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Abstract 

The Li-Stephens (LS) haplotype copying model forms the basis of a number of important statistical inference proce-
dures in genetics. LS is a probabilistic generative model which supposes that a sampled chromosome is an imper-
fect mosaic of other chromosomes found in a population. In the frequentist setting which is the focus of this paper, 
the output of LS is a “copying path” through chromosome space. The behavior of LS depends crucially on two 
user-specified parameters, θ and ρ , which are respectively interpreted as the rates of mutation and recombination. 
However, because LS is not based on a realistic model of ancestry, the precise connection between these parameters 
and the biological phenomena they represent is unclear. Here, we offer an alternative perspective, which considers θ 
and ρ as tuning parameters, and seeks to understand their impact on the LS output. We derive an algorithm which, 
for a given dataset, efficiently partitions the (θ , ρ) plane into regions where the output of the algorithm is constant, 
thereby enumerating all possible solutions to the LS model in one go. We extend this approach to the “diploid LS” 
model commonly used for phasing. We demonstrate the usefulness of our method by studying the effects of chang-
ing θ and ρ when using LS for common bioinformatic tasks. Our findings indicate that using the conventional (i.e., 
population-scaled) values for θ and ρ produces near optimal results for imputation, but may systematically inflate 
switch error in the case of phasing diploid genotypes.
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Background
Statistical analysis in genetics often requires evaluating 
the likelihood of a sample of genomes under a model of 
evolution. Unfortunately, this computation can rarely 
be performed exactly, because it requires integrating 
over the astronomical number of possible ancestry sce-
narios that could have generated the data. In 2003, Na 
Li and Matthew Stephens [1] proposed to approximate 
this intractable likelihood by modeling a newly sam-
pled chromosome as a perturbed mosaic those previ-
ously observed. Simple yet effective, the Li-Stephens 

(LS) haplotype copying model has had a lasting impact 
in genetics and bioinformatics, with important applica-
tions to genotype imputation, phasing, linkage mapping, 
detecting nection, and other areas [2].

LS depends on two parameters, θ and ρ , which are usu-
ally interpreted as the rates of mutation and recombina-
tion per unit time. Curiously, however, the model is not 
cognizant of time: in genealogical terms, it assumes that 
the sampled chromosome finds common ancestry with 
any other member of the population at a pre-determined 
number of generations in the past [3]. Since, in real data, 
there will be wide variation in the of age of ancestry at 
different locations in the genome, the interpretation of 
θ and ρ , and their effect on inference, is not altogether 
clear—a fact which Li and Stephens acknowledged in 
their original paper.
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In this study, we explore an alternative, non-biological 
perspective of θ and ρ , choosing to view them instead 
as tuning parameters in a machine learning algorithm. 
Then, the salient objective becomes understanding their 
effect on the output of the LS model. We derive a new, 
efficient algorithm for determining the complete solution 
surface of both the haploid and diploid variants of the LS 
algorithm. That is, for a given data set, the algorithm par-
titions the (θ , ρ) plane into regions such that the output 
of LS is constant within each region.

Our algorithm can be viewed as characterizing the 
trade-off between the effects of recombination and 
mutation: as the ratio ρ/θ tends to zero, recombinations 
become increasingly less likely, and the LS model sim-
ply copies from the most closely related haplotype in its 
entirety, at the potential expense of many mismatches. 
Conversely, as ρ/θ → ∞ , there is free recombination 
between neighboring markers, and the LS model is able 
to find a path which is identical-by-state at every position 
(assuming no alleles are private to the focal haplotype), 
at the expense of improbably many recombinations. Our 
contribution is to characterize the behavior of LS for all 
intermediate values of ρ/θ as well, using an efficient pro-
cedure that requires only a single pass over the data.

For readers who are familiar with ℓ1-regularized regres-
sion (the LASSO), this can be seen as a type of LARS [4] 
or solution-path algorithm for the LS model. Solution-
path algorithms for the LASSO are widely used in bio-
informatics, for example to analyze expression data [5], 
estimate survival curves [6], detect DNA copy number 
alterations [7], or infer gene regulatory networks [8]. Of 
course, the LASSO is regression, whereas the haplotype 
estimation problem addressed by LS is strictly unsu-
pervised in practice. However, by applying our method 
to simulated data where the ground-truth ancestry is 
known, we can gain better insight into how the LS model 
functions, which can then be transferred to real-world 
applications.

Notation and definitions
We now define the LS model and introduce our algo-
rithms. We note once and for all that here we focus 
squarely on the frequentist variant of LS, which returns 
a copying path (or pair of them, in the diploid algo-
rithm) through haplotype space. The copying path(s) 
are obtained by running the Viterbi decoding algorithm 
to obtain the maximum a posteriori (MAP) hidden state 
path through a hidden Markov model. Some other for-
mulations of the LS model adopt a Bayesian perspective, 
where uncertainty in the unobserved copying path is 
modeled via a posterior distribution over hidden copying 
states. The techniques we introduce here are not appli-
cable in the Bayesian setting, since they characterize the 

way in which the MAP path of the LS model changes as θ 
and ρ vary.

LS is used to decode positional ancestry of a “focal” 
chromosome consisting of L linked markers, using a 
panel of N “template” chromosomes. Each chromosome 
may be represented as a haplotype, that is a vector in DL , 
where D = {a,c,g,t} represent the four DNA nucleo-
tides. The template haplotypes can be organized into a 
matrix

Throughout the paper, the variable h ∈ DL will be used to 
refer to a generic focal haplotype, and similarly the letter 
g ∈ DL×2 is used to denote a generic diplotype, that is a 
sequence of (unphased) diploid genotypes. We consider 
h, g and H as fixed instances of the above quantities, and 
will omit notational dependence on them when there is 
no chance of confusion.

