
Ozeri et al. Algorithms for Molecular Biology (2023) 18:17
https://doi.org/10.1186/s13015-023-00239-x

RESEARCH

New algorithms for structure informed
genome rearrangement
Eden Ozeri1*, Meirav Zehavi1 and Michal Ziv‑Ukelson1

Abstract

We define two new computational problems in the domain of perfect genome rearrangements, and propose three
algorithms to solve them. The rearrangement scenarios modeled by the problems consider Reversal and Block
Interchange operations, and a PQ‑tree is utilized to guide the allowed operations and to compute their weights. In
the first problem, Constrained TreeToString Divergence (CTTSD), we define the basic structure‑informed rear‑
rangement measure. Here, we assume that the gene order members of the gene cluster from which the PQ‑tree
is constructed are permutations. The PQ‑tree representing the gene cluster is ordered such that the series of gene
IDs spelled by its leaves is equivalent to that of the reference gene order. Then, a structure‑informed genome rear‑
rangement distance is computed between the ordered PQ‑tree and the target gene order. The second problem,
TreeToString Divergence (TTSD), generalizes CTTSD , where the gene order members are not necessarily permu‑
tations and the structure informed rearrangement measure is extended to also consider up to dS and dT gene inser‑
tion and deletion operations, respectively, when modelling the PQ‑tree informed divergence process from the ref‑
erence gene order to the target gene order. The first algorithm solves CTTSD in O(nγ 2

· (mp · 1.381
γ
+mq))

time and O(n2) space, where γ is the maximum number of children of a node, n is the length of the string
and the number of leaves in the tree, and mp and mq are the number of P‑nodes and Q‑nodes in the tree, respec‑
tively. If one of the penalties of CTTSD is 0, then the algorithm runs in O(nmγ 2) time and O(n2) space. The sec‑
ond algorithm solves TTSD in O(n2γ 2dT

2dS
2m2(mp · 5

γ γ +mq)) time and O(dT dSm(mn+ 5
γ)) space, where γ

is the maximum number of children of a node, n is the length of the string, m is the number of leaves in the tree,
mp and mq are the number of P‑nodes and Q‑nodes in the tree, respectively, and allowing up to dT deletions
from the tree and up to dS deletions from the string. The third algorithm is intended to reduce the space com‑
plexity of the second algorithm. It solves a variant of the problem (where one of the penalties of TTSD is 0)
in O(nγ 2dT

2dS
2m2(mp · 4

γ γ 2n(dT + dS +m+ n)+mq)) time and O(γ 2nm2dT dS(dT + dS +m+ n)) space. The
algorithm is implemented as a software tool, denoted MEM‑Rearrange, and applied to the comparative and evolu‑
tionary analysis of 59 chromosomal gene clusters extracted from a dataset of 1487 prokaryotic genomes.

Keywords PQ‑tree, Gene cluster, Breakpoint distance

Introduction
Recent advances in pyrosequencing techniques, com-
bined with global efforts to study infectious diseases,
yield huge and rapidly-growing databases of microbial
genomes [1, 2]. These big new data statistically empower
genomic-context based approaches to functional and
evolutionary analysis: the biological principle underly-
ing such analyses is that groups of genes that are located

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

*Correspondence:
Eden Ozeri
edenozery@gmail.com
1 Department of Computer Science, Ben Gurion University of the Negev,
Be’er Sheva, Israel

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00239-x&domain=pdf

Page 2 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

close to each other across many genomes often code
for proteins that interact with one another, suggesting a
common functional association.

Groups of genes that are co-locally conserved across
many genomes are denoted gene clusters. The order of
the genes in distinct genomic occurrences of a gene clus-
ter may not be conserved. A specific order of the genes
of a gene cluster, that is co-linearly conserved across
many genomes, is denoted a gene order of the gene clus-
ter. The distinct genomes in which a gene order occurs
are denoted instances of the gene order. Gene clusters in
prokaryotic genomes often correspond to (one or several)
operons; those are neighbouring genes that constitute a
single unit of transcription and translation.

In this paper, our biological goal is to study the evolu-
tion of gene clusters in prokaryotes, by computing the
divergence between pairs of gene orders that belong to
the same gene cluster, based on genome rearrangement
scenarios. When defining this computational task as an
optimization problem, one needs to take into account
that parsimony considerations may not be sufficient:
driven by the objective to keep the genome small and
efficient, in spite of the high rate of gene shuffling in the
prokaryotic genome, only gene orders that are reinforced
by conveying some advantage in fitness (i.e., in adaptation
to some niche) will be kept in the genome. This calls for
a Structure-Informed Genome Rearrangement (SIGR)
divergence measure that will interleave parsimony con-
siderations with some learned structural and functional
information regarding the gene cluster under study. Such
a measure could more accurately assess the degree of
divergence from one order of a gene cluster to another,
and provide further understanding of gene-context level
environmental-specific adaptations [3, 4].

To this end, we propose a new SIGR-based divergence
measure and provide efficient algorithms to compute it.
According to our approach, information regarding the
structure of the gene cluster is learned from the known
gene orders of the gene cluster and represented by a PQ-
tree (formally defined in “Preliminaries” section). The
PQ-tree is then utilized to both guide the allowed opera-
tions and to compute their weights. A motivating exam-
ple for our proposed approach, including exemplifying
figures, can be found in “A motivating example” section.

PQ-trees have been advocated as a representation for
gene clusters [5–7]. A PQ-tree describes the possible per-
mutations of a given sequence, and can be constructed in
polynomial-time [8]. The PQ-tree representing a given
gene cluster describes its hierarchical inner structure and
the relations between instances of the gene cluster suc-
cinctly, assists in predicting the functional association
between the genes in the gene cluster, yields insights into
the evolutionary history of the gene cluster, and provides

a natural and meaningful way of visualizing complex
gene clusters.

The biological assumptions underlying the representa-
tion of gene clusters as PQ-trees is that operons evolve
mainly via progressive merging of sub-operons, where
the most basic units in this recursive operon assembly are
colinearly conserved sub-operons [9]. In the case where
an operon is assembled from sub-operons that are colin-
early dependent, the conserved gene order could corre-
spond, e.g., to the order in which the transcripts of these
genes interact in the metabolic pathway in which they are
functionally associated [10]. Thus, rearrangement events
that shuffle the order of the genes (or of smaller sub-
operons) within this sub-operon could affect the function
of its product. On the other hand, inversion events in
which the genes participating in this sub-operon remain
colinearly ordered with respect to the transcription order,
have less of an affect on the interactions between the sub-
operon’s gene products.

The case of colinearly conserved sub-operons is rep-
resented in the PQ-tree by a Q-node (marked with a
rectangle in the exemplifying figures), and by a Rever-
sal operation in the corresponding pairwise gene order
rearrangement scenario. In the case where an operon is
assembled from sub-operons that are not colinearly co-
dependent, convergent evolution could yield various
orders of the assembled components [9]. This case is rep-
resented in the PQ-tree by a P-node (marked with a circle
in the exemplifying figures), and by a Block Interchange
operation in the corresponding pairwise gene order rear-
rangement scenario.

Background on structure informed genome rearrangement
(SIGR) scenarios
A generic formulation of genome rearrangement prob-
lems is, given two genomes and some allowed edit oper-
ations, to transform one genome into the other using a
minimum number of edit operations [11–14]. A famous
algorithmic result related to genome rearrangements
concerns the problem of sorting signed permutations
by Reversals. This problem aims at computing a shortest
sequence of Reversals that transforms one signed permu-
tation into another, and can be solved in polynomial time
[15–17]. It was later generalized to handle, still in poly-
nomial time, multichromosomal genomes with linear
chromosomes, using rearrangements such as Transloca-
tions, Chromosome Fusions and Fissions [18, 19]. Then,
a general operation called Double Cut-and-Join (DCJ),
was introduced in [20] for handling problem instances
where the common intervals are organized in a nonlin-
ear structure. A DCJ can be, among others, a Reversal, a
Translocation, a Fusion or a Fission, but two consecutive

Page 3 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

DCJ operations can also simulate a Block-Interchange or
a Transposition.

Previous works proposed related forms of SIGR by con-
sidering rearrangement scenarios on two permutations
that preserve their common intervals (groups of co-local-
ized genes). Such scenarios, which may not be shortest
among all scenarios, are called perfect [21]. Computing
a Reversal scenario of minimum length that preserves
a given subset of the common intervals of two signed
permutations is NP-hard [21] and several papers have
explored this problem, describing families of instances
that can be solved in polynomial time [22–25], fixed
parameter tractable algorithms [23, 26], and an exponen-
tial time algorithm (which works also in the more general
weighted case) [27]. We note that all the perfect scenarios
mentioned above considered only Reversal operations,
while for our settings Block-Interchange operations
should also be considered. A heuristic approach that
implements, among others perfect reversals and block
interchange is described in [28].

In [29] the notion of perfect scenario was extended
to the Perfect DCJ model, thus capturing additional
operations in perfect scenarios, including Cut, Join and
Block-Interchange. When considering the perfect rear-
rangement scenarios that best fit our problem, this is the
model that is most relevant to our settings, as the other
(non-heuristic) previous works do not include the Block-
Interchange operation. The operations considered by
the Perfect DCJ model are very general, which renders
the problem computationally intractable in its general
setting. Indeed, Berard et al. [29] thus only obtain posi-
tive algorithmic results for special cases that, in particu-
lar, do not encompass the structure of a PQ-tree, and
with a parameter that can often be of the magnitude of
the entire input size. For us, the aforementioned special
cases are too restricted, and cannot model the problem
we have at hand. On the other hand, fortunately, for us,
considering Cut and Join operations is an unjustified
overhead. Specifically, we seek to model the considered
evolutionary scenarios by a formulation that is more
specific to our biological problem, in order to increase
the divergence measure accuracy as well as tighten the
parameters driving the complexity of the algorithms for
the problem. Since, in our problem, we are dealing with
prokaryotic gene clusters and the data in our experiment
is typically confined to one chromosome per genome,
we need not consider Cut and Join operations. In addi-
tion, the intervals in prokaryotic gene clusters follow a
strongly conserved hierarchy, naturally modeled by the
PQ-tree learned from the members of the gene cluster. In
terms of divergence measure accuracy, we would like to
enforce the PQ-tree structure as a constraint to the con-
sidered rearrangements. Furthermore, while the Perfect

DCJ model is unweighted (and simply counts the number
of DCJ operations applied), we use the PQ-tree as a guide
affecting the weights of the applied rearrangement opera-
tions. In terms of tightening the parameters driving the
complexity of the computation, the PQ-tree constraint
enables us to use dynamic programming algorithms and
to reduce the parameter from n to the out degree of the
tree. In particular, this means that the more hierarchical
the input is, the smaller our parameter is likely to be, and
the faster our algorithm is—in other words, the running
time of our algorithm naturally scales with the amount of
structure given by the PQ-tree.

