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Abstract 

Background Recently we developed a gene orthology inference tool based on genome rearrangements (Journal of 
Bioinformatics and Computational Biology 19:6, 2021). Given a set of genomes our method first computes all pairwise 
gene similarities. Then it runs pairwise ILP comparisons to compute optimal gene matchings, which minimize, by tak-
ing the similarities into account, the weighted rearrangement distance between the analyzed genomes (a problem 
that is NP-hard). The gene matchings are then integrated into gene families in the final step. The mentioned ILP 
includes an optimal capping that connects each end of a linear segment of one genome to an end of a linear seg-
ment in the other genome, producing an exponential increase of the search space.

Results In this work, we design and implement a heuristic capping algorithm that replaces the optimal capping 
by clustering (based on their gene content intersections) the linear segments into m ≥ 1 subsets, whose ends are 
capped independently. Furthermore, in each subset, instead of allowing all possible connections, we let only the ends 
of content-related segments be connected. Although there is no guarantee that m is much bigger than one, 
and with the possible side effect of resulting in sub-optimal instead of optimal gene matchings, the heuristic works 
very well in practice, from both the speed performance and the quality of computed solutions. Our experiments 
on primate and fruit fly genomes show two positive results. First, for complete assemblies of five primates the version 
with heuristic capping reports orthologies that are very similar to the orthologies computed by the version of our tool 
with optimal capping. Second, we were able to efficiently analyze fruit fly genomes with incomplete assemblies dis-
tributed in hundreds or even thousands of contigs, obtaining gene families that are very similar to FlyBase families. 
Indeed, our tool inferred a higher number of complete cliques, with a higher intersection with FlyBase , when com-
pared to gene families computed by other inference tools. We added a post-processing for refining, with the aid 
of the mcl algorithm, our ambiguous families (those with more than one gene per genome), improving even more 
the accuracy of our results. Our approach is implemented into a pipeline incorporating the pre-computation of gene 
similarities and the post-processing refinement of ambiguous families with mcl . Both the original version with opti-
mal capping and the new modified version with heuristic capping can be downloaded, together with their detailed 
documentations, at https:// gitlab. ub. uni- biele feld. de/ gi/ FFGC or as a Conda package at https:// anaco nda. org/ bioco 
nda/ ffgc.

Keywords Comparative genomics, Double-cut-and-join, Indels, Gene orthology

Background
The study of distances and parsimonious evolutionary 
scenarios based on large-scale genome rearrangements 
traditionally depends on the pre-computation of gene 
families. Computing such a distance is usually polyno-
mial when genomes have at most one gene per family 
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[1–3] or NP-hard otherwise [4–8]. These works adopt 
several rearrangement models and among the most pop-
ular ones is the double-cut-and-join (DCJ) operation [9], 
which mimics organizational rearrangements, such as 
inversions, fusions, fissions and translocations.

In our research group an alternative (NP-hard) fam-
ily-free setting for genome rearrangement approaches 
was proposed in 2013 [10]. Our studies were further 
extended, resulting in a model that does not require 
the pre-computation of gene families and, besides DCJ 
operations, takes into account insertions and deletions 
of DNA segments, collectively called indels [11, 12]. This 
model is able to infer pairwise orthologs between two 
genomes directly, simultaneously based on gene simi-
larities and rearrangements. In practice, its optimization 
function can be solved exactly due to an ILP formula-
tion [12] that is called FF-DCJ-Indel and also reports an 
optimal matching of orthologs between the two analyzed 
genomes. (The ILP FF-DCJ-Indel is itself based on the 
previous formulations for family-based approaches [7, 
8].)

With these achievements we were able to invert the 
traditional paradigm of genome rearrangement studies: 
instead of requiring the gene families to proceed with 
rearrangement comparisons, it became possible to use 
rearrangement comparisons for inferring the gene fami-
lies.1 Indeed, in our previous work [13], we did a first 
attempt of using FF-DCJ-Indel for inferring genome-
scale gene families across several species. More precisely, 
given a set of genomes, our method first computes all 
pairwise optimal gene matchings, which are integrated 
into gene families in the second step, resulting in a com-
plete pipeline called OrthoFFGC,2 whose inferences 
displayed good quality in the analysis of completely 
assembled genomes.

However, the integrated FF-DCJ-Indel may not con-
verge in some cases, in particular when the number of 
segments of a genome is large, e.g. for genomes that are 
not completely assembled but split in several contigs. 
The main reason is that each ILP pairwise comparison 
includes an optimal capping that must allow the end of 
any linear segment of one genome to be matched to the 

end of any linear segment of the other genome. The opti-
mal capping then produces an exponential increase of the 
search space.

In this work, we design and implement a heuristic 
capping algorithm that replaces the optimal capping by 
clustering (based on their gene content intersections) 
the linear segments into m ≥ 1 subsets, so that the ends 
of the linear segments in the same subset S can only be 
matched to elements of S. Furthermore, in each subset, 
instead of allowing all possible connections, we let only 
the ends of content-related segments be connected. 
Although there is no guarantee that m is much bigger 
than one, and with the possible side effect of resulting in 
sub-optimal instead of optimal gene matchings, the heu-
ristic works very well in practice, from both the speed 
performance and the quality of computed solutions.

We call OrthoFFGC≈ the new complete pipeline 
adopting the heuristic capping for FF-DCJ-Indel . Our 
experiments on five primate genomes show that for 
complete assemblies OrthoFFGC≈ reports orthologies 
that are very similar to those computed by OrthoFFGC , 
which is the version of our tool with optimal capping. 
Moreover, with OrthoFFGC≈ we can efficiently analyze 
fruit fly genomes with incomplete or heavily fragmented 
assemblies distributed in hundreds or even thousands of 
contigs. Considering 11 fruit fly genomes whose assem-
blies are split into 507 contigs on average and using 
FlyBase orthologies (https:// flyba se. org) as reference, we 
compared the gene families inferred by OrthoFFGC≈ 
to Oma [14, 15], ProteinOrtho [16], and Poff [17]. Our 
results show that OrthoFFGC≈ inferred a higher num-
ber of complete cliques of genes, with a higher intersec-
tion with FlyBase , when compared to gene families 
computed by other inference tools.

This paper is an extended version of a work recently 
presented at WABI [18]. In this extension, besides the 
already mentioned analysis of five primate genomes, we 
added a post-processing step that was not included in 
the work presented at WABI: refining, with the aid of 
the mcl algorithm [19], our ambiguous families (those 
with more than one gene per genome), which improved 
even more the accuracy of our results. Another relevant 
point of the extension presented here is the optimiza-
tion of several aspects of our implementation, achieving 
running times that are similar to the fastest alternative 
tools ProteinOrtho and Poff for the Drosophila dataset, 
despite the use of pairwise ILP computations.

