
Rubert and Braga
Algorithms for Molecular Biology (2023) 18:14
https://doi.org/10.1186/s13015-023-00238-y

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Efficient gene orthology inference
via large-scale rearrangements
Diego P. Rubert1,2 and Marília D. V. Braga2*

Abstract

Background Recently we developed a gene orthology inference tool based on genome rearrangements (Journal of
Bioinformatics and Computational Biology 19:6, 2021). Given a set of genomes our method first computes all pairwise
gene similarities. Then it runs pairwise ILP comparisons to compute optimal gene matchings, which minimize, by tak-
ing the similarities into account, the weighted rearrangement distance between the analyzed genomes (a problem
that is NP-hard). The gene matchings are then integrated into gene families in the final step. The mentioned ILP
includes an optimal capping that connects each end of a linear segment of one genome to an end of a linear seg-
ment in the other genome, producing an exponential increase of the search space.

Results In this work, we design and implement a heuristic capping algorithm that replaces the optimal capping
by clustering (based on their gene content intersections) the linear segments into m ≥ 1 subsets, whose ends are
capped independently. Furthermore, in each subset, instead of allowing all possible connections, we let only the ends
of content-related segments be connected. Although there is no guarantee that m is much bigger than one,
and with the possible side effect of resulting in sub-optimal instead of optimal gene matchings, the heuristic works
very well in practice, from both the speed performance and the quality of computed solutions. Our experiments
on primate and fruit fly genomes show two positive results. First, for complete assemblies of five primates the version
with heuristic capping reports orthologies that are very similar to the orthologies computed by the version of our tool
with optimal capping. Second, we were able to efficiently analyze fruit fly genomes with incomplete assemblies dis-
tributed in hundreds or even thousands of contigs, obtaining gene families that are very similar to FlyBase families.
Indeed, our tool inferred a higher number of complete cliques, with a higher intersection with FlyBase , when com-
pared to gene families computed by other inference tools. We added a post-processing for refining, with the aid
of the mcl algorithm, our ambiguous families (those with more than one gene per genome), improving even more
the accuracy of our results. Our approach is implemented into a pipeline incorporating the pre-computation of gene
similarities and the post-processing refinement of ambiguous families with mcl . Both the original version with opti-
mal capping and the new modified version with heuristic capping can be downloaded, together with their detailed
documentations, at https:// gitlab. ub. uni- biele feld. de/ gi/ FFGC or as a Conda package at https:// anaco nda. org/ bioco
nda/ ffgc.

Keywords Comparative genomics, Double-cut-and-join, Indels, Gene orthology

Background
The study of distances and parsimonious evolutionary
scenarios based on large-scale genome rearrangements
traditionally depends on the pre-computation of gene
families. Computing such a distance is usually polyno-
mial when genomes have at most one gene per family

*Correspondence:
Marília D. V. Braga
mbraga@cebitec.uni-bielefeld.de
1 Faculdade de Computação, Universidade Federal de Mato Grosso
do Sul, Campo Grande, Brazil
2 Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld
University, Bielefeld, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00238-y&domain=pdf
https://gitlab.ub.uni-bielefeld.de/gi/FFGC
https://anaconda.org/bioconda/ffgc
https://anaconda.org/bioconda/ffgc

Page 2 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

[1–3] or NP-hard otherwise [4–8]. These works adopt
several rearrangement models and among the most pop-
ular ones is the double-cut-and-join (DCJ) operation [9],
which mimics organizational rearrangements, such as
inversions, fusions, fissions and translocations.

In our research group an alternative (NP-hard) fam-
ily-free setting for genome rearrangement approaches
was proposed in 2013 [10]. Our studies were further
extended, resulting in a model that does not require
the pre-computation of gene families and, besides DCJ
operations, takes into account insertions and deletions
of DNA segments, collectively called indels [11, 12]. This
model is able to infer pairwise orthologs between two
genomes directly, simultaneously based on gene simi-
larities and rearrangements. In practice, its optimization
function can be solved exactly due to an ILP formula-
tion [12] that is called FF-DCJ-Indel and also reports an
optimal matching of orthologs between the two analyzed
genomes. (The ILP FF-DCJ-Indel is itself based on the
previous formulations for family-based approaches [7,
8].)

With these achievements we were able to invert the
traditional paradigm of genome rearrangement studies:
instead of requiring the gene families to proceed with
rearrangement comparisons, it became possible to use
rearrangement comparisons for inferring the gene fami-
lies.1 Indeed, in our previous work [13], we did a first
attempt of using FF-DCJ-Indel for inferring genome-
scale gene families across several species. More precisely,
given a set of genomes, our method first computes all
pairwise optimal gene matchings, which are integrated
into gene families in the second step, resulting in a com-
plete pipeline called OrthoFFGC,2 whose inferences
displayed good quality in the analysis of completely
assembled genomes.

However, the integrated FF-DCJ-Indel may not con-
verge in some cases, in particular when the number of
segments of a genome is large, e.g. for genomes that are
not completely assembled but split in several contigs.
The main reason is that each ILP pairwise comparison
includes an optimal capping that must allow the end of
any linear segment of one genome to be matched to the

end of any linear segment of the other genome. The opti-
mal capping then produces an exponential increase of the
search space.

In this work, we design and implement a heuristic
capping algorithm that replaces the optimal capping by
clustering (based on their gene content intersections)
the linear segments into m ≥ 1 subsets, so that the ends
of the linear segments in the same subset S can only be
matched to elements of S. Furthermore, in each subset,
instead of allowing all possible connections, we let only
the ends of content-related segments be connected.
Although there is no guarantee that m is much bigger
than one, and with the possible side effect of resulting in
sub-optimal instead of optimal gene matchings, the heu-
ristic works very well in practice, from both the speed
performance and the quality of computed solutions.

We call OrthoFFGC≈ the new complete pipeline
adopting the heuristic capping for FF-DCJ-Indel . Our
experiments on five primate genomes show that for
complete assemblies OrthoFFGC≈ reports orthologies
that are very similar to those computed by OrthoFFGC ,
which is the version of our tool with optimal capping.
Moreover, with OrthoFFGC≈ we can efficiently analyze
fruit fly genomes with incomplete or heavily fragmented
assemblies distributed in hundreds or even thousands of
contigs. Considering 11 fruit fly genomes whose assem-
blies are split into 507 contigs on average and using
FlyBase orthologies (https:// flyba se. org) as reference, we
compared the gene families inferred by OrthoFFGC≈
to Oma [14, 15], ProteinOrtho [16], and Poff [17]. Our
results show that OrthoFFGC≈ inferred a higher num-
ber of complete cliques of genes, with a higher intersec-
tion with FlyBase , when compared to gene families
computed by other inference tools.

This paper is an extended version of a work recently
presented at WABI [18]. In this extension, besides the
already mentioned analysis of five primate genomes, we
added a post-processing step that was not included in
the work presented at WABI: refining, with the aid of
the mcl algorithm [19], our ambiguous families (those
with more than one gene per genome), which improved
even more the accuracy of our results. Another relevant
point of the extension presented here is the optimiza-
tion of several aspects of our implementation, achieving
running times that are similar to the fastest alternative
tools ProteinOrtho and Poff for the Drosophila dataset,
despite the use of pairwise ILP computations.