In general, our algorithm is intended for widely con-
served prokaryotic gene clusters (with cluster length
bounded by tens of genes) that display a hierarchical
structure. In such cases, the maximal degree of a P-node
(which is the exponential factor in the time complexity of
our proposed algorithm) is typically small, in particular
with respect to the maximal degree of a Q-node (which
affects the time complexity of the algorithm by a poly-
nomial factor.) This is due to the fact that gene clusters
in bacteria are very highly colinearly conserved [30, 31],
even when the benchmark dataset is large and spans a
wide taxonomical range of prokaryotes [32]. Further-
more, the very same data set used in this study (consisting
of 59 prokaryotic genomes) was previously analyzed by
Svetlitsky et al. [32] in order to study the degree of con-
served collinearity among widely spread gene clusters in
prokaryotic genomes. The study found a negative correla-
tion between the proportion of shuffled gene clusters and
their length, i.e. the longer the gene cluster is, the more
it is colinearly conserved. All this inspired us to develop
an algorithm that, on one hand captures the structure
of gene clusters in an informed way, while on the other
hand employs the P-node out-degree as a bound on its
exponential factor. To this end we propose an FPT algo-
rithm for the TTSD problem, where the structure of the
gene cluster is represented by a PQ-tree, and the param-
eter binding the exponential factor of the algorithm is the
maximal out-degree of a P-node in the tree.

Our contribution
 We propose a new, two-step approach to SIGR: In the
first step, given the gene orders of the gene cluster under
study, the internal topology properties of a gene clus-
ter are learned from its corresponding gene orders and
a PQ-tree is constructed accordingly. Then, in the sec-
ond step, given a reference gene order and a target gene
order, a SIGR scenario is computed from the reference to
the target, such that colinear dependencies among genes
and between sub-operons, as learned by the PQ-tree, are
taken into account by the penalties assigned to the rear-
rangement operations.

Page 4 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

To this end, we define two new theoretical problems and
propose three algorithms to solve them. In the first prob-
lem, denoted Constrained TreeToString Divergence
(CTTSD), we define the basic SIGR divergence measure.
Here, we assume that the gene order members of the
gene cluster from which the PQ-tree is constructed are
permutations. The rearrangement operations considered
by this problem include (weighted) Reversals and Block-
Interchange operations. In this problem, the PQ-tree rep-
resenting the gene cluster (Fig. 3A) is ordered such that
the series of gene IDs spelled by its leaves is equivalent
to the reference gene order (Fig. 3B). Then, a weighted
SIGR measure is computed from the ordered PQ-tree to
the target gene order (Fig. 3C).

The second problem, denoted TreeToString Divergence
(TTSD), is a generalization of the first problem, where
the gene order members are not necessarily permutations
and the genome rearrangement measure is extended to
also consider up to dS gene insertion operations and up
to dT gene deletion operations.

The first fixed parameter tractable (FPT) algorithm (in
“Constrained TreeToString Divergence: algorithm” sec-
tion) solves CTTSD in O(nγ 2 · (mp · 1.381

γ +mq)) time
and O(n2) space, where γ is the maximum number of
children of a node, n is the length of the string and the
number of leaves in the tree, and mp and mq are the num-
ber of P-nodes and Q-nodes in the tree, respectively. If
one of the penalties of CTTSD is defined to be 0, then the
algorithm runs in O(nmγ 2) time and O(n2) space.

The second FPT algorithm solves TTSD in
O(n2γ 2dT

2dS
2m2(mp · 5

γ γ +mq)) time and
O(dTdSm(mn+ 5γ)) space, where γ is the maximum
number of children of a node, n is the length of the string,
m is the number of leaves in the tree, mp and mq are the
number of P-nodes and Q-nodes in the tree, respectively,
and allowing dT deletions from the tree and dS deletions
from the string.

Dynamic programming is common on trees, and on
sequences, and our algorithms combine the two types.
While our first algorithm is simple and intuitive (based
on one dynamic programming and two greedy proce-
dures), for our second algorithm (based on three dynamic
programming procedures), more technical ingredients
are required. For example, one challenge is the need to
compute a vertex cover in a graph that is not fully known
by any single entry of our dynamic programming table.
Specifically, when we consider a single entry, some of the
relevant vertices are not yet processed, and for those that
are processed, we cannot store enough information (for
the sake of efficiency) so as to deduce which edges exist
between them.

The third FPT algorithm is intended to reduce
the space complexity of the second algorithm.

It solves a variant of the problem (where one
of the penalties of TTSD is defined to be 0) in
O(nγ 2dT

2dS
2m2(mp · 4

γ γ 2n(dT + dS +m+ n)+mq))
time and O(γ 2nm2dTdS(dT + dS +m+ n)) space. This
algorithm employs the principle of inclusion–exclusion
for the sake of space reduction, which, to the best of our
knowledge, is not commonly used in the study of prob-
lems in computational biology.

The proposed general algorithm is implemented as a
software tool, denoted MEM-Rearrange, and applied to
the comparative and evolutionary analysis of 59 chro-
mosomal gene clusters extracted from a dataset of 1487
prokaryotic genomes (in “Results” section). Our prelimi-
nary results, based on the analysis of the 59 gene clusters,
indicate that our proposed measure correlates well with
an index that is computed by comparing the class com-
position of the genomic instances of the two compared
gene orders. The correlations yielded by our measure are
shown to significantly increase with the increase in con-
served structure of the corresponding gene clusters (as
modelled by PQ-trees).

Roadmap
 The rest of the paper is organized as follows. In “A moti-
vating example” section we present a motivating biologi-
cal example. Previous works are reviewed in “Previous
related works” section. In “Preliminaries” section, we for-
mally define the terminology used throughout the paper,
and, in particular, the two problems studied in this paper.
In “Constrained TreeToString Divergence: algorithm”
section, we present our first algorithm, which solves the
CTTSD problem. In “TreeToString Divergence: algo-
rithm” section, we present our second algorithm, which
solves the TTSD problem. In “TTSD: polynomial space
complexity” section, we present our third algorithm,
which solves the CTTSD problem and improves the
space complexity of the second algorithm. In “Methods
and datasets” section, we specify the details of our data
set construction and experiment. Finally, in “Results”
section, we compare the performance of our proposed
rearrangement measure versus that of signed break-
point distance on a benchmark of 59 chromosomal gene
clusters. Concluding remarks are given in “Conclusions”
section.

A motivating example
In this section we give a biological example to motivate
the new problems defined in this paper. To this end, we
chose to interpret the first result shown in Table 2 (found
in “Appendix”), which corresponds to a gene cluster con-
sisting of three gene orders of a known ABC transporter
operon, encoding genes participating in a carbohydrate
uptake system [33]. This example is illustrated in Fig. 1.

Page 5 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

In each of the gene orders shown in the figure, the prod-
uct of gene number one is responsible for regulating the
transcription of the other genes. The genes numbered
two, three and four code for proteins that are part of the
transporter machine. Gene number five codes for a pro-
tein that is responsible for some metabolism of the trans-
ported substrate, such as breaking down a complex sugar
into smaller ones [34]. The genes numbered two, three,
four and five are located close to each other in all gene
orders and are included in a single operon, whose tran-
scription is regulated by the product of gene number one
[34].

Note that even though random shuffling by evolution
forms different gene orders, not every order is conserved.
In prokaryotic genomes, gene clusters often correspond
to operons, which are adjacently localized genes that are
co-transcribed and co-translated. Here, selection for spe-
cific gene orders in operons can be due to the assembly
order of a multifunctional enzymatic complex [35] or
the performance of consecutive reactions in a metabolic
pathway [36]. The conserved gene order within operons
also facilitates the evolution of multiple post-transcrip-
tional and post-translational feedback mechanisms that
regulate the expression of enzymes catalyzing different
steps in the pathway according to metabolite availability
[37]. Thus, the gene orders we see today are functionally
conserved. In order to take this into consideration in our
genome-rearrangement approach, we use a PQ-tree to
represent the gene cluster and to model the possible evo-
lutionary events that yielded the various gene orders (see
Fig. 3).

Considering the first two gene orders in the cluster,
the signed break-point distance between them is 2 (see
Fig. 2). Now, let’s use our knowledge of the evolution
of the gene cluster, using the PQ-tree (in Fig. 3), and
reconsider the break-point between genes one and two.
Looking at the PQ-tree, we can see that the proposed

break-point actually falls between gene one and the
P-node y, which represents genes from the cluster that
are included in the same operon. Notice that the adja-
cency of gene one and P-node y appears both in the first
gene order and in the second gene order. Therefore,
according to the PQ-tree, this proposed break-point
is functionally irrelevant and should not be penalized
by the corresponding SIGR score! This makes biologi-
cal sense, since gene 1 is a transcription factor that
typically appears upstream to the operon it regulates,

Fig. 1 Gene cluster of a known sugar transporter operon. A Three
gene order instances of the gene cluster. B The color‑coding key
for the functional categories of the genes

Fig. 2 Computing the signed break‑point distance between the first
two gene orders from the example shown in Fig. 1. The two signed
break‑points are denoted by the red lines

Fig. 3 Re‑considering the signed break‑points (marked in blue)
between the two gene orders exemplified in Fig. 2, this time
taking into account the PQ‑tree representing the corresponding
gene cluster. A The PQ‑tree. Note that in this figures, as well
as the following figures, P‑nodes are marked with circles and Q‑nodes
are marked with rectangles. B The first gene order. C The second
gene order

Page 6 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

regardless of how the genes are arranged within the
operon [34].

