rochester, USA
2 Department of Statistics, University of Washington, Seattle, USA
3 Public Health Sciences Division, Fred Hutchinson Cancer Research 
Center, Seattle, WA, USA
4 Australian Institute for Microbiology and Infection, University 
of Technology Sydney, Ultimo, NSW, Australia
5 School of Mathematical Sciences and Center for Statistical Science, 
Peking University, Beijing, China
6 Department of Human Genetics, University of California, Los Angeles, 
USA
7 Department of Computational Medicine, University of California, Los 
Angeles, USA
8 Department of Biostatistics, University of California, Los Angeles, USA
9 Department of Genome Sciences, University of Washington, Seattle, 
USA
10 Howard Hughes Medical Institute, Fred Hutchinson Cancer Research 
Center, Seattle, Washington, USA

11 Computational Biology Program, Fred Hutchinson Cancer Research 
Center, 1100 Fairview Ave. N., Mail stop: S2‑140, Seattle, WA 98109‑1024, 
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00235-1&domain=pdf


Page 2 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10 

Introduction
Statistical phylogenetics is largely divided into maxi-
mum-likelihood based and Bayesian posterior-based 
approaches. The former searches for a tree that yields 
highest likelihood for the observed sequencing data, 
while the latter is typically approached using Markov 
chain Monte Carlo (MCMC) sampling to estimate 
the posterior probabilities of trees given the observed 
sequencing data. Both approaches involve exploration 
of the tree space using local tree rearrangements, such 
as nearest neighbor interchange or subtree pruning and 
regrafting [1], followed by computation of the likelihood 
of the sequence data given the tree using Felsenstein’s 
pruning algorithm [2]. The Felsenstein pruning algorithm 
prunes out the ancestral states at the internal nodes of 
the tree and is the engine driving the advances in statisti-
cal phylogenetics, allowing estimation of branch lengths 
of a tree as well as the parameters of the evolutionary 
models. Specifically, the two-pass version of the algo-
rithm allows for constant-time updates to branch lengths 
and local tree structures. In this paper, we propose a gen-
eralization of the two-pass Felsenstein pruning algorithm 
that marginalizes uncertain tree structures as well as the 
ancestral states, with a long-term goal of bringing effi-
cient optimization strategies from maximum-likelihood 
phylogenetics to Bayesian inference.

To begin to appreciate the challenges of Bayesian phy-
logenetics, we start with an overview of likelihood-based 
phylogenetic models (see the Background and Notation 
section for a full development). Assume that we are given 
a multiple sequence alignment [3, 4] of DNA sequences 
as data Y that maps a sequence of molecular characters 
(i.e. DNA bases) to each leaf of the phylogenetic tree 
that generated it. This alignment is organized in terms of 
a list of sites such that the differences between sites are 
assumed to arise only due to substitution of one DNA 
base for another along the course of evolution. Specifi-
cally, per-site sequence change is formulated in terms 
of continuous-time Markov chain (CTMC) models of 
DNA sequence evolution along the branches of the tree, 
where the time parameter in the CTMC is called branch 
length. The CTMC may also have other parameters, such 
as the rate of change from one DNA base to another. For 
this paper, a (phylogenetic) tree is defined to be a rooted 
bifurcating tree structure τ with leaf labels that has been 
equipped with branch lengths on every edge. We follow 
common practice by using the word topology to describe 
the discrete component of this model, namely the tree 
without branch lengths.

We make the typical independence-across-sites 
assumption for evolutionary processes conditioned on 
the tree, which enables efficient likelihood computation 

via a dynamic programming approach that integrates 
out the unobserved molecular characters (ancestral 
states) at all of the internal nodes. This approach is 
called the pruning algorithm [2] in phylogenetics, which 
is reviewed below, and is also known as the sum-prod-
uct algorithm or belief propagation in other settings [5]. 
It enables linear-complexity calculation in the number 
of sequences for the phylogenetic likelihood p(Y | τ , θ) , 
where τ is the topology and θ is a corresponding vec-
tor of branch lengths, as well as constant-complexity 
updates for local modifications. Assume we are given 
a prior p(τ , θ) on phylogenetic trees. We assume here 
that the prior factors into two easily-calculated terms: 
the prior p(τ ) on topologies and the prior p(θ | τ ) on 
branch lengths given a topology.

Recent work has fit reduced-dimension probabilistic 
models to the topological posterior [6–9]. Briefly, these 
methods break topologies into building blocks such 
that probabilistic models on these building blocks can 
be translated into probabilistic models on whole topol-
ogies themselves. We have shown that this translation 
provides a flexible distribution on topologies with good 
inductive biases [8].

One can think of these reduced-dimension models in 
terms of a structure we call a subsplit directed acyclic 
graph or subsplit DAG (introduced below). One can 
think of the nodes of the subsplit DAG as comprising 
the union of substructures, called subsplits, of a col-
lection of topologies. The edges between these nodes 
represent compatibility of substructures (Fig.  1a). We 
arrive at a probability distribution on topologies by 
attaching probabilities to the edges of the DAG.

Stated in these terms, in [9] we used a variational 
approach, with modern yet general-purpose gradi-
ent estimators, to fit continuous parameters (i.e. edge 
probabilities and branch length distributions) to the 
subsplit DAG. This variational approach results in an 
excellent approximation to the phylogenetic posterior 
distribution, and converges in relatively few iterations. 
However, this variational approach struggles to be 
time-competitive with classical random-walk MCMC 
because of the stochasticity of the gradient estimator as 
well as the cost of evaluating the gradient of the phylo-
genetic likelihood function.

In this work, we begin addressing these difficulties 
via a new algorithm that performs dynamic program-
ming directly on the subsplit DAG via a generalization 
of the Felsenstein algorithm. This generalized pruning 
(GP) algorithm marginalizes a likelihood function over 
ancestral states and topologies at the same time (Fig. 1). 
By forming a new type of partial likelihood vector that 
integrates out all of the topologies in the support that 



Page 3 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10  

contain a given DAG edge, we are able to perform con-
stant-time updates to the branch length associated with 
that structure.

This generalized pruning algorithm based on integrated 
partial likelihood vectors relies on several modeling 
approximations. First, the likelihood we use is a compos-
ite-like model likelihood marginalized over topologies τ:

where Yk is the k-th column of the sequence alignment 
Y and D is a structure that contains many topologies 
described below. In contrast, exact likelihood computa-
tion marginalizes over the topologies, with each term 
being a product across sites. Second, we parameterize the 
continuous aspects of phylogenetic trees in a very simple 
way: one fixed branch length per DAG edge. This is unu-
sual for Bayesian phylogenetics, in which one typically 
considers a distribution of branch lengths, however this 
style of modeling approximation achieves surprisingly 
good performance [10–12]. Furthermore, this is a neces-
sary assumption for the efficient implementation of our 
GP algorithm, as anything else would require an integra-
tion over branch lengths. We use θ to denote the vector 
of these parameters.

This paper is focused on providing a complete descrip-
tion of the generalized pruning algorithm, as well as 
describing fast parameter estimation procedures for the 
composite-like model likelihood shown in Eq.  (1). We 
perform experiments to demonstrate the efficacy of the 

(1)
K
∏

k=1

∑

τ∈D

pθ (Yk | τ ) p(τ )

procedures introduced in this paper, specifically compar-
ing branch length estimation to a more established proce-
dure [9], benchmarked in terms of computational effort. 
We emphasize that generalized pruning does not lead to 
a variational algorithm as such, however, we believe that 
it will form a useful companion for variational inference 
by providing initial parameter estimates.

We assume for this paper that the subsplit DAG is 
provided to the algorithm. Constructing this DAG is an 
interesting challenge in itself and the subject of ongoing 
research; we hope to use generalized pruning to infer the 
structure of the subsplit DAG using a procedure analo-
gous to maximum-likelihood phylogenetic inference. 
However, one existing option is to build the subsplit DAG 
out of trees obtained by bootstrapping as practiced in 
maximum likelihood phylogenetics [9], or to use trees 
from an initial MCMC run [13].

Background and notation
We begin by introducing common phylogenetics nota-
tion (mostly following [14]) and the notion of subsplits as 
buildings blocks for modeling tree structures.

Setup for likelihood‑based phylogenetics
We use the word taxon (plural taxa) to describe an 
entity associated with a molecular sequence. In clas-
sical evolutionary phylogenetics, taxa are commonly 
species, although they could be other entities such as 
samples of viruses. We assume that a taxon set X is 
given, and that we have a lexicographic order on it. 
Also assume that we are given a sequence alignment 

Fig. 1 A preview of the core components of the algorithm to give intuition; concepts will be introduced in the text. a The subsplit DAG, 
which encodes a collection of phylogenetic tree topologies on leaves x1, . . . , xN . One such topology is partially shown in black, with alternate 
topologies indicated with gray lines. The nodes of this DAG are uniquely associated with “subsplits” that give the bipartition of taxa below them 
(subsplits corresponding to alternate topologies are marked with ·alt ). For example, the subsplit t is ({xi+1, . . . , xj}, {xj+1, . . . , xl}) . Edges go 
between compatible subsplits, such as between t and s, and are directed towards the leaves. b Overview of method: given an edge of the DAG 
we integrate ( 

∫

 ) out all of the topologies in the DAG that contain the DAG edge t → s . Branch lengths θ are associated to DAG edges. We perform 
efficient inference using “rootward” r and “leafward” p partial likelihood vectors marginalized over unknown structure of trees encoded in the DAG



Page 4 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10 

on our taxon set X: an arrangement of the molecu-
lar sequences for X into a rectangular array such that 
sequence differences between sites in a single column 
are assumed to be due to point mutation [4, 15]. Here 
we focus on rooted bifurcating trees, and as men-
tioned above use the terminology topology to refer to 
a rooted bifurcating tree structure with the tips of the 
tree being labeled in a 1-to-1 fashion with the set X.