1 Another attempt called msoar (Shi, Zhang and Jiang, BMC Bioinformatics 
11:10, 2010) was made before our studies, the differences being that msoar 
first infers gene families based on similarities and then computes a matching 
based on a heuristic including structural rearrangements and tandem dupli-
cations, while FF-DCJ-Indel takes similarities and rearrangements simulta-
neously into account for inferring an optimal matching, in a rearrangement 
model including DCJ and mimicking all content modifications with inser-
tions and deletions of DNA segments. The tool msoar was not maintained 
and is no longer operational, therefore we could never compare its perfor-
mance to FF-DCJ-Indel.
2 Our method was originally called DiffMGC [13], here renamed to 
OrthoFFGC.

https://flybase.org
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Orthology inference via family‑free genome 
rearrangements
For studying large-scale genome rearrangements a high-
level view of a chromosome is adopted. In this view each 
chromosome is represented by a sequence of genes. Since 
each gene is an oriented DNA fragment, we need to 
distinguish its two possible representations: a gene  g is 
represented by the symbol  g itself, if it is read in direct 
orientation, or by the symbol  g  , if it is read in reverse 
orientation. In our notation, all genes of a linear chromo-
some are concatenated in a string that can be read in any 
of the two directions and is flanked by square brackets. 
As an example, let C = [ 6 1 8 9 4 ] be a linear chromo-
some. A genome is then a set of chromosomes and can be 
transformed with the following types of mutations: 

1 Structural rearrangements (DCJ operations): A 
cut performed on a chromosome  C of a genome A 
separates two adjacent genes of  C. A double-cut 
and join or DCJ applied on genome A is the opera-
tion that performs cuts in two different positions 
of distinct chromosomes or of the same chromo-
some of A , creating four open ends, and joins these 
open ends in a different way [1, 9]. For example, 
let A = { [ 6 1 8 9 4 ], [ 3 5 7 2 ] } , and con-
sider a DCJ that cuts between genes 1 and 8 of its 
first chromosome and between genes  7 and  2 of 
its second chromosome, creating segments 6 1• , 
•8 9 4 , 3 5 7• and  •2 (where the symbols • rep-
resent the open ends). If we join the first with the 
fourth and the second with the third open end, we 
get  A′

= { [ 6 1 2 ], [ 3 5 7 8 9 4 ] } , that is, the 
described DCJ operation is a translocation trans-
forming A into A′ . Indeed, a DCJ operation can cor-
respond not only to a translocation but to several 
structural rearrangements, such as an inversion, a 
fusion or a fission.

2 Content-modifying (indel operations): The content 
of a chromosome can be modified with insertions 
and with deletions of blocks of contiguous genes, col-
lectively called indel operations. Note that at most 
one chromosome can be entirely deleted or inserted 
at once. As an example, consider the deletion of 
segment  7 8 9 from chromosome  [ 3 5 7 8 9 4 ] , 
resulting in chromosome [ 3 5 4 ] . A gene cannot be 
deleted and then reinserted, nor inserted and then 
deleted. This restriction prevents the free lunch arti-
fact of sorting one genome into the other by simply 
deleting the chromosomes of the first and inserting 
the chromosomes of the second, ignoring their com-
mon parts.

Computing an optimal set of orthologs between two 
genomes
We can represent the pairwise similarities between 
the genes of genome A and the genes of genome B in 
the so called gene similarity graph [10], denoted by 
S(A,B) . This is a weighted bipartite graph that has a 
vertex for each gene in genome A and a vertex for each 
gene in genome B . Furthermore, for each pair of genes 
g1 ∈ A, g2 ∈ B , denote by σ(g1, g2) their normalized sim-
ilarity, a value that ranges in the interval [0, 1]. Given 
a filter  ̥, if σ(g1, g2) is not discarded by  ̥, there is an 
edge e connecting g1 and g2 in S(A,B) whose score is 
σ(e) = σ(g1, g2) . In addition, to each vertex u of S(A,B) 
we assign a weight w(u) that can be obtained as follows: 
w(u) = max{σ(uv) | uv ∈ S(A,B)} , that is, w(u) is the 
maximum similarity among the edges incident to the 
vertex (or gene) u in S(A,B).

A matching  O from  S(A,B) , here also called an 
ortholog-set, defines the tuple (A,B,O) , in which every 
two genes a,  b, such that a ∈ A , b ∈ B and ab ∈ O , 
are considered to be orthologs. The complement of O , 
denoted by Õ , is the set composed of genes whose cor-
responding vertices in S(A,B) are O-unsaturated.

The DCJ-indel distance did
dcj

(A,B,O) is the minimum 
number of DCJ and indel operations required to trans-
form A into B assuming the orthologs given by O and 
allowing only the genes belonging to the complement Õ 
to be inserted or deleted. It can be computed using an 
approach relying on the cycles and paths of a graph that 
represents the structural relation between genomes 
A and B according to the ortholog-set O [3, 12] (this 
graph is equivalent to a consistent decomposition of the 
family-free relational graph, described in the next sub-
section and represented in Fig.  1 (bottom)). Together 
with the scores of edges and vertices of S(A,B) , the 
DCJ-indel distance did

dcj
 allows the computation of the 

weighted rearrangement distance wdid
dcj

 [12]:

where

Then, given that M is the set of all possible ortholog-sets 
in S(A,B) , the rearrangement distance between A and B 
is the result of the following optimization:

wdid
dcj

(A,B,S ,O) = did
dcj

(A,B,O)+ |O| − σ(O)+ w(Õ),

σ(O) =
∑

e∈O

σ(e) and w(Õ) =
∑

v∈Õ

w(v).

GenDiFF(A,B,S) = min
O∈M

{wdid
dcj

(A,B,S ,O)} .
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Fig. 1 On the top part is displayed the gene similarity graph S(A,B) of genomes A = { [ 1 2 3 4 ] [ 5 6 ] } 
and B = { [ 7 8 9 10 11 12 13 ] } and next to it a table with the ranking of four distinct ortholog-sets. On the middle the rearrangement 
scenarios induced by two of these ortholog-sets are shown. On the bottom part the family-free relational graph FFR(A,B,S) is illustrated, 
highlighting the edges of the decomposition corresponding to the (black) ortholog-set O = {{1,7} , {3,10}, {4,9}, {5,13}} . (This decomposition 
has two AB-paths, one AA-path and one cycle.) All extremity and indel edges in FFR(A,B,S) are respectively scored and weighted according 
to S(A,B) but the scores and weights of edges not derived from O or Õ are omitted
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Figure  1 shows examples of ortholog-sets and their 
distances. Denote by OrthoFF(A,B,S) an optimal 
ortholog-set in S(A,B) , which is an ortholog-set whose 
rearrangement distance equals GenDiFF(A,B,S) . Com-
puting the rearrangement distance GenDiFF(A,B,S) and 
finding an optimal ortholog-set  OrthoFF(A,B,S) are 
NP-hard problems [12].

Family-free relational graph
For solving both NP-hard problems GenDiFF(A,B,S) 
and OrthoFF(A,B,S) we adopt the approach of decom-
posing the following graph.

The family-free relational graph FFR(A,B,S) , shown 
in Fig.  1  (bottom), represents all possible weighted dis-
tances corresponding to all candidate ortholog-sets in 
S(A,B) [12]. Given a gene m, denote the extremities of m 
by mh (head) and mt (tail). The graph FFR(A,B,S) has a 
set V (A) with a vertex for each of the two extremities of 
each gene of genome A and a set V (B) with a vertex for 
each of the two extremities of each gene of genome B.

The set of edges is partitioned into several subsets:

• Sets EA

adj and EB

adj contain adjacency edges connecting 
adjacent extremities of genes in A and in B.