1 Another attempt called msoar (Shi, Zhang and Jiang, BMC Bioinformatics
11:10, 2010) was made before our studies, the differences being that msoar
first infers gene families based on similarities and then computes a matching
based on a heuristic including structural rearrangements and tandem dupli-
cations, while FF-DCJ-Indel takes similarities and rearrangements simulta-
neously into account for inferring an optimal matching, in a rearrangement
model including DCJ and mimicking all content modifications with inser-
tions and deletions of DNA segments. The tool msoar was not maintained
and is no longer operational, therefore we could never compare its perfor-
mance to FF-DCJ-Indel.
2 Our method was originally called DiffMGC [13], here renamed to
OrthoFFGC.

https://flybase.org

Page 3 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

Orthology inference via family‑free genome
rearrangements
For studying large-scale genome rearrangements a high-
level view of a chromosome is adopted. In this view each
chromosome is represented by a sequence of genes. Since
each gene is an oriented DNA fragment, we need to
distinguish its two possible representations: a gene g is
represented by the symbol g itself, if it is read in direct
orientation, or by the symbol g , if it is read in reverse
orientation. In our notation, all genes of a linear chromo-
some are concatenated in a string that can be read in any
of the two directions and is flanked by square brackets.
As an example, let C = [6 1 8 9 4] be a linear chromo-
some. A genome is then a set of chromosomes and can be
transformed with the following types of mutations:

1 Structural rearrangements (DCJ operations): A
cut performed on a chromosome C of a genome A
separates two adjacent genes of C. A double-cut
and join or DCJ applied on genome A is the opera-
tion that performs cuts in two different positions
of distinct chromosomes or of the same chromo-
some of A , creating four open ends, and joins these
open ends in a different way [1, 9]. For example,
let A = { [6 1 8 9 4], [3 5 7 2] } , and con-
sider a DCJ that cuts between genes 1 and 8 of its
first chromosome and between genes 7 and 2 of
its second chromosome, creating segments 6 1• ,
•8 9 4 , 3 5 7• and •2 (where the symbols • rep-
resent the open ends). If we join the first with the
fourth and the second with the third open end, we
get A′

= { [6 1 2], [3 5 7 8 9 4] } , that is, the
described DCJ operation is a translocation trans-
forming A into A′ . Indeed, a DCJ operation can cor-
respond not only to a translocation but to several
structural rearrangements, such as an inversion, a
fusion or a fission.

2 Content-modifying (indel operations): The content
of a chromosome can be modified with insertions
and with deletions of blocks of contiguous genes, col-
lectively called indel operations. Note that at most
one chromosome can be entirely deleted or inserted
at once. As an example, consider the deletion of
segment 7 8 9 from chromosome [3 5 7 8 9 4] ,
resulting in chromosome [3 5 4] . A gene cannot be
deleted and then reinserted, nor inserted and then
deleted. This restriction prevents the free lunch arti-
fact of sorting one genome into the other by simply
deleting the chromosomes of the first and inserting
the chromosomes of the second, ignoring their com-
mon parts.

Computing an optimal set of orthologs between two
genomes
We can represent the pairwise similarities between
the genes of genome A and the genes of genome B in
the so called gene similarity graph [10], denoted by
S(A,B) . This is a weighted bipartite graph that has a
vertex for each gene in genome A and a vertex for each
gene in genome B . Furthermore, for each pair of genes
g1 ∈ A, g2 ∈ B , denote by σ(g1, g2) their normalized sim-
ilarity, a value that ranges in the interval [0, 1]. Given
a filter ̥, if σ(g1, g2) is not discarded by ̥, there is an
edge e connecting g1 and g2 in S(A,B) whose score is
σ(e) = σ(g1, g2) . In addition, to each vertex u of S(A,B)
we assign a weight w(u) that can be obtained as follows:
w(u) = max{σ(uv) | uv ∈ S(A,B)} , that is, w(u) is the
maximum similarity among the edges incident to the
vertex (or gene) u in S(A,B).

A matching O from S(A,B) , here also called an
ortholog-set, defines the tuple (A,B,O) , in which every
two genes a, b, such that a ∈ A , b ∈ B and ab ∈ O ,
are considered to be orthologs. The complement of O ,
denoted by Õ , is the set composed of genes whose cor-
responding vertices in S(A,B) are O-unsaturated.

The DCJ-indel distance did
dcj

(A,B,O) is the minimum
number of DCJ and indel operations required to trans-
form A into B assuming the orthologs given by O and
allowing only the genes belonging to the complement Õ
to be inserted or deleted. It can be computed using an
approach relying on the cycles and paths of a graph that
represents the structural relation between genomes
A and B according to the ortholog-set O [3, 12] (this
graph is equivalent to a consistent decomposition of the
family-free relational graph, described in the next sub-
section and represented in Fig. 1 (bottom)). Together
with the scores of edges and vertices of S(A,B) , the
DCJ-indel distance did

dcj
 allows the computation of the

weighted rearrangement distance wdid
dcj

 [12]:

where

Then, given that M is the set of all possible ortholog-sets
in S(A,B) , the rearrangement distance between A and B
is the result of the following optimization:

wdid
dcj

(A,B,S ,O) = did
dcj

(A,B,O)+ |O| − σ(O)+ w(Õ),

σ(O) =
∑

e∈O

σ(e) and w(Õ) =
∑

v∈Õ

w(v).

GenDiFF(A,B,S) = min
O∈M

{wdid
dcj

(A,B,S ,O)} .

Page 4 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

Fig. 1 On the top part is displayed the gene similarity graph S(A,B) of genomes A = { [1 2 3 4] [5 6] }
and B = { [7 8 9 10 11 12 13] } and next to it a table with the ranking of four distinct ortholog-sets. On the middle the rearrangement
scenarios induced by two of these ortholog-sets are shown. On the bottom part the family-free relational graph FFR(A,B,S) is illustrated,
highlighting the edges of the decomposition corresponding to the (black) ortholog-set O = {{1,7} , {3,10}, {4,9}, {5,13}} . (This decomposition
has two AB-paths, one AA-path and one cycle.) All extremity and indel edges in FFR(A,B,S) are respectively scored and weighted according
to S(A,B) but the scores and weights of edges not derived from O or Õ are omitted

Page 5 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

Figure 1 shows examples of ortholog-sets and their
distances. Denote by OrthoFF(A,B,S) an optimal
ortholog-set in S(A,B) , which is an ortholog-set whose
rearrangement distance equals GenDiFF(A,B,S) . Com-
puting the rearrangement distance GenDiFF(A,B,S) and
finding an optimal ortholog-set OrthoFF(A,B,S) are
NP-hard problems [12].

Family-free relational graph
For solving both NP-hard problems GenDiFF(A,B,S)
and OrthoFF(A,B,S) we adopt the approach of decom-
posing the following graph.

The family-free relational graph FFR(A,B,S) , shown
in Fig. 1 (bottom), represents all possible weighted dis-
tances corresponding to all candidate ortholog-sets in
S(A,B) [12]. Given a gene m, denote the extremities of m
by mh (head) and mt (tail). The graph FFR(A,B,S) has a
set V (A) with a vertex for each of the two extremities of
each gene of genome A and a set V (B) with a vertex for
each of the two extremities of each gene of genome B.

The set of edges is partitioned into several subsets:

• Sets EA

adj and EB

adj contain adjacency edges connecting
adjacent extremities of genes in A and in B.

• The set Eγ contains, for each edge ab ∈ S(A,B) ,
an extremity edge connecting at to bt , and an
extremity edge connecting ah to bh . To both edges
atbt and ahbh , that are called siblings, we assign
the same score σ(ab) of the edge ab in S(A,B) :
σ(atbt) = σ(ahbh) = σ(ab).

• Sets EA

id and EB

id contain indel edges connecting the
two extremities of each gene in A and in B . Each indel
edge mhmt receives the weight w(m) of vertex m in
S(A,B) : w(mhmt) = w(m) . (Recall that w(m) is the
maximum score among the edges incident to m in
S(A,B).)

Consistent decompositions of the family-free relational
graph
A decomposition of FFR(A,B,S) is a collection of edges
building vertex-disjoint components, that can be cycles
and/or paths, covering all vertices of FFR(A,B,S) . A
decomposition must be consistent, implying that it is
induced by a set of edges L exclusively composed of
pairs of siblings and without any pair of incident edges.
The set L is called a sibling-set and corresponds to one
precise ortholog-set of S(A,B) , denoted by OL . Note
that |L| = 2|OL| and σ(L) = 2σ(OL) . The complement
of L , denoted by L̃ , is composed of the indel-edges cor-
responding to the genes of ÕL (the complement of OL),

therefore |L̃| = |ÕL| and w(L̃) = w(ÕL) . The consistent
decomposition induced by L is denoted by D[L] and cor-
responds to:

The consistent decomposition D[L] covers all vertices of
FFR(A,B,S) and is composed of cycles and paths. The
paths connect the ends of linear chromosomes in both
genomes and can be of three types: either AA-path, or
BB-path or AB-path.