Next, consider a comparative analysis between these
two gene orders based on a perfect reversals distance
scenario. A perfect reversals scenario would acknowl-
edge the observation that the transcription factor gene
is not colinearly dependent on a specific gene from the
transporter operon, however it would entail a long and
expensive series of reversal operations: first, reversal of
the sequence of genes 2–5, and then the individual rever-
sal of each one of these genes. Although this may have
been the actual evolutionary scenario that led to the sec-
ond gene order, this scenario is quite uninformative in
terms of both assessing the functional distance as well as
interpreting the functional discrepency between the two
gene orders. The point is, as would be observed by a PQ-
tree guided block-interchange operation, that in the first
order the sugar transporter is transcribed prior to the
transcription of the sugar-metabolising gene, while in the
second gene order the transcription order of these units
is reversed.

Previous related works
Permutations on strings representing syntenic gene
blocks on genomes have been studied earlier by [38–
42] and the idea of a maximal permutation pattern was
introduced by Eres et al. [41]. In [8] an algorithm was
proposed for representation and detection of gene clus-
ters in multiple genomes using PQ-trees. The proposed
algorithm identifies a minimal consensus PQ-tree, and it
is proven that this tree is equivalent to a maximal permu-
tation pattern and that each subgraph of the PQ-tree cor-
responds to a non-maximal permutation pattern. In that
paper, the authors also present a general scheme to han-
dle gene multiplicity and missing genes in permutations
and give a linear time algorithm to construct the mini-
mal consensus PQ-tree. These previous works fall in the
domain of permutation discovery and PQ-tree construc-
tion. In contrast, the problems addressed in our paper
take as input a previously constructed PQ-tree.

Three additional related works fall in the domain of
“PQ-tree language distance computations”. The first
problem is defined and solved in [7]. It asks, given a PQ-
tree T and a string s, to find, among all permutations that
T can generate, a permutation p such that the edit dis-
tances between p and s is minimal. Thus, the work of [7]
used the input PQ-tree only as a constraint to guide the
alignment process, and did not project the guiding infor-
mation to the comparative score, as we do. Furthermore,
the work of [7] did not consider genome rearangement
operations at all, only string edit operations.

For break-point distance, two problems were proposed
and solved in [43]. The first problem asks, given two

PQ-trees over permutation gene orders, and a parameter
k, whether there are two strings S1 and S2 generated from
each of the trees, respectively, such that the break-point
distance between S1 and S2 is up to k. The second prob-
lem asks, given a PQ-tree T, a set of p permutations and
a parameter k, whether T can generate a permutation s
such that the sum of the break-point distances between
s and each of the given p permutations is bounded by k.
However, in both of the problems addressed in [43], the
order of the leaves in the input tree, as well as the actions
taken on it are not taken into account. Additionally, the
break-point distance is computed between two strings,
and the tree is not a part of that distance computation.
In this paper we employ a scoring strategy that takes the
order of the leaves in the tree and the actions on the tree
into account. In particular, we define the divergence from
an ordered PQ-tree to a string by the rearrangement
actions applied on the tree.

Preliminaries
Let S = s1...sn be a string. Denote by S[i] the character in
position i in S, i.e. S[i] = si . In addition, denote by S[i : j]
(i ≤ j) the subsequence of S from position i to position j,
i.e. S[i : j] = si...sj.

PQ‑tree—representing the pattern
A PQ-tree is a rooted tree with three types of nodes:
P-nodes, Q-nodes and leaves. The children of a P-node
can appear in any order, while the children of a Q-node
must appear in either left-to-right order or right-to-left
order. Booth and Lueker [5] were interested in permuta-
tions of a set, thus every member of U appears exactly
once as a label of a leaf in the PQ-tree. We, on the other
hand, allow each member of the set to appear as a label
any non-negative number of times. The possible reorder-
ing of the children nodes in a PQ-tree can potentially cre-
ate many equivalent PQ-trees. Booth and Lueker defined
two PQ-trees T and T ′ as equivalent (denoted T ≡ T ′) if
and only if one tree can be obtained by legally reorder-
ing the nodes of the other; namely, randomly permuting
the children of a P-node, and reversing the children of a
Q-node. A generalization of their definition, to allow for
insertions and deletions, is defined as follows.

Definition 1 (Quasi-Equivalence) Two PQ-trees T , T ′
are quasi-equivalent with parameter d, denoted by
T ∼=d T ′ , if and only if T ′ can be obtained by (a) randomly
permuting the children of the P-nodes of T, (b) revers-
ing the children of the Q-nodes of T, (c) deleting up to d
leaves of T.

Denote by Tx the subtree of a PQ-tree T rooted in the
node x. Denote by Leaves(x) the set of leaves of the

Page 7 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

PQ-tree Tx , span(x) = |Leaves(x)| and for a set of nodes
U, span(U) =

∑

v∈U span(v) . Denote by children(x) the
set of children of the node x, and let rootT the root node
of the tree T.

Given a PQ-tree T, we denote the label of a leaf x of T
by label(x) . The frontier of the PQ-tree T, denoted F(T),
is the sequence of labels on the leaves of T read from
left to right. In addition to Definition 1, for each node
in a PQ-tree (internal node or leaf), we define a unique
“color” which will help us distinguish and map between
nodes of two quasi-equivalent PQ-trees. Colors are used
only for the analysis—they are not used explicitly in the
algorithm. In the input we receive one PQ-tree (T) and
“assign” arbitrary (but unique) colors to its nodes. In the
algorithms, we perform actions on T, which reorder its
nodes. We refer by T ′ to the original tree (T) with reor-
dered nodes. Thus, we use colors just to keep track of the
nodes after the shuffling, see Fig. 4. From now on, when
we say that two PQ-trees T , T ′ are quasi-equivalent,
we assume that the equivalence is with parameter d. In
addition, we assume that the PQ-trees T , T ′ are colored
in the same unique colors (each color is assigned only to
one node in T and at most one node in T ′ , and the nodes
in T ′ have the same colors as their corresponding nodes
in T). In addition, we say that the frontier of T ′ , F(T ′) , is
derived from T, and we call this a derivation. We can also
say that T ′ is ordered as F(T ′) . When a string S is derived
from Tx , we also say that S is derived from x.

Definition 2 (Equivalent Nodes) Given two quasi-
equivalent PQ-trees T , T ′ with parameter d and two
nodes x ∈ T and x′ ∈ T ′ , x and y are equivalent nodes if
they share the same color.

In Fig. 4, the colors of the trees are shown as unique
numbers near each node (notice that each node “keeps”
its color in T ′ compared to T). We say that the string
“abab ” is derived from T, because “abab ” is the frontier
of T ′.

Break‑point distances
The definitions of our problems make use of the notion
of break-point distance [43] to determine the distance
between two strings, as defined below.

Definition 3 (Gene Mapping) Let G = g1, . . . , gn
and H = h1, . . . , hm be two strings. A gene map-
ping of G and H, denoted by M , is a set of pairs
(i, j) ∈ {1, . . . , n} × {1, . . . ,m} such that gi = hj

1 and every
position in G and H is in exactly one pair in M . When no
confusion arises, we suppose that the gene mapping con-
tains the pairs of genes (gi, hj) themselves.

Definition 4 (Break-Point) Given two strings
G = g1, . . . , gn , H = h1, . . . , hm and a gene mapping M ,
a break-point between G and H is a pair of consecutive
genes gigi+1 in G (resp. hihi+1 in H) such that the follow-
ing is true: gi and gi+1 (resp. hi and hi+1) belong to M , say,
(gi, hj), (gi+1, hk) ∈ M (resp. (gj , hi), (gk , hi+1) ∈ M), but
neither k = j + 1 nor k = j − 1.

Denote by NUMBP(G,H ,M) the number of break-
points of G between G and H with respect to M.

Definition 5 (Break-Point Distance) Let S1 and S2
be two strings. The break-point distance between S1
and S2 , denoted by dBP(S1, S2) , is the minimum of
NUMBP(G,H ,M) among all gene mappings M of G and
H.

For example, suppose we are given the strings
S1 = abcd and S2 = acbd . Then, there exists exactly one
gene mapping of S1 and S2 . The break-points of S1 are the
pairs (a, b), (c, d). Therefore, the break-point distance
between them is 2. We also can count the number of
break-points of S2 , which are (a, c), (b, d).

We will use a variant of break-point distance that
takes the signs of the characters in a string into account.
Towards that, we define the notion of a signed string.

Definition 6 (Signed String) A signed string is a string
where each character is assigned a sign (‘+’ or ‘−’).

Fig. 4 a PQ‑tree T. b PQ‑tree T ′ which is quasi‑equivalent to T.
The colors are represented by the number assigned to each
node, the labels of the leaves are the letters. Each internal node
is T is marked by a letter (x for example), and its equivalent node
is marked by the same letter with a dash (x′)

1 That is, the character in position i in G is the same as the character in
position j in H.

Page 8 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

When we say that a string S is a signed string, we sup-
pose to have a sign function sign that returns the sign of
the character in each position in S. For the sake of illus-
tration, in our examples, we will indicate the sign of each
character by ‘+’ or ‘−’ of its left side.

Definition 7 (Signed Break-Point) Given two signed
strings G = g1, . . . , gn , H = h1, . . . , hm and a gene map-
ping M , a signed break-point between G and H is a
pair of consecutive genes gigi+1 in G (resp. hjhj+1 in
H) such that the following is true: gi and gi+1 (resp.
hi and hi+1) belong to M , say, (gi, hj), (gi+1, hk) ∈ M
(resp. (hi, gj), (hi+1, gk) ∈ M) but neither k = j + 1 ,
signG(i) = signH (j) and signG(i + 1) = signH (k)
nor k = j − 1 , signG(i) = −signH (j) and
signG(i + 1) = −signH (k).

Denote by NUMSBP(G,H ,M) the number of signed
break-points of G between G and H with respect to M.

Definition 8 (Signed Break-Point Distance) Let S1 and
S2 be two signed strings. The signed break-point distance
between S1 and S2 , denoted by dSBP(S1, S2) , is the mini-
mum of NUMSBP(G,H ,M) among all gene mappings M.

For example, consider the signed strings
S1 = +a+ b+ c + d and S2 = +a− b− d − c . Then,
there exists exactly one gene mapping of S1 and S2 . The
signed break-points of S1 are the pairs (a, b), (b, c). There-
fore, dSBP(S1, S2) = 2 . We can also count the number of
signed break-points of S2 , which are (a, b), (b, d).

To accommodate deletions, we will use Definition 8
with respect to strings obtained from the given ones after
deleting characters.