• The set Eγ contains, for each edge ab ∈ S(A,B) , 
an extremity edge connecting at to bt , and an 
extremity edge connecting ah to bh . To both edges 
atbt and ahbh , that are called siblings, we assign 
the same score σ(ab) of the edge ab in S(A,B) : 
σ(atbt) = σ(ahbh) = σ(ab).

• Sets EA

id and EB

id contain indel edges connecting the 
two extremities of each gene in A and in B . Each indel 
edge mhmt receives the weight w(m) of vertex m in 
S(A,B) : w(mhmt) = w(m) . (Recall that w(m) is the 
maximum score among the edges incident to m in 
S(A,B).)

Consistent decompositions of the family-free relational 
graph
A decomposition of FFR(A,B,S) is a collection of edges 
building vertex-disjoint components, that can be cycles 
and/or paths, covering all vertices of FFR(A,B,S) . A 
decomposition must be consistent, implying that it is 
induced by a set of edges L exclusively composed of 
pairs of siblings and without any pair of incident edges. 
The set L is called a sibling-set and corresponds to one 
precise ortholog-set of S(A,B) , denoted by OL . Note 
that |L| = 2|OL| and σ(L) = 2σ(OL) . The complement 
of L , denoted by L̃ , is composed of the indel-edges cor-
responding to the genes of ÕL (the complement of OL ), 

therefore |L̃| = |ÕL| and w(L̃) = w(ÕL) . The consistent 
decomposition induced by L is denoted by D[L] and cor-
responds to:

The consistent decomposition D[L] covers all vertices of 
FFR(A,B,S) and is composed of cycles and paths. The 
paths connect the ends of linear chromosomes in both 
genomes and can be of three types: either AA-path, or 
BB-path or AB-path.

The structure of D[L] has all necessary information for 
computing the value wdid

dcj
(A,B,S ,OL) , therefore we can 

say that wdid
dcj

(A,B,S ,OL) = wdid
dcj

(D[L]) [12]. Given 
that S is the set of all possible sibling-sets in FFR(A,B,S) , 
we can modify our optimization problem to

Assuming that a sibling-set L⋆ gives the optimal 
solution for the problem GenDiFF(A,B,S) , then 
OrthoFF(A,B,S) = OL⋆.

Capping
The end of a linear chromosome is called telomere. The 
telomeres are also the ends of the paths of any consistent 
decomposition. Therefore, if κ(A) is the number of lin-
ear chromosomes in A and κ(B) is the number of linear 
chromosomes in B the number of paths in any decompo-
sition is κ(A)+ κ(B) . Our ILP is able to capture all neces-
sary properties from the cycles of a decomposition, but 
cannot handle paths. A way to overcome this problem is 
by linking all paths of any decomposition with a known 
technique called capping [2].

Capping a consistent decomposition
The idea of the capping is to split the telomeres into dis-
joint pairs and then to connect the two elements of each 
pair, so that all paths are linked into cycles. The only 
restriction is that a pair cannot contain telomeres from 
the same genome, therefore, if the numbers of telomeres 
in the two genomes are different, some dummy telomeres 
need to be created, as we describe in the following.

Suppose that D[L] is any consistent decomposition of 
FFR(A,B,S) . For each telomere (vertex) v, add to D[L] a 
cap vertex θv and connect v to θv by an adjacency edge. 
Now let  θ(A) (respectively θ(B) ) be the set of all cap 
vertices in A (respectively in B ). Note that, since each 
linear chromosome has two ends, the cardinalities of 
these sets must be even. Moreover, if |θ(A)| �= |θ(B)| , 
the cardinalities of these sets must be equalized. Let 
p∗ = max{κ(A), κ(B)} and a∗ = |κ(A)− κ(B)| . For 

D[L] = L ∪ L̃ ∪ EA

adj ∪ EB

adj.

GenDiFF(A,B,S) = min
L∈S

{wdid
dcj

(D[L])}.
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equalizing the cardinalities with the minimum number of 
extra vertices, we need to add 2a∗ extra cap vertices to the 
set with smaller cardinality. These extra cap vertices must 
be split into pairs (arbitrarily chosen) so that the vertices 
of each pair are connected by a dummy adjacency edge 
in D[L] . Denote by θ̂ (A) and θ̂ (B) the sets with equalized 
cardinalities and let P be a capping-set, which is a perfect 
matching between them: for γ ∈ θ̂ (A) and γ ′

∈ θ̂ (B) , if 
γ γ ′

∈ P , then γ and γ ′ are connected by a cap edge. Let 
D̂[L,P] be a capped decomposition of D[L] with capping-
set P. It is easy to see that D̂[L,P] is composed of cycles 
only.

Optimal capping
So far we explained how to guarantee that all paths in any 
decomposition are linked into cycles. Note, however, that 
there are (2p∗)! ways of completely matching the vertices 

of sets θ̂ (A) and θ̂ (B) . For a given decomposition D[L] , 
any of these possibilities, say capping-set P, would pro-
duce a capped decomposition D̂[L,P] , and capping the 
same D[L] with distinct capping-sets may produce dis-
tinct weighted costs. Let PL be an optimal capping-set 
for  D[L] , that is, D̂[L,PL] has the minimum weighted 
cost among all cappings of D[L].3 In a previous work we 
have shown that wdid

dcj
(D̂[L, PL]) = wdid

dcj
(D[L]) [12]. 

Therefore, for a consistent decomposition D[L] , any of its 
optimal capping-sets preserves the weighted cost of D[L] , 
reporting both did

dcj
(A,B,OL) and wdid

dcj
(A,B,S ,OL) . 

Figure 2 (top) highlights an optimal capping of a consist-
ent decomposition.

Fig. 2 On the top part we show the capping of the decomposition corresponding to the (black) ortholog-set O = {{1,7} , {3,10}, {4,9}, {5,13}} 
from the gene similarity graph S(A,B) of Fig. 1 (bottom). Each red vertex is a cap vertex. Each filled (red) vertex is connected to a telomere 
(chromosome/path ends). The unfilled vertices represent the extra (equalizing) vertices connected by a dummy adjacency. The capping is a perfect 
matching of the complete bipartite graph of the cap vertices. The optimal capping for this decomposition is highlighted. It closes each of its 
paths into a separate cycle. (In general, an optimal capping of a decomposition may link up to 4 paths into a single cycle [8]). On the bottom part 
is displayed the complete family-free graph FFR(A,B,S) optimally capped. Cap edges are unweighted. Scores of extremity edges and weights 
of indel edges are omitted

3 There can be several co-optimal capping-sets for the same decomposition 
D[L] and each optimal capping-set links up to 4 cycles of D[L] into a single 
cycle [8].
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Optimally capped family-free relational graph
All consistent decompositions share the same telomeres, 
therefore a set of capping-sets for one decomposition is 
also a set of capping-sets of any other decomposition. If 
we then simply add all possible capping-sets to the fam-
ily-free relational graph, which implies adding a complete 
bipartite graph with partite sets θ̂ (A) and θ̂ (B) , we guar-
antee that an optimal solution can be found. Let the so-
called optimal capping (represented in Fig.  2 (bottom)) 
of FFR(A,B,S) with the minimum number of extra ele-
ments be denoted by θ⋆(FFR(A,B,S)) and be defined as 
follows: 

(1⋆)  Add the set of cap vertices θ̂ (A) = θ1
A
, θ2

A
, . . . , θ

2p∗
A

 
and connect each telomere of genome A to one of 
these cap vertices by an adjacency edge added to 
EA

adj.
(2⋆)  Similarly, add the set of cap vertices 

θ̂ (B) = θ1
B
, θ2

B
, . . . , θ

2p∗
B

 and connect each telomere 
of genome B to one of these cap vertices by an 
adjacency edge added to EB

adj.
(3⋆)  Add (arbitrarily chosen) p∗ − κ(A) dummy adja-

cency edges to EA

adj and p∗ − κ(B) dummy adja-
cency edges to EB

adj . (Note that only one of the two 
genomes may have dummy adjacencies.)