For a positive integer z, the set {1, 2, . . . , z} is 
denoted by [z]. A path (of length ℓ ) is a sequence 
π = (π1, . . . ,πℓ) ∈ [N ]ℓ which characterizes the haplo-
type in H from which h copies at each position 1, . . . , ℓ . 
The notation |π | is used to denote the length of a path, so 
|π | = ℓ for a path of length ℓ.

Given a path π , the function

counts the number of times that π switches templates 
(i.e., the number of crossover recombinations). Similarly, 
the function

counts the number of mismatches between haplotype h 
and H for the copying path π . In the diploid case, if π and 
� are two copying paths of equal length, then

where A△B denotes the symmetric difference between 
sets A and B, is the number of panel mismatches for 
the focal diplotype g. (Note that m(π) and m(π , �) have 
implicit dependencies on h and g which have been sup-
pressed for clarity.)

In the next sections, we will use some shorthand nota-
tion to refer to qualified subsets of the space of copying 
paths. A copying path π is anℓ-path if |π | = ℓ . An ℓ-path 
for which k(π) = r is an (ℓ, r)-path, and similarly an 

H = (Hℓ,n)
n=1,...,N
ℓ=1,...,L ∈ DL×N .

(1)k(π)
def
=

|π |
∑

k=2

1{πk �= πk−1}

(2)m(π) :=

|π |
∑

k=1

1{hk �=Hk ,πk
}

(3)m(π , �) =

|π |
∑

k=1

∣

∣{gk ,1, gk ,2}△{Hk ,πk ,Hk ,�k }
∣

∣,



Page 3 of 15Jin and Terhorst  Algorithms for Molecular Biology           (2023) 18:12  

(ℓ, n)-path is an ℓ path with the additional property that 
πℓ = n . Lastly, an (ℓ, r, n)-path meets all three of these 
criteria.

The LS model
In its original formulation, LS is a generative model of the 
haplotype h conditional on the template set H . Formally, 
it is a hidden Markov model: at each position, h selects 
a particular template πℓ ∈ [N ] from H , whose identity is 
latent and unobservable. Conditional on this selection, 
the template allele Hℓ,πℓ is faithfully copied to h, except 
with some small error probability pθ . The “copying path” 
π ∈ [N ]L follows a stationary Markov chain: conditional 
on πℓ−1 , a switch occurs with probability pρ ≪ 1/N  ; oth-
erwise, with probability

there is no switch and πℓ = πℓ−1 . The leading factor N 
in (4) reflects the fact that, conditional on a switch hav-
ing occurred between positions ℓ− 1 and ℓ , the identity 
of the newly selected haplotype at position ℓ is uniformly 
distributed among the N possible panel haplotypes. 
Similarly, the probability of correctly copying is 1− 3pθ , 
where, again, the factor of 3 implies that the position 
mutates uniformly at random to one of the three other 
nucleotides not possessed by the template haplotype 
whenever a copying error occurs.

Thus, for a given π , the conditional likelihood of h is

which leads to a compact expression for the negative log-
likelihood [9]:

where C is a constant which does not depend on π , and 
we defined

The function LS h(θ , ρ) is defined to return the lowest 
possible cost for (5):

Li and Stephen’s original model is recovered by setting

(4)1− Npρ

p(h | π ,H, θ , ρ) ∝ pk(π)ρ (1− Npρ)
L−k(π)−1p

m(π)
θ (1− 3pθ )

L−m(π),

(5)
− log p(h | π ,H, θ , ρ) = α(θ)m(π)+ β(ρ)k(π)+ C ,

(6)
α(θ)

def
= − log

pθ

1− 3pθ

β(ρ)
def
= − log

pρ

1− Npρ
.

(7)LS h(θ , ρ)
def
= max

π
log p(h | π ,H, θ , ρ).

(8)pρ =
1− exp(−ρ/N )

N

and pθ = θ̃/[2(N + θ̃ )], where the constant θ̃ is derived 
by a population genetic argument [1, eq.  A3]. An alter-
native parameterization, based on a later, genealogical 
interpretation of LS [3], is to set

since the time to first coalescence between the focal and 
template haplotypes is roughly 1/N for large N. In gen-
eral, different choices of pρ and pθ are possible, which 
may not have any genetic or biological interpretation. 
The perspective we adopt here is to treat them as numeri-
cal parameters, and try to understand their effect on the 
output of the LS algorithm. To that end, while it is techni-
cally possible for α(θ) or β(ρ) to be negative in (5), this 
requires very high rates of mutation and/or recombina-
tion which are not encountered in practice. Therefore, we 
assume in the sequel that min{α(θ),β(ρ)} > 0 . Note that 
this always holds if pθ and pρ are set via (8) and (9).

An important difference between the original LS 
model and the one studied here is that, for reasons which 
become clear in the sequel, we assume that the probabil-
ity of recombination is constant between each site. The 
same model was also recently considered by [9], and is 
appropriate for large haplotype panels where the marker 
density is high and relatively uniform. It would not neces-
sarily be appropriate for small data sets typed at a sparse 
set of markers.