We use N = |X | to denote the cardinality of the taxon 
set under consideration. The observed sequences 
are denoted by Y . We let � denote the set of states 
in the sequences. If the sequences are DNA, � is the 
set of nucleotide bases {A,C,G,T} ; our implementa-
tion is specialized to this case. The length of the DNA 
sequences is denoted by M. We denote the m-th site 
over all taxa (i.e. the m-th column of the alignment) by 
Ym ∈ �N  . Topologies are denoted by τ . The collection 
of all branch length parameters is denoted by θ with 
individual branch length by θ . The likelihood of the 
observed sequences is denoted by P(Y | τ , θ) , which 
under the standard site independence assumption can 
be expressed as

The phylogenetic model underlying the likelihood com-
putation is typically a continuous time Markov chain 
(CTMC) evolving along the branches. The rate matrix 
of a CTMC is denoted by Q , which yields the transition 
matrix via matrix exponentiation, denoted P:

The transition matrix plays a key role in the likelihood cal-
culation. We follow the English-typical convention that 
probability transition matrices are right-stochastic, so 
that the (i, j)-th entry of P is P(j | i) for i, j ∈ � . We denote 
transposition of vectors and matrices by ⊤ (in contrast to 
[14], which uses ′ ). For brevity of notation, we may omit θ 
when referencing a specific entry of the transition matrix.

For simplicity of exposition and implementation, we 
assume the Jukes-Cantor model for DNA sequences, 
under which there are no CTMC model parameters 
other than branch lengths. Additional CTMC model 
parameters could be added and fit in a maximum-like-
lihood sense without much difficulty, but given that 
such parameter fitting is now standard, we focus on 
our novel tree-marginalization procedure. However, 
in the mathematical exposition we do not assume that 

(2)P(Y | τ , θ) =

M
∏

m=1

P(Ym | τ , θ).

P(θ) = exp(θQ).

the probability transition matrices are symmetric as 
they are in the Jukes-Cantor model.

Likelihood calculation over a tree using a two‑pass 
algorithm
We briefly describe the two-pass version of the Felsenstein 
pruning algorithm [2, 14, 16–18] over a single tree using the 
notion of partial likelihood vectors (PLVs). For the rest of this 
section, we will compute the likelihood of a single site m 
without further specification, such that what we called Ym 
will now be called Y . We will return to the multiple-site case 
in the section “Composite-like marginal likelihood.”

We follow the exposition and notation in [14], except 
that we express partial likelihood vectors in terms of sub-
trees, because in our setting we will deal with many trees 
and cannot unambiguously describe the algorithm in 
terms of nodes of a given fixed tree. We also compute par-
tial likelihood vectors at a slightly different location on the 
tree. For an internal node v, Yv ∈ � will denote the state of 
v. We use the word “leafward” to refer to the direction in 
the tree towards the leaves; if the tree is displayed with the 
root on top and the leaves hanging down, leafward is down. 
Y⌊v⌋ will denote the sequences leafward of v. The direction 
towards the root of the tree will be called “rootward” and 
we let Y⌈v⌉ = Y\Y⌊v⌋.

Assume we have a topology τ on all of the sequences Y . 
Define τ↓v  to be the topology with all the nodes leafward 
of v, including v. Define τ↑v  to be the topology with all the 
nodes of the tree in the rootward direction of v, exclud-
ing v; that is, τ↑v  is the topology on all of the nodes not in 
τ
↓
v  . The i-th element of the p- and r-PLVs at node v of the 

topology τ store

where i ∈ � and pa(v) is the parent node of v (towards 
the root). Note that we describe p and r in terms of 
topologies on subsets of the taxon set, rather than sim-
ply a node v, which will become important below when 
we allow τ to vary. Equation (3) can be interpreted as the 
marginal likelihood of the observed sequences “below” v, 
conditioned on Yv = i for i ∈ � . Similarly, Eq.  (4) stores 
the likelihood of the data “above” v, however, this time we 
have the joint likelihood of the observed sequences along 
with the state at the parent of v.

Note that for any v, the likelihood is given by the product 
of the p- and r-vectors:

(3)p(τ↓v )i := P(Y⌊v⌋ | τ
↓
v , Yv = i),

(4)r(τ↑v )i := P(Y⌈v⌉,Ypa(v) = i | τ↑v ),

r(τ↑v )
⊤
P(θpa(v),v)p(τ

↓
v ) = P(Y | θ , τ ) =

∑

i,j∈�

P(Y⌈v⌉,Ypa(v) = i | τ↑v )P(Ypa(v) = i,Yv = j | θ)P(Y⌊v⌋ | τ
↓
v ,Yv = j).



Page 5 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10  

Such a decomposition can be performed with respect to 
any internal node.

We now review the classical two-pass dynamic pro-
gram showing how to calculate these partial likelihood 
vectors, mostly following [14] but with a slightly dif-
ferent formulation, which is more appropriate for our 
setting. Specifically, our r vectors are our “upper par-
tial” vectors, taking the role of their q vectors, but cal-
culated on the root-side rather than the leaf-side of a 
given edge.

Let x and y be the child nodes of v and θv,x, θv,y denote 
the branch length between v,  x and v,  y respectively 
(Fig.  2). Dropping conditioning on tree structures and 
branch lengths for simplicity yields

In matrix notation,

where ◦ denotes element-wise multiplication.
Now let u be the parent of v (Fig. 2). We have

This recursion can be expressed in matrix form as

The subsplit directed acyclic graph
In addition to the phylogenetic likelihood computation, 
the other main ingredient for our algorithm is a struc-
ture on which one can marginalize over tree structures. 
We call this structure the subsplit directed acyclic graph 
(subsplit DAG), which encodes a collection of tree 
topologies, T  (Fig.  3). This structure can be equipped 
with edge probabilities to give a probability distribu-
tion on tree topologies, and with branch lengths or 

P(Y⌊v⌋ | Yv) =
∑

Yx∈�

∑

Yy∈�

P(Y⌊v⌋,Yx,Yy | Yv)

=

[

∑

Yx∈�

P(Yx | Yv)P(Y⌊x⌋ | Yx)

]

[

∑

Yy∈�

P(Yy | Yv)P(Y⌊y⌋ | Yy)

]

.

(5)p(τ↓v ) =
(

P(θv,x)p(τ
↓
x )

)

◦
(

P(θv,y)p(τ
↓
y )

)

P(Y⌈y⌉,Yv) = P(Y⌊x⌋|Yv)P(Y⌈v⌉,Yv)

=

[

∑

Yx∈�

P(Yx|Yv)P(Y⌊x⌋|Yx)

]

[

∑

Yu∈�

P(Yv|Yu)P(Y⌈v⌉,Yu)

]

.

(6)r(τ↑y ) =
(

P(θv,x)p(τ
↓
x )

)

◦
(

P(θu,v)
⊤r(τ↑v )

)

.

distributions thereof to give a probability distribu-
tion on phylogenetic trees. We use the subsplit DAG 
to develop a formulation of variational distributions 
on tree structures as previously expressed in different 
language [8, 9]. This new language is necessary for the 
more complex traversals required here.

To define the subsplit DAG, we need a few con-
cepts as follows. A clade W is subset of the taxa X, 
which in the context of a topology τ identifies a sub-
set of the taxa deriving from a common ancestor (i.e., 

Fig. 2 Notation for the two‑pass likelihood calculation on a tree. 
Nodes are denoted with u, v, w, x, and y, and partial likelihood vectors 
are denoted with p and r . The directions of double arrows indicate 
the flow of information to calculate the likelihood of a tree at a given 
edge

Fig. 3 The subsplit DAG containing three trees on four taxa. 
Written in Newick [19] parenthetical notation these are ((0, 1), (2, 3)), 
(0, ((1, 2), 3)), and (0, (1, (2, 3))). We obtain a tree by choosing a single 
edge out of every “clade” (e.g. {1, 2, 3} ) from each subplit (e.g. 
{{0}, {1, 2, 3}} ), and one of the dashed edges from the DAG root ρ



Page 6 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10 

monophyletic group). The order on taxa induces a 
total order on the clades. A subsplit s = {V ,Z} parti-
tioning a clade W is an unordered pair of disjoint sub-
clades of W such that V ∪ Z = W  . V and Z are called 
the clades of the subsplit s. We define subsplits in 
terms of unordered pairs for when we need to express 
a subsplit in terms of set operations, but always draw 
subsplits in lexicographic order in figures and call the 
lexicographically smaller clade the “left” clade and the 
lexicographically larger clade the “right” clade. We 
require that the two clades forming a subsplit are each 
non-empty except in two special cases: “leaf subsplits” 
{{x}, ∅} for some x ∈ X  , and the “universal ancestor 
(UA) subsplit” ρ := {X , ∅} . Given a subsplit s = {V ,Z} , 
define U(s) to be V ∪ Z , the set of taxa in the subsplit.