(4⋆)  Connect all cap vertices in θ̂ (A) to all cap vertices 
in θ̂ (B) with cap edges. The set of all cap edges is 
denoted by Eθ.

Since all 2p∗ cap vertices in A are connected to all 2p∗ 
cap vertices in B and any perfect matching of these edges 
is a valid capping, the search space of our optimization 
problem is multiplied by (2p∗)! . Denote by P the set of 
all possible capping-sets (perfect matchings) between the 
vertices from θ̂ (A) and θ̂ (B) . The optimization problem 
over θ⋆(FFR(A,B,S)) can be rewritten as

Assuming that a sibling-set L⋆ (together with one 
of its optimal capping-sets) gives the optimal solu-
tion for GenDiFF(A,B,S) , an optimal ortholog-set is 
OrthoFF(A,B,S) = OL⋆ . Both problems GenDiFF 
and OrthoFF can be solved with the ILP formulation 
FF-DCJ-Indel [12], which can be found in Additional 
file 1: Section (A).

Integration of pairwise optimal ortholog-sets into gene 
families
In our previous work [13], the ILP FF-DCJ-Indel solving 
OrthoFF (with optimal capping) was integrated in a tool 

GenDiFF(A,B,S) = min
L∈S,P∈P

{wdid
dcj

(D̂[L, P]}.

called OrthoFFGC for inferring gene families across sev-
eral species. The pipeline can be summarized as follows: 
given a set of n genomes, gene similarities and ortholog-
sets are computed for all pairwise comparisons and sim-
ply integrated into an n-partite graph. The connected 
components of this graph are the inferred gene families.

In this work we modify this pipeline by replacing the 
optimal capping by a heuristic lighter one, as we explain 
in the next section.

Heuristic capping
Conceptually our approach can handle genomes with 
several linear chromosomes and even partially assembled 
genomes distributed into many contigs/scaffolds: each 
of these is a linear segment and could simply be treated 
as the same object that we so far called chromosome. 
However, as already explained, the optimal capping mul-
tiplies the search space of FFR(A,B) by (2p∗)! where p∗ 
is the maximum between the number of linear segments 
in genomes A and B . This effect makes it unfeasible to 
analyze genomes with a large number of segments with 
our ILP over an optimally capped family-free relational 
graph.

One way of overcoming this issue is by adopting a 
lighter capping, for example by removing some edges 
from the complete bipartite graph of θ̂ (A) and θ̂ (B) , and/
or by partitioning these sets into subsets that are capped 
independently. In any case it is important to guarantee 
that a capping is valid, that is, it allows to find a cap-
ping-set (a perfect matching of the cap vertices). A valid 
lighter capping may not include the optimal capping-sets, 
and therefore may not preserve the computed weighted 
costs. Note, however, that even if the weighted costs are 
not preserved, the ranking of the ortholog-sets/sibling-
sets may not be affected. In Fig. 3 we show examples of 
arbitrary lighter valid cappings and their effects on the 
ortholog-set ranking.

Perfect shared-content graph with thresholds τ and ǫ
Our goal is therefore to develop a lighter heuristic cap-
ping that may potentially preserve the original (optimal) 
ranking of the best ortholog-sets/sibling-sets. We achieve 
this by connecting cap vertices only between the telom-
eres of the linear segments (contigs or chromosomes) 
that (potentially) share most of their genomic contents. 
This is because those telomeres have a higher chance of 
being in the same paths of the best consistent decompo-
sitions of the family-free relational graph.

Given two linear segments A ∈ A and B ∈ B , let their 
shared genomic content �(A,B) be the sum of the scores 
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of edges in S connecting genes from A to genes from B. 
Formally, for A ⊆ A , B ⊆ B , we have

Now let C(A,B) = (UA,UB, F) be the bipartite shared-
content graph where the vertex sets are

Initially the set of edges is F = {AB | A ∈ UA,B

∈ UB and �(A,B) > 0} . Each edge AB has a score �(A,B) . 
We then reduce the size of C(A,B) = (UA,UB, F) , by 
removing edges based on two parameters: 

 (i) Given a positive integer τ , we remove edges from F 
by applying a filtering procedure that simply iter-
ates over UA ∪ UB , keeping in F only the τ edges of 
highest scores for each vertex.

 (ii) Then, given a rational threshold  ǫ ∈ (0, 1] , the 
remaining edges are again filtered out to remove 
weak relations between linear segments: let the score 
of a vertex v ∈ C(A,B) be �(v) = max

uv∈F
{�(u, v)} ; the 

�(A,B) =
∑

g1g2 ∈ S

g1 ∈ A
g2 ∈ B

σ(g1g2).

UA = {A : A is a linear segment in A} and
UB = {B : B is a linear segment in B} .

edges inciding on v that have scores below ǫ �(v) are 
removed.

Capping attempt induced by the shared‑content graph
The shared-content graph will now induce our capping 
procedure. The idea is to allow cap connections only 
between the ends of linear segments that are connected 
in C . Therefore, the linear segments that are in the same 
connected component of C will be capped together, inde-
pendently from the linear segments that are in other 
connected components. In other words, the connected 
components of C will impose a partitioning of the cap-
ping procedure.

Let us then assume that C has a single connected compo-
nent. Note that a capping induced by C can only be valid if 
its partite sets UA and UB are of the same size. This neces-
sary condition also applies and is sufficient for the optimal 
capping, but here it is not sufficient: even when UA and 
UB are of the same size, since not all connections between 
the ends of the linear segments in UA and in UB are pre-
sent, the induced capping could be invalid (Fig. 4a). Here 
the necessary and sufficient condition for a valid capping is 

Fig. 3 Examples of two arbitrary lighter valid cappings of the family-free relational diagram from Fig. 1 (bottom) and their effects on the ranking 
of ortholog-sets/sibling-sets represented in Fig. 1 (top). Both cappings affect the computed distances, but, while the capping shown in the left 
(cyan) preserves the optimal ranking, the one shown in the right (orange) does not
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the existence of a perfect matching in C(A,B) , as stated in 
Lemma 1, whose proof relies on a theorem closely related 
to perfect matchings and demonstrated by Hall [20] in 
1935. Denote by N (S) the neighborhood of a vertex set S, 
that is, the set of all vertices adjacent to some vertex of S.

Theorem 1 (Hall’s marriage theorem) Let G = (U ,V ,E) 
be a bipartite graph. There exists a matching in G that cov-
ers the vertex set V if and only if for each subset S ⊆ V  , 
|S| ≤ |N (S)|.

Note that a perfect matching exists in C if and only 
if the condition of Theorem  1 holds for both VA and 
VB . We can now establish the relation between perfect 
matchings in C and the validity of the capping it induces 
in the family-free relational graph.