Problem preliminaries
Given an internal node x in a PQ-tree T, we define its
sign, sign(x) , as the majority sign of the leaves in Tx ,
Leaves(x) . If the number of negative signed leaves is
equal to the number of positive signed leaves, then we
abuse notation and consider sign(x) as + as well as −.

Given a node x in a PQ-tree, let S(x) denote the
signed string of colors of the nodes in children(x) as
they are ordered in the tree (from left to right). For
example, consider the PQ-tree shown in Fig. 5a where
the character assigned to each internal node is its
color, then S(z) = +b+ c , S(y) = +a+ z + d and
S(x) = +y+ e + f .

In order to measure the divergence from an ordered
PQ-tree to a string, we take into account the actions per-
formed on the PQ-tree to order it as needed. Towards
defining the divergence from an (ordered) PQ-tree T to
a string S, we first define a penalty for taking an action

on an internal node of a PQ-tree, denoted by �violation .
The penalty �violation is a combination of several types
of penalties. The first type concerns cases where large
units “jump” while reordering the children of a P-node
x to have the same order as the children of its equiva-
lent node x′ . Specifically, we want to penalize according
to the sizes of these units: We will not penalize a single
leaf that jumps, but only units whose size is larger than 1,
and the penalty for these units increases with their sizes.
Thus, we consider the following penalty. If the size of a
unit that jumps is t, then we penalize this operation by
(t − 1)/2 . In particular, a leaf does not get penalized. To
do so, we build a graph G(x, x′) (defined formally later),
whose vertex set is the children of the P-node. Each ver-
tex has a weight relative (as mentioned before and will
defined ahead) to its size (defined as the span of the child
it represents). Roughly speaking, the graph G has an edge
for each pair of children that “changed their order” (with
respect to the their signs). To be precise, we need the fol-
lowing definition.

Definition 9 (Change Of Signed Order) Let x, x′ be two
equivalent P-nodes of two quasi-equivalent PQ-trees T
and T ′ with parameter d, S(x) = c1, . . . , cn be the signed
string of colors of the nodes in children(x) that were not
deleted, as they ordered in T, S(x′) = c′1, . . . , c

′
n′ be the

signed string of colors of the nodes in children(x′) , as
they ordered in T ′ , and M be the2 gene mapping of S(x)
and S(x′) . Given two nodes y (with color ci and y′ is the
equivalent node of y in T ′) and z (with color cj and z′ is
the equivalent node of z in T ′) in children(x) , say, j > i ,
and such that (ci, c′k), (cj , c

′
t) ∈ M for some c′k and c′t , y

Fig. 5 a A PQ‑tree T. b A PQ‑tree T ′ that is equivalent to T

and is ordered as S

2 S(x) and S(x′) are strings of colors (which are unique), thus there is only
one gene mapping of S(x) and S(x′).

Page 9 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

and z change their signed order if the following are both
false.

• t > k , sign(y) = sign(y′) and sign(z) = sign(z′).
• t < k , sign(y) = −sign(y′) and sign(z) = −sign(z′).

We denote by G[x, x′] the graph (described before Defi-
nition 9) of two equivalent P-nodes x and x′ of two quasi-
equivalent PQ-trees. Formally, it is defined as follows.

Definition 10 (G[x, x′]) Given two equivalent P-nodes
x, x′ of two quasi-equivalent PQ-trees with parameter
d, G[x, x′] = (V ,E,w) is the undirected graph with ver-
tex set V, edge set E and vertex weight function w which
defined as follows.

• V = children(x).
• E = {(v,u)|u and v changed their signed order}.
• For each x ∈ V , w(x) = (span(x)− 1)/2.

Notice that the graph is dependent on the colors, to
determine the edge set.

After building G[x, x′] , we find the minimum weight of
a vertex cover of G[x, x′] in order to sum all penalties for
the units that jumped while reordering the children of a
P-node. Observe that by computing the minimum weight
of a vertex cover, we identify a “best” (in terms of penalty)
set of nodes that jump.

Definition 11 (Minimum Weighted Vertex Cover) Let
G = (V ,E,w) be a graph with vertex set V, edge set E and
vertex weight function w. The minimum weighted vertex
cover of G is the minimum weight3 among all vertex cov-
ers of G.4

Definition 12 (�P
jump(x, x

′)) Given two equivalent
P-nodes x and x′ of two quasi-equivalent PQ-trees with
parameter d, and the weight t of a minimum weighted
vertex cover of G[x, x′] , the jump violation between x and
x′ , denoted by �P

jump(x, x
′) , is t.

Now, we define a violation between two equivalent
internal nodes. Towards that, given two equivalent
nodes x, x′ of two quasi-equivalent PQ-trees T and T ′
(where x is not deleted), let isFlipped(x, x′) be a proce-
dure that returns 1 if x and x′ “flipped”, and 0 otherwise.

That is, if x and x′ are leaves, isFlipped(x, x′) = 1 if
sign(x) = −sign(x′) ; otherwise, isFlipped(x, x′) = 0 .
If x and x′ are internal nodes, isFlipped(x, x′) = 1
if for each child y ∈ children(x) that is not deleted,
isFlipped(y, y′) = 1 where y′ is the child of x′ that is
equivalent node of y, and the order of children(x′) in T ′
is the reversal of the order of children(x) in T; otherwise,
isFlipped(x, x′) = 0.

Given an internal node x, denote by S̃d(x) the set of
signed strings where S̃ ∈ S̃d(x) if S̃ is obtained from S(x)
by deleting up to d leaves from Tx.

Definition 13 (�d
violation(x, x

′)) Given two equivalent
internal nodes x and x′ of two quasi-equivalent PQ-trees
with parameter d, and input numbers δQord and δQflip , the

violation between x and x′ , denoted by �d
violation(x, x

′) , is
defined as follows.

• If x is a P-node, �P
violation

(x, x′) = min
S̃∈S̃d (x)

dSBP(S̃, S(x
′))

+�P

jump
(x, x′).

• If x is a Q-node, �Q

violation
(x, x′) = δ

Q

ord
· min
S̃∈S̃d(x)

dSBP

(S̃, S(x′))+ isFlipped(x, x′) · δ
Q

flip.

When we use the notation �d
violation , if d is clear from

the context, we will use the notation �violation instead.
In Definition 13, one of the penalties for reordering
the children of a Q-node is the flip penalty (δQflip), and
it is performed if the Q-node has flipped (as indicated
by isFlipped). When considering this event, notice
the case where a Q-node x flipped and all of the non-
deleted children in children(x) flipped as well (including
the P-nodes). In this case, we penalise each of the non-
deleted children in children(x) and x as well for flipping,
but, in fact, the event is flipping only x. Thus, we unnec-
essarily penalise the non-deleted children in children(x) .
Therefore, we employ a flip correction procedure as
defined next.

Definition 14 (FlipCorrection(x, x′)) Given two equiv-
alent internal nodes x and x′ of two quasi-equivalent
PQ-trees with parameter d, the flip correction between
them, denoted by FlipCorrection(x, x′) , is 0 if not all of
children(x) flipped or deleted, and otherwise it is the sum
of the flip penalties of all of the Q-nodes and leaves in
children(x) that were not deleted.

Finally, after defining the violation between equivalent
nodes, we simply sum up the violations (and corrections) 3 Weight of a set is the sum of weights of its vertices.

4 A vertex cover is a set S ⊆ V such that every edge of G has at least one
endpoint in S.

Page 10 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

of all internal nodes to define the divergence from an
ordered and labeled PQ-tree to a signed string as follows.

Definition 15 (DivergedT ,dS (T , S)) Let T be an (ordered
and leaf-labeled) PQ-tree, and S be a signed string. Let
OT be the set of all quasi-equivalent T ′ PQ-trees of T
with parameter dT (i.e. T ∼=dT T ′) such that T ′ is ordered
as a subsequence of S obtained by deleting up to dS char-
acters from S. For any T ′ ∈ OT , let MT ′ be the unique5
mapping that maps each node in T ′ to its equivalent node
in T. Then,

In case dT = 0 and dS = 0 , we will use the notation
Diverge(T , S) instead of DivergedT ,dS (T , S) for simplicity.

For example, consider the ordered PQ-tree T in
Fig. 5, which is ordered as +a+ b+ c + d + e + f ,
and the signed string S = +f − c − b− a− d + e . To
order T as S, we flip the Q-node z, and for this we pay
�Q

violation(z, z
′) = δ

Q

flip . Now, consider the P-node y. We
swap between a and z, so dSBP(S(y), S(y′)) = 1 , and
hence �P

violation
(y, y′) = 1 (notice that there is no jump of

a large unit, because the leaf a can jump). Finally, for the
P-node x, �P

jump
(x, x′) = 0 (we can order the children by

moving the leaf f to the left-most position). In addition,
dSBP(S(x), S(x

′)) = 1 . Thus, for x we pay �P
violation

(x, x′) = 1 . In
total Diverge(T , S) = �Q

violation(z, z
′)+�P

violation(y, y
′)+

�P
violation(x, x

′) = δ
Q

flip + 2.

Problem definitions
Constrained TreeToString Divergence

The input to CTTSD consists of two signed permuta-
tions of length n, S1 = σ1 · · · σn ∈ �n , |�| = n , such that
σi = σj for all 1 ≤ i < j ≤ n , and S2 = �1 · · · �n ∈ �n such
that �i = �j for all 1 ≤ i < j ≤ n ; a PQ-tree T ordered as
S1 with mp P-nodes and mq Q-nodes; and two numbers
δ
Q
ord and δQflip . We aim to perform actions on T to reorder

it as S2 . That is, we reorder T as T ′ so that F(T ′) = S2 . If
this is not possible, we answer “NO”. Else, we return the
divergence from T to S2 . Concretely, CTTSD is defined
as follows.

Definition 16 (Constrained TreeToString Divergence)
Given two signed permutations S1 and S2 of the same
length and the same characters, two numbers δQord and

DivergedT ,dS (T , S) = min
T ′∈OT

∑

(x,x′)∈MT ′

(�violation(x, x
′)− FlipCorrection(x, x′)).

δ
Q
flip , and a PQ-tree T ordered as S1 , return Diverge(T , S2)

or answer “NO” if S2 cannot be derived from T.

In “Constrained TreeToString Divergence: algorithm”
section, we propose an algorithm to solve this problem.