Equation (5) asserts that log-likelihood of LS given π is, 
up to an irrelevant constant, simply a weighted combina-
tion of the number of template switches and sequence 
mismatches. Naturally, the weights depend on the muta-
tion and recombination parameters, with higher values 
of θ (resp. ρ ) leading to lower values of α(θ) (resp. β(ρ) ), 
and correspondingly less weight placed on mismatches 
(resp. recombinations).

Calculating all possible haploid decodings
In this section we derive an algorithm partition (h) to effi-
ciently calculate all possible haploid decodings for vari-
ous settings of θ and ρ . That is, for a given focal haplotype 
h, partition (h) returns a partition S1, . . . , SK  such that

and for any i and (θ , ρ), (θ ′, ρ′) ∈ Si,

Note that there can be multiple paths that achieve 
the optimal cost LS h(θ , ρ) ; the regions returned by 

(9)pθ =
1− exp(−θ/N )

3
,

K
⋃

k=1

Sk = {(θ , ρ) : min{α(θ),β(ρ)} > 0}

LS h(θ , ρ) = LS h(θ
′, ρ′).
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partition (h) have the property that the cost of any such 
path is the same within each region.

We arrive at the algorithm by a series of reductions. The 
first trivial result reminds us that, although LS is techni-
cally a two-parameter model, any choice of (θ , ρ) lies on a 
one-dimensional manifold of equivalent solutions.

Lemma 1 Let c = β(ρ)/α(θ) . Then for any θ ′, ρ′ such 
that

we have LS h(θ
′, ρ′) = LS h(θ , ρ).

Proof If ρ′ and θ ′ satisfy (10), then β(ρ′)/α(θ ′) = c. 
Hence, by Eq. (5),

 �

By the preceding result, we may assume that α(θ) = 1 
in Eq. (5). Define the optimal value function

so that the output of LS for a given β is VL(β) . All possible 
outputs of LS are thus contained in the set

To compute this set we proceed recursively. First, define

(10)pρ′ =
1

N +
(

pθ ′
1−3pθ ′

)−c ,

LS h(θ , ρ) = max
π

log p(h | π , θ , ρ)

= min
π

m(π)+ ck(π)

= min
π

α(θ ′)m(π)+ β(ρ′)k(π)

= LS h(θ
′, ρ′).

(11)Vℓ(β) = min
π∈[N ]ℓ

m(π)+ βk(π),

(12){(β ,VL(β)) : β ≥ 0}.

Vℓ(n;β)
def
= min

π ∈ [N ]ℓ

πℓ = n

m(π)+ βk(π)

to be the optimal ℓ-path which copies from haplotype 
n ∈ [N ] at the terminal position. Thus,

Plugging the definitions of m(π) and k(π) (Eqs. 1 and 2 ), 
we obtain the recurrence

where dℓ(n) is an indicator function that whether there 
is a copying error from haplotype n at the terminal posi-
tion ℓ+ 1 . It is easy to see that the functions Vℓ(n;β) 
and Vℓ(β) are piecewise linear and concave in β . Hence, 
dynamic programming can be used to solve (11) for all 
values of β , repeatedly applying (14) to determine the 
correct piecewise representation for Vℓ(β) . Repeating 
this procedure for ℓ = 1, . . . , L , we eventually arrive at 
the piecewise-defined VL(β) , i.e. Eq. (12).

We experimented with this approach but found it to 
be too slow in practice. Eqs. (13) and (14) require taking 
the pointwise minimum of a collection of N piecewise 
linear functions. This entails finding all their points of 
intersection, which, though conceptually straightfor-
ward, is computationally burdensome for large N.

Instead, we derive an alternative algorithm that uses 
convex analysis to efficiently calculate VL(β). The algo-
rithm recurses on a different quantity

which is the least number of mismatches among all (ℓ, r)
-paths. We then use a theorem from the changepoint 
detection literature to relate Vℓ(β) and Jℓ(r).

The theorem and ensuing discussion rely on the 
following basic results and definitions from convex 
analysis. A set K is convex if for all x, y ∈ K  , the line 
[x, y]

def
={αx + (1− α)y : α ∈ [0, 1]} ⊂ K  . A point x ∈ K  

is a vertex if, for all y, z ∈ K  such that x ∈ [y, z] (the line 
segment from y to z), either x = y or x = z . Given a set 
X, the convex hull of X is the intersection of all convex 
sets that contain X. If X ⊂ R

2 and |X | < ∞ , the convex 
hull of X is a polygon, and can be completely described 
by the locations of its vertices. We use the notation 

(13)Vℓ(β) = min
n∈[N ]

Vℓ(n;β).

(14)

Vℓ+1(n;β) = min
π ∈ [N ]ℓ+1

πℓ+1 = n

m(π)+ βk(π)

= min
π ∈ [N ]ℓ+1

πℓ+1 = n

dℓ+1(n)+m(π1:ℓ)+ β1{πℓ �=n} + βk(π1:ℓ)

= dℓ+1(n)+min{Vℓ(n;β),Vℓ(β)+ β},

(15)
Jℓ(r)

def
= min

π ∈ [N ]ℓ

k(π) = r

m(π),
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conv(X) to denote the convex hull of a finite set X in the 
plane, and vtx(X) to denote the vertices of its convex 
hull.

The following key result is due to [10]. We state 
it in an adapted form, and provide a short proof for 
completeness.