Lemma 1 A perfect matching exists in C(A,B) if and 
only if the capping of FFR(A,B,S) induced by C is valid.

Proof If a perfect matching M exists in C , for each edge 
AB in M, in the induced capping of FFR(A,B,S) the pair 
of cap vertices connected to the ends of A can be connected 
in any of the two distinct ways to the pair of cap vertices 
connected to the ends of B, resulting in a capping-set.
The converse is shown by contraposition. Suppose that 
a maximum cardinality matching M in C is not a perfect 
matching. Therefore, by Hall’s marriage theorem, there 
exists some S in C such that |N (S)| < |S| . Let S′ be the set 
of cap vertices in the capping induced by C for all linear 
segments in S. Since the connection of these cap vertices 
follows C and each linear segment has two cap vertices, 
it is clear that |S′| = 2|S| and |N (S′)| = 2|N (S)| , hence, 
|N (S′)| < |S′| . By the pigeonhole principle, at least 2 cap 
vertices (because |N (S′)| and |S′| are even numbers) will 
not be incident to any cap edge, therefore no capping-set 
exists.  �

Fig. 4 a Example of a shared-content graph C(A,B) with omitted edge scores. The genomes A and B have linear segments A1..5 and B1..5 , 
respectively. The capping of FFR(A,B,S) induced by C is invalid. b Transformation of C into a perfect shared-content graph Ĉ(A,B) : vertex sets S1 
and S2 represent Hall violators (among other possibilities) that demand the creation of dummy segments ϕ1

B
 and ϕ1

A
 , respectively. Dotted edges 

represent those that are non-matchable and must be removed from Ĉ  after the completion is finished. Notice that the component with vertices 
A1, A2, A3, B1,ϕ

1
B
and B2 is not a complete bipartite subgraph. (In both (a, b), we give an abstract illustration of the capped FFR where only cap 

vertices, cap edges and dummy adjacencies are represented explicitly, while vertices of gene extremities between cap vertices are represented 
by a line with small dots. In addition, colored solid edges represent a maximum cardinality matching between cap vertices, while the cap edges 
not in the matching are dashed grey)
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Building the perfect shared‑content graph
We will now describe a procedure for transforming the 
shared-content graph C(A,B) into a perfect shared-con-
tent graph Ĉ(A,B) that has at least one perfect matching, 
as shown in Algorithm 1. In the completion loop, dummy 
segments are iteratively created until a perfect matching 
is possible. If a maximum cardinality matching M is found 
but is not a perfect matching, a Hall violator set S can be 
found as follows. Let v be a vertex unsaturated by M, then 
S = {v} ∪ {u | u is reachable from v by an M-alternating 
path} . Finally, |S| − |N (S)| dummy segments are created 
and connected to each linear segment in S.

An edge in Ĉ(A,B) is matchable if it is part of at least 
one perfect matching and non-matchable otherwise. 
Once the completion loop is finished, Ĉ  admits at least 
one perfect matching and its matchable edges can be 
identified efficiently [21]. The last step of Algorithm  1 
is then removing from Ĉ  all non-matchable edges. An 
example of the construction of a perfect shared-content 
graph is illustrated above, in Fig. 4b.

Heuristically capped family-free relational graph
The bipartite perfect shared-content graph Ĉ(A,B) 
has edge set F̂  and partite sets ÛA = UA ∪U

ϕ
A

 and 
ÛB = UB ∪U

ϕ
B

 , where UA and UB are the sets of linear 
segments and Uϕ

A
 and Uϕ

B
 the sets of dummy segments. 

Recall that the sets ÛA and ÛB have the same cardinality, 
which here we denote by p≈ . The heuristic capping θ≈ of 
the family-free relational graph FFR(A,B,S) induced by 
Ĉ(A,B) is shown in Fig. 4b and described as follows: 

(1≈)  Add the set of cap vertices 
θ̂ (A) = θ1

A
, θ2

A
, . . . , θ

2p≈
A

 . For i = 1 . . . |UA| , asso-
ciate each linear segment Ai ∈ UA to cap ver-
tices θ2i−1

A
 and θ2i

A
 and connect with adjacency 

edges one telomere of  Ai to θ2i−1
A

 and the other 
to θ2i

A
 . Note that 2|Uϕ

A
| cap vertices remain 

disconnected.
(2≈)  Similarly, add cap vertices θ̂ (B) = θ1

B
, θ2

B
, . . . , θ

2p≈
B

 . 
For j = 1 . . . |VB| , associate each linear segment 
Bj ∈ UB to cap vertices θ2j−1

B
 and θ2j

B
 and connect 

with adjacency edges one telomere of Bj to θ2j−1
B

 
and the other to θ2j

B
 . Again, 2|Uϕ

B
| cap vertices 

remain disconnected.
(3≈)  For i◦ = 1 . . . |U

ϕ
A
| and i = |UA| + i◦ , con-

nect the pair of cap vertices θ2i−1
A

 and θ2i
A

 by a 

dummy adjacency edge, associating this pair 
to the dummy segment ϕi◦

A
∈ U

ϕ
A

 . Similarly, for 
j◦ = 1 . . . |U

ϕ
B
| and j = |UB| + j◦ , connect the pair 

of cap vertices θ2j−1
B

 and θ2j
B

 by a dummy adja-
cency edge, associating this pair to the dummy 
segment ϕj◦

B
∈ U

ϕ
B

.
(4≈)  For each edge AB ∈ F̂  , let A ∈ ÛA and B ∈ ÛB 

be associated, respectively, to the cap vertices 
θ2i−1
A

, θ2i
A

∈ θ̂ (A) and θ
2j−1
B

, θ
2j
B

∈ θ̂ (B) . Con-
nect the cap vertices with cap edges in the two 
crosswise possibilities: {θ2i−1

A
, θ

2j−1
B

} , {θ2i
A
, θ

2j
B
} 

(1st of A to 1st of B, 2nd of A to 2nd of B), and 
also {θ2i−1

A
, θ

2j
B
} , {θ2i

A
, θ

2j−1
B

} (1st of A to 2nd of B, 
2nd of A to 1st of B). [Simple optimization: if the 
edge AB is a complete component in Ĉ(A,B) (that 
is, both vertices A and  B have degree one) and, 
moreover, either A or B is a dummy segment, 
then, since both ends of a dummy segment are 
“equivalent”, we simply remove one of the two 
crosswise connections of cap vertices described 
above (arbitrarily chosen).] The set of all cap 
edges is denoted by Eθ.
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Denote by P≈ the set of all possible capping-sets (per-
fect matchings) between the vertices of θ̂ (A) and θ̂ (B) . The 
optimization problem over θ≈(FFR(A,B,S)) is defined as

Assuming that a sibling set L≈ (together with one of its 
best heuristic capping-sets) gives the optimal solution 
for GenDiFF≈(A,B,S) , a best heuristic ortholog-set is 
OrthoFF≈(A,B,S) = OL≈

 . Both problems GenDiFF≈ 
and OrthoFF≈ can also be solved with the ILP 
FF-DCJ-Indel , shown in Additional file 1: Section (A).

Search space compared to optimal capping
If the threshold τ is similar to the numbers κ(A) and κ(B) 
of linear segments in each genome, and in the unlike sit-
uation where all linear segments from A are connected 
to all linear segments from B in Ĉ  , the heuristic capping 
induced by Ĉ  may be as large as the optimal capping.