TreeToString Divergence Generalizing CTTSD , in
TTSD we do not assume that the input strings are per-
mutations, and we allow deletions. The input to TTSD
consists of two signed strings, S1 = σ1 · · · σm ∈ �m

T and
S2 = �1 · · · �n ∈ �n

S ; a PQ-tree T ordered as S1 with mp

5 Note that uniqueness follows from our use of colors.

P-nodes and mq Q-nodes; dT ∈ N ∪ {0} , which specifies
the number of allowed deletions from T; dS ∈ N ∪ {0} ,
which specifies the number of allowed deletions from
S2 ; and two numbers δQord , δ

Q
flip indicating the penalty of

the events of changing order and flipping, respectively, a
Q-node. In TTSD we perform actions on T to reorder it as
a subsequence S′2 of S2 , allowing dT deletions from T, and
so that S′2 is obtained from S2 by using up to dS deletions
from S2 . That is, after reordering T as T ′ (and performing
up to dT deletions), F(T ′) = S′2 . If it is not possible, we
answer “NO”. Else, we return the divergence from T to S′2
corresponding to dT and dS . Concretely, TTSD is defined
as follows.

Definition 17 (TreeToString Divergence) Given two
signed strings S1 and S2 , a PQ-tree T ordered as S1 , and
parameters dT , dS , δQord , δ

Q
flip , return DivergedT ,dS (T , S2) or

“NO” if S2 cannot be derived from T with respect to dT
and dS.

Parameterized complexity
Let � be an NP-hard problem. In the framework of
Parameterized Complexity, each instance of � is associ-
ated with a parameter k. Here, the goal is to confine the
combinatorial explosion in the running time of an algo-
rithm for � to depend only on k. Formally, we say that �
is fixed-parameter tractable (FPT) if any instance (I, k) of
� is solvable in time f (k) · |I |O(1) , where f is an arbitrary
function of k.

Algorithms preliminaries
Given a node x and the numbers of deletions kT and kS
of a derivation, the length of the derived string S′ can be
calculated using the length function given in Definition
18 below.

Page 11 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

Definition 18 (The Length Function)
L(x, kT , kS)

.
= span(x)− kT + kS.

Using the length function and the start point s of the
derivation, the end-point of the derivation can be calcu-
lated using the end-point function given in Definition 19
below.

Definition 19 (The End-Point Function)
E(x, s, kT , kS)

.
= s − 1+ L(x, kT , kS).

Let A be a DP table used in an algorithm. Addressing
A with some of its indices given as dots refers to the sub-
table of A that is comprised of all entries of A indexed by
the indices that are specified (i.e., all indices not marked
by dots). For example, A[x, ·, ·, ·, ·] , refers to the subtable
of A that is comprised of all entries of A whose first entry
is x.

In the algorithms, for a given node x in a PQ-tree T,
number of positive signed leaves in Tx , pos, a possi-
ble sign s ∈ {+,−} , and the number of deletions from
Tx , kT (if not implied by context, then kT = 0), we say
that pos is consistent with s (or s is consistent with pos)
if s = + and pos ≥ (span(x)− kT)/2 or if s = − and
pos ≤ (span(x)− kT)/2 . Moreover, in some situations,
for a given set of nodes C, we will sometimes use a set
N ⊆ C to describe the nodes in C that have a negative
sign: for a given node x ∈ C , if x ∈ N , then sign(x) = − ;
otherwise, sign(x) = + . In these situations, we say that
pos is consistent with N (or N is consistent with pos)
if x ∈ N and pos ≤ (span(x)− kT)/2 or if x /∈ N and
pos ≥ (span(x)− kT)/2.

Constrained TreeToString Divergence : algorithm
In this section, we present a greedy algorithm to solve
CTTSD . Our algorithm consists of three components:
the main algorithm, and two procedures called P-Map-
ping and Q-Mapping. We first present and explain the
main algorithm and the procedures. Afterwards, we
demonstrate the execution of the algorithm and analyze
its running time.

The main algorithm
Recall that the input to CTTSD consists of two signed
permutations S1 and S2 of length n, two numbers δQord and
δ
Q
flip , and a PQ-tree T ordered as S1 . If S2 can be derived

from T, then the output of the algorithm is the diver-
gence from T to S2 , Diverge(T , S2) . Otherwise, the out-
put is “NO” (specifically, the algorithm returns ∞).

The main algorithm (whose pseudo-code is given in
Algorithm 1) constructs a 2-dimensional DP table A of
size m′ × n where m′ = n+mp +mq is the number of
nodes in T. For each node x in T and index ℓ , A has an
entry A[x, ℓ] . In the algorithm, for each node x, we keep
two indices ℓ and r (denoted by x.ℓ and x.r respectively)
such that S2[x.ℓ : x.r] is derived from Tx . Then, the pur-
pose of an entry of the DP table, A[x, x.ℓ] , is to hold
the divergence from the subtree Tx to the subsequence
S2[x.ℓ : x.r] of S2 . That is,

If any subsequence of S2 starting at position ℓ cannot be
derived from Tx , then A[x, ℓ] = ∞.

Some entries of the DP table define illegal derivations.
Such are derivations where the length of the frontier
of the subtree is larger than the length of the longest
subsrting starting at the specified index ℓ . These entries
are called invalid entries and their value is defined as ∞
throughout the algorithm. Formally, an entry A[x, ℓ] is
invalid if span(x) > n− ℓ+ 1.

The algorithm first initializes the entries of A that are
meant to hold divergences of derivations of every pos-
sible subsequence of S2 (a single character) from the
leaves of T. Specifically, for a leaf x, if it did not flip, we
put 0 in the corresponding entry. If x did flip, we put
δ
Q
flip . After that, we update x.ℓ and x.r. As described in

the initialization, if label(x) = S2[ℓ] , S2[ℓ] (S2[ℓ : ℓ]) is
derived from label(x) = S2[ℓ] , then we put 0 or δQflip in
A[x, ℓ] and we put ℓ in x.ℓ and x.r.

After the initialization, all other entries of A are filled
as follows. Go over the internal nodes of T in postorder.
For every internal node x, go in descending order over
every index 1 ≤ ℓ ≤ n that can be a start index for the
subsequence of S2 derived from Tx (in case of invalid
entry, we continue to the next iteration). For every x
and ℓ , use the algorithm for P-mapping or Q-mapping
according to the type of x. Both algorithms receive the
following input: the node x, S2 , start and end indices
ℓ, e of a subsequence of S2 , and the collection of deriva-
tions of the children of x (entries of A that have already
been computed and hold the divergence of a deriva-
tion). In addition, the Q-Mapping algorithm receives as
input the penalty parameters δQord and δQflip . After being
called, both algorithms return the divergence from Tx
to S2[ℓ : e] , that is, Diverge(Tx, S2[ℓ : e]).

A[x, x.ℓ] = Diverge(Tx, S2[x.ℓ : x.r]).

Page 12 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

Finally, having filled the DP table, A[rootT , 1] holds
the divergence from T to S2 (Diverge(T , S2)), and so we
return A[rootT , 1].

P‑node mapping: the algorithm
Recall that the input consists of a P-node x, a string S2 ,
two indices ℓ and e, and a set of derivations D . Notice
that each value in D is the divergence from the subtree
rooted in a child c of x to S2[c.ℓ : c.e] , where S2[c.ℓ : c.e]
is a subsequence of S2[ℓ : e] that is derived from Tc . These
values, A[c, c.ℓ] for each c ∈ children(x) , were calcu-
lated in earlier iterations and saved in D . If S2[ℓ : e] can
be derived from Tx , then the output of the algorithm is
the divergence from Tx to S2[ℓ : e] , Diverge(Tx, S2[ℓ : e]) .
Otherwise, the output is “NO” (specifically, the algorithm
returns ∞). Denote by T ′

x the quasi-equivalent PQ-tree
of Tx ordered as S2[ℓ : e] . Note that if T ′

x exists, then it is
unique (because we deal with permutations and forbid
deletions).

The algorithm (whose pseudo-code is given in Algo-
rithm 2) first checks if the interval [ℓ, e] can be “com-
pleted” by all of the intervals defined by the indices
of the children of x. Specifically, we check if there
is any order of the children of x, say, ordered as
c1, . . . , c|children(x)| ∈ children(x) , such that c1.ℓ = ℓ ,
c|children(x)|.e = e , and for each 1 ≤ j ≤ |children(x)| − 1 ,
cj .e + 1 = cj+1.ℓ . If there is no such order, then the inter-
val [ℓ, e] cannot be completed, and so S2[ℓ, e] cannot be
derived from Tx . In this case, we return ∞ . Otherwise,
S2[ℓ : e] can be derived from Tx by reordering the chil-
dren of x according to the unique order that completes
the interval [ℓ, e] . Second, we sum up all of the values in
D (and store the sum in the variable childrenDist). Next,
we calculate the violation between x and its equivalent
node x′ in T ′

x , �P
violation(x, x

′) , according to Definition 13
(and store the result in the variable violation). Finally, we
return the sum of childrenDist and violation, which is
the divergence from Tx to S2[ℓ : e] , Diverge(x, S2[ℓ : e])
(according to Definition 15).

Page 13 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

Q‑node mapping: the algorithm
Recall that the input consists of a Q-node x, a string S2 ,
two indices ℓ and e, a set of derivations D and penalty
parameters δQord and δQflip . Notice that each value in D is
the divergence from the subtree rooted in a child c of
x to S2[c.ℓ : c.e] , where S2[c.ℓ : c.e] is a subsequence of
S2[ℓ : e] and is derived from Tc . These values, A[c, c.ℓ]
for each c ∈ children(x) , were calculated in earlier itera-
tions and saved in D . If S2[ℓ : e] can be derived from Tx ,
then the output of the algorithm is the divergence from
Tx to S2[ℓ : e] , Diverge(Tx, S2[ℓ : e]) . Otherwise, the
output is “NO” (specifically, the algorithm returns ∞).
Denote by T ′

x the (unique) quasi-equivalent PQ-tree of
Tx ordered as S2[ℓ : e].