The structure of D[L] has all necessary information for
computing the value wdid

dcj
(A,B,S ,OL) , therefore we can

say that wdid
dcj

(A,B,S ,OL) = wdid
dcj

(D[L]) [12]. Given
that S is the set of all possible sibling-sets in FFR(A,B,S) ,
we can modify our optimization problem to

Assuming that a sibling-set L⋆ gives the optimal
solution for the problem GenDiFF(A,B,S) , then
OrthoFF(A,B,S) = OL⋆.

Capping
The end of a linear chromosome is called telomere. The
telomeres are also the ends of the paths of any consistent
decomposition. Therefore, if κ(A) is the number of lin-
ear chromosomes in A and κ(B) is the number of linear
chromosomes in B the number of paths in any decompo-
sition is κ(A)+ κ(B) . Our ILP is able to capture all neces-
sary properties from the cycles of a decomposition, but
cannot handle paths. A way to overcome this problem is
by linking all paths of any decomposition with a known
technique called capping [2].

Capping a consistent decomposition
The idea of the capping is to split the telomeres into dis-
joint pairs and then to connect the two elements of each
pair, so that all paths are linked into cycles. The only
restriction is that a pair cannot contain telomeres from
the same genome, therefore, if the numbers of telomeres
in the two genomes are different, some dummy telomeres
need to be created, as we describe in the following.

Suppose that D[L] is any consistent decomposition of
FFR(A,B,S) . For each telomere (vertex) v, add to D[L] a
cap vertex θv and connect v to θv by an adjacency edge.
Now let θ(A) (respectively θ(B)) be the set of all cap
vertices in A (respectively in B). Note that, since each
linear chromosome has two ends, the cardinalities of
these sets must be even. Moreover, if |θ(A)| �= |θ(B)| ,
the cardinalities of these sets must be equalized. Let
p∗ = max{κ(A), κ(B)} and a∗ = |κ(A)− κ(B)| . For

D[L] = L ∪ L̃ ∪ EA

adj ∪ EB

adj.

GenDiFF(A,B,S) = min
L∈S

{wdid
dcj

(D[L])}.

Page 6 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

equalizing the cardinalities with the minimum number of
extra vertices, we need to add 2a∗ extra cap vertices to the
set with smaller cardinality. These extra cap vertices must
be split into pairs (arbitrarily chosen) so that the vertices
of each pair are connected by a dummy adjacency edge
in D[L] . Denote by θ̂ (A) and θ̂ (B) the sets with equalized
cardinalities and let P be a capping-set, which is a perfect
matching between them: for γ ∈ θ̂ (A) and γ ′

∈ θ̂ (B) , if
γ γ ′

∈ P , then γ and γ ′ are connected by a cap edge. Let
D̂[L,P] be a capped decomposition of D[L] with capping-
set P. It is easy to see that D̂[L,P] is composed of cycles
only.

Optimal capping
So far we explained how to guarantee that all paths in any
decomposition are linked into cycles. Note, however, that
there are (2p∗)! ways of completely matching the vertices

of sets θ̂ (A) and θ̂ (B) . For a given decomposition D[L] ,
any of these possibilities, say capping-set P, would pro-
duce a capped decomposition D̂[L,P] , and capping the
same D[L] with distinct capping-sets may produce dis-
tinct weighted costs. Let PL be an optimal capping-set
for D[L] , that is, D̂[L,PL] has the minimum weighted
cost among all cappings of D[L].3 In a previous work we
have shown that wdid

dcj
(D̂[L, PL]) = wdid

dcj
(D[L]) [12].

Therefore, for a consistent decomposition D[L] , any of its
optimal capping-sets preserves the weighted cost of D[L] ,
reporting both did

dcj
(A,B,OL) and wdid

dcj
(A,B,S ,OL) .

Figure 2 (top) highlights an optimal capping of a consist-
ent decomposition.

Fig. 2 On the top part we show the capping of the decomposition corresponding to the (black) ortholog-set O = {{1,7} , {3,10}, {4,9}, {5,13}}
from the gene similarity graph S(A,B) of Fig. 1 (bottom). Each red vertex is a cap vertex. Each filled (red) vertex is connected to a telomere
(chromosome/path ends). The unfilled vertices represent the extra (equalizing) vertices connected by a dummy adjacency. The capping is a perfect
matching of the complete bipartite graph of the cap vertices. The optimal capping for this decomposition is highlighted. It closes each of its
paths into a separate cycle. (In general, an optimal capping of a decomposition may link up to 4 paths into a single cycle [8]). On the bottom part
is displayed the complete family-free graph FFR(A,B,S) optimally capped. Cap edges are unweighted. Scores of extremity edges and weights
of indel edges are omitted

3 There can be several co-optimal capping-sets for the same decomposition
D[L] and each optimal capping-set links up to 4 cycles of D[L] into a single
cycle [8].

Page 7 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

Optimally capped family-free relational graph
All consistent decompositions share the same telomeres,
therefore a set of capping-sets for one decomposition is
also a set of capping-sets of any other decomposition. If
we then simply add all possible capping-sets to the fam-
ily-free relational graph, which implies adding a complete
bipartite graph with partite sets θ̂ (A) and θ̂ (B) , we guar-
antee that an optimal solution can be found. Let the so-
called optimal capping (represented in Fig. 2 (bottom))
of FFR(A,B,S) with the minimum number of extra ele-
ments be denoted by θ⋆(FFR(A,B,S)) and be defined as
follows:

(1⋆) Add the set of cap vertices θ̂ (A) = θ1
A
, θ2

A
, . . . , θ

2p∗
A

and connect each telomere of genome A to one of
these cap vertices by an adjacency edge added to
EA

adj.
(2⋆) Similarly, add the set of cap vertices

θ̂ (B) = θ1
B
, θ2

B
, . . . , θ

2p∗
B

 and connect each telomere
of genome B to one of these cap vertices by an
adjacency edge added to EB

adj.
(3⋆) Add (arbitrarily chosen) p∗ − κ(A) dummy adja-

cency edges to EA

adj and p∗ − κ(B) dummy adja-
cency edges to EB

adj . (Note that only one of the two
genomes may have dummy adjacencies.)

(4⋆) Connect all cap vertices in θ̂ (A) to all cap vertices
in θ̂ (B) with cap edges. The set of all cap edges is
denoted by Eθ.

Since all 2p∗ cap vertices in A are connected to all 2p∗
cap vertices in B and any perfect matching of these edges
is a valid capping, the search space of our optimization
problem is multiplied by (2p∗)! . Denote by P the set of
all possible capping-sets (perfect matchings) between the
vertices from θ̂ (A) and θ̂ (B) . The optimization problem
over θ⋆(FFR(A,B,S)) can be rewritten as

Assuming that a sibling-set L⋆ (together with one
of its optimal capping-sets) gives the optimal solu-
tion for GenDiFF(A,B,S) , an optimal ortholog-set is
OrthoFF(A,B,S) = OL⋆ . Both problems GenDiFF
and OrthoFF can be solved with the ILP formulation
FF-DCJ-Indel [12], which can be found in Additional
file 1: Section (A).

Integration of pairwise optimal ortholog-sets into gene
families
In our previous work [13], the ILP FF-DCJ-Indel solving
OrthoFF (with optimal capping) was integrated in a tool

GenDiFF(A,B,S) = min
L∈S,P∈P

{wdid
dcj

(D̂[L, P]}.

called OrthoFFGC for inferring gene families across sev-
eral species. The pipeline can be summarized as follows:
given a set of n genomes, gene similarities and ortholog-
sets are computed for all pairwise comparisons and sim-
ply integrated into an n-partite graph. The connected
components of this graph are the inferred gene families.

In this work we modify this pipeline by replacing the
optimal capping by a heuristic lighter one, as we explain
in the next section.

Heuristic capping
Conceptually our approach can handle genomes with
several linear chromosomes and even partially assembled
genomes distributed into many contigs/scaffolds: each
of these is a linear segment and could simply be treated
as the same object that we so far called chromosome.
However, as already explained, the optimal capping mul-
tiplies the search space of FFR(A,B) by (2p∗)! where p∗
is the maximum between the number of linear segments
in genomes A and B . This effect makes it unfeasible to
analyze genomes with a large number of segments with
our ILP over an optimally capped family-free relational
graph.