With the above definitions, we can define the sub-
split DAG for a collection of topologies T  as a graph 
with nodes being the set of subsplits for those topolo-
gies, and where there is an edge from t to s if U(s) cor-
responds to one of the two clades of t. (One can define 
a subsplit DAG in a more abstract way without refer-
ring to a set of topologies T  , but this definition is suf-
ficient here.) For the purposes of this paper we assume 
that T  is supplied. In the long run, and as described in 
the Discussion, our goal with generalized pruning is to 
enable algorithms that will allow us to infer the struc-
ture of the subsplit DAG.

We will also need a notion of a subsplit where we are 
focusing attention on one of the clades of the subsplit, 
which we will call a subsplit-clade. This is useful, for 
example, in describing a collection of edges descend-
ing from a single “side” of a subsplit (e.g. the two edges 
coming from clade {1, 2, 3} in the subsplit {{0}, {1, 2, 3}} 
in Fig. 3). Given a subsplit s and a clade Z of s, we let 
(s,Z) denote the subsplit-clade focusing attention on 
the clade Z. We use ś to denote the left (i.e. lexico-
graphically smaller) subsplit-clade of subsplit s and s̀ 
to denote the right (i.e. lexicographically larger) sub-
split-clade of subsplit s. We say a topology τ contains 
a subsplit s = {V ,Z} if V, Z, and V ∪ Z are all clades of 
the topology τ . We denote the DAG on the subsplits by 
D and define ρ to be the DAG root; we will also use ρ 
to signify the subsplit at the DAG root: {X , ∅} . We say 
an edge t → s ∈ D iff there is an edge (t,Z) → s in the 
DAG for one of the clades Z of t. Similarly, we say an 
edge t → s ∈ τ iff s, t are contained in τ and s appears 
as one of the clades Z of t. We can also say τ ∈ D iff 
t → s ∈ D for all t → s ∈ τ.

Parameterizing the subsplit DAG
We can equip the subsplit DAG with parameters that 
turn it into a true probability distribution on phyloge-
netic trees [8, 9]. First, we have probability distributions 

for resolving a subsplit-clade (t,Z) , which we will write 
as P(s | (t,Z)) , such that

We can simplify notation by defining P(s | t) for an edge 
t → s of the DAG to be whichever version makes sense: 
for example if t́ → s , then P(s | t) := P(s | t́) . Note that 
this is an abuse of notation because P(s | t) is not a nor-
malized probability distribution across all possible s 
because they are allowed to resolve either clade of a given 
subsplit.

These conditional probabilities combine to give a 
normalized probability distribution on topologies [8]:

Given probabilities on P(s | t) , we can recursively com-
pute the probability of a sub-topology descending from a 
subsplit. For example, imagine that we have two topolo-
gies (τ1, τ2) on disjoint taxon subsets of X, and that t is 
the subsplit consisting of the taxa of τ1 for one clade and 
the taxa of τ2 for the other. Assume that the taxon set of 
τ1 is lexicographically smaller than that of τ2 . There is a 
1-to-1 correspondence between all such (τ1, τ2) ordered 
pairs on those taxon sets and topologies τt on the union 
of the taxon sets: if we are given (τ1, τ2) we simply join 
them together to make τt . We express the conditional 
probability of such a topology recursively as

where each si is the subsplit on the taxa appearing in sub-
trees τi for i = 1, 2 . We utilize such recursive definitions 
of the tree probability in the development of generalized 
pruning algorithm.

However, in contrast to previous work [8, 9] in which 
these probabilities express an approximation to the 
posterior distribution, in this case they express a prior 
on tree topologies, which we will combine with a likeli-
hood to get a posterior kernel. For this paper we assume 
that the topological prior can be expressed in terms of 
such P(s | t) . This exact criterion is not strictly neces-
sary, but we do need a way of computing it in terms of 
rootward and leafward components. Further details on 
prior computation are given in the section “Prior on 
subsplit parameters.”

As described above, we will attach a single branch 
length parameter to each edge of the DAG. The branch 
length for edges originating in the root node ρ have no 
meaning and can be ignored.

P(s | (t,Z)) ≥ 0,
∑

s:(t,Z)→s

P(s | (t,Z)) = 1.

(7)P(τ ) =
∏

t→s∈τ

P(s | t).

(8)P(τt | t) = P(s1 | t́)P(τ1 | s1)P(s2 | t̀)P(τ2 | s2),



Page 7 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10  

The immediate goal of our work is to optimize these 
branch lengths via marginalization of tree topologies; 
the exact meaning of this will be made explicit in the 
next section.

Methods
In this section we describe the two-pass generalized 
pruning (GP) algorithm. We assume a DAG D is given, 
and all statements about DAG edges are with respect 
to that given DAG. The two-pass GP algorithm can 
efficiently compute the marginal likelihood for a single 
site, where marginalization is over the topologies and 
the states of the internal nodes of the trees in D . Uti-
lizing the two-pass algorithm, we formulate the com-
posite marginal likelihood as a means to estimate the 
branch length parameters.

We index transition probability matrices by DAG 
edges t → s . To avoid deep subscripting, we will use 
a function-type representation P(θ(t → s)) , where 
θ is the vector of branch lengths indexed by branch 
t → s . These transition probabilities are completely 
defined by the branch length vector θ , because we 
assume no parameters of the substitution model other 
than branch lengths. With this assignment of branch 
lengths to edges, each rooted topology has a unique 
assignment of branch lengths and thus a well-defined 
likelihood.

DAG nodes can be unambigiously labeled with their 
subsplits, and so we will treat DAG nodes and sub-
splits interchangeably. We associate p- and r-PLVs to 
each node of the subsplit DAG. The p-PLVs are com-
puted in the rootward traversal whereas the r-PLVs 
are computed in the leafward traversal. We describe 
details of the two passes in the subsequent sections.

We will extend the notation in the two-pass algo-
rithm in Eqs. (3) and (4). Previously, we defined p and 
r as partial likelihoods of the observed sequences as 
functions of (partial) topologies for a given node v: 
p(τ

↓
v ) and r(τ↑v ) . Below we will extend this notation by 

defining p(t) as a partial likelihood vector for a sub-
split t, which is obtained via marginalization of possi-
ble topologies involving the subsplit t using the partial 
likelihoods p(τ↓t ) . Similarly, we will define a r((s,Z)) 
(where (s,Z) will be either ś or s̀ ) using a similar mar-
ginalization involving r(τ↑s,Z) . In order to compute 
these terms we introduce intermediate sums p̆(ś) , p̆(s̀) , 
and r̆(s).

Rootward traversal
In the rootward traversal we assume that we visit a 
node after visiting all of its descendants, such as via a 
postorder traversal.

Given a subsplit t = {A,B} , let the leafward topologies 
of t, denoted Tleaf(t) , be the set of rooted topologies on 
the taxon set A ∪ B with t as the bipartition at the root 
of the topology. As above, we will use the notation τ↓ 
to emphasize that these are not topologies on the entire 
taxon set X, but only specify structure for a topology 
“below” a subsplit. We define the partial likelihood vec-
tor p(t) of a non-leaf subsplit t as

where p(τ↓t ) is the partial likelihood vector as defined 
by (3) at the root of a topology τ↓t  on U(t) and P(τ↓t | t) is 
the prior probability of τ↓t  given t as described above. If t 
is a leaf subsplit ({x}, ∅) , then p(t) is the tip partial likeli-
hood vector for the taxon x, i.e., the vector with one entry 
corresponding to the observed nucleotide base set to 1 
and the remaining entries set to 0.

We can calculate p(t) via a dynamic program general-
izing the single-tree case:

Lemma 1 Given a subsplit t,

Here and below we use s1 ← t́ as an abbreviation 
for {s1 : t́ → s1} , i.e. the set of subsplits s1 of D that are 
direct descendants of the left subsplit-clade of t.

Proof We start with the right-hand side of Eq. (10) and 
show equality with the left-hand side. For each j = 1, 2 , 
substitute in

By pulling out sums and rearranging the order of terms, 
we have the sum of the following quantity over subsplits 
s1 ← t́ and s2 ← t̀:

(9)
p(t) :=

∑

τ
↓
t ∈Tleaf(t)

p(τ
↓
t )P(τ

↓
t | t),

(10)

p(t) =





�

s1←t́

P(θ(t́ → s1))p(s1)P(s1 | t́)





◦





�

s2←t̀

P(θ(t̀ → s2))p(s2)P(s2 | t̀)



.

p(sj) =
∑

τ
↓
j ∈Tleaf(sj)

p(τ
↓
j )P(τ

↓
j | sj).



Page 8 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10 

We define τ↓t  to be the topology built by joining τ↓1  and τ↓2  
using t, so that

by Eq. (5), and

by Eq. (8). Under this construction for τ↓t  , the sums over 
subsplits s1 ← t́ and s2 ← t̀ combined with the sums 
over the leafward topologies of s1 and s2 are equivalent to 
a single sum over the leafward topologies of t. This con-
cludes the proof by the definition of p(t) .  �

Rootward topologies
We have equivalent notions of partial likelihood for 
leafward traversals. Although conceptually quite similar, 
we will require additional definitions and notation.