Therefore, τ is thought to be smaller than κ(A) and 
κ(B) , effectively reducing the number of capping-sets. 
We could not yet estimate this reduction as a function of 
τ , though. As our experimental results with real genomes 
show (details below, in the next section), with a small τ 
the heuristic capping leans to a considerably smaller 
number of capping-sets in practice.

GenDiFF≈(A,B,S) = min
L∈S,P∈P≈

{wd
id

dcj
(D̂[L, P])} .

Integration of pairwise heuristic ortholog-sets into gene 
families
The ILP FF-DCJ-Indel solving OrthoFF≈ (with heuristic 
capping) is the core of a new version of our tool, called 
OrthoFFGC≈ , for inferring gene families across several 
species, as illustrated in Fig. 5. Recall that each family is a 
connected component of the n-partite graph obtained by 
the simple integration of the computed pairwise ortholog-
sets. An ambiguous family corresponds to a connected 
component of the n-partite graph that has more than 
one gene from the same genome. Otherwise we have a 
resolved family, which can be either complete, when it 
contains one gene per genome, or incomplete otherwise. 
Figure  6 illustrates these types of families in a 3-partite 
graph.

Refinement of ambiguous gene families via mcl
Both pipelines OrthoFFGC and OrthoFFGC≈ may pro-
duce a small number of large ambiguous families with 
low connectivity that can benefit from a further refine-
ment (e.g. by removing bridges or making edge cuts in 

ambiguous

complete incomplete

resolved
Fig. 6 Types of families given by the integration of three 
ortholog-sets into a 3-partite graph

n genomes pairwise comparisons:

Pairwise
similarities

Pairwise
ortholog-set

Pairwise
similarities

Pairwise
ortholog-set

...
...

...

Pairwise
similarities

Pairwise
ortholog-set

Integration of the
multiple pairwise
ortholog-sets:
inferred gene

families

Optional
refinement of
ambiguous gene
families via mcl

(≈)

(≈)

(≈)

Fig. 5 The pipeline of our approach is straightforward: our gene families are the connected components of the n-partite graph derived 
by the integration of the computed ortholog-sets. The resulting ambiguous families can be optionally refined with the help of mcl
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areas with small edge-connectivity) in order to produce 
more cohesive families. In an optional extra step, as 
shown in Fig. 5, our pipeline refines ambiguous families 
with the help of mcl [19], a fast and scalable cluster-
ing algorithm based on simulation of stochastic flow in 
graphs.

Implementation and experiments
The pipeline OrthoFFGC (with optimal capping) was 
previously integrated into the FFGC workflow [12, 22], 
which includes the pre-computation of gene similari-
ties, allowing therefore the automatic generation of fami-
lies directly from the genome data. We implemented the 
new pipeline OrthoFFGC≈ (with heuristic capping) as 
another extension of the same workflow. The optional 
mcl step for refining ambiguous families is integrated to 
both OrthoFFGC and OrthoFFGC≈ . The implemen-
tation and its documentation can be downloaded from 
our GitLab server at https:// gitlab. ub. uni- biele feld. de/ 
gi/ FFGC or as a Conda package at https:// anaco nda. org/ 
bioco nda/ ffgc. (Note that mcl is an external dependency, 
automatically installed only if the download is obtained 
from Conda.)

An important recent modification of our pipeline is 
that now it performs pairwise similarity computations 
by default via diamond [23] and no longer via blast [24]. 
This change and some further optimizations improved 
greatly the running times of OrthoFFGC≈ , that are now 
closer to the fastest alternative tools. Suprisingly, adopt-
ing diamond also produced a small improvement of the 
quality of our gene families, compared to the version pre-
viously published [18]. The current values for quality and 
running times can be found in the end of this section.

Alternative inference tools used for comparison purposes
ProteinOrtho and Poff.     ProteinOrtho [16] is a fast 
tool that clusters genes to find significant orthologous 
groups, based on a heuristic of reciprocal best hits of the 
corresponding sequence similarities. Its Poff extension 
[17] takes into account gene adjacencies as an additional 
criterion for the discrimination of orthologs.
Oma.   Based on sequence similarities and on phylogeny, 

Oma [25] is the underlying tool of the homonym online 
orthology browser. The standalone tool allows custom 
genomes to be compared to infer orthologous groups. 
Two types of families are reported: hierarchical ortholo-
gous groups ( OmaHOGs ), which may include ambiguous 
families, and resolved groups ( OmaGroups).

Gene similarities in OrthoFFGC/OrthoFFGC≈
The computation of gene similarities is done via FFGC 
and is described as follows. For any given pair of genes x 
and y, the software diamond is used for computing the 
value bitscr(x → y) , that corresponds to the bitscore of 
gene  x with respect to gene  y. If gene  x is in genome A 
and gene  y is in genome  B , both bitscr(x → y) and 
bitscr(y → x) must be taken into consideration for cal-
culating the similarity σ(x, y) , that is equivalent to their 
relative reciprocal score [26]:

Negligible similarities are then identified and discarded 
by the filter   ̥, by requiring that (1) for a first given 
threshold ̥ǫ ∈ (0, 1] , σ(x, y) ≥ ̥ǫ (absolute filter); and 
(2) for a second given threshold ̥t ∈ (0, 1] , the value 
bitscr(x → y) must be at least a ̥t-fraction of the high-
est bitscore of x with respect to any gene in B and the 
value bitscr(y → x) must be at least a ̥t-fraction of the 
highest bitscore of y with respect to any gene in A (rela-
tive minimum reciprocal similarity for additional hits, 
which was developed and used in the alternative tools 
ProteinOrtho [16] and Poff [17]). Once these condi-
tions are fulfilled, the edge xy is added to the gene simi-
larity graph with score σ(xy) = σ(x, y) . The adopted 
values are ̥ǫ = 0.1 and ̥t = 0.8 , the latter also being 
adopted for ProteinOrtho and Poff whenever these 
tools were used in our experiments.

The default values of the other parameters for the 
pre-computation of gene similarities via FFGC were 
kept, except for one of them: the minimum number of 
genomes for which each gene must share some similar-
ity in is set to 1, otherwise genes not similar to any other 
gene, which should be still considered in indels, would 
not appear in the chromosomal gene order.

Computational environment and additional parameters 
of OrthoFFGC≈
We ran experiments in a  2.7GHz multi-core machine. 
Whenever possible, tasks ran using 8 cores. As an ILP 
solver, we used Gurobi.

For the post-processing refinement of ambiguous fami-
lies in OrthoFFGC≈ , we used the default parameters of 
mcl with a conservative “inflation” value of 1.4 suggested 
in its manual (https:// micans. org/ mcl).

In the following we will describe our experiments, 
based on genome assemblies fetched from NCBI. We per-
formed two distinct comparisons. First, based on a set of 

σ(x, y) =
bitscr(x → y)+ bitscr(y → x)

bitscr(x → x)+ bitscr(y → y)
.

https://gitlab.ub.uni-bielefeld.de/gi/FFGC
https://gitlab.ub.uni-bielefeld.de/gi/FFGC
https://anaconda.org/bioconda/ffgc
https://anaconda.org/bioconda/ffgc
https://micans.org/mcl
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five completely assembled primate genomes, we com-
pared OrthoFFGC≈ families (inferred with the heuris-
tic capping) to OrthoFFGC families (inferred with the 
optimal capping). Then, based on the set of 11 Drosophi-
las including partially assembled genomes, we compared 
OrthoFFGC≈ families to the gene families inferred by 
other tools, using FlyBase families as reference.