One way of overcoming this issue is by adopting a
lighter capping, for example by removing some edges
from the complete bipartite graph of θ̂ (A) and θ̂ (B) , and/
or by partitioning these sets into subsets that are capped
independently. In any case it is important to guarantee
that a capping is valid, that is, it allows to find a cap-
ping-set (a perfect matching of the cap vertices). A valid
lighter capping may not include the optimal capping-sets,
and therefore may not preserve the computed weighted
costs. Note, however, that even if the weighted costs are
not preserved, the ranking of the ortholog-sets/sibling-
sets may not be affected. In Fig. 3 we show examples of
arbitrary lighter valid cappings and their effects on the
ortholog-set ranking.

Perfect shared-content graph with thresholds τ and ǫ
Our goal is therefore to develop a lighter heuristic cap-
ping that may potentially preserve the original (optimal)
ranking of the best ortholog-sets/sibling-sets. We achieve
this by connecting cap vertices only between the telom-
eres of the linear segments (contigs or chromosomes)
that (potentially) share most of their genomic contents.
This is because those telomeres have a higher chance of
being in the same paths of the best consistent decompo-
sitions of the family-free relational graph.

Given two linear segments A ∈ A and B ∈ B , let their
shared genomic content �(A,B) be the sum of the scores

Page 8 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

of edges in S connecting genes from A to genes from B.
Formally, for A ⊆ A , B ⊆ B , we have

Now let C(A,B) = (UA,UB, F) be the bipartite shared-
content graph where the vertex sets are

Initially the set of edges is F = {AB | A ∈ UA,B

∈ UB and �(A,B) > 0} . Each edge AB has a score �(A,B) .
We then reduce the size of C(A,B) = (UA,UB, F) , by
removing edges based on two parameters:

 (i) Given a positive integer τ , we remove edges from F
by applying a filtering procedure that simply iter-
ates over UA ∪ UB , keeping in F only the τ edges of
highest scores for each vertex.

 (ii) Then, given a rational threshold ǫ ∈ (0, 1] , the
remaining edges are again filtered out to remove
weak relations between linear segments: let the score
of a vertex v ∈ C(A,B) be �(v) = max

uv∈F
{�(u, v)} ; the

�(A,B) =
∑

g1g2 ∈ S

g1 ∈ A
g2 ∈ B

σ(g1g2).

UA = {A : A is a linear segment in A} and
UB = {B : B is a linear segment in B} .

edges inciding on v that have scores below ǫ �(v) are
removed.

Capping attempt induced by the shared‑content graph
The shared-content graph will now induce our capping
procedure. The idea is to allow cap connections only
between the ends of linear segments that are connected
in C . Therefore, the linear segments that are in the same
connected component of C will be capped together, inde-
pendently from the linear segments that are in other
connected components. In other words, the connected
components of C will impose a partitioning of the cap-
ping procedure.

Let us then assume that C has a single connected compo-
nent. Note that a capping induced by C can only be valid if
its partite sets UA and UB are of the same size. This neces-
sary condition also applies and is sufficient for the optimal
capping, but here it is not sufficient: even when UA and
UB are of the same size, since not all connections between
the ends of the linear segments in UA and in UB are pre-
sent, the induced capping could be invalid (Fig. 4a). Here
the necessary and sufficient condition for a valid capping is

Fig. 3 Examples of two arbitrary lighter valid cappings of the family-free relational diagram from Fig. 1 (bottom) and their effects on the ranking
of ortholog-sets/sibling-sets represented in Fig. 1 (top). Both cappings affect the computed distances, but, while the capping shown in the left
(cyan) preserves the optimal ranking, the one shown in the right (orange) does not

Page 9 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

the existence of a perfect matching in C(A,B) , as stated in
Lemma 1, whose proof relies on a theorem closely related
to perfect matchings and demonstrated by Hall [20] in
1935. Denote by N (S) the neighborhood of a vertex set S,
that is, the set of all vertices adjacent to some vertex of S.

Theorem 1 (Hall’s marriage theorem) Let G = (U ,V ,E)
be a bipartite graph. There exists a matching in G that cov-
ers the vertex set V if and only if for each subset S ⊆ V ,
|S| ≤ |N (S)|.

Note that a perfect matching exists in C if and only
if the condition of Theorem 1 holds for both VA and
VB . We can now establish the relation between perfect
matchings in C and the validity of the capping it induces
in the family-free relational graph.

Lemma 1 A perfect matching exists in C(A,B) if and
only if the capping of FFR(A,B,S) induced by C is valid.

Proof If a perfect matching M exists in C , for each edge
AB in M, in the induced capping of FFR(A,B,S) the pair
of cap vertices connected to the ends of A can be connected
in any of the two distinct ways to the pair of cap vertices
connected to the ends of B, resulting in a capping-set.
The converse is shown by contraposition. Suppose that
a maximum cardinality matching M in C is not a perfect
matching. Therefore, by Hall’s marriage theorem, there
exists some S in C such that |N (S)| < |S| . Let S′ be the set
of cap vertices in the capping induced by C for all linear
segments in S. Since the connection of these cap vertices
follows C and each linear segment has two cap vertices,
it is clear that |S′| = 2|S| and |N (S′)| = 2|N (S)| , hence,
|N (S′)| < |S′| . By the pigeonhole principle, at least 2 cap
vertices (because |N (S′)| and |S′| are even numbers) will
not be incident to any cap edge, therefore no capping-set
exists. �

Fig. 4 a Example of a shared-content graph C(A,B) with omitted edge scores. The genomes A and B have linear segments A1..5 and B1..5 ,
respectively. The capping of FFR(A,B,S) induced by C is invalid. b Transformation of C into a perfect shared-content graph Ĉ(A,B) : vertex sets S1
and S2 represent Hall violators (among other possibilities) that demand the creation of dummy segments ϕ1

B
 and ϕ1

A
 , respectively. Dotted edges

represent those that are non-matchable and must be removed from Ĉ after the completion is finished. Notice that the component with vertices
A1, A2, A3, B1,ϕ

1
B
and B2 is not a complete bipartite subgraph. (In both (a, b), we give an abstract illustration of the capped FFR where only cap

vertices, cap edges and dummy adjacencies are represented explicitly, while vertices of gene extremities between cap vertices are represented
by a line with small dots. In addition, colored solid edges represent a maximum cardinality matching between cap vertices, while the cap edges
not in the matching are dashed grey)

Page 10 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

Building the perfect shared‑content graph
We will now describe a procedure for transforming the
shared-content graph C(A,B) into a perfect shared-con-
tent graph Ĉ(A,B) that has at least one perfect matching,
as shown in Algorithm 1. In the completion loop, dummy
segments are iteratively created until a perfect matching
is possible. If a maximum cardinality matching M is found
but is not a perfect matching, a Hall violator set S can be
found as follows. Let v be a vertex unsaturated by M, then
S = {v} ∪ {u | u is reachable from v by an M-alternating
path} . Finally, |S| − |N (S)| dummy segments are created
and connected to each linear segment in S.

An edge in Ĉ(A,B) is matchable if it is part of at least
one perfect matching and non-matchable otherwise.
Once the completion loop is finished, Ĉ admits at least
one perfect matching and its matchable edges can be
identified efficiently [21]. The last step of Algorithm 1
is then removing from Ĉ all non-matchable edges. An
example of the construction of a perfect shared-content
graph is illustrated above, in Fig. 4b.

Heuristically capped family-free relational graph
The bipartite perfect shared-content graph Ĉ(A,B)
has edge set F̂ and partite sets ÛA = UA ∪U

ϕ
A

 and
ÛB = UB ∪U

ϕ
B

 , where UA and UB are the sets of linear
segments and Uϕ

A
 and Uϕ

B
 the sets of dummy segments.