First, we need a notion of a rooted topology where the 
structure of the tree is unspecified for a subset of the taxa 
that appear together in the tree; this will generalize the 
notion of τ↑v  defined above. We formalize this by express-
ing a partially-specified topology as the set of subsplits it 
contains. For Z ⊂ X , define a Z-unspecified topology as 
a set of subsplits of the form C \ D , where C is the sub-
split representation of a topology τ on X with Z as a clade, 
and D is the subsplit representation of the sub-topology 
of τ on Z. Furthermore, there is a natural definition of 
the probability of such a partially-specified topology as 
the product of the corresponding set of probabilities in 
Eq. (7).

Given a subsplit-clade (s,Z) , let the rootward topologies 
of (s,Z) , denoted by Troot((s,Z)) , be the set of Z-unspec-
ified topologies on X containing s. We emphasize that 
such a topology does specify topological structure for the 
non-Z side of the subsplit (often called the “sister clade” 
of Z). For example in Fig.  4, Troot(s̀) would be all of the 
C-unspecified topologies in the subsplit DAG containing 
s (such trees do specify structure for the sister clade of C, 
which in this case is the union of B1 and B2).

We can combine a leafward topology and a rootward 
topology and evaluate its probability dynamically using 
subsplits analogous to  (8). Say we have subsplits t, s, 
and u such that that ś → u and t̀ → s (Fig.  4). Assume 
we are given τ↑

t̀
∈ Troot(t̀) and τ↓u ∈ Tleaf(u) , and form 

∑

τ
↓
1 ∈ Tleaf(s1)

τ
↓
2 ∈ Tleaf(s2)

(

P(θ(t́ → s1))p(τ
↓
1 )

)

◦
(

P(θ(t̀ → s2))p(τ
↓
2 )

)

P(s1 | t́)P(τ
↓
1 |s1)P(s2 | t̀)P(τ

↓
2 |s2).

p(τ
↓
t ) =

(

P(θ(t́ → s1))p(τ
↓
1 )

)

◦
(

P(θ(t̀ → s2))p(τ
↓
2 )

)

P(τ
↓
t | t) = P(s1|t́)P(τ

↓
1 |s1)P(s2|t̀)P(τ

↓
2 |s2)

τ
↑
s̀
∈ Troot(s̀) by joining together τ↑

t̀
 and τ↓u  using s. By def-

inition of the structures, we have

The equivalent equation holds (using a suitable defi-
nition of u) when replacing t̀ with t́ , or s̀ with ś . This is 
analogous to (8), but there are important differences. For 
example,  (8) gives a probability P(τ |t) conditioned on a 
subsplit t, but no such conditioning is present for (11).

Leafward traversal
We now use our PLVs p marginalizing over leafward trees 
to build the PLVs r marginalizing over rootward trees. 
This happens in a reverse post-order traversal, which we 
call the “leafward traversal”.

First we need a version of the r vector that is defined for 
an element of τ↑s,Z ∈ Troot((s,Z)):

where YX\Z is the data for all taxa outside of Z and Ys is 
the state of the node corresponding to subsplit s in the 
tree. This is equivalent to the definition  (4) of r for any 
tree containing τ↑s,Z such that v is the root node of the 
subtree containing all the taxa of Z.

We formalize our topology-marginal version of r for 
subsplit-clades (s,Z):

(11)P(τ
↑
s̀
) = P(τ

↑

t̀
)P(s | t̀)P(u | ś)P(τ↓u | u).

(12)r(τ
↑
s,Z)i

:= P(YX\Z ,Ys = i | τ
↑
s,Z)

Fig. 4 The setting for dynamic computation during the leafward 
pass. Assume A < B1 < B2 < C in the lexicographic ordering. Here 
u = {B1, B2} , s = {B1 ∪ B2, C} , and t = {A, B1 ∪ B2 ∪ C} . We will use τ↑

t̀
 

to represent the partially‑specified topology with all subsplits in clade 
A, t, and those towards the root from t. We will use τ↓u  to represent 
the topology leafward of u (including u itself )



Page 9 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10  

The summand is the joint probability of observing τ↑s,Z 
in the DAG and YX\Z (all of the sequences other than 
those in Z). There are important differences between 
this and (9): we use an unconditional P(τ↑s,Z) of a partially 
specified topology τ↑s,Z where before we used a condi-
tional P(τ↓t |t) on a fully specified topology for the subset 
of taxa in t.

Rewriting (6) in DAG notation, we have

With this we can derive the leafward-traversal version 
of  (10). Recall that r(τ↑

s̀
) is of the form r((s,Z)) , so the 

goal is to show that  (13) decomposes into the element-
wise product ( ◦ ) of two terms.

Lemma 2    

The same holds true exchanging s̀ and ś.

We emphasize that this is a strict generalization of 
Felsenstein’s pruning algorithm, because in the single-
tree case the P are indicator functions so the sum col-
lapses to a single term.

(13)
r((s,Z)) :=

∑

τ
↑
s,Z∈Troot((s,Z))

r(τ
↑
s,Z)P(τ

↑
s,Z).

(14)
r(τ

↑
s̀
) =

(

P(θ(ś → u))p(τ↓u )
)

◦
(

P⊤(θ(t̀ → s))r(τ
↑

t̀
)

)

.

(15)

r(s̀) =

�

�

u:ś→u

P(θ(ś → u))p(u)P(u | ś)

�

◦





�

t̀:t̀→s

P⊤(θ(t̀ → s))r(t̀)P(s | t̀)

+
�

t́:t́→s

P⊤(θ(t́ → s))r(t́)P(s | t́)



.

Proof We start with the right-hand side and show 
equality with the left-hand side. Because ◦ is linear, we 
can split (15) into the sum of two terms. We focus on the 
product of sums indexed by u and t̀ , and substitute in

and

Upon pulling sums out and rearranging the order of 
terms, we have

Similar to the proof of Lemma  1, there is a 1-to-1 cor-
respondence between such (τ↑

t̀
, τ

↓
u ) pairs and topolo-

gies τ↑
s̀
∈ Troot(s̀) , when restricted to those topologies 

τ
↑
s̀

 where s̀ descends as the right subsplit of its parent: if 
we are given (τ↑

t̀
, τ

↓
u ) we simply join them together using 

s to make a τ↑
s̀
∈ Troot(s̀) . This concludes the proof for 

the first term by (11), (14), and the definition of r(s̀) . The 
second term, using t́ , follows in exactly the same way, as 
does the statement when exchanging ś and s̀ . Note that 
we need both of these terms because of where the sub-
split s appears relative to the tree above it: it could appear 
as either a left or a right subsplit of the parent split.  �

Implementing efficient computation
We now introduce additional notation to represent and 
store intermediate computations.

p(u) =
∑

τ
↓
u ∈Tleaf(u)

p(τ↓u )P(τ
↓
u |u)

r(t̀) =
∑

τ
↑

t̀
∈Troot(t̀)

r(τ
↑

t̀
)P(τ

↑

t̀
).

∑

u : ś → u

t̀ : t̀ → s

∑

τ
↓
u ∈ Tleaf(u)

τ
↑

t̀
∈ Troot(t̀)

(

P(θ(ś → u))p(τ↓u )
)

◦
(

P⊤(θ(t̀ → s))r(τ
↑

t̀
)

)

P(τ
↑

t̀
)P(s | t̀)P(u | ś)P(τ↓u |u).

(16)p̆(s̀) :=
∑

u:s̀→u

P(θ(s̀ → u))p(u)P(u | s̀),

(17)p̆(ś) :=
∑

u:ś→u

P(θ(ś → u))p(u)P(u | ś),



Page 10 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10 

With these definitions, (10) and  (15) become

We use the dependency graph to calculate the ensem-
ble of partial likelihood vectors (Fig. 5) associated with 
each subsplit s. We perform the rootward traversal 
to compute p̆(ś) and p̆(s̀) using p(u) for u : ś → u and 
u : s̀ → u , giving p(s) by (16), (17), and (19). Given these 
vectors our second pass, the leafward traversal, com-
putes r̆(s) via (18), (20), and (21).

The per‑edge marginal likelihood
For a given edge t → s , define the per edge marginal 
likelihood to be

Here t → s is interpreted as t̀ → s or t́ → s , whichever 
is correct (as above). We are introducing a new notion, 
P(τ | t → s) , which is a normalized probability restricted 
to the trees that contain an edge t → s of the DAG:

(18)

r̆(s) :=
∑

t̀:t̀→s

P⊤(θ(t̀ → s))r(t̀)P(s | t̀)

+
∑

t́:t́→s

P⊤(θ(t́ → s))r(t́)P(s | t́).

(19)p(s) = p̆(ś) ◦ p̆(s̀),

(20)r(s̀) = p̆(ś) ◦ r̆(s),

(21)r(ś) = p̆(s̀) ◦ r̆(s).

(22)ℓ(t → s; θ) :=
∑

τ∋(t→s)

P(Y | τ , θ)P(τ | t → s).

The numerator defines the joint probability of observing 
a tree and an edge,

The denominator is the unconditional probability of sam-
pling a tree containing an edge t → s:

note that we sum over τ so this quantity is independent of 
the tree topologies. Now, (23) can be expressed as

where P(t) is the unconditional probability of sampling a 
tree containing a subsplit t.