The algorithm (whose pseudo-code is given in Algo-
rithm 3) first checks if the interval [ℓ, e] can be “com-
pleted consecutively” by all of the intervals defined
by the indices of the children of x. Specifically, we
check if there is a consecutive order of the children
of x, say, ordered as c1, . . . , c|children(x)| ∈ children(x) ,

Fig. 6 a PQ‑tree T. b PQ‑tree T ′ , which is quasi‑equivalent to T
and ordered as S2

Fig. 7 a PQ‑tree T. b PQ‑tree T ′ , which is quasi‑equivalent to T
and ordered as S2

such that c1.ℓ = ℓ , c|children(x)|.e = e , and for each
1 ≤ j ≤ |children(x)| − 1 , cj .e + 1 = cj+1.ℓ . As apposed
to a P-node, here the order of the children completing
the interval [ℓ, e] must be consecutive with respect to
their indices (the same order as the children of x in T
or the reverse order). If there is no such order, then the
interval [ℓ, e] cannot be completed consecutively, and
so S2[ℓ : e] cannot be derived from Tx . In this case, we
return ∞ . Otherwise, S2[ℓ : e] can be derived from Tx
by keeping the order of the children of x, or flipping it.
Second, we sum up all of the values in D (and store the
sum in the variable childrenDist). Next, we calculate
the violation between x and its equivalent node x′ in T ′

x ,
�Q

violation(x, x
′) , according to Definition 13 (and store the

result in the variable violation). Afterwards, we calcu-
late the flip correction according to Definition 14 (and
store the result in the variable childrenFlipCorrection).
Finally, we return the sum of childrenDist and violation
minus childrenFlipCorrection, which is the divergence
from Tx to S2[ℓ : e] , Diverge(x, S2[ℓ : e]) (according to
Definition 15).

Page 14 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

Example
Consider the following input: S1 = +a+ b+ c + d + e + f ,
S2 = +f − c − b− a− d − e , PQ-tree T ordered as
S1 , δ

Q
ord = 3 and δQflip = 3 . We iterate through the nodes

of the tree in post-order, thus we initiate the leaves
before their parents. For each leaf x ∈ Leaves(rootT) ,
if label(x) = S2[ℓ] , then A(x, ℓ) = 0 ; otherwise,
A(x, ℓ) = ∞.

Figure 6 describes the PQ-tree T and its quasi-equiv-
alent PQ-tree T ′ ordered as S2 , after the initialization of
the leaves only. Notice that the order of the initialization
is in fact different, in postorder; for simplicity, we show
the tree where only the leaves are initialized. In addition,
in the figures, the equivalent nodes of T and T ′ are shown
as the same nodes. But in the explanations, in order to
distinguish between them, for each node x ∈ T ′ , we
denote it by x′ . The pair of numbers shown in the figure
near a node represent its ℓ and r values. In addition, the
sign + or − near a node represents its sign. For exam-
ple, for a ∈ T , a.ℓ = a.r = 4 and sign(a) = + . For each

internal node, the character assigned to it represents its
color.

First, consider the iteration where A[z, 2] is cal-
culated (the values for all other entries with node z
is ∞). The intervals of the children of z, [3, 3] and
[2, 2], complete the interval (2, e) consecutively where
e = 2+ span(z)− 1 = 3 . Thus, the subsequence S2[2 : 3]
is derived from Tz , and in order to generate it we need to
flip the order of children (z) . For this the penalty of flip-
ping, δQflip , is applied, and so �Q

violation(z, z
′) = δ

Q
flip = 3 .

childrenDist = A[b, 3] +A[c, 2] = 6 because A[b, 3]
= A[c, 2] = 3 . FlipCorrection(z, z′) = 6 because
both b and c have been flipped. Therefore,
A[z, 2] = childrenDist + violation− childrenFlipCorrection = 3 .
Now, we update z’s indices, z.ℓ = 2 and z.r = 3 . Figure 7
describes the PQ-tree T and its quasi-equivalent PQ-tree
T ′ after calculating A[z, 2].

Next, consider the iteration where A[y, 2] is calcu-
lated (the values for all other entries with node y is
∞). Recall that Fig. 7 describes T and T ′ after calculat-
ing the entries of the children of the P-node y. The

Fig. 8 a PQ‑tree T. b PQ‑tree T ′ , which is quasi‑equivalent to T
and ordered as S2 Fig. 9 a PQ‑tree T. b PQ‑tree T ′ , which is quasi‑equivalent to T

and ordered as S2

Page 15 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

intervals of the children complete the interval (2, e), where
e = 2+ span(y)− 1 = 5 , so we can continue with the
iteration. childrenDist = A[a, 4] +A[z, 2] +A[d, 5] = 9 .
dSBP(S(y), S(y

′)) = 1 where the pair (z, d) is the only
singed break-point (note that S(y) = +a+ z + d ,
S(y′) = −z − a− d). �P

jump(y, y
′) = 0 because

to reorder the children of y as S2[2 : 5] we
can move z only (and its size is 1). Therefore,
�P

violation(y, y
′) = dSBP(S(y), S(y

′))+�P
jump(y, y

′) = 1 .
Then, A[y, 2] = 10 and we can update y’s indices, y.ℓ = 2
and y.r = 5 . Figure 8 describes the PQ-tree T and its
quasi-equivalent PQ-tree T ′ after calculating A[y, 2].

Finally, consider the iteration where A[x, 1] is calculated
(the values for all other entries with node x is ∞). Figure 8
describes T and T ′ after calculating the entries of the chil-
dren of the P-node x. The intervals of the children com-
plete the interval (1, e), where e = 1+ span(x)− 1 = 6 ,
so we can continue with the iteration.
childrenDist = A[y, 2] +A[e, 6] +A[f , 1] = 10 .
dSBP(S(x), S(x

′)) = 2 where the pairs (y, e)
and (e, f) are the signed break-points (note
that S(x) = +y+ e + f , S(x′) = +f − y+ e).
�P

jump(x, x
′) = 0 because to reorder the children of x

as S2 we can move f only (and its size is 1). Therefore,
�P

violation(x, x
′) = dSBP(S(x), S(x

′))+�P
jump(x, x

′) = 2 .
Then, A[x, 1] = 10+ 2 = 12 and the algorithm returns
12. Figure 9 describes the PQ-tree T and its quasi-equiv-
alent PQ-tree T ′ after calculating A[x, 1].

Complexity analysis
In this section we analyse the time and space complexi-
ties of Algorithm 1, which solves CTTSD . First, we ana-
lyse Algorithms 2 and 3, which are used as procedures
in Algorithm 1. For a given PQ-tree, we denote by γ the
maximum number of children of an internal node.

Lemma 5.1 Algorithm 5 takes O(1.381γ γ 2) time and
O(γ 2) space.

Proof The most space consuming part of the algorithm,
besides the computation of a vertex cover, is to store x′
(which is equivalent to x and ordered as a specific string).
We simply save the children of x in a specific order. Thus,
the space is O(γ).

The algorithm first checks if the interval [ℓ, e] can be
“completed” by all of the intervals defined by the indi-
ces of the children of x. We can check this in O(γ 2) time
(naively). Then, we sum up the values in D . Notice that
|D| = |children(x)| = O(γ) , thus this step takes O(γ) time.

After that, we calculate �P
violation(x, x

′) , which its
most time consuming calculation is the jump violation,
�P

jump(x, x
′) , which requires to find a minimum weighted

vertex cover of the graph G[x, x′] . In order to find such
vertex cover, we can use, for example, the algorithm in
[44] which takes O(1.381γ γ 2) time and O(γ 2) space.
Thus, this step takes O(1.381γ γ 2) time and O(γ 2) space.

All other steps in the algorithm are basic operations
and thus they take O(1) time. Hence, the algorithm takes
O(1.381γ γ 2) time and O(γ 2) . �

Lemma 5.2 The Q-Mapping algorithm, Algorithm 6,
takes O(γ 2) time and O(γ) space.

Proof The most space consuming part of the algorithm
is to store x′ (which is equivalent to x and ordered as a
specific string). We simply save the children of x in a spe-
cific order. Thus, the space of the algorithm is O(γ).

The algorithm first checks if the interval [ℓ, e] can be
“completed consecutively” by all of the intervals defined
by the indices of the children of x. We can check this
in O(γ) time. Then, we sum up the values in D . Notice
that |D| = |children(x)| = O(γ) , thus this step takes
O(γ) time. After that, we calculate �Q

violation(x, x
′) and

FlipCorrection(x, x′) , which take O(γ 2) time (naively). All
other steps in the algorithm are basic operations and thus
they take O(1) time. Hence, the algorithm takes O(γ 2)
time. �

Lemma 5.3 The main algorithm, Algorithm 1, takes
O(nγ 2 · (mp · 1.381

γ +mq)) time and O(n2) space.

Proof The number of leaves in the PQ-tree T is n, hence
there are O(n) nodes in the tree, thus the size of the first
dimension of the DP table, A , is O(n). The size of the sec-
ond dimension (1 ≤ ℓ ≤ n) is also n. Thus, the DP table A
is of size O(n2).

In the initialization step, all calculations are
basic and take O(1) time. The P-Mapping algo-
rithm is called for every P-node in T and every pos-
sible start index i, so the P-Mapping algorithm is
called O(nmp) times. Similarly, the Q-Mapping
algorithm is called O(nmq) times. Thus, it takes
O(n · (mp · Time(P-Mapping)+mq · Time(Q-Mapping)))
time to fill the DP table. In the final stage of the algo-
rithm, we return A[rootT , 1] , which takes O(1) time.

From Lemma 5.1, the P-Mapping algorithm takes
O(1.381γ γ 2) time and O(γ 2) space, and from Lemma

Page 16 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

5.2, the Q-Mapping algorithm takes O(γ 2) time and
O(γ) space. Thus, in total, our algorithm runs in
O(1)+ O(n · (mp · (2

γ γ 2)+mq · (γ
2))) = O(nγ 2

· (mp

·1.381γ +mq)) time. Adding the space required for the
P-Mapping and Q-Mapping algorithms to the space
required for the main DP table results in a total space
complexity of O(γ 2)+ O(γ)+ O(n2) = O(n2) . �

Observe that is �P
jump is set to 0, then the computa-

tion of a vertex cover is not required. Hence, by the
analysis above, we obtain the following time and space
complexities.

Lemma 5.4 If �P
jump is set to 0, then the main algorithm,

Algorithm 1, takes O(nmγ 2) time and O(n2) space.

TreeToString Divergence : algorithm
In this section, we develop a dynamic programming (DP)
algorithm to solve TTSD . Our algorithm receives as input
an instance of TTSD , (S1, S2,T , dT , dS , δ

Q
ord, δ

Q
flip) . The out-

put of the algorithm is the minimum divergence from T
to a subsequence of S2 with up to dT deletions from T and
up to dS deletions from the subsequence (or “NO”).