Recall that the sets ÛA and ÛB have the same cardinality,
which here we denote by p≈ . The heuristic capping θ≈ of
the family-free relational graph FFR(A,B,S) induced by
Ĉ(A,B) is shown in Fig. 4b and described as follows:

(1≈) Add the set of cap vertices
θ̂ (A) = θ1

A
, θ2

A
, . . . , θ

2p≈
A

 . For i = 1 . . . |UA| , asso-
ciate each linear segment Ai ∈ UA to cap ver-
tices θ2i−1

A
 and θ2i

A
 and connect with adjacency

edges one telomere of Ai to θ2i−1
A

 and the other
to θ2i

A
 . Note that 2|Uϕ

A
| cap vertices remain

disconnected.
(2≈) Similarly, add cap vertices θ̂ (B) = θ1

B
, θ2

B
, . . . , θ

2p≈
B

 .
For j = 1 . . . |VB| , associate each linear segment
Bj ∈ UB to cap vertices θ2j−1

B
 and θ2j

B
 and connect

with adjacency edges one telomere of Bj to θ2j−1
B

and the other to θ2j

B
 . Again, 2|Uϕ

B
| cap vertices

remain disconnected.
(3≈) For i◦ = 1 . . . |U

ϕ
A
| and i = |UA| + i◦ , con-

nect the pair of cap vertices θ2i−1
A

 and θ2i
A

 by a

dummy adjacency edge, associating this pair
to the dummy segment ϕi◦

A
∈ U

ϕ
A

 . Similarly, for
j◦ = 1 . . . |U

ϕ
B
| and j = |UB| + j◦ , connect the pair

of cap vertices θ2j−1
B

 and θ2j
B

 by a dummy adja-
cency edge, associating this pair to the dummy
segment ϕj◦

B
∈ U

ϕ
B

.
(4≈) For each edge AB ∈ F̂ , let A ∈ ÛA and B ∈ ÛB

be associated, respectively, to the cap vertices
θ2i−1
A

, θ2i
A

∈ θ̂ (A) and θ
2j−1
B

, θ
2j
B

∈ θ̂ (B) . Con-
nect the cap vertices with cap edges in the two
crosswise possibilities: {θ2i−1

A
, θ

2j−1
B

} , {θ2i
A
, θ

2j
B
}

(1st of A to 1st of B, 2nd of A to 2nd of B), and
also {θ2i−1

A
, θ

2j
B
} , {θ2i

A
, θ

2j−1
B

} (1st of A to 2nd of B,
2nd of A to 1st of B). [Simple optimization: if the
edge AB is a complete component in Ĉ(A,B) (that
is, both vertices A and B have degree one) and,
moreover, either A or B is a dummy segment,
then, since both ends of a dummy segment are
“equivalent”, we simply remove one of the two
crosswise connections of cap vertices described
above (arbitrarily chosen).] The set of all cap
edges is denoted by Eθ.

Page 11 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

Denote by P≈ the set of all possible capping-sets (per-
fect matchings) between the vertices of θ̂ (A) and θ̂ (B) . The
optimization problem over θ≈(FFR(A,B,S)) is defined as

Assuming that a sibling set L≈ (together with one of its
best heuristic capping-sets) gives the optimal solution
for GenDiFF≈(A,B,S) , a best heuristic ortholog-set is
OrthoFF≈(A,B,S) = OL≈

 . Both problems GenDiFF≈
and OrthoFF≈ can also be solved with the ILP
FF-DCJ-Indel , shown in Additional file 1: Section (A).

Search space compared to optimal capping
If the threshold τ is similar to the numbers κ(A) and κ(B)
of linear segments in each genome, and in the unlike sit-
uation where all linear segments from A are connected
to all linear segments from B in Ĉ , the heuristic capping
induced by Ĉ may be as large as the optimal capping.

Therefore, τ is thought to be smaller than κ(A) and
κ(B) , effectively reducing the number of capping-sets.
We could not yet estimate this reduction as a function of
τ , though. As our experimental results with real genomes
show (details below, in the next section), with a small τ
the heuristic capping leans to a considerably smaller
number of capping-sets in practice.

GenDiFF≈(A,B,S) = min
L∈S,P∈P≈

{wd
id

dcj
(D̂[L, P])} .

Integration of pairwise heuristic ortholog-sets into gene
families
The ILP FF-DCJ-Indel solving OrthoFF≈ (with heuristic
capping) is the core of a new version of our tool, called
OrthoFFGC≈ , for inferring gene families across several
species, as illustrated in Fig. 5. Recall that each family is a
connected component of the n-partite graph obtained by
the simple integration of the computed pairwise ortholog-
sets. An ambiguous family corresponds to a connected
component of the n-partite graph that has more than
one gene from the same genome. Otherwise we have a
resolved family, which can be either complete, when it
contains one gene per genome, or incomplete otherwise.
Figure 6 illustrates these types of families in a 3-partite
graph.

Refinement of ambiguous gene families via mcl
Both pipelines OrthoFFGC and OrthoFFGC≈ may pro-
duce a small number of large ambiguous families with
low connectivity that can benefit from a further refine-
ment (e.g. by removing bridges or making edge cuts in

ambiguous

complete incomplete

resolved
Fig. 6 Types of families given by the integration of three
ortholog-sets into a 3-partite graph

n genomes pairwise comparisons:

Pairwise
similarities

Pairwise
ortholog-set

Pairwise
similarities

Pairwise
ortholog-set

...
...

...

Pairwise
similarities

Pairwise
ortholog-set

Integration of the
multiple pairwise
ortholog-sets:
inferred gene

families

Optional
refinement of
ambiguous gene
families via mcl

(≈)

(≈)

(≈)

Fig. 5 The pipeline of our approach is straightforward: our gene families are the connected components of the n-partite graph derived
by the integration of the computed ortholog-sets. The resulting ambiguous families can be optionally refined with the help of mcl

Page 12 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

areas with small edge-connectivity) in order to produce
more cohesive families. In an optional extra step, as
shown in Fig. 5, our pipeline refines ambiguous families
with the help of mcl [19], a fast and scalable cluster-
ing algorithm based on simulation of stochastic flow in
graphs.

Implementation and experiments
The pipeline OrthoFFGC (with optimal capping) was
previously integrated into the FFGC workflow [12, 22],
which includes the pre-computation of gene similari-
ties, allowing therefore the automatic generation of fami-
lies directly from the genome data. We implemented the
new pipeline OrthoFFGC≈ (with heuristic capping) as
another extension of the same workflow. The optional
mcl step for refining ambiguous families is integrated to
both OrthoFFGC and OrthoFFGC≈ . The implemen-
tation and its documentation can be downloaded from
our GitLab server at https:// gitlab. ub. uni- biele feld. de/
gi/ FFGC or as a Conda package at https:// anaco nda. org/
bioco nda/ ffgc. (Note that mcl is an external dependency,
automatically installed only if the download is obtained
from Conda.)

An important recent modification of our pipeline is
that now it performs pairwise similarity computations
by default via diamond [23] and no longer via blast [24].
This change and some further optimizations improved
greatly the running times of OrthoFFGC≈ , that are now
closer to the fastest alternative tools. Suprisingly, adopt-
ing diamond also produced a small improvement of the
quality of our gene families, compared to the version pre-
viously published [18]. The current values for quality and
running times can be found in the end of this section.

Alternative inference tools used for comparison purposes
ProteinOrtho and Poff. ProteinOrtho [16] is a fast
tool that clusters genes to find significant orthologous
groups, based on a heuristic of reciprocal best hits of the
corresponding sequence similarities. Its Poff extension
[17] takes into account gene adjacencies as an additional
criterion for the discrimination of orthologs.
Oma. Based on sequence similarities and on phylogeny,

Oma [25] is the underlying tool of the homonym online
orthology browser. The standalone tool allows custom
genomes to be compared to infer orthologous groups.
Two types of families are reported: hierarchical ortholo-
gous groups (OmaHOGs), which may include ambiguous
families, and resolved groups (OmaGroups).