We now show how to calculate ℓ(t → s; θ) efficiently 
using the components already described. A key part is 
that we can expand P(Y|τ , θ) over any edge t → s ∈ τ as 
per the usual Felsenstein pruning algorithm by

marginalization leads to the following lemma.

Lemma 3    

The same holds true exchanging t̀ for t́.

Proof First recall that for any τ containing t̀ → s,

where τ↑
t̀

 is the U(s)-unspecified topology rootward of t, 
and τ↓s  is the topology on U(s) leafward of s. Thus

where P(τ , t̀ → s) is the joint probability of observing a 
tree τ and having it contain the edge t̀ → s . Using this 
identity and Equation (25) to expand (22), we have

P(τ | t → s) :=
P(τ )1[t → s ∈ τ ]

∑

τ ′∈D P(τ ′)1[t → s ∈ τ ′]
.

P(τ , t → s) := P(τ )1[t → s ∈ τ ].

(23)P(t → s) :=
∑

τ∈D

P(τ )1[t → s ∈ τ ],

(24)P(t → s) = P(t) · P(s|t),

(25)P(Y|τ , θ) = r(τ
↑
t )

⊤P(θ(t → s))p(τ↓s );

(26)ℓ(t̀ → s; θ) = r(t̀)⊤P(θ(t̀ → s))p(s) /P(t̀).

P(τ ) = P(τ
↑

t̀
)P(s | t̀)P(τ↓s |s)

P(τ | t̀ → s) =
P(τ , t̀ → s)

P(t̀)P(s|t̀)
=

P(τ
↑

t̀
)P(s|t̀)P(τ

↓
s |s)

P(t̀)P(s|t̀)

=
P(τ

↑

t̀
)P(τ

↓
s |s)

P(t̀)
,

Fig. 5 Dependency graph of partial likelihood vectors associated 
with a subsplit s, where x → y means that y depends on x 



Page 11 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10  

 �

�

τ∋(t̀→s)

r(τ
↑

t̀
)⊤P(θ(t̀ → s))p(τ↓s )P(τ | t̀ → s)

=
�

τ
↑

t̀
∈ Troot(t̀)

τ
↓
s ∈ Tleaf(s)

r(τ
↑

t̀
)⊤P(θ(t̀ → s))p(τ↓s )P(τ

↑

t̀
)P(τ↓s | s) /P(t̀)

=







�

τ
↑

t̀
∈Troot(t̀)

r(τ
↑

t̀
)P(τ

↑

t̀
)







⊤

P(θ(t̀ → s))







�

τ
↓
s ∈Tleaf(s)

p(τ↓s )P(τ
↓
s |s)







�

P(t̀)

= r(t̀)⊤P(θ(t̀ → s))p(s) /P(t̀).

Composite‑like marginal likelihood
So far we have described computations for a single site 
and dropped the site from the notation. At this point 
we shift to notation that is explicit about the site under 
consideration.

As described at the beginning, assume we have M sites, 
which are indexed by m ∈ {1, . . . ,M} . Our work so far 
enables efficient computation of

Namely, we can evaluate the exact marginal likelihood for 
each site by summing over the rootsplits t for fixed values 
of θ:

Here π is the distribution at the root and pm is the p-PLV 
for the m-th site, which was simply p in the previous sec-
tion. Similarly, we use rm for the r-PLV at the m-th site.

One approach is to combine the per-site marginal likeli-
hood to form a composite-like objective,

ℓm(θ) := P(Ym | θ) =
∑

τ∈D

P(Ym | τ , θ)P(τ ).

ℓm(θ) =
∑

τ∈D

P(Ym | τ , θ)P(τ )

=
∑

rootsplits t

∑

τ
↓
t ∈Tleaf(t)

π
⊤pm(τ

↓
t )P(t)P(τ

↓
t | t)

=
∑

rootsplits t

P(t)π⊤pm(t).

In fact, we define a related notion of per-edge composite 
likelihood, and use it as an objective function when opti-
mizing the branch length parameters associated with 
each edge t → s . This per-edge composite likelihood is 
defined as the product of the per-edge marginal likeli-
hoods over the sites,

We can optimize the per edge composite marginal like-
lihood over branch lengths via a gradient-free method 
such as Brent optimization [20] since evaluating  (28) is 
fast given the PLVs using Lemma 3 (for numerical stabil-
ity, we instead optimize log ℓ(t → s; θ) ). Next we note 
how gradient-based optimization is also possible.

Gradient‑based optimization
Let ∂t→s be the partial derivative of the component of the 
branch length vector θ corresponding to t → s . Thus

By Lemma 3, we have,

(27)ℓ(θ) :=

M
∏

m=1

ℓm(θ).

(28)ℓ(t → s; θ) :=
∏

m

ℓm(t → s; θ).

∂t→s log ℓ(t → s; θ) =

M
∑

m=1

∂t→s ℓ
m(t → s; θ)

ℓm(t → s; θ)
.

∂t→sℓ
m(t → s; θ) =

1

P(t)
(rm(t))⊤(∂t→sP(θ(t → s)))pm(s).



Page 12 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10 

Returning to the full likelihood optimization, we have

Optimization in analogy with the single tree case
In the case of a single tree, it is typical for maximum-
likelihood phylogenetic algorithms to proceed from 
edge to edge of the tree, optimizing the branch length 
for each edge. This is made efficient by the two-pass 
algorithm on the tree, where partial likelihood vec-
tors on the tree can be calculated and then used for a 
constant-time function evaluation in the inner optimi-
zation loop. By optimizing the likelihood as parameter-
ized by a single branch, they optimize the likelihood of 
data given the entire tree.

The setting for the DAG is related but somewhat dif-
ferent. We also have partial likelihood vectors, which 
can be calculated via a dynamic program, enabling 
efficient local inference. However, we do not have the 
guarantee that sequentially maximizing the per-edge 
marginal likelihood (22) will maximize the full compos-
ite likelihood  (27). This is because improving the per-
edge marginal likelihood for a given edge may decrease 
the per-edge marginal likelihood for another. In fact, 
this does occur in practice. Nevertheless, we have 
found that this algorithm works well for our purposes.

Optimization schedule
We begin by describing a slightly simplified version of the 
algorithm, and will then describe the full version. Given 
an initial branch length θ , we perform a rootward tra-
versal to populate all of the p-PLVs followed by a leafward 
traversal to populate r-PLVs. We then perform a depth-
first traversal as follows to optimize the branch lengths 
while keeping track of visited nodes with a set S so as to 
not re-visit nodes more than once. When we visit a given 
node t, we begin by updating r̆(t) as the marginal of the r
-PLVs of the parent subsplits. This is an important step 
as each subsplit node s updates r̆(s) and passes down the 
results to its children, so that optimization for a edge has 
up-to-date information from other parts of the graph. 
When a non-trivial subsplit is visited, we descend into the 

∂t→s log ℓ(θ) =

M
∑

m=1

1

ℓm(θ)

[

∂t→s ℓ
m(θ)

]

=
P(t → s)

P(t)

M
∑

m=1

1

ℓm(θ)

[

(rm(t))⊤(∂t→sP(θ(t → s)))pm(s)
]

.

left subsplit-clade followed by the right subsplit-clade (or 
vice versa) to keep it consistent. Specifically, we update 
r(t́) using r̆(t) and p̆(t̀) computed from the previous opti-
mization iteration. Then for each t́ → s ∈ D , we optimize 
all branches below s and update p(s) . Upon returning 
from the recursion on child s, we optimize θ(t́ → s) by 
maximizing r(t́)⊤P(θ)p(s) . We accumulate p̆(t́) using 
the optimized θ(t́ → s) for each child s. Once the recur-
sion on left subsplit-clade completes, we repeat the same 
procedure for t̀ ; finally, we update p(t) = p̆(t́) ◦ p̆(t̀) . 
The optimization is run until convergence is reached. 
Pseudocode for this simplified procedure is outlined in 
Algorithm 1.

However, this simple version has a shortcoming in 
that, because of the structure of the DAG, modification 
of one branch length can invalidate some of the PLVs 
used later in the procedure. To handle this, we perform 
a modified depth-first traversal on a version of the DAG 
in which each node can be marked with a “dirty” sta-
tus. If a node s is dirty, then we assume that p(s) , p̆(ś) , 
and p̆(s̀) are invalid. If we modify a branch length for 
a given edge of the subsplit DAG, then we must mark 
all of the ancestors of the nodes of that edge as dirty. If 
we require the PLV for a dirty node, then we perform 
a traversal down, performing updates without optimiz-
ing branch lengths, until the node is clean. Note that 
because we do not re-optimize branch lengths when 
“cleaning” a node, this cannot lead to optimization 
loops.

We draw parallels between our algorithm to the loopy 
belief propagation (LBP) [5]. Although the convergence is 
not guaranteed for LBP and there may be oscillations, the 
algorithm is known to produce accurate results through 
empirical studies, especially when the subgraphs have 
tree-like properties [21, 22]. In the experiments section, 
we show that the proposed parameter estimation scheme 
recovers branch lengths that are close to the truth.