Analysis of completely assembled primate genomes: 
comparing OrthoFFGC≈ to OrthoFFGC
The goal of this experiment is to evaluate the impact of 
the heuristic capping on running times and on the qual-
ity of results, with respect to the optimal capping in a 
dataset of large genomes. We compared families inferred 
by OrthoFFGC and OrthoFFGC≈ , considering the 
following five primate genomes: bonobo (P.  paniscus), 
chimpanzee (P.  troglodytes), gorilla (G.  gorilla), human 
(H.  sapiens) and orangutan (P.  abelii). Those genomes 
comprise roughly 20,000 ∼ 22,000 genes distributed in 
25 chromosomes, except for the human genome that 
has 24 chromosomes. The average number of edges 
(similarities) for each vertex (gene) in the gene similarity 
graphs is 1.09, totaling 429268 vertices and 234297 edges. 

Considering only the genes with multiple similarities, the 
average degree is 2.93.

For the capping heuristic in OrthoFFGC≈ , we set 
ǫ = 0.1 and τ = 2 , a choice that reduces significantly the 
number of capping sets, but still gives some options to 
the ILP solver. With these choices, the largest number 
of edges in Ĉ(A,B) was for the comparison of gorilla and 
human. In this case, Ĉ  has 27 edges distributed among 
21 components with 2 vertices, and 2 components with 4 
vertices (including 1 dummy segment). That corresponds 
to at most ∼ 1.1× 106 capping-sets in θ≈ , while the pair-
wise comparison with the optimal θ⋆ has 50! capping-sets.

This significant reduction of the search space ena-
bled 7 out of 10 pairwise comparisons with the heu-
ristic capping to finish within the time limit of 60 min, 
in contrast to the lengthy comparisons with the opti-
mal capping, that were limited to 1440  min (24  h). 
The results are shown in Table  1, where we can also 
see that the size of the ortholog-sets O , the number 
of DCJ-indel operations did

dcj
 , and the weighted rear-

rangement distances wdid
dcj

 of the two approaches are 
almost identical for all pairwise comparisons. While 
21090 families were inferred using OrthoFFGC , 21101 
were inferred using OrthoFFGC≈ , and 99.2% of those 

Table 2 Numbers of classified genes and families inferred by OrthoFFGC≈ and ProteinOrtho for the dataset of five primates

Method
# of classified genes # of families

(out of 107317) ambiguous resolved incomplete resolved complete
OrthoFFGC≈ 100872 656 3719 16726
intersection 98156 154 2016 14770

ProteinOrtho 100481 1795 2939 14810

Table 1 ILP running times, DCJ-indel distances and weighted DCJ-indel distances with optimal and heuristic cappings for the 
pairwise comparisons of primate genomes
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families are the same, showing that moving from the 
optimal capping to the heuristic capping of the fam-
ily-free relational diagram had very little impact on 
the gene family inference. The total running time of 
OrthoFFGC≈ was of about 321 min (of which 306 min 
were spent by the pairwise ILP computations). The 
numbers of classified genes and of inferred families are 
displayed in Table 2.

This experiment accomplished its goal, by showing 
that the heuristic capping can have the same quality of 
the optimal capping, while having substantial impact 
in speeding up the ILP computations. Indeed, the time 
required to analyze the dataset of five primates with 
OrthoFFGC≈ was quite reasonable. However it was 
still considerably longer than the fastest alternative 
tool: the total running time of ProteinOrtho for the 
same dataset was of about 19  min only, with the cor-
responding numbers of classified genes and inferred 
families being also displayed in Table  2. It is worth 
mentioning that in OrthoFFGC≈ a resolved family has 
the additional confidence of resulting from indepen-
dently computed pairwise ortholog-sets. Therefore it 
is remarkable that OrthoFFGC≈ could identify a sig-
nificantly higher number of resolved complete fami-
lies, including almost all resolved complete families 
also inferred by ProteinOrtho.

Analysis of partially assembled Drosophila (fruit flies) 
genomes
The FlyBase consortium (https:// flyba se. org) sequenced, 
assembled and annotated the genomes of 12 Drosophilas 
with ∼ 12,000–16,000 protein-coding genes (for genes 

with multiple transcripts, we kept only the longest), how-
ever only 11 of those genomes are available on NCBI 
together with the complete annotation: D.  ananassae, 
D. erecta, D. grimshawi, D. melanogaster, D. mojavensis, 
D. persimilis, D. sechellia, D. simulans, D. virilis, D. wil-
listoni and D. yakuba.

In the family-free analysis, the total number of vertices 
and edges in the gene similarity graphs are 1514930 and 
633521, respectively, with average degrees of 0.83 con-
sidering all vertices, and 2.22 looking only at those genes 
with multiple similarities. For the capping heuristic in 
OrthoFFGC≈ , we again set ǫ = 0.1 and τ = 2.

Average numbers of cap edges and capping‑sets in θ⋆ 
and in θ≈
The analyzed Drosophila genomes have 507 contigs on 
average, therefore each optimally capped family-free rela-
tional diagram has 1,014 × 1,014 = 1,028,196 cap edges 
and an unfeasible total of 1, 014! capping-sets on average.

In contrast, considering the perfect shared-content 
graphs for all pairwise Drosophila comparisons, 99.7% of 
the components in those graphs have only 1 linear seg-
ment in each part of the graph. In the remaining 0.3%, 
80% have 7 or fewer linear segments in each part, with 
the largest component having 76 linear segments in each 
part. The perfect shared-content graphs have an average 
of 1,419 edges. For that number of edges, each heuristi-
cally capped family-free relational diagram has 5,676 cap 
edges on average. As the exact number of perfect match-
ings in arbitrary graphs is not trivial to estimate, we com-
puted an upper limit for the average number of distinct 
capping-sets by the Bregman-Cinc inequality [27] of the 
permanent of a squared matrix: ∼ 45! , with median ∼ 18!.

Table 3 Numbers of classified genes and families inferred by the different methods for the dataset of 11 Drosophilas

Method
# of classified genes # of families
(out of 151493) ambiguous res. incomplete res. complete

FlyBase 136190 1558 4769 6189
OmaHOGs 135406 1077 7213 5028
(∩FlyBase) (124548) (564) (3151) (4884)
OmaGroups 131523 - 9673 4688
(∩FlyBase) (121775) (-) (2868) (4323)

ProteinOrtho 136623 1151 6133 5569
(∩FlyBase) (125638) (610) (3541) (5373)

Poff 135364 439 7388 5758
(∩FlyBase) (124884) (226) (3601) (5391)

OrthoFFGC≈ 130870 902 5813 5899
(∩FlyBase) (122048) (414) (3406) (5658)

OrthoFFGC≈ +mcl 130870 648 6458 6072
(∩FlyBase) (122048) (374) (3598) (5687)

https://flybase.org
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Method TP FP FN precision recall F1-score
OmaHOGs 553,507 22,650 61,336 0.961 0.900 0.929
OmaGroups 500,500 1,618 114,343 0.997 0.814 0.896

ProteinOrtho 569,600 22,983 45,243 0.961 0.926 0.943
Poff 537,469 4,062 77,374 0.992 0.874 0.930

OrthoFFGC≈ 559,220 31,150 55,623 0.947 0.910 0.928
OrthoFFGC≈ +mcl 547,931 4,126 66,912 0.993 0.891 0.939
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(without and with mcl refinement), based on the dataset with eleven Drosophilas 
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Benchmark for our experiments
Reference families were obtained directly from FlyBase 
(https:// flyba se. org). Since the set of genes classified in 
FlyBase is slightly different from the set of genes present 
with their coding sequences in database files, we filtered 
out a small portion ( ∼ 7% ) of genes in FlyBase families 
so that only those present in the NCBI databases with 
their coding sequences were kept. Prior to any compari-
son of inferred families to FlyBase families, we also fil-
tered out from the inferred families genes not present in 
FlyBase families.