Brief overview: On a high level, our algorithm consists
of three components: the main algorithm, and two other
algorithms that are used as procedures by the main algo-
rithm. Apart from an initialization phase, the crux of the
main algorithm is a loop that traverses the given PQ-tree,
T. For each internal node x, it calls one of the two other
algorithms: P-Mapping or Q-Mapping. These algorithms
return the divergence from the subtree of T rooted in x,
Tx , to subsequences of S, based on the type of x (P-node
or Q-node). Then, these divergences are stored in the DP
table.

In the following sections, we describe the main algo-
rithm (“The main algorithm” section), the P-Mapping
algorithm (“P-node mapping: the algorithm” section) and
the Q-Mapping algorithm (“Q-node mapping: the algo-
rithm” section).

The main algorithm
The algorithm (whose pseudocode is given in Algo-
rithm 4) constructs a 5-dimensional DP table A
of size m′ ×m× n× dT + 1× dS + 1 , where
m′ = m+mp +mq is the number of nodes in T. The
purpose of an entry of the DP table, A[x, pos, i, kT , kS] ,
is to hold the divergence from the subtree Tx to a subse-
quence S′ of S2 starting at index i with kT deletions from
Tx and kS deletions from S′ , where exactly pos leaves of
Tx have a positive sign. If S′ cannot be derived from Tx ,
A[x, pos, i, kT , kS] = ∞.

Some entries of the DP table define illegal derivations,
namely, derivations for which the number of deletions

is inconsistent with the start index i, the derived node
and S2 . For example, such are derivations that have more
deletions from the string than there are characters in the
derived string. These entries are called invalid entries,
and their value is defined as ∞ throughout the algorithm.
Formally, an entry A[x, pos, i, kT , kS] is invalid if one of
the following is true: pos > span(x)− kT , kT > span(x) ,
kS > L(x, kT , kS) , or E(x, i, kS , kT) > n.

Let x be a leaf, S be a signed string, i be an index, kS
be the number of deletions from S and pos ∈ {0, 1} . Then,
we define Ix,S,i,kS ,pos = {i ≤ j ≤ i + kS label(x) = S[j]
and pos is consistent with sign(S[j])} . Intuitively, each
j ∈ Ix,S,i,kS ,pos corresponds to a possible alignment of x to
S[j], therefore the label of x must match S[j] and pos must
be consistent with sign(S[j]).

The algorithm first initializes the entries of A that are
meant to hold scores of derivations of the leaves of T to
every possible subsequence of S using the following rule.
For every 0 ≤ kS ≤ dS , every leaf x ∈ Leaves(T) and
each possible sign of y (pos ∈ {0, 1}), do:

1 A[x, pos, i, 1, kS] = ρT
del + kS · ρ

S
del (if dT > 0).

2 A[x, pos, i, 0, kS] = ∞ if there is no derivation from x
to a character in S2[i : i + kT].

 Otherwise:

a. A[x, pos, i, 0, kS] = 0 if pos is consistent with
sign(x) (no flipping).

b. A[x, pos, i, 0, kS] = δ
Q
flip if pos is not consistent

with sign(x) (flipping).

After the initialization, all other entries of A are filled as
follows. Go over the internal nodes of T in postorder. For
every internal node x, go in ascending order over every
index i that can be a start index for a subsequence of S2
derived from Tx (the possible values of i are explained in
the next paragraph). For every x and i, use the algorithm
for P-mapping or Q-mapping according to the type of
x. Both algorithms receive the following input: a subse-
quence S′ of S2 , the node x, its children x1, . . . , xγ , the col-
lection of all possible derivations of the children (denoted
by D), which have already been computed and stored in A
(as will be explained ahead), and the deletion arguments
dT , dS . Q-Mapping also receives the penalty arguments
δ
Q
ord and δQflip as input. Intuitively, the subsequence S′ is the

longest subsequence of S starting at index i that can be
derived from Tx given dT and dS . After being called, both
algorithms return a set of divergences of derivations of Tx
to a prefix of S′ = S[i : e] . The set holds the divergences
of derivations for every E(x, i, dT , 0) ≤ e ≤ E(x, i, 0, dS)
and for every 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS.

Page 17 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

We now explain the possible values of i and
the definition of S′ more formally. To this end,
recall the length function given in Definition 18,
L(x, kT , kS) = span(x)− kT + kS . Thus, on the one
hand, a subsequence of maximum length is obtained
when there are no deletions from the tree and dS dele-
tions from the string. Hence, S′ = S[i : E(x, i, 0, dS)] .
On the other hand, a shortest subsequence is obtained
when there are dT deletions from the tree and none
from the string. Then, the length of the subsequence is
L(x, dT , 0) = span(x)− dT . Hence, the index i runs
between 1 and n− (span(x)− dT)+ 1.

We now turn to address the aforementioned input
collection D in more detail. Formally, it contains deri-
vations of every child x′ of x to every subsequence of

S′ with up to dT and dS deletions from the tree and
string, respectively. It is obtained from the entries
A[x′, pos′, i′, kT , kS] (where each entry yields one deriva-
tion) for all kT and kS , all i′ between i and the end index
of S′ , i.e., i ≤ i′ ≤ E(x, i, 0, dS) , and all possible pos′
(0 ≤ pos′ ≤ span(x)− kT).

In the final stage of the main algorithm, when the DP
table is full, the score of a best derivation is the minimum
of {A[rootT , pos, i, kT , kS] : kT ≤ dT , kS ≤ dS , 1 ≤ i ≤ n−

(span(rootT)− kT)+ 1, 0 ≤ pos ≤ span(rootT)− kT }.

P‑node and Q‑node mapping: terminology
Before describing the P-mapping and Q-mapping algo-
rithms, we set up some useful terminology.

Page 18 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

We first define the notion of a partial derivation. In the
P-Mapping and Q-Mapping algorithms, derivations of
the input node x are built by considering subsets C of its
children. With respect to such a subset C, a derivation µ
of x is built as if x had only the nodes in C as children,
and is called a partial derivation. We denote by µ.v the
root of the subtree of the derivation (Tµ.v). µ.pos denotes
the number of positive signed of leaves considered in the
derivation (in Tµ.v). µ.delT and µ.delS denote the number
of deletions from Tµ.v and from the string in the deriva-
tion, respectively. µ.score denotes the divergence score of
the derivation µ.

Definition 20 Let x be a node. µ is a partial derivation
between x and a string if µ.v = x and there is a subset
of children C ⊆ children(x) such that the two following
conditions are true.

1 For every u ∈ children(x) \ C , each of the leaves in
Tu is neither mapped nor deleted under µ.

2 For every u ∈ C , each of the leaves in Tu is either
mapped or deleted under µ.

For every u ∈ children(x) \ C , we say that u is ignored
under µ . Notice that any derivation is a partial derivation,
where the set of ignored nodes (U ′ above) is empty.

In the P-Mapping algorithm for C ⊆ children(x) , the
notation x(C) is used to indicate that the node x is consid-
ered as if its only children are the nodes in C (the nodes
in children(x) \ C are ignored). Consequentially, the span
of x(C) is defined as span(x(C)) =

∑

c∈C span(c) , and the
set D(C ,N , y, kT , kS) (in Definition 21 where U = {x(C)})
now refers to a set of partial derivations. To use x(C) to
describe the base cases of the algorithm, let us define x(∅)
(x(C) for C = ∅) as a tree with no labeled leaves to map.

Since all derivations that are computed in a sin-
gle call to the P-Mapping algorithm have the
same start-point i, it can be omitted (for brev-
ity) from the end-point function; thus, we denote
E(x, kT , kS) = L(x, kT , kS) . Also, for a set U of nodes, we
define L(U , kT , kS) =

∑

x∈U span(x)+ kS − kT , and,
accordingly, E(U , kT , kS) = L(U , kT , kS).

We now define certain collections of derivations with
common properties (such as having the same number of
deletions and end-point).

Definition 21 Let C be a set of nodes, N ⊆ C be the
set of nodes which have negative sign among the nodes
in C, and kT and kS be two numbers. The collection of all
the derivations of y ∈ C to suffixes of S′[1 : E(C , kT , kS)]
with exactly kT deletions from the tree and exactly kS
deletions from the string and are consistent with N is

denoted by D(C ,N , y, kT , kS) . By consistency with N
we mean: if y ∈ N , then for each µ ∈ D(C ,N , y, kT , kS) ,
µ.pos ≤ (span(y)− kT)/2 ; if y /∈ N , then for each
µ ∈ D(C ,N , y, kT , kS) , µ.pos ≥ (span(y)− kT)/2.

Definition 22 Let C be a set of nodes, N ⊆ C be a set
of nodes which define the signs of the nodes in C, and
kT and kS be two numbers. The collection of all deriva-
tions of y ∈ C to suffixes of S′[1 : E(C , kT , kS)] with
up to kT deletions from the tree, and up to kS dele-
tions from the string is denoted by D≤(C ,N , y, kT , kS) .
Specifically, for the node y ∈ C , k ′T ≤ kT and k ′S ≤ kS ,
the set D≤(C ,N , y, kT , kS) holds only one deriva-
tion of y to a suffix of S′[1 : EI (C , kT , kS)] with k ′T and
k ′S deletions from the tree and string, respectively, if
such derivation exists. In addition, the derivations in
D≤(C ,N , kT , kS) are consistent with N: if y ∈ N , then for
each µ ∈ D≤(C ,N , y, kT , kS) , µ.pos ≤ (span(y)− kT)/2 ;
if y /∈ N , then for each µ ∈ D≤(C ,N , y, kT , kS) ,
µ.pos ≥ (span(y)− kT)/2.

It is important to distinguish between these two defi-
nitions. First, the derivations in D(C ,N , y, kT , kS) have
exactly kT and kS deletions, while the derivations in
D≤(C ,N , y, kT , kS) have up to kT and kS deletions. Sec-
ond, in D(C ,N , y, kT , kS) there can be several derivations
that differ only in their scores and in the one-to-one map-
pings that yield them, while in D≤(C ,N , y, kT , kS) there is
only one derivation for every deletion combination pair
(k ′T , k

′
S) . Note that the end-points of all of the derivations

are equal.
In every step of the P-Mapping algorithm, a different

set of derivations of the children of x is examined, thus,
Definition 22 is used for C ⊆ children(x) . In addition,
the set of derivations D that is received as input to the
algorithms can be described using Definition 22 as can be
seen in Eq. 1 below. In this equation, the union is over
all C ⊆ children(x) because in this way the derivations
of all the children of x with every possible end-point are
obtained (in contrast to having only C = children(x) ,
which results in the derivations of all the children of x
with the end-point E(children(x), kT , kS)).