Page 13 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10  

Prior on subsplit parameters
As a prior on subsplit parameters, the simplest choice 
would be to set P(s | t) ∝ 1 . However, this does not cor-
respond to any previously described prior on topologies. 
Another option is to initialize P so as to induce a uniform 
prior on topologies appearing in the DAG. To that end, 
we must first compute n(t), the number of topologies in 
the DAG descending from the subsplit t (we use the same 
notation for n applied to a subsplit-clade). Using this we 
can take a prior ppr on rootsplits and edges:

(29)Pprior(t) :=
n(t́)n(t̀)

ntotal
Pprior(s|(t,Z)) :=

n(s)

n((t,Z))

where ntotal is the total number of topologies in the DAG. 
One can see that this leads to a uniform prior on topolo-
gies by expanding an arbitrary tree into its component 
subsplits. Computation of n(t), n(t̃), ntotal can be per-
formed using a simple recursive algorithm.

Implementation and experiments
We implemented the generalized pruning algorithm in 
our Python-interface C++ library bito  (https:// github. 
com/ phylo vi/ bito). In this section, we test accuracy, 
speed, and scalability of the generalized pruning imple-
mentation on phylogenetic datasets of various sizes. Our 

https://github.com/phylovi/bito
https://github.com/phylovi/bito


Page 14 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10 

experiments can be re-run as described in the section 
Availability of data and materials below.

Accuracy
We want to know if optimization of the composite likeli-
hood using the generalized pruning algorithm could give 
a rapid and accurate estimate of part of the phylogenetic 
model. To that end, we compared branch length estimates 
between GP and those observed in posterior samples of 
a standard MCMC run on empirical data sets. The data 
sets, which we call DS1 and DS3-DS8, are standard data 
sets for evaluating MCMC methods on phylogenies (e.g., 
[1, 6, 7, 23]). We excluded DS2 from this study because it 
has an almost trivial posterior distribution [23]. The data 
sets consist of sequences from 27 to 67 species and are 
fully described in [1].

We used MrBayes 3.2 [24] to obtain posterior samples 
to serve as the ground truth for accuracy assessments. 
For each data set we ran 4 chains of 1,000,000,000 gen-
erations; sampled every 1000 generations; and used the 
first 100,000,000 generations as a burn-in to yield 900,000 
samples from the posterior. The posterior branch length 
estimates were obtained by rooting topologies in the pos-
terior and calculating the average branch length across 
topologies for each observed DAG edge. As we are inter-
ested in the accuracy of the estimation procedure devel-
oped here, rather than construction of the DAG, we 
constructed the DAG using the topologies found in the 
MrBayes posterior samples for the experiments.

We also assessed how competitive GP is against a 
state-of-the-art variational Bayesian phylogenetic infer-
ence (VBPI) method [9]. VBPI postulates variational 
approximations of the posterior using a product of two 
distributions, one for the topology and the other for the 
branch lengths. The topology component of the vari-
ational approximation is parameterized using subsplits; 

by supplying the same set of topologies as an input to 
GP and VBPI, we can ensure fairness in evaluation. 
VBPI optimizes the parameters of the two distributions 
iteratively using stochastic gradient descent, where each 
iteration involves a sampling step to draw phylogenetic 
trees (topology and branch lengths) from the variational 
distributions followed by a gradient step to optimize 
variational parameters. Upon convergence, the fitted 
variational distributions have shown to approximate the 
posterior distribution with high accuracy.

We applied VBPI on the same DS datasets to fit the 
parameters of the variational distribution and compared 
against GP for both speed and accuracy. We ran the VBPI 
implementation on each data set for 200,000 iterations, 
with 10 trees sampled per iteration for stochastic gradi-
ent descent, and output 1,000,000 trees sampled from 
the converged distribution. The 1,000,000 trees were pro-
cessed to give average branch lengths in the same manner 
as the 900,000 trees sampled from the posterior.

We compared the posterior means to the estimates 
output by loading the same sample of topologies into GP 
and VBPI to obtain branch length estimates per edge of 
the DAG. Additionally, we calculated the coverage of the 
estimates to the 95% credible intervals, measured as the 
percentage of DAG edge branch length estimates that 
fall between the 2.5 and 97.5 percentiles in the poste-
rior samples for each dataset. To ensure reliability of the 
posterior means and credible intervals, we discarded all 
edges appearing in fewer than 10 posterior samples.

Some care was required to ensure a fair comparison to 
the posterior for either method. The VBPI implementa-
tion places an exponential prior on the branch lengths, 
while our current implementation of GP implicitly 
assumes a uniform prior. We thus use MrBayes poste-
rior samples that match these prior assumptions for the 
comparison. For comparison of GP to MrBayes, we use 

Table 1 The Pearson correlation and mean absolute error between GP and VBPI estimates to the MCMC posterior means. VBPI outliers 
were defined as branch length estimates outside the 95% quantile

Dataset Correlation Mean absolute error

GP VBPI VBPI outliers omitted GP VBPI VBPI outliers omitted

DS1 0.991 0.102 0.909 0.0009 0.0032 0.0012

DS3 0.999 0.999 0.999 0.0015 0.0007 0.0007

DS4 0.999 0.166 0.970 0.0012 0.0085 0.0019

DS5 0.990 0.930 0.920 0.0044 0.0050 0.0047

DS6 0.995 − 0.017 0.858 0.0011 0.0240 0.0013

DS7 0.999 0.999 0.999 0.0010 0.0003 0.0003

DS8 0.995 0.975 0.950 0.0015 0.0013 0.0012



Page 15 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10  

Fig. 6 Scatter plot of GP estimates vs MrBayes posterior means on the branch lengths for DS1, DS3, DS4, DS5, DS6, DS7, and DS8 for sDAG edges 
that appear in at least 10 posterior samples. The MrBayes posterior was sampled with a Uniform(0, 1) prior on branch lengths



Page 16 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10 

posterior samples obtained with the MrBayes specifica-
tions as described earlier with the Uniform (0, 1) prior on 
the branch lengths. For comparison of VBPI to MrBayes, 
we use posterior samples obtained with those same set-
tings, except with the Exponential (10) prior on the 
branch lengths. We do note that by aggregating branch 
length results by DAG edge, GP may have a slight inher-
ent advantage because it optimizes branch lengths on 
a per-edge basis. In contrast, VBPI has a different and 
more complex parameterization for unrooted trees [9].

We compared the correlation and mean absolute error 
values between the estimates, shown in Table 1. We see 
that GP estimates closely align with those obtained from 
MCMC and offer improvements on both metrics com-
pared to VBPI. Table 2 shows that GP and VBPI achieve 
similar coverage of the 95% credible interval across most 
datasets, with VBPI showing notably higher coverage 
for DS6. The scatter plots of GP vs the posterior means 
for each dataset are provided in Fig.  6. There is strong 
concordance between the GP estimates and the poste-
rior means, from which we conclude that the compos-
ite likelihood optimization yields accurate estimates of 
the branch lengths. VBPI also mostly reports accurate 

estimates, although are some outliers for DS1, DS4, DS5, 
and DS6 (Additional file 1: Figure S1).

Speed and scalability
We wanted to evaluate the speed of the generalized prun-
ing algorithm. We should note that VBPI is written in 
Python and calls PyTorch, whereas GP is written in C++, 
which can explain some of the speed difference. However 
recent benchmarking [25] shows that the automatic dif-
ferentiation gradients used in VBPI are within an order of 
magnitude of carefully optimized implementations [26].

VBPI requires significantly longer runtime to converge 
compared to GP as shown in Table 3, but it is worth not-
ing that VBPI learns branch length distributions rather 
than single point estimates, and additionally learns sub-
split probabilities. We ran GP 10 times on each of the 
data set to obtain average run times estimates for the 
initialization of the DAG and estimation of the branch 
lengths. We measured DAG initialization as the time 
needed to build the subsplit DAG from the set of unique 
topologies found in the very large MrBayes posterior 
sample. This does not include inference of the trees used 
to build the subsplit DAG, nor does it include processing 
and deduplicating the raw MrBayes output into the for-
mat needed to build the DAG.

In order to understand the opportunities for scal-
ing generalized pruning to large data sets, we measured 
the actual computation time for generalized pruning on 
a large subsample of sequences of the Makona variant 
Ebola virus [27]. We ran a single-threaded implementa-
tion of generalized pruning on an Intel Xeon E5-2667 
Processor running Ubuntu 18.04 with 256 GB of RAM. 
This sample contained 1570 sequences and the subsplit 
DAG was built from a set of 1,000 trees obtained from 
an Ultrafast Bootstrap approximation using IQ-Tree [28]. 
The resulting subsplit DAG contained 42,305 nodes and 
92,148 edges, which required 120 GB of virtual memory 
(allocated via a call to Linux mmap). Building the subsplit 
DAG required 25 min and 6 s, while branch length esti-
mation required 2 full DAG traversals in 21 min and 26 s. 
There are further opportunities for efficient computa-
tions on large data sets, such as parallelization of branch 
length optimization in suitably distant edges in the DAG.