Theorem 2 ([10]) Let

be the graph of Jℓ , and let r1 < · · · < rM be such that

Then

where

Proof Since

we have that

is the pointwise minimum of a collection of func-
tions which are linear in β . Thus, there exists points 
r1 < · · · < rM such that Vℓ(β) is piecewise linear, with 
vertices βi that satisfy

At each such ri , (17) implies that

The preceding display establishes that (ri, Jℓ(ri)) can-
not be written as a convex combination of any two other 
points in Jℓ , so it is a vertex of conv(Jℓ) .  �

By Theorem  2, determining Vℓ(β) reduces to finding 
convex hull of the graph of Jℓ(r) . Now let

(16)Jℓ = {(r, Jℓ(r)) : r ∈ [ℓ− 1]}

vtx(Jℓ) = {(r1, Jℓ(r1)), . . . , (rM , Jℓ(rM))}.

Vℓ(β) = min
ri

Jℓ(ri)+ βri, βi ≤ β ≤ βi+1,

βi =
Jℓ(ri)− Jℓ(ri+1)

ri+1 − ri
.

Jℓ(r)+ βr = min
π ∈ [N ]ℓ

k(π) = r

m(π)+ βr = min
π ∈ [N ]ℓ

k(π) = r

m(π)+ βk(π),

(17)Vℓ(β) = min
r

Jℓ(r)+ βr

Jℓ(ri)+ βiri = Jℓ(ri+1)+ βiri+1.

(18)max
r<ri

Jℓ(ri)− Jℓ(r)

r − ri
< βi < min

r>ri

Jℓ(r)− Jℓ(ri)

ri − r
.

(19)
J
(n)
ℓ (r) = min

π ∈ [N ]ℓ

k(π) = r
πℓ = n

m(π)

be the minimal number of mismatches among all (ℓ, r, n)
-paths, and let

be its graph. We call an (ℓ, r, n)-path π locally active if 
(r,m(π)) ∈ vtx(J

(n)
ℓ ) . Similarly, an (ℓ, r)-path π is  (glob-

ally) active if (r,m(π)) ∈ vtx(Jℓ).
By the preceding discussion, the set of active ℓ-paths 

completely characterizes Vℓ(β) . The next result estab-
lishes that this set in turn may be obtained from the 
locally active ℓ-paths. Let

be the “truncated epigraphs” of Jℓ and J (n)ℓ  , comprising all 
of the lattice points between the corresponding sets and 
the line y = ℓ . These sets have the same upper bound-
ary and obviously (0, ℓ) and (ℓ− 1, ℓ) are two common 
extreme points. Next, we characterize the extreme points 
of 

⋃N
n=1 J̃

(n)
ℓ :

Lemma 3 Let A =
⋃N

n=1 J̃
(n)
ℓ  and

Then vtx(A) ⊂ B.

Proof We have B ⊂ A , so let (r, y) ∈ A \ B . Then either: 

1 y /∈ {ℓ, minn J
(n)
ℓ (r)} , so that (r, y) can be written as 

the linear combination of (r, ℓ) and (r, minn J
(n)
ℓ (r)) ; 

or
2 y = ℓ and r /∈ {0, ℓ− 1} , so that (r,  y) is the linear 

combination of (0, ℓ) and (ℓ− 1, ℓ).

This shows that (r, ℓ) /∈ B =⇒ (r, ℓ) /∈ vtx(A) , which is 
equivalent to the claim. �

The following foundational result in convex analysis 
is stated for reference:

Theorem (Krein–Milman) If K ⊂ R
d is compact and 

convex, then K = conv(vtx(K )).

Since every set considered here is a finite set in R2 , 
the Krein-Milman theorem always applies.

Proposition 1 vtx(J̃ℓ) = vtx
(
⋃N

n=1 J̃
(n)
ℓ

)

.

(20)J
(n)
ℓ = {(r, J

(n)
ℓ (r)) : r ∈ [ℓ− 1]}

J̃
(n)
ℓ = {(r, y) : r ∈ [ℓ− 1], y ∈ [J

(n)
ℓ (r), ℓ] ∩ Z}

J̃ℓ = {(r, y) : r ∈ [ℓ− 1], y ∈ [Jℓ(r), ℓ] ∩ Z}

B =
{

(r, min
n

J
(n)
ℓ (r)) : r ∈ [ℓ− 1]

}

∪ {(0, ℓ), (ℓ− 1, ℓ)}.
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Proof Since 
⋃N

n=1 J̃
(n)
ℓ  contains finitely many points, by 

the Krein-Milman theorem, its convex hull is spanned by 
its extreme points. Now by Lemma 3, the extreme points 
of 

⋃N
n=1 J̃

(n)
ℓ  is a subset of

which is contained in J̃ℓ by definition. Thus, 
vtx(

⋃N
n=1 J̃

(n)
ℓ ) ⊂ vtx(J̃ℓ) . The other direction is by 

noticing J̃ℓ ⊂
⋃N

n=1 J̃
(n)
ℓ  .  �

At this point, we have reduced the original problem 
of determining VL(β) to that of finding the set of locally 
active (L,  n) paths for n = 1, . . . ,N . The next and final 
result shows how to compute these sets recursively. 
In theorem, we use an additional bit of notation: if π 
is an ℓ-path, and c ∈ [N ] , then we write πc to denote 
an “extension” (ℓ+ 1)-path, such that (πc)i = πi for 
i = 1, . . . , ℓ , and (πc)ℓ+1 = c.

Proposition 2 Let π = φn . If π is a locally active 
(ℓ+ 1, r, n)-path, then either a) φ is a locally active (ℓ, r, n)
-path, or b) φ is an active (ℓ, r − 1)-path.