Gene similarities in OrthoFFGC/OrthoFFGC≈
The computation of gene similarities is done via FFGC
and is described as follows. For any given pair of genes x
and y, the software diamond is used for computing the
value bitscr(x → y) , that corresponds to the bitscore of
gene x with respect to gene y. If gene x is in genome A
and gene y is in genome B , both bitscr(x → y) and
bitscr(y → x) must be taken into consideration for cal-
culating the similarity σ(x, y) , that is equivalent to their
relative reciprocal score [26]:

Negligible similarities are then identified and discarded
by the filter ̥, by requiring that (1) for a first given
threshold ̥ǫ ∈ (0, 1] , σ(x, y) ≥ ̥ǫ (absolute filter); and
(2) for a second given threshold ̥t ∈ (0, 1] , the value
bitscr(x → y) must be at least a ̥t-fraction of the high-
est bitscore of x with respect to any gene in B and the
value bitscr(y → x) must be at least a ̥t-fraction of the
highest bitscore of y with respect to any gene in A (rela-
tive minimum reciprocal similarity for additional hits,
which was developed and used in the alternative tools
ProteinOrtho [16] and Poff [17]). Once these condi-
tions are fulfilled, the edge xy is added to the gene simi-
larity graph with score σ(xy) = σ(x, y) . The adopted
values are ̥ǫ = 0.1 and ̥t = 0.8 , the latter also being
adopted for ProteinOrtho and Poff whenever these
tools were used in our experiments.

The default values of the other parameters for the
pre-computation of gene similarities via FFGC were
kept, except for one of them: the minimum number of
genomes for which each gene must share some similar-
ity in is set to 1, otherwise genes not similar to any other
gene, which should be still considered in indels, would
not appear in the chromosomal gene order.

Computational environment and additional parameters
of OrthoFFGC≈
We ran experiments in a 2.7GHz multi-core machine.
Whenever possible, tasks ran using 8 cores. As an ILP
solver, we used Gurobi.

For the post-processing refinement of ambiguous fami-
lies in OrthoFFGC≈ , we used the default parameters of
mcl with a conservative “inflation” value of 1.4 suggested
in its manual (https:// micans. org/ mcl).

In the following we will describe our experiments,
based on genome assemblies fetched from NCBI. We per-
formed two distinct comparisons. First, based on a set of

σ(x, y) =
bitscr(x → y)+ bitscr(y → x)

bitscr(x → x)+ bitscr(y → y)
.

https://gitlab.ub.uni-bielefeld.de/gi/FFGC
https://gitlab.ub.uni-bielefeld.de/gi/FFGC
https://anaconda.org/bioconda/ffgc
https://anaconda.org/bioconda/ffgc
https://micans.org/mcl

Page 13 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

five completely assembled primate genomes, we com-
pared OrthoFFGC≈ families (inferred with the heuris-
tic capping) to OrthoFFGC families (inferred with the
optimal capping). Then, based on the set of 11 Drosophi-
las including partially assembled genomes, we compared
OrthoFFGC≈ families to the gene families inferred by
other tools, using FlyBase families as reference.

Analysis of completely assembled primate genomes:
comparing OrthoFFGC≈ to OrthoFFGC
The goal of this experiment is to evaluate the impact of
the heuristic capping on running times and on the qual-
ity of results, with respect to the optimal capping in a
dataset of large genomes. We compared families inferred
by OrthoFFGC and OrthoFFGC≈ , considering the
following five primate genomes: bonobo (P. paniscus),
chimpanzee (P. troglodytes), gorilla (G. gorilla), human
(H. sapiens) and orangutan (P. abelii). Those genomes
comprise roughly 20,000 ∼ 22,000 genes distributed in
25 chromosomes, except for the human genome that
has 24 chromosomes. The average number of edges
(similarities) for each vertex (gene) in the gene similarity
graphs is 1.09, totaling 429268 vertices and 234297 edges.

Considering only the genes with multiple similarities, the
average degree is 2.93.

For the capping heuristic in OrthoFFGC≈ , we set
ǫ = 0.1 and τ = 2 , a choice that reduces significantly the
number of capping sets, but still gives some options to
the ILP solver. With these choices, the largest number
of edges in Ĉ(A,B) was for the comparison of gorilla and
human. In this case, Ĉ has 27 edges distributed among
21 components with 2 vertices, and 2 components with 4
vertices (including 1 dummy segment). That corresponds
to at most ∼ 1.1× 106 capping-sets in θ≈ , while the pair-
wise comparison with the optimal θ⋆ has 50! capping-sets.

This significant reduction of the search space ena-
bled 7 out of 10 pairwise comparisons with the heu-
ristic capping to finish within the time limit of 60 min,
in contrast to the lengthy comparisons with the opti-
mal capping, that were limited to 1440 min (24 h).
The results are shown in Table 1, where we can also
see that the size of the ortholog-sets O , the number
of DCJ-indel operations did

dcj
 , and the weighted rear-

rangement distances wdid
dcj

 of the two approaches are
almost identical for all pairwise comparisons. While
21090 families were inferred using OrthoFFGC , 21101
were inferred using OrthoFFGC≈ , and 99.2% of those

Table 2 Numbers of classified genes and families inferred by OrthoFFGC≈ and ProteinOrtho for the dataset of five primates

Method
of classified genes # of families

(out of 107317) ambiguous resolved incomplete resolved complete
OrthoFFGC≈ 100872 656 3719 16726
intersection 98156 154 2016 14770

ProteinOrtho 100481 1795 2939 14810

Table 1 ILP running times, DCJ-indel distances and weighted DCJ-indel distances with optimal and heuristic cappings for the
pairwise comparisons of primate genomes

Page 14 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

families are the same, showing that moving from the
optimal capping to the heuristic capping of the fam-
ily-free relational diagram had very little impact on
the gene family inference. The total running time of
OrthoFFGC≈ was of about 321 min (of which 306 min
were spent by the pairwise ILP computations). The
numbers of classified genes and of inferred families are
displayed in Table 2.

This experiment accomplished its goal, by showing
that the heuristic capping can have the same quality of
the optimal capping, while having substantial impact
in speeding up the ILP computations. Indeed, the time
required to analyze the dataset of five primates with
OrthoFFGC≈ was quite reasonable. However it was
still considerably longer than the fastest alternative
tool: the total running time of ProteinOrtho for the
same dataset was of about 19 min only, with the cor-
responding numbers of classified genes and inferred
families being also displayed in Table 2. It is worth
mentioning that in OrthoFFGC≈ a resolved family has
the additional confidence of resulting from indepen-
dently computed pairwise ortholog-sets. Therefore it
is remarkable that OrthoFFGC≈ could identify a sig-
nificantly higher number of resolved complete fami-
lies, including almost all resolved complete families
also inferred by ProteinOrtho.

Analysis of partially assembled Drosophila (fruit flies)
genomes
The FlyBase consortium (https:// flyba se. org) sequenced,
assembled and annotated the genomes of 12 Drosophilas
with ∼ 12,000–16,000 protein-coding genes (for genes

with multiple transcripts, we kept only the longest), how-
ever only 11 of those genomes are available on NCBI
together with the complete annotation: D. ananassae,
D. erecta, D. grimshawi, D. melanogaster, D. mojavensis,
D. persimilis, D. sechellia, D. simulans, D. virilis, D. wil-
listoni and D. yakuba.

In the family-free analysis, the total number of vertices
and edges in the gene similarity graphs are 1514930 and
633521, respectively, with average degrees of 0.83 con-
sidering all vertices, and 2.22 looking only at those genes
with multiple similarities. For the capping heuristic in
OrthoFFGC≈ , we again set ǫ = 0.1 and τ = 2.

Average numbers of cap edges and capping‑sets in θ⋆
and in θ≈
The analyzed Drosophila genomes have 507 contigs on
average, therefore each optimally capped family-free rela-
tional diagram has 1,014 × 1,014 = 1,028,196 cap edges
and an unfeasible total of 1, 014! capping-sets on average.

In contrast, considering the perfect shared-content
graphs for all pairwise Drosophila comparisons, 99.7% of
the components in those graphs have only 1 linear seg-
ment in each part of the graph. In the remaining 0.3%,
80% have 7 or fewer linear segments in each part, with
the largest component having 76 linear segments in each
part. The perfect shared-content graphs have an average
of 1,419 edges. For that number of edges, each heuristi-
cally capped family-free relational diagram has 5,676 cap
edges on average. As the exact number of perfect match-
ings in arbitrary graphs is not trivial to estimate, we com-
puted an upper limit for the average number of distinct
capping-sets by the Bregman-Cinc inequality [27] of the
permanent of a squared matrix: ∼ 45! , with median ∼ 18!.