In the P-Mapping algorithm for C ⊆ children(x) , the
notation x(C) is used to indicate that the node x is consid-
ered as if its only children are the nodes in C (the nodes
in children(x) \ C are ignored). Consequentially, the span
of x(C) is defined as span(x(C)) =

∑

c∈C span(c) , and the
set D(C ,N , y, kT , kS) (in Definition 21 where C = {x(C)})
now refers to a set of partial derivations. To use x(C) to

(1)

D =
⋃

C⊆children(x)

⋃

N⊆C

⋃

y∈C

⋃

kT≤dT

⋃

kS≤dS

D≤(C ,N , y, kT , kS)

Page 19 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

describe the base cases of the algorithm, let us define x(∅)
(x(C) for C = ∅) as a tree with no labeled leaves to map.

In the P-Mapping algorithm, we use the following
notation.

Definition 23 Let C be a set of children of a P-node
in a PQ-tree. For x, y ∈ C , the set of all nodes in C
that are between x and y is denoted by Cx,y . That is,
Cx,y = {v ∈ C : v is between x and y}.

See an example in Fig. 10.
In the algorithms, we take in account signed break-

points between the nodes in the derivations. So, we
define a procedure which receives a node x, two children
of x, y and z that are considered to be adjacent in a quasi-
equivalent tree Tx′ of Tx and a set N that defines the signs
of y and z in Tx′ . The procedure returns 1 if there is a
signed break-point between y and z, and 0 otherwise. The
procedure checks if the nodes are adjacent in the tree Tx
and if they changed their signed order (recall Definition
9) according to N, as defined next.

Definition 24

Similar to Definition 24, we define a procedure which
is used in a case where we necessarily consider the two
children y, z of x to be adjacent in the tree Tx (specifically,
when Cy,z is deleted). This procedure returns 1 if there is
a signed break-point between y and z, but does not check
if they are adjacent.

(2)
BPDelta(x, y, z,N) =

{

0, if y and z are adjacent in Tx and did not change their signed order
1, else

Definition 25

In the P-Mapping algorithm, we calculate the jump
violation (recall Definition 12). To do so, we define the
procedure JumpViolationDelta , which receives a vertex
cover C and a node x, and returns the penalty defined
in Definition 12 of x as follows.

Definition 26

P‑node mapping: the algorithm
Recall that the input consists of a P-node x, a string
S′ , bounds on the number of deletions from T and S′ ,
dT and dS , respectively, and a set of derivations D (see
Eq. 1). The output of the algorithm is the collection
of divergences of derivations of x to every prefix of S′
having exactly kT deletions from Tx , kS deletions from
the prefix of S′ and pos number of leaves with positive
sign, for each combination of 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS
and 0 ≤ pos ≤ span(x) . Thus, the output contains
O(dT · dS · span(x)) derivations.

The algorithm (whose pseudocode is given in Algo-
rithm 5) constructs a 7-dimensional DP table P , which
has an entry for every 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS , subset
C ⊆ children(x) , subset C ′ ⊆ C , subset N ⊆ C , number
0 ≤ pos ≤ span(x) and for every y ∈ C . Recall that we
need to calculate JumpViolation for the children of x.
To do so, we use the variables C ′ and N. The purpose
of an entry P[C ,C ′,N , pos, y, kT , kS] is to hold the diver-
gence of a partial derivation rooted in x(C) to a prefix of

S′ with exactly kT deletions from the tree, kS deletions
from the string, pos leaves with positive sign in Tx′(C) ,
where x′ is the node equivalent to x, while considering
the nodes in N to have a negative sign, C ′ as a possible
vertex cover set of G[x(C), x′(C)] (minus the children that
were deleted), and considering derivations of y only to
suffixes of S′[1 : E(C , kT , kS)] . The children of x that are

(3)

BPDelta2(x, y, z,N)

=

{

0, if y and z did not change their signed order
1, else

(4)

JumpViolationDelta(C , x) =

{

(span(x)− 1)/2, if x ∈ C
0, else

Fig. 10 Cy ,f = {e, g}, Ca,d = {b}, Cy ,e = {}

Page 20 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

not in C are ignored under the partial derivation stored
by the DP table entry P[C ,C ′,N , pos, y, kT , kS] , thus
they are neither deleted nor counted in the number of
deletions from the tree, kT . (They will be accounted for
in the computation of other entries of P).

Similarly to the main algorithm, some of the entries of
P are invalid, and their value is defined as ∞ . Formally,
an entry P[C ,C ′,N , pos, y, kT , kS] is invalid if one of the
following is true: kT > span(C) , L(x(C), kT , kS) > len(S′) ,
pos is not consistent with N, or C ′ is not a vertex cover
of G[x(C), x′(C)] where the signs of children(x′(C)) are
defined by N.

Every entry P[C ,C ′,N , pos, y, kT , kS] for which |C| = 1
is initialized with D(C ,N ,y,pos,kT ,kS) (stored in D) which is

the divergence of the derivation rooted in Ty to the suffix
of S′[1 : E(C , kT , kS)] , with exactly kT deletions from the
tree, kS deletions from the string, pos leaves with positive
sign in Ty′ such that N is consistent with pos (if it exists,
this derivation is stored in D). If such a derivation does
not exist, D(C ,N ,y,pos,kT ,kS) = ∞.

After the initialization, the remaining entries of P are
calculated using the recursion rule in Expression 1 ahead.
The order of computation is ascending with respect to the
size of the subsets C of the children of x, and for a given
C ⊆ children(x) , the order is ascending with respect to
the number of deletions from both tree and string. With
a lesser priority, the order is ascending with respect to
the number of positive signed leaves in Tx′(C).

Page 21 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

In the algorithm, P[C ,C ′,N , pos, y, kT , kS] is com-
puted by taking the minimum between the following
expressions (we will refer the minimum of the three
expressions as Expression 1):

1. P[C ,C ′,N , y, kT , kS − 1] + ρS
del

 Explanation: Intuitively, every entry P[C ,C ′,N , pos,

y, kT , kS] defines some index e′ of S′ that is the end-
point of every partial derivation in D(C ,N , y, kT , kS) .
Thus, S′[e′] must be a part of any partial derivation
µ ∈ D(C ,N , y, kT , kS) ; so, either S′[e′] is deleted
under µ or it is mapped under µ . The former option
is captured by the first case of the recursion rule.

2.

min
µ ∈ D≤(C ,N , y, kT , kS)
s.t. µ.delT < span(y)

min
z∈C\{y}

P[C\{y},C ′\{y},N\{y}, pos − µ.pos, z, kT − µ.delT , kS − µ.delS]

+ µ.score + BPDelta(x, y, z,N)+ JumpViolationDelta(C ′, y)

Q‑node mapping: the algorithm
The input and output of the Q-Mapping algorithm are
the same as the input and output of the P-mapping algo-
rithm (“P-node mapping: the algorithm” section), respec-
tively, except for the type of the node x received as input,
and the penalty parameters δQord and δQflip , which are also
part of the input.

Given that the children of x in consecutive order
are x1, x2, . . . , xγ and given an index 1 ≤ i ≤ γ , x[i]
denotes the set of the first i children of x. Formally,
x[i] = {x1, . . . , xi} . In addition, x(i) , denotes the node x as
if its only children are the nodes in x[i] . Consequentially,
the span of x(i) is defined as

∑i
j=1 span(xj) and the set

D(x(i),N , y, kT , kS) (see Definition 21 where C = {x[i]})
now refers to a set of partial derivations. In addition, x[i:j]

 Explanation: If S′[e′] is mapped under µ , then due to
the hierarchical structure of Tx , it must be mapped
under some derivation µ′ of one of the children of x
that are in C. Thus, we receive the second and third
cases of the recursion rule. In the second case, we
consider z ∈ C \ {y} and derivations of z only to suf-
fixes of S′[1 : E(C \ {y}, kT − µ.delT , kS − µ.delS)].

3.

min
µ ∈ D≤(C ,N , y, kT , kS)
s.t. µ.delT < span(y)

min
z ∈ C\{y}
s.t.Cy,z ⊆ C

P[C\Cy,z\{y},C
′\Cy,z\{y},N\Cy,z\{y}, z, kT − µ.delT − span(Cy,z), kS − µ.delS]

+ µ.score + ρT
del · span(Cy,z)+ BPDelta2(x, y, z,N)+ JumpViolationDelta(C ′, y)

 Explanation: The third case captures the option
of deletion of all the nodes between y and z
(Cy,z), so that after the deletion we consider y
and z as adjacent in Tx(C) . In this case we consider
z ∈ C \ {y} and derivations of z only to suffixes
of S′[1 : E(C\Cy,z\{y}, kT − µ.delT − span(Cy,z),

kS − µ.delS)] (1)
Once the entire DP table is filled, for every combination

of (pos, kT , kS) the algorithm returns the divergence
from Tx to S′ . This is done by going over the par-
tial derivations in P as well as deleting the ignored
nodes (and penalizing the deletion accordingly).

denotes the set of children of x from child i to child j; for-
mally, x[i:j]

.
= {xi, . . . , xj} . In case i > j , x[i:j] = ∅.

The algorithm (whose pseudocode is given in Algo-
rithm 6) constructs two 5-dimensional DP tables Qℓ
and Qr . Both have an entry for every 0 ≤ kT ≤ dT ,
0 ≤ kS ≤ dS , index 0 ≤ i ≤ γ , s ∈ {+,−} and num-
ber 0 ≤ pos ≤ span(x) . The purpose of an entry

Qℓ[i, kT , kS , s, pos] (and similarly Qr[i, kT , kS , s, pos])
is to hold the divergence of a partial derivation in
D(x(i),N , y, kT , kS) , i.e. a partial derivation rooted in x(i)
to a prefix of S′ with exactly kT deletions from the tree,
kS deletions from the string, while s is the sign of xi in the
derivation and pos is the number of positive signed leaves
in x(i) . The difference between Qℓ and Qr is in the order
in which the children of x are arranged. In Qℓ the chil-
dren of x are considered in a left-to-right order, namely,
x1 is the leftmost child of x and xℓ[i] is the