Proof First suppose that φℓ = n . We claim that φ must 
be locally active. If not, then there exists a locally active 

{(r, min
n

J
(n)
ℓ (r)) : r ∈ [ℓ− 1]} ∪ {(0, ℓ), (ℓ− 1, ℓ)}

(ℓ, r1, n) path φ(1) , a locally active (ℓ, r2, n) path φ(2) , and a 
number α ∈ (0, 1) , such that r = αr1 + (1− α)r2 and

Adding dℓ+1,n = αdℓ+1,n + (1− α)dℓ+1,n to both sides, 
we obtain

contradicting the fact that π is locally active.

Next, suppose that φℓ  = n . Then, since π is an (ℓ+ 1, r)

-path, φ is an (ℓ, r − 1)-path. If φ is not active, then one 
may similarly find active (ℓ, r1) and (ℓ, r2) paths φ(1) 
and φ(2) such that inequality (21) holds, where now 
r − 1 = αr1 + (1− α)r2 . Assuming without loss of 
generality that r1 < r2 , this implies r1 < r − 1 < r2 . 
Path φ1 may be extended to the (ℓ+ 1, r1 + 1, n)-path 
φ(1)n , and similarly for φ(2) , whence (22) holds. Because 
r1 + 1 < r < r2 + 1 , we have φ(i)n  = π for i = 1, 2 . Thus, 
π is an interior point in the convex hull of all (ℓ+ 1, n) 
paths, so it is not locally active. Hence, in either case we 
arrive at a contradiction.  �

(21)αm(φ(1))+ (1− α)m(φ(2)) < m(φ).

(22)
αm(φ(1)n)+ (1− α)m(φ(2)n) < m(φn) = m(π),

Haploid solution surface
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By the preceding results, in order to find the set of 
active (ℓ+ 1)-paths, it is only necessary to keep track of 
the set of active ℓ-paths, as well as the set of locally active 
(ℓ, n)-paths for each haplotype n ∈ [N ] . Algorithm  1 
implements Proposition 2. The output of the algorithm is 
vtx(JL) . From this, Theorem  2 can be used to calculate 
∞ = β0 > β1 > · · · such that lsh(1,β) is constant on each 
interval β ∈ (βi,βi−1). Finally, Lemma 1 and Eqs. (8)–(9) 
yield the solution space for all (θ , ρ).

A few implementation details of Algorithm 1 are worth 
mentioning. As can be seen from lines 7–8, the assump-
tion that α(θ) ≡ 1 causes the locally and globally active 
vertices to live on the lattice: Jℓ,J

(n)
ℓ ∈ Z

2 . All numeri-
cal calculations are therefore exact, so the algorithm is 
impervious to rounding errors, or other floating point 
concerns. Also, for a finite set X ⊂ R

2 , and assuming that 
the points in X are already sorted by their x-coordinates, 
the operation conv(X) used in lines 9 and 10 can be car-
ried out in O(|X|) operations using e.g.  Andrew’s algo-
rithm [11]. This can easily be achieved by storing J (n)

ℓ  and 
Jℓ as sorted linked lists, and appropriately merging them 
in lines 9–10 instead of performing a naive set union. As 
the output of Andrews’ algorithm remains sorted, this 
ensures that the number of operations needed to perform 
lines 7–10 is minimized for all ℓ . It should be noted that, 
in practice, these optimizations may not improve perfor-
mance unless L and N are very large. Finally, lines 7–9 are 
embarrassingly parallel and can be performed simultane-
ously using N different threads. However, the final reduc-
tion step (line 10) requires synchronization.

The diploid algorithm
The diploid extension to the Li-Stephens algorithm [e.g., 
12, 13] finds a pair of copying paths (π1,π2) ∈ [N ]2×L 
that maximizes the probability of observing a sequence 
of diploid genotypes g ∈ D2×L . Similar to the haploid 
case, the log-likelihood of g given (π1,π2) has a compact 
expression [9]:

where m(π1,π2) was defined in Eq. 3.
We define LS g (θ , ρ) analogously to return a path pair 

(π∗
1 ,π

∗
2 ) which minimizes Eq. (23). Clearly, Lemma  1 

(23)
− log p(g | θ , ρ) = α(θ)m(π1,π2)+ β(ρ)[r(π1)+ r(π2)] + C ,

goes through without modification for LS g (θ , ρ) as well, 
so it is only necessary to determine the solution path for 
LS g (1, ρ) . Algorithm  2 does this. The idea of the algo-
rithm is similar to the haploid case, however more work 
is required in the form of an additional inner for loop 
needed to track both single and double recombination 
events. For each n1, n2 ∈ [N ] , the algorithm tracks a new 
set J (n1,n2)

ℓ  of locally active path pairs, as well as sets J (n1)
ℓ  

of “partially active” paths which lie on the convex hull of 
path costs involving haplotype n1 only. The set of “active” 
paths Jℓ is now the convex hull of path costs taken over 
all possible path pairs.

The proof of correctness relies on a generalization of 
Proposition 2.

Proposition 3 Suppose that (πn1, �n2) is an active 
(ℓ+ 1, r, (n1, n2))-path. Then one of the following is true:

• (π , �) is a locally active (ℓ, r, (n1, n2)) path.
• π is a partially active (ℓ, r − 1, n1) path.
• � is a partially active (ℓ, r − 1, n2) path.
• (π , �) is an active (ℓ, r − 2) path.