Comparing OrthoFFGC≈ to ProteinOrtho , Poff and Oma
We analyzed the dataset of 11 Drosophila genomes for 
comparing the performance of OrthoFFGC≈ against 
ProteinOrtho , Poff and Oma , providing as additional 
input to the latter the phylogenetic tree (obtained from 
FlyBase) of the same 11 Drosophilas. Unlocalized con-
tigs were not filtered out, resulting in genomes with 11 to 
1041 linear segments.

Quality of  inferred families The numbers of families in 
FlyBase and those inferred by OmaHOGs , OmaGroups , 
ProteinOrtho , Poff and OrthoFFGC≈ are all big-
ger than 12,000. In order to have a hint on the quality of 
results, we focus on the intersections with FlyBase fami-
lies and on precision and recall values computed for all 
methods.

The numbers of classified genes and families inferred 
by all methods, together with the respective intersections 
with FlyBase are shown in Table  3. Figure  7 shows the 
comparative picture focusing on the numbers of resolved 
incomplete and complete families for all methods.

We also counted the numbers of pairwise gene homol-
ogies that are classified as true positive (TP), false positive 

(FP) and false negative (FN) as follows. First, denote a 
subset of size two by 2-subset. Now let H

fly
 be the set 

composed of 2-subsets of all FlyBase families, and, for 
any considered set of families X, let HX be the set com-
posed of 2-subsets of all families in X. Then TP of X is the 
size of H

fly
∩HX , FN of X is the size of H

fly
\HX and FP 

of X is the size of HX \Hfly
 . Based on that we computed 

the values of precision 
(

TP
TP+FP

)
 and recall 

(
TP

TP+FN

)
 for 

the sets of families inferred by the considered methods.
The results (Fig.  8) show that, while all methods per-

formed quite well, our tool OrthoFFGC≈ had the lowest 
precision. However, when the optional mcl refinement 
step is enabled in our pipeline, its overall results were 
improved, with an increase of the precision that is bigger 
than the corresponding decrease of the recall, reflected 
on the increase of the F1-score.

Running times We compiled the running times of the 
four methods in Table  4. The (preprocessing) step 1 of 
computing the pairwise sequence similarities is required 
by all methods, but, while Oma has an internal implemen-
tation of the Smith-Waterman algorithm, the other meth-
ods used diamond [23], which is the fastest known tool 
for accomplishing that task.

Having at hand the sequence similarities, ProteinOrtho 
and Oma build families taking into consideration align-
ments and similarities. Additionally, Oma takes into 
consideration the provided phylogenetic tree of the 11 
Drosophilas. The running times of these procedures 
are given in step 3. For the other methods, we separated 
in step 2 core procedures that use additional criteria to 
find pairwise orthologs: Poff does it via the analysis of 
synteny by means of conserved gene adjacencies, while 
OrthoFFGC≈ generates and solves the ILPs for obtaining 
pairwise OrthoFF≈ gene orthologies.

Table 4 Running times for computing Drosophila families

⋄ Computed with diamond
∗ The optional additional mcl refinement step on OrthoFFGC≈ takes 2 extra minutes

https://flybase.org
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Adopting diamond for similarity computations instead 
of blast was an important recent modification of our 
pipeline. This change and the use of more restrictive 
parameters for the heuristic capping improved greatly 
the running times of our method compared to its previ-
ous version [18]. With these improvements the running 
times of OrthoFFGC≈ are now the fastest among the 
compared tools for the Drosophila dataset.

Conclusions and discussion
We devised and implemented a heuristic capping for 
improving our recently developed pipeline OrthoFFGC 
[13] for inferring gene families based on genome rear-
rangements. In OrthoFFGC we adopted an optimal cap-
ping including all connections between the ends of linear 
segments to allow all possible (2p∗)! capping-sets in the 
input of the ILP FF-DCJ-Indel that infers the OrthoFF 
pairwise orthologs. However, due to the heavy optimal 
capping, FF-DCJ-Indel can hardly converge when ana-
lyzing larger genomes (such as mammals) and fails in 
handling a pair of genomes if one or both of them (with 
at least the dimension of a fruit fly genome) are distrib-
uted in a hundred contigs.

In contrast, the new pipeline OrthoFFGC≈ adopts 
a lighter heuristic capping including connections only 
between linear segments that share gene content. This 
leads to a much smaller number of capping-sets in 
the input of the same FF-DCJ-Indel that here infers 
OrthoFF≈ pairwise orthologs. Despite the use of a heu-
ristic capping, our evaluation showed that the quality of 
the orthologies inferred by OrthoFFGC≈ was very good.

A first evaluation on a dataset of five completely assem-
bled primate genomes was done by comparing the fami-
lies inferred by the previous workflow OrthoFFGC with 
the new OrthoFFGC≈ . The results showed that the gene 
families inferred by the two pipelines are virtually the 
same. Therefore, in practice, the heuristic capping did 
not have a negative impact on the inferred gene families, 
essentially preserving the original (optimal) orthology 
relations.

A second evaluation was done on a dataset of 11 Dros-
ophila genomes, including partially assembled genomes 
distributed in several contigs, by adopting the gene fami-
lies curated by the FlyBase consortium as a benchmark. 
In this experiment we compared OrthoFFGC≈ to other 
genome-scale methods, namely Oma , ProteinOrtho 
and Poff . The running times of OrthoFFGC≈ for the 

Drosophila dataset are better than the fastest alterna-
tive tools ProteinOrtho and Poff , showing that our 
implementation is very efficient, despite the pairwise 
ILP computations. Furthermore, our results showed that 
OrthoFFGC≈ was able to infer only 3 resolved families 
less than ProteinOrtho and had the highest number of 
resolved complete families in common with FlyBase , 
and these intersections were improved after the refine-
ment of ambiguous families with mcl . Concerning the 
analysis of pairwise gene orthologies derived from the 
inferred families, all tools had a very good performance. 
After the mcl refinement our tool reached the second 
best F1-score, with a difference of only 0.004 to the best 
F1-score achieved by ProteinOrtho.

The bottleneck of our pipeline is still the ILP pairwise 
computations that, despite the gain of heuristic cap-
ping, solve instances of an NP-hard problem. However, 
the heuristic capping allows to efficiently analyze large 
genomes such as mammals and, at least for genomes with 
the dimension of a fruit fly genome, OrthoFFGC≈ lifts 
the limitation of requiring chromosome-level assembled 
genomes, expanding to a great extent its applicability.
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