Availability of data and materials
All data, scripts, and instructions for reproducing the 
results presented are available at https:// github. com/ 
matse ngrp/ gp- bench mark-1. Readers can independently 
reproduce the MrBayes posterior samples, branch length 
estimates on the DS datasets for both VBPI and GP, and 
rerun GP on the Makona dataset. We note that MrBayes 

Table 2 Coverage of GP and VBPI estimates in the 95% credible 
intervals

Dataset GP VBPI

DS1 0.946 0.926

DS3 0.983 1.000

DS4 0.958 0.915

DS5 0.907 0.921

DS6 0.709 0.870

DS7 0.849 0.997

DS8 0.893 0.950

Table 3 Timing results for executing GP and VBPI given a set of 
trees to build the subsplit DAG. GP runtimes are averages over 10 
replicates of DAG initialization and branch length estimation

Dataset DAG 
initialization (s)

GP estimation 
runtime (s)

VBPI runtime (s)

DS1 0.58 1.72 11, 336

DS3 0.19 0.38 15, 273

DS4 1.29 1.81 16, 867

DS5 62.11 4.90 19, 648

DS6 40.05 2.64 20, 420

DS7 1.72 0.67 25, 587

DS8 6.81 1.04 25, 725

https://github.com/matsengrp/gp-benchmark-1
https://github.com/matsengrp/gp-benchmark-1


Page 17 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10  

posterior samples on each dataset required multiple days. 
The repository includes copies of the posterior samples 
for reproduction without requiring the full MrBayes 
runs. Additionally, the repository includes copies of the 
raw output after VBPI and GP estimation used for figures 
and results presented in this manuscript.

Discussion
In this paper, we extend the Felsenstein pruning algo-
rithm to a multi-tree phylogenetic model represented 
with a subsplit DAG. By using a dynamic program, 
we calculate partial likelihood vectors on the internal 
nodes of the DAG by marginalizing over topologies and 
molecular character states. This enables efficient calcula-
tion of a composite-like marginal likelihood that repre-
sents the per-site conditional probability of states given 
branch length parameters on the topologies observed 
in the DAG. We modify this likelihood by instead only 
marginalizing over topologies that contain a specific 
edge, defining the per edge marginal likelihood and the 
per edge composite likelihood under a standard assump-
tion of independence over sites. The per edge composite 
likelihood serves as the objective function that allows us 
to make point estimates for branch lengths on the DAG 
edges. Under a Bayesian setting, these estimates were 
previously only accessible through a long MCMC run or, 
more recently, from related work on variational Bayesian 
phylogenetic inference [9].

We find that the branch length point estimates we 
obtain from generalized pruning accord with those 
obtained from a MrBayes posterior sample on standard 
phylogenetic datasets. Greater accordance is seen when 
we subset on edges that appear in a greater number of 
posterior topologies. Generalized pruning thus trades 
off accuracy on the low posterior probability edges for 
speed, leading to estimates in seconds compared to the 
hours required for convergence of MCMC.

One clear application to the branch length point esti-
mates is for parameter initialization in variational Bayes-
ian phylogenetic inference. Under that framework, 
branch lengths are estimated from a log-normal distri-
bution with mean and variance parameters that are ran-
domly initialized and updated during stochastic gradient 
descent. By replacing this random initialization with the 
point estimates obtained from generalized pruning, we 
should see faster convergence of the branch length vari-
ational distributions. In practice, the mean and variance 
parameters for a parent–child subsplit pair are them-
selves parameterized by subsplit-specific components. It 
remains to be determined how to appropriately initialize 
these subsplit components such that they result in edge 
branch length estimates given by the generalized pruning 
estimates.

The generalized pruning algorithm is, to our knowl-
edge, the first algorithm to marginalize over tree topolo-
gies in a dynamic program. However, there are aspects 
of this work that connect with the “structural EM” algo-
rithm [29], which leveraged the Chow-Liu approach [30] 
for phylogenetics. Specifically, that work approximates 
the full likelihood with the product of quantities, each of 
which can be evaluated edge-wise. Generalized pruning 
also enables per-edge optimization. However, the struc-
tural EM algorithm calculates an expected log-likelihood 
score marginalizing over ancestral states for pairs of 
nodes connected by a current tree, whereas generalized 
pruning marginalizes over alternative topologies and 
ancestral states simultaneously.

Our next step is to use generalized pruning as a means 
of inferring the subsplit DAG itself. In the same way that 
maximum-likelihood algorithms consider tree arrange-
ments following nearest-neighbor interchanges (NNIs) 
to find the maximum-likelihood phylogeny, we may use 
a similar strategy for considering NNIs on the subsplit 
DAG. In this case, the per edge composite likelihoods 
could be used to accept or reject NNIs to append onto an 
initial DAG built from a small number of high likelihood 
topologies.

We also note that there is no obstruction to using non-
reversible models for this algorithm— we do not need 
nor use the pulley principle— and the algorithms of [17] 
could be adapted here as well.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13015‑ 023‑ 00235‑1.

Additional file 1: Figure S1. Scatter plot of VBPI estimates vs MrBayes 
posterior means onthe branch lengths for DS1, DS3, DS4, DS5, DS6, DS7, 
and DS8 for sDAG edges that appear in at least 10 posterior samples.  Fig‑
ure S2. Scatter plot of VBPI estimates vs MrBayes posterior means on the 
branch lengths with outlier estimates removed for DS1, DS3, DS4, DS5, 
DS6, DS7, and DS8.

Acknowledgements
We thank Ognian Milanov for fixing a performance issue in the generalized 
pruning code, and Joe Felsenstein for discussions. This research was sup‑
ported by NIH R01 AI162611 and AI153044. The research of Frederick Matsen 
was supported in part by a Faculty Scholar grant from the Howard Hughes 
Medical Institute and the Simons Foundation; FAM is an investigator of the 
Howard Hughes Medical Institute. Scientific Computing Infrastructure at Fred 
Hutch funded by ORIP grant S10OD028685. This article is subject to HHMI’s 
Open Access to Publications policy. HHMI lab heads have previously granted 
a nonexclusive CC BY 4.0 license to the public and a sublicensable license to 
HHMI in their research articles. Pursuant to those licenses, the author‑accepted 
manuscript of this article can be made freely available under a CC BY 4.0 
license immediately upon publication.

Author contributions
SJ, HN, AK, DHR, and FAM developed the algorithm and implementation. SJ, 
HN, CJ‑S, DHR, MF, CZ, MAS, and FA.M devised and implemented benchmarks. 
SJ, HN, CJ‑S, MAS, and FAM wrote the main manuscript text. All authors 
reviewed the manuscript.

https://doi.org/10.1186/s13015-023-00235-1
https://doi.org/10.1186/s13015-023-00235-1


Page 18 of 18Jun et al. Algorithms for Molecular Biology           (2023) 18:10 

Funding
This work was supported through US National Institutes of Health grants R01 
AI162611 and R01 AI153044. Scientific Computing Infrastructure at Fred Hutch 
was funded by ORIP grant S10OD028685. Dr. Matsen is an Investigator of the 
Howard Hughes Medical Institute.

Availability of data and materials
The implementation of the generalized pruning algorithm is available in our 
Python‑interface C++ library bito (https:// github. com/ phylo vi/ bito). All 
data, scripts, and instructions for reproducing the results presented are avail‑
able at https:// github. com/ matse ngrp/ gp‑ bench mark‑1.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 30 December 2022   Accepted: 3 July 2023

References
 1. Lakner C, van der Mark P, Huelsenbeck JP, Larget B, Ronquist F. Efficiency 

of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics. 
Syst Biol. 2008;57(1):86–103. https:// doi. org/ 10. 1080/ 10635 15080 18861 
56.

 2. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likeli‑
hood approach. J Mol Evol. 1981;17(6):368–76.

 3. Baldauf SL. Phylogeny for the faint of heart: a tutorial. Trends Genet. 
2003;19(6):345–51. https:// doi. org/ 10. 1016/ S0168‑ 9525(03) 00112‑4.

 4. Salemi M, Lemey P, Vandamme AM. The phylogenetic handbook: a 
practical approach to phylogenetic analysis and hypothesis testing. 
Cambridge: Cambridge University Press; 2009.

 5. Kschischang FR, Frey BJ, Loeliger H‑A. Factor graphs and the sum‑product 
algorithm. IEEE Trans Inf Theory. 2001;47(2):498–519.

 6. Höhna S, Drummond AJ. Guided tree topology proposals for Bayesian 
phylogenetic inference. Syst Biol. 2012;61(1):1–11. https:// doi. org/ 10. 
1093/ sysbio/ syr074.

 7. Larget B. The estimation of tree posterior probabilities using conditional 
clade probability distributions. Syst Biol. 2013;62(4):501–11. https:// doi. 
org/ 10. 1093/ sysbio/ syt014.

 8. Zhang C, Matsen FA IV. Generalizing tree probability estimation via bayes‑
ian networks. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa‑
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing 
Systems 31, pp. 1449–1458. Curran Associates, Inc., 2018. http:// papers. 
nips. cc/ paper/ 7418‑ gener alizi ng‑ tree‑ proba bility‑ estim ation‑ via‑ bayes 
ian‑ netwo rks. pdf

 9. Zhang C, Matsen FA IV. Variational bayesian phylogenetic inference. In: 
international conference on learning representations (ICLR) 2019. https:// 
openr eview. net/ pdf? id= SJVmj jR9FX.

 10. Suchard MA, Weiss RE, Dorman KS, Sinsheimer JS. Inferring spatial phylo‑
genetic variation along nucleotide sequences: a multiple changepoint 
model. J Am Stat Assoc. 2003;98(462):427–37.