Proof Similar to Proposition 2, the proof amounts to 
conditioning on last entries of π and � , and showing that 
those paths must lie on the convex hull of the appropriate 
set of ℓ-paths. There are four cases to check depending 
on whether πℓ = n1 and/or �ℓ = n2 . We prove one 
case and omit the repetitive details for the other three. 
Suppose that πℓ = n1 and �ℓ = n2 , but that (π , �) is not 
locally active. Then there are locally active (ℓ, r, (n1, n2)) 
paths (φ1,φ2) and (γ1, γ2) such that

Thus

contradicting the supposition.  �

αm(φ1,φ2)+ (1− α)m(γ1, γ2) < m(π , �).

αm(φ1n1,φ2n2)+ (1− α)m(γ1n1, γ2n2) < m(πn1, �n2),
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Diploid solution surface

Fig. 1 The imputation errors of all possible β for the haploid case, the x axis is the value of log(1+ β) and the y axis is the corresponding value 
of imputation error
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Results
We used our algorithm to study two of the main use 
cases for LS: phasing and imputation. The phasing prob-
lem attempts to resolve a sequence of diploid genotypes 
g ∈ D2×L into a pair of haplotypes h1, h2 ∈ DL , such that 
g and h1, h2 possess the same alleles at each position, and 
switching error is minimized. In the imputation problem, 
missing positions in a single haplotype are imputed using 
data from a reference panel. Notable phasing and imputa-
tion algorithms based on the LS model include fastPHASE 
[14], IMPUTE2 [15], MaCH [16], SHAPEIT [17], and 
EAGLE [13].

Investigating imputation accuracy using Algorithm 1
For testing the Algorithm 1, we consider a haplotype impu-
tation problem. Given a haplotype with the information of 
some SNPs is missing, we impute the haplotype with all 
possible β using the algorithm. To study imputation error, 
we considered the loss function

where the ωi are position-specific weights. We consid-
ered two choices for the weights: ωi ≡ 1 , correspond-
ing to Hamming distance between the imputed and 
true haplotypes; and ωℓ = [MAFℓ(1−MAFℓ)]

−1 , where 
MAFℓ is the minor allele frequency at position ℓ , thereby 
upweighting rare variants in the loss calculation.

L
∑

ℓ=1

ωℓ|X
true
ℓ − X

imp
ℓ |,

The way we ran our algorithm is as follows: we first gen-
erate a focal haplotype h and reference panel H. The focal 
haplotype is then chosen as the underlying truth, and 
then all loci with minor allele frequency (MAF) less than 
0.05 are discarded. We then use the retained loci to com-
pute the solution surface, i.e. for a sequence of β , we com-
pute the corresponding optimal path p = {πp1 , . . . ,πpk } 
with length k for each β . A missing locus is imputed by 
pasting the copying path state from the nearest flanking 
marker. The number of mismatches between the imputed 
copying path and the truth is computed in the end.

We simulated 1001 sequences with 100Mb in a sin-
gle population using msprime [18, 19]. The length was 
chosen to be comparable to the size of a typical human 
chromosome. The effective population size was fixed 
to 1, and the scaled rates of recombination and muta-
tion were both set to be 10−4 per unit of coalescent time. 
This resulted in a binary genotype matrix with roughly 
300,000 rows and 1001 columns. For the haplotype impu-
tation, we used the first column as the focal haplotype 
to be imputed, and the remaining columns 2–1001 as 
the haplotype panel. We then introduced missing data 
according to the MAF threshold mentioned above. This 
resulted in approximately 40% of the loci being retained 
on average.

For a given dataset, we first ran Algorithm  1 in order 
to find all possible LS paths. Then, for each interval of 
β where the LS solution has constant cost, we chose an 

Fig. 2 The histogram of optimal β intervals for Algorithm 1, the x axis is the value of optimal log(1+ β) intervals in each iteration, the y axis 
is the number of replicates in 1000 iterations. The x axis of the red dash line is the true value of log(1+ β0) we used to generate data. The left panel 
is the histogram under the Hamming loss, the right panel is histogram under the weighted Hamming loss
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optimal path and recorded its imputation error.1 Fig.  1 
shows the results of a single experiment for the Ham-
ming loss. The curve is piecewise constant, with jumps 
at points where increasing β causes the cost of the opti-
mal LS path to change. For this particular simulation, 
any setting 0.9 ≤ log(1+ β) ≤ 4.1 (roughly) was optimal 
in terms of imputation error. At the extremes β = 0 and 
β → ∞ , we see the expected behavior. When β = 0 (i.e., 
ρ → ∞ in Eq. 6), there is free recombination so a copy-
ing path that contains zero copying errors (mutations) 
can be achieved. However, this results in some imputa-
tion errors since LD information is no longer being used 
for imputation. And as β → ∞ , which implies ρ = 0 and 
complete linkage, the algorithm simply copies in entirety 
from the most closely related haplotype with no recombi-
nations, resulting in many imputation errors.

We repeated this procedure 1,000 times and for each 
iteration, we determined the interval of β for which 
imputation error was minimized. Figure 2 depicts these 
results. Each box in the plot represents corresponds to 
an interval which was optimal in at least one run, with 
the height of the box representing the number of times it 
was the optimal interval across all 1,000 runs. (Because 
the corners of each box are all integers, they are displayed 

with transparency and a small amount of jitter to reduce 
overplotting.) The red dashed line in the plot corre-
sponds to setting β according to Eq. (6) and (8), suitably 
transformed using Lemma 1, where ρ is the population-
scaled rate of recombination. If the red line lies inside an 
interval, it means the LS model run with the population-
scaled rate of recombination has the optimal imputa-
tion error. Otherwise, the results of imputation could be 
improved by choosing a different setting of β(ρ).