Table 3 Numbers of classified genes and families inferred by the different methods for the dataset of 11 Drosophilas

Method
of classified genes # of families
(out of 151493) ambiguous res. incomplete res. complete

FlyBase 136190 1558 4769 6189
OmaHOGs 135406 1077 7213 5028
(∩FlyBase) (124548) (564) (3151) (4884)
OmaGroups 131523 - 9673 4688
(∩FlyBase) (121775) (-) (2868) (4323)

ProteinOrtho 136623 1151 6133 5569
(∩FlyBase) (125638) (610) (3541) (5373)

Poff 135364 439 7388 5758
(∩FlyBase) (124884) (226) (3601) (5391)

OrthoFFGC≈ 130870 902 5813 5899
(∩FlyBase) (122048) (414) (3406) (5658)

OrthoFFGC≈ +mcl 130870 648 6458 6072
(∩FlyBase) (122048) (374) (3598) (5687)

https://flybase.org

Page 15 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

Resolved incomplete Resolved complete
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

6189

4769

Types of families

#
of

fa
m
ili
es

Drosophila families

FlyBase & intersec.
OmaHOGs
OmaGroups
ProteinOrtho
Poff

+mcl
OrthoFFGC≈
OrthoFFGC≈

4884

3151

4323

2868

5373

3541

5391

3601

5658

3406

5687

3598

Fig. 7 The numbers of resolved incomplete and complete families in FlyBase , followed by the numbers of families inferred by OmaHOGs ,
OmaGroups , ProteinOrtho , Poff and OrthoFFGC≈ (without and with mcl refinement). The lower part of each bar represents the intersection
between the inferred sets and FlyBase . (For resolved complete families, the numbers of families in the intersections are shown on the top of bars)

Method TP FP FN precision recall F1-score
OmaHOGs 553,507 22,650 61,336 0.961 0.900 0.929
OmaGroups 500,500 1,618 114,343 0.997 0.814 0.896

ProteinOrtho 569,600 22,983 45,243 0.961 0.926 0.943
Poff 537,469 4,062 77,374 0.992 0.874 0.930

OrthoFFGC≈ 559,220 31,150 55,623 0.947 0.910 0.928
OrthoFFGC≈ +mcl 547,931 4,126 66,912 0.993 0.891 0.939

0

0.8
0.85
0.9

0.95
1

P
re
ci
si
on

OmaHOGs OmaGroups ProteinOrtho Poff OrthoFFGC≈ OrthoFFGC≈ +mcl

0.8
0.85
0.9
0.95
1

R
ec
al
l

Fig. 8 Precision
(

TP
TP+FP

)
 , recall

(
TP

TP+FN

)
 and their harmonic mean F1-score for OmaHOGs , OmaGroups , ProteinOrtho , Poff and OrthoFFGC≈

(without and with mcl refinement), based on the dataset with eleven Drosophilas

Page 16 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

Benchmark for our experiments
Reference families were obtained directly from FlyBase
(https:// flyba se. org). Since the set of genes classified in
FlyBase is slightly different from the set of genes present
with their coding sequences in database files, we filtered
out a small portion (∼ 7%) of genes in FlyBase families
so that only those present in the NCBI databases with
their coding sequences were kept. Prior to any compari-
son of inferred families to FlyBase families, we also fil-
tered out from the inferred families genes not present in
FlyBase families.

Comparing OrthoFFGC≈ to ProteinOrtho , Poff and Oma
We analyzed the dataset of 11 Drosophila genomes for
comparing the performance of OrthoFFGC≈ against
ProteinOrtho , Poff and Oma , providing as additional
input to the latter the phylogenetic tree (obtained from
FlyBase) of the same 11 Drosophilas. Unlocalized con-
tigs were not filtered out, resulting in genomes with 11 to
1041 linear segments.

Quality of inferred families The numbers of families in
FlyBase and those inferred by OmaHOGs , OmaGroups ,
ProteinOrtho , Poff and OrthoFFGC≈ are all big-
ger than 12,000. In order to have a hint on the quality of
results, we focus on the intersections with FlyBase fami-
lies and on precision and recall values computed for all
methods.

The numbers of classified genes and families inferred
by all methods, together with the respective intersections
with FlyBase are shown in Table 3. Figure 7 shows the
comparative picture focusing on the numbers of resolved
incomplete and complete families for all methods.

We also counted the numbers of pairwise gene homol-
ogies that are classified as true positive (TP), false positive

(FP) and false negative (FN) as follows. First, denote a
subset of size two by 2-subset. Now let H

fly
 be the set

composed of 2-subsets of all FlyBase families, and, for
any considered set of families X, let HX be the set com-
posed of 2-subsets of all families in X. Then TP of X is the
size of H

fly
∩HX , FN of X is the size of H

fly
\HX and FP

of X is the size of HX \Hfly
 . Based on that we computed

the values of precision
(

TP
TP+FP

)
 and recall

(
TP

TP+FN

)
 for

the sets of families inferred by the considered methods.
The results (Fig. 8) show that, while all methods per-

formed quite well, our tool OrthoFFGC≈ had the lowest
precision. However, when the optional mcl refinement
step is enabled in our pipeline, its overall results were
improved, with an increase of the precision that is bigger
than the corresponding decrease of the recall, reflected
on the increase of the F1-score.

Running times We compiled the running times of the
four methods in Table 4. The (preprocessing) step 1 of
computing the pairwise sequence similarities is required
by all methods, but, while Oma has an internal implemen-
tation of the Smith-Waterman algorithm, the other meth-
ods used diamond [23], which is the fastest known tool
for accomplishing that task.

Having at hand the sequence similarities, ProteinOrtho
and Oma build families taking into consideration align-
ments and similarities. Additionally, Oma takes into
consideration the provided phylogenetic tree of the 11
Drosophilas. The running times of these procedures
are given in step 3. For the other methods, we separated
in step 2 core procedures that use additional criteria to
find pairwise orthologs: Poff does it via the analysis of
synteny by means of conserved gene adjacencies, while
OrthoFFGC≈ generates and solves the ILPs for obtaining
pairwise OrthoFF≈ gene orthologies.

Table 4 Running times for computing Drosophila families

⋄ Computed with diamond
∗ The optional additional mcl refinement step on OrthoFFGC≈ takes 2 extra minutes

https://flybase.org

Page 17 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

Adopting diamond for similarity computations instead
of blast was an important recent modification of our
pipeline. This change and the use of more restrictive
parameters for the heuristic capping improved greatly
the running times of our method compared to its previ-
ous version [18]. With these improvements the running
times of OrthoFFGC≈ are now the fastest among the
compared tools for the Drosophila dataset.

Conclusions and discussion
We devised and implemented a heuristic capping for
improving our recently developed pipeline OrthoFFGC
[13] for inferring gene families based on genome rear-
rangements. In OrthoFFGC we adopted an optimal cap-
ping including all connections between the ends of linear
segments to allow all possible (2p∗)! capping-sets in the
input of the ILP FF-DCJ-Indel that infers the OrthoFF
pairwise orthologs. However, due to the heavy optimal
capping, FF-DCJ-Indel can hardly converge when ana-
lyzing larger genomes (such as mammals) and fails in
handling a pair of genomes if one or both of them (with
at least the dimension of a fruit fly genome) are distrib-
uted in a hundred contigs.

In contrast, the new pipeline OrthoFFGC≈ adopts
a lighter heuristic capping including connections only
between linear segments that share gene content. This
leads to a much smaller number of capping-sets in
the input of the same FF-DCJ-Indel that here infers
OrthoFF≈ pairwise orthologs. Despite the use of a heu-
ristic capping, our evaluation showed that the quality of
the orthologies inferred by OrthoFFGC≈ was very good.

A first evaluation on a dataset of five completely assem-
bled primate genomes was done by comparing the fami-
lies inferred by the previous workflow OrthoFFGC with
the new OrthoFFGC≈ . The results showed that the gene
families inferred by the two pipelines are virtually the
same. Therefore, in practice, the heuristic capping did
not have a negative impact on the inferred gene families,
essentially preserving the original (optimal) orthology
relations.