 11. Anisimova M, Gil M, Dufayard J‑F, Dessimoz C, Gascuel O. Survey of 
branch support methods demonstrates accuracy, power, and robust‑
ness of fast likelihood‑based approximation schemes. Syst Biol. 
2011;60(5):685–99. https:// doi. org/ 10. 1093/ sysbio/ syr041.

 12. Fourment M, Magee AF, Whidden C, Bilge A, Matsen FA IV, Minin VN. 19 
dubious ways to compute the marginal likelihood of a phylogenetic tree 
topology. Syst Biol. 2020;69(2):209–20. https:// doi. org/ 10. 1093/ sysbio/ 
syz046.

 13. Zhang C, Matsen FA IV A variational approach to bayesian phylogenetic 
inference 2022. arXiv: 2204. 07747

 14. Ji X, Zhang Z, Holbrook A, Nishimura A, Baele G, Rambaut A, Lemey P, 
Suchard MA. Gradients do grow on trees: a linear‑time o(n)‑dimensional 

gradient for statistical phylogenetics. Mol Biol Evol. 2020. https:// doi. org/ 
10. 1093/ molbev/ msaa1 30.

 15. Redelings BD, Suchard MA. Joint Bayesian estimation of alignment and 
phylogeny. Syst Biol. 2005;54(3):401–18. https:// doi. org/ 10. 1080/ 10635 
15059 09470 41.

 16. Schadt EE, Sinsheimer JS, Lange K. Computational advances in 
maximum likelihood methods for molecular phylogeny. Genome Res. 
1998;8(3):222–33.

 17. Boussau B, Gouy M. Efficient likelihood computations with nonrevers‑
ible models of evolution. Syst Biol. 2006;55(5):756–68. https:// doi. org/ 10. 
1080/ 10635 15060 09752 18.

 18. Kenney T, Gu H. Hessian calculation for phylogenetic likelihood based 
on the pruning algorithm and its applications. Stat Appl Genet Mol Biol. 
2012;11(4):14. https:// doi. org/ 10. 1515/ 1544‑ 6115. 1779.

 19. Wikipedia contributors: Newick format. https:// en. wikip edia. org/w/ index. 
php? title= Newick_ format. Accessed: 2021‑08‑25 (2021). https:// en. wikip 
edia. org/w/ index. php? title= Newick_ format

 20. Brent RP. Algorithms for Minimization Without Derivatives. Courier Corpo‑
ration, 2013.

 21. Sudderth EB, Freeman WT. Signal and image processing with belief prop‑
agation [DSP applications]. IEEE Signal Process Mag. 2008;25(2):114–41.

 22. Murphy K, Weiss Y, Jordan MI. Loopy belief propagation for approximate 
inference: An empirical study. 2013. arXiv: 1301. 6725

 23. Whidden C, Matsen FA IV. Quantifying MCMC exploration of phylogenetic 
tree space. Syst Biol. 2015;64(3):472–91. https:// doi. org/ 10. 1093/ sysbio/ 
syv006.

 24. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference 
under mixed models. Bioinformatics. 2003;19(12):1572–4.

 25. Fourment M, Swanepoel CJ, Galloway JG, Ji X, Gangavarapu K, Suchard 
MA, Matsen FA IV. Automatic differentiation is no panacea for phyloge‑
netic gradient computation 2022. arXiv: 2211. 02168

 26. Ayres DL, Cummings MP, Baele G, Darling AE, Lewis PO, Swofford DL, 
Huelsenbeck JP, Lemey P, Rambaut A, Suchard MA. BEAGLE 3: improved 
performance, scaling, and usability for a high‑performance computing 
library for statistical phylogenetics. Syst Biol. 2019. https:// doi. org/ 10. 
1093/ sysbio/ syz020.

 27. Dudas G, Carvalho LM, Bedford T, Tatem AJ, Baele G, Faria NR, Park DJ, 
Ladner JT, Arias A, Asogun D, Bielejec F, Caddy SL, Cotten M, D’Ambrozio J, 
Dellicour S, Caro AD, Diclaro JW, Duraffour S, Elmore MJ, Fakoli LS, Faye O, 
Gilbert ML, Gevao SM, Gire S, Gladden‑Young A, Gnirke A, Goba A, Grant 
DS, Haagmans BL, Hiscox JA, Jah U, Kugelman JR, Liu D, Lu J, Malboeuf 
CM, Mate S, Matthews DA, Matranga CB, Meredith LW, Qu J, Quick J, Pas 
SD, Phan MVT, Pollakis G, Reusken CB, Sanchez‑Lockhart M, Schaffner SF, 
Schieffelin JS, Sealfon RS, Simon‑Loriere E, Smits SL, Stoecker K, Thorne 
L, Tobin EA, Vandi MA, Watson SJ, West K, Whitmer S, Wiley MR, Winnicki 
SM, Wohl S, Wölfel R, Yozwiak NL, Andersen KG, Blyden SO, Bolay F, Carroll 
MW, Dahn B, Diallo B, Formenty P, Fraser C, Gao GF, Garry RF, Goodfellow 
I, Günther S, Happi CT, Holmes EC, Kargbo B, Keïta S, Kellam P, Koopmans 
MPG, Kuhn JH, Loman NJ, Magassouba N, Naidoo D, Nichol ST, Nyenswah 
T, Palacios G, Pybus OG, Sabeti PC, Sall A, Ströher U, Wurie I, Suchard MA, 
Lemey P, Rambaut A. Virus genomes reveal factors that spread and sus‑
tained the ebola epidemic. Nature. 2017. https:// doi. org/ 10. 1038/ natur 
e22040.

 28. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylo‑
genetic bootstrap. Mol Biol Evol. 2013;30(5):1188–95.

 29. Friedman N, Ninio M, Pe’er I, Pupko T. A structural EM algorithm for phy‑
logenetic inference. J Comput Biol. 2002;9(2):331–53. https:// doi. org/ 10. 
1089/ 10665 27025 29354 94.

 30. Chow C, Liu C. Approximating discrete probability distributions with 
dependence trees. IEEE Trans Inf Theory. 1968;14(3):462–7. https:// doi. 
org/ 10. 1109/ TIT. 1968. 10541 42.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://github.com/phylovi/bito
https://github.com/matsengrp/gp-benchmark-1
https://doi.org/10.1080/10635150801886156
https://doi.org/10.1080/10635150801886156
https://doi.org/10.1016/S0168-9525(03)00112-4
https://doi.org/10.1093/sysbio/syr074
https://doi.org/10.1093/sysbio/syr074
https://doi.org/10.1093/sysbio/syt014
https://doi.org/10.1093/sysbio/syt014
http://papers.nips.cc/paper/7418-generalizing-tree-probability-estimation-via-bayesian-networks.pdf
http://papers.nips.cc/paper/7418-generalizing-tree-probability-estimation-via-bayesian-networks.pdf
http://papers.nips.cc/paper/7418-generalizing-tree-probability-estimation-via-bayesian-networks.pdf
https://openreview.net/pdf?id=SJVmjjR9FX
https://openreview.net/pdf?id=SJVmjjR9FX
https://doi.org/10.1093/sysbio/syr041
https://doi.org/10.1093/sysbio/syz046
https://doi.org/10.1093/sysbio/syz046
http://arxiv.org/abs/2204.07747
https://doi.org/10.1093/molbev/msaa130
https://doi.org/10.1093/molbev/msaa130
https://doi.org/10.1080/10635150590947041
https://doi.org/10.1080/10635150590947041
https://doi.org/10.1080/10635150600975218
https://doi.org/10.1080/10635150600975218
https://doi.org/10.1515/1544-6115.1779
https://en.wikipedia.org/w/index.php?title=Newick_format
https://en.wikipedia.org/w/index.php?title=Newick_format
https://en.wikipedia.org/w/index.php?title=Newick_format
https://en.wikipedia.org/w/index.php?title=Newick_format
http://arxiv.org/abs/1301.6725
https://doi.org/10.1093/sysbio/syv006
https://doi.org/10.1093/sysbio/syv006
http://arxiv.org/abs/2211.02168
https://doi.org/10.1093/sysbio/syz020
https://doi.org/10.1093/sysbio/syz020
https://doi.org/10.1038/nature22040
https://doi.org/10.1038/nature22040
https://doi.org/10.1089/10665270252935494
https://doi.org/10.1089/10665270252935494
https://doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1109/TIT.1968.1054142

	A topology-marginal composite likelihood via a generalized phylogenetic pruning algorithm
	Abstract 
	Introduction
	Background and notation
	Setup for likelihood-based phylogenetics
	Likelihood calculation over a tree using a two-pass algorithm
	The subsplit directed acyclic graph
	Parameterizing the subsplit DAG

	Methods
	Rootward traversal
	Rootward topologies
	Leafward traversal
	Implementing efficient computation
	The per-edge marginal likelihood
	Composite-like marginal likelihood
	Gradient-based optimization

	Optimization in analogy with the single tree case
	Optimization schedule
	Prior on subsplit parameters

	Implementation and experiments
	Accuracy
	Speed and scalability
	Availability of data and materials

	Discussion
	Anchor 25
	Acknowledgements
	References