The left-hand panel of Fig.  2 measures error in 
terms of Hamming loss, whereas the right-hand panel 
uses (inverse) variance-weighted loss. For Hamming 
loss, most of the optimal intervals are contained in 
log(1+ β) ∈ [0.5, 2.0] , and parameterizing LS using the 
population-scaled values for θ and ρ generally falls inside 
the optimal interval (in roughly 57% of the runs). The 
right-hand panel shows most of the optimal intervals lie 
are contained in between log(1+ β) ∈ [0.75, 1.4) . The 
same is mostly true for variance-weighted loss, however 
there is a longer right-tail to the distribution, and some 
simulations where setting β much larger (around 2.5–3) 
could lower imputation error. The percentage that the 
population-scaled values for θ and ρ falls inside the opti-
mal interval is 0.246.

Simulation study with variable effective population 
size Next, we considered a more complex scenario where 
the population size varied according to a realistic model 
of human history. We simulated data using stdpop-
sim [20], using the Africa_1T12 demography for 

Fig. 3 The switch errors of all possible β for the diploid case, the x axis is the value of log(1+ β) and the y axis is the corresponding value 
of the switch error

1 Note that, while multiple copying paths may have the same error accord-
ing to Eq. (5), they may have different imputation errors. We verified that 
the results presented below were consistent from run to run, and not driven 
by arbitrary choices of the optimal copying path.
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H.  sapiens. This is a simplified two-population model 
with the European-American population being removed, 
and it describes the ancestral African population together 
with the out-of-Africa event [21]. We simulated 1001 
samples of human chromosome 2, but artificially reduced 
the length of the chromosome to be around 100Mb for 
computational reasons and to match the preceding 
experiment. The scaled mutation rate and recombina-
tion rate were around 8.7× 10−4 and 9.8× 10−4 respec-
tively. We set the first sample as the focal and 2 to 1001 
samples as the panel. The imputation procedure was the 
same as in the preceding section, where we retained the 
loci with MAF > 0.05 and imputed the remaining sites. 
To determine the population-scaled mutation rate, we set 
Ne = ETMRCA/2 , where ETMRCA is the average time to 
coalescence in a sample of two chromosomes under the 
Africa_1T12 demography, and then and then defined 
θ = 4Neµ.

For Hamming loss, Fig. 7 shows the distribution of the 
optimal intervals is less dispersed than in the fixed pop-
ulation size case, with optimal log(1+ β) intervals con-
centrated between 0.75 and 1.2, which closely coincides 
with the population-scaled value (dashed red line). The 
percentage of runs where β(ρ) was optimal increased, 
to 0.73. Only a small amount of optimal intervals fall to 
the left of β(ρ) . This indicates very occasionally, LS will 
perform better if the recombination rate is set lower than 
population-scaled value.

For the variance-weighted loss (Fig. 7 right panel), we 
observed a similar phenomenon as in the constant-size 
case: there is a heavier right tail, and in a larger fraction 
of the simulations, imputation results could have been 
improved by setting β higher than the population-scaled 
value. The percentage of runs where β(ρ) was optimal 
decreased, to 0.223. However, in general, the previous 
two experiments show that the population-scaled rates 
should generally be adequate for phasing using the hap-
loid LS algorithm.

Accuracy of pre-phased imputation A common work-
flow for imputing diploid genotypes is to first phase them 
into haplotypes and then run haplotype imputation [22]. 
We repeated the preceding experiments to study diploid 
imputation using pre-phasing (Additional file 1: Figs. S1–
S4) and observed generally comparable results: the 
population-scaled values generally result in optimal per-
formance for pre-phasing when considering Hamming 
loss, but there is a longer right tail when rare variants are 
upweighted in the loss calculation. For the more realistic, 
out-of-Africa demography, we observed less dispersion of 
the optimal intervals than for the constant demography.

Investigating phasing accuracy using Algorithm 2
To test Algorithm  2, we considered a genotype phasing 
problem. Given a genotype sequence which is the pair-
wise sum of two haplotype sequences, and a reference 
panel, we aim to recover the information of each haplo-
type sequence. We first generated two focal haplotype 

Fig. 4 The histogram of optimal β intervals for Algorithm 2, the x axis is the value of optimal log(1+ β) intervals in each iteration, the y axis 
is the number of replicates in 1000 iterations. The x axis of the red dash line is the true value of log(1+ β0) we used to generate data
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sequences h1, h2 and reference panel H and combine h1 
and h2 to form a genotype sequence. In order to get the 
phased haplotype sequences, we then fed the genotype 
sequence and reference panel to algorithm  2. We then 
measured the accuracy by measuring the switch error 

between the true and estimated haplotype sequences. 
Switch error was computed using the --diff-switch-
error option of vcftools [23].