A second evaluation was done on a dataset of 11 Dros-
ophila genomes, including partially assembled genomes
distributed in several contigs, by adopting the gene fami-
lies curated by the FlyBase consortium as a benchmark.
In this experiment we compared OrthoFFGC≈ to other
genome-scale methods, namely Oma , ProteinOrtho
and Poff . The running times of OrthoFFGC≈ for the

Drosophila dataset are better than the fastest alterna-
tive tools ProteinOrtho and Poff , showing that our
implementation is very efficient, despite the pairwise
ILP computations. Furthermore, our results showed that
OrthoFFGC≈ was able to infer only 3 resolved families
less than ProteinOrtho and had the highest number of
resolved complete families in common with FlyBase ,
and these intersections were improved after the refine-
ment of ambiguous families with mcl . Concerning the
analysis of pairwise gene orthologies derived from the
inferred families, all tools had a very good performance.
After the mcl refinement our tool reached the second
best F1-score, with a difference of only 0.004 to the best
F1-score achieved by ProteinOrtho.

The bottleneck of our pipeline is still the ILP pairwise
computations that, despite the gain of heuristic cap-
ping, solve instances of an NP-hard problem. However,
the heuristic capping allows to efficiently analyze large
genomes such as mammals and, at least for genomes with
the dimension of a fruit fly genome, OrthoFFGC≈ lifts
the limitation of requiring chromosome-level assembled
genomes, expanding to a great extent its applicability.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13015- 023- 00238-y.

Additional file 1. Online supplemental material

Author contributions
DPR and MDVB designed the model. DPR implemented the heuristic capping
and carried out the experiments. DPR and MDVB wrote the manuscript, whose
final version was reviewed by both of them.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Availibility of data and materials
See https:// gitlab. ub. uni- biele feld. de/ gi/ FFGC or https:// anaco nda. org/ bioco
nda/ ffgc.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 December 2022 Accepted: 17 August 2023

https://doi.org/10.1186/s13015-023-00238-y
https://doi.org/10.1186/s13015-023-00238-y
https://gitlab.ub.uni-bielefeld.de/gi/FFGC
https://anaconda.org/bioconda/ffgc
https://anaconda.org/bioconda/ffgc

Page 18 of 18Rubert and Braga Algorithms for Molecular Biology (2023) 18:14

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

References
 1. Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rear-

rangements. In: Proc. of WABI. Lecture Notes in Bioinformatics,
2006;4175:163–173.

 2. Hannenhalli S, Pevzner PA. Transforming men into mice (polynomial algo-
rithm for genomic distance problem). In: Proc. of FOCS, 1995:581–592.

 3. Braga MDV, Willing E, Stoye J. Double cut and join with insertions and
deletions. J Comput Biol. 2011;18(9):1167–84.

 4. Sankoff D. Genome rearrangement with gene families. Bioinformatics.
1999;15(11):909–17.

 5. Bryant D. The complexity of calculating exemplar distances. In: Sankoff
D, Nadeau JH, editors. Comparative Genomics. Computational Biology
Series, vol. 1. London: Kluver Academic Publishers; 2000. p. 207–11.

 6. Angibaud S, Fertin G, Rusu I, Thévenin A, Vialette S. On the approxi-
mability of comparing genomes with duplicates. J Graph Algo App.
2009;13(1):19–53.

 7. Shao M, Lin Y, Moret B. An exact algorithm to compute the double-cut-
and-join distance for genomes with duplicate genes. J Comput Biol.
2015;22(5):425–35.

 8. Bohnenkämper L, Braga MDV, Doerr D, Stoye J. Computing the rearrange-
ment distance of natural genomes. J Comput Biol. 2021;28(4):410–31.

 9. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permu-
tations by translocation, inversion and block interchange. Bioinformatics.
2005;21(16):3340–6.

 10. Braga MDV, Chauve C, Doerr D, Jahn K, Stoye J, Thévenin A, Wittler R. The
potential of family-free genome comparison. In: Chauve C, El-Mabrouk N,
Tannier E, editors. Models and Algorithms for Genome Evolution, vol. 19.
Computational Biology Series. Berlin: Springer; 2013. p. 287–307.

 11. Martinez FV, Feijao P, Braga MDV, Stoye J. On the family-free DCJ distance
and similarity. Algorithms Mol Biol. 2015;13(10):777–80.

 12. Rubert DP, Martinez FV, Braga MDV. Natural Family-Free Genomic Dis-
tance. Algorithms Mol Biol. 2021;16(4):1–6.

 13. Rubert DP, Doerr D, Braga MDV. The potential of family-free rearrange-
ments towards gene orthology inference. J Bioinform Comput Biol.
2021;19(6):2140014.

 14. Dessimoz C, Cannarozzi G, Gil M, Margadant D, Roth ACJ, Schneider A,
Gonnet GH. OMA, a comprehensive, automated project for the identifica-
tion of orthologs from complete genome data: introduction and first
achievements. In: Proc. of RECOMB-CG. Lecture Notes in Bioinformatics,
2005;3678:61–72.

 15. Roth ACJ, Gonnet GH, Dessimoz C. Algorithm of OMA for large-scale
orthology inference. BMC Bioinform. 2008;9(518):1.

 16. Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ.
Proteinortho: Detection of (co-)orthologs in large-scale analysis. BMC
Bioinform. 2011;12(124):1–9.

 17. Lechner M, Hernandez-Rosales M, Doerr D, Wieseke N, Thévenin A, Stoye
J, Hartmann RK, Prohaska SJ, Stadler PF. Orthology detection combin-
ing clustering and synteny for very large datasets. PLoS ONE. 2014;9(8):
e105015.

 18. Rubert DP, Braga MDV. Gene Orthology Inference via Large-Scale Rear-
rangements for Partially Assembled Genomes. In: Proc. of WABI. Leibniz
International Proceedings in Informatics (LIPIcs), 2022;242 (24):1–22.

 19. van Dongen S. Graph clustering via a discrete uncoupling process. SIAM
Journal on Matrix Analysis and Applications. 2008;30(1):121–41.

 20. Hall P. On representatives of subsets. J London Mat Soc.
1935;s1–10(1):26–30.

 21. Tassa T. Finding all maximally-matchable edges in a bipartite graph.
Theoret Comput Sci. 2012;423:50–8.

 22. Doerr D, Feijão P, Stoye J. Family-free genome comparison. In: Setubal JC,
Stoye J, Stadler PF, editors. Comparative Genomics: Methods and Proto-
cols. Methods in Molecular Biology, vol. 1704. New York: Springer; 2018. p.
331–42.

 23. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2015;12:59–60.

 24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215(3):403–10.

 25. Altenhoff AM, Levy J, Zarowiecki M, Tomiczek B, Vesztrocy AW, Dalquen
DA, Müller S, Telford MJ, Glover NM, Dylus D, et al. OMA standalone:
orthology inference among public and custom genomes and transcrip-
tomes. Genome Res. 2019;29(7):1152–63.

 26. Pesquita C, Faria D, Bastos H, Ferreira AE, Falcão AO, Couto FM. Metrics
for GO based protein semantic similarity: a systematic evaluation. BMC
Bioinformat. 2008;9(Suppl 5):4.

 27. Friedland S. An upper bound for the number of perfect matchings in
graphs; 2008. arXiv: 0803. 0864.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/0803.0864

	Efficient gene orthology inference via large-scale rearrangements
	Abstract
	Background
	Results

	Background
	Orthology inference via family-free genome rearrangements
	Computing an optimal set of orthologs between two genomes
	Family-free relational graph
	Consistent decompositions of the family-free relational graph

	Capping
	Capping a consistent decomposition
	Optimal capping

	Optimally capped family-free relational graph
	Integration of pairwise optimal ortholog-sets into gene families

	Heuristic capping
	Perfect shared-content graph with thresholds and
	Capping attempt induced by the shared-content graph
	Building the perfect shared-content graph

	Heuristically capped family-free relational graph
	Search space compared to optimal capping
	Integration of pairwise heuristic ortholog-sets into gene families
	Refinement of ambiguous gene families via

	Implementation and experiments
	Alternative inference tools used for comparison purposes
	Gene similarities in
	Computational environment and additional parameters of
	Analysis of completely assembled primate genomes: comparing to
	Analysis of partially assembled Drosophila (fruit flies) genomes
	Average numbers of cap edges and capping-sets in and in
	Benchmark for our experiments
	Comparing to  , and
	Quality of inferred families
	Running times

	Conclusions and discussion
	Anchor 35
	References