We again start with the simple simulation scenario 
where the effective population size is fixed and equal 

Fig. 5 The histogram of switch errors for optimal and suboptimal β s respectively, the x axis is the value of switch error, the y axis is the density

Fig. 6 The histogram of optimal β intervals for Algorithm 2 where the model is Africa_1T12, the x axis is the value of optimal log(1+ β) 
intervals in each iteration, and the y axis is the number of replicates in 1000 iterations. The x axis of the red dash line is the value of log(1+ β0) 
where β0 is the truth
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to 1. The value of mutation and recombination rate per 
time are both set to be 10−4 . As noted above, the diploid 
solution surface algorithm scales quadratically in the 
reference panel size, as opposed to linearly for the hap-
loid algorithm. For this reason, we considered a shorter 

sequence length and a smaller panel size. We set the 
sequence length to be about 10MB and use a reference 
panel 100 haplotypes. After generating 102 samples from 
the model, we choose the first two columns of the gen-
otype matrix as the focal and 3 to 102 columns as the 

Fig. 7 The histogram of optimal β intervals for Algorithm 1 where the model is Africa_1T12, the x axis is the value of optimal log(1+ β) 
intervals in each iteration, the y axis is the number of replicates in 1000 iterations. The x axis of the red dash line is the true value of log(1+ β0) we 
used to generate data. The left panel is the histogram under the Hamming loss, the right panel is histogram under the weighted Hamming loss

Fig. 8 The histogram of switch errors for optimal and suboptimal β s respectively under the Africa_1T12 model, the x axis is the value of switch 
error, the y axis is the density
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panel. An example of one run of the experiment is shown 
in Fig. 3. In this experiment, the algorithm achieves mini-
mum switch error when log(1+ β) is around 2.

Figure  4 shows the results of running this experi-
ment 1000 times. In contrast to the haploid case, the 
optimal setting of β is systematically higher compared 
to the value based on the population-scaled rate, which 
is again shown as a red dashed line. Although the best 
β intervals seem to be more dispersed than the ones 
in the imputation problem, most log(1+ β) intervals 
are clustered on the right of the red dash line and are 
between 2 and 4. Moreover, only a few β s fall into the 
same partition as the red line. We also noticed for that 
some iterations, the optimal β interval is near 0. This 
can occur if there is one or more very closely related 
haplotypes in the reference panel. To validate these 
results, we compared the distribution of switch error 
using a β from the modal interval in Fig.  4 (we chose 
23.0), and compared it to that obtained when the β was 
suboptimally set according to the scaled rate of recom-
bination. Figure 5 shows there is a difference of switch 
errors by using these two β s, with the distribution of 
switch error under the optimal setting possessing more 
mass at zero.

Finally, we repeated the phasing experiment using 
the Africa_1T12 demographic model. We simulated 
20% of chromosome 22, so that the sequence length is 
about 10Mb, and imputed a diploid genotype sequence 
using a reference panel of size 100. From Fig. 6 we con-
clude the distribution of optimal log(1+ β) intervals 
has a similar pattern as in the fixed population size 
case. Increasing β—that is, penalizing recombinations 
more heavily—leads to lower switch error. Figures  7 
and 8 shows the differences if we use optimal and sub-
optimal β respectively. The differences are more pro-
nounced compared to the preceding section: more than 
half of the simulations using the “optimal” setting had 
lower switch error than almost every simulation using 
the “suboptimal” setting.

Conclusions
In this paper, we derived a new algorithm for computing 
all possible solutions to the Li-Stephens haplotype copy-
ing model, as well as its diploid extension, as a function 
of the recombination rate parameter. Our results work 
by exploiting convex structure in the Viterbi decoding 
algorithm used to compute the optimal (frequentist) LS 
haplotype copying path. Our algorithms partition the 
LS parameter space into regions where the output of the 
model is constant. We showed how these can be useful 
for studying imputation and phasing accuracy, two of the 
most important uses of the LS model.

Our methods work by interpreting the LS model as a 
method for performing changepoint detection. Although 
this perspective appears to be new as far as the LS model 
goes (but see [24]), it has appeared in the literature before 
in other forms. The CROPS algorithm [25] is a general 
procedure for computing the solution space of change-
point models as a function of a penalty parameter, which 
could also be applied here. The main difference between 
our contribution and theirs is that the CROPS algorithm 
is iterative, requiring multiple runs of the model in order 
to compute the entire solution surface, whereas our algo-
rithm requires only a single pass over the data. Figures 1 
and 3 illustrate that, for investigating derived quantities 
such as phasing or imputation error, it seems necessary 
to compute the entire solution surface, since the error 
curves do not posses any sort of regularity (e.g., convex-
ity) which would allow one to know when a globally opti-
mal solution has been found. However, for very large data 
sets, the iterative approach of the CROPS algorithm may 
be preferable.

Some further refinements to our algorithms are pos-
sible. While we showed in simulations that for diploid 
phasing that there is a gap between the β used for gen-
erating the samples and the optimal β for LS models, our 
computation of β is based on constant recombination 
rate. In contrast, most popular phasing and imputation 
packages, for example BEAGLE [26] or IMPUTE2 [15], 
use a recombination map whose value changes based on 
the genetic distance between each marker site. We do not 
see an easy way to modify our algorithm to accommodate 
this type of analysis since it is not even clear what the 
resulting output would be. A similar difficulty was noted 
by [9] in the context of the fastLS algorithm.

The size of the reference panel considered in our simu-
lation study is relatively small, especially for the diploid 
phenotype phasing setting, where we only used a refer-
ence panel with a size equal to 100. We had to choose this 
small value because the complexity of our Algorithm  2 
is at least quadratic with the size of the panel: the two 
nested for loops lead to O(N 2) scaling, and the number 
of vertices in Jℓ also has some dependence on N, though 
we do not currently understand the precise relation-
ship. In contemporary imputation and phasing studies, 
the panel size is much larger, e.g. 2× 105 individuals in 
[27]. Their study results indicate the imputation of low-
frequency variants can be highly benefited from a large 
reference panel with accurately phased genotypes. A 
potential direction is thus to scale our algorithm to the 
setting where the size of the reference panel is large.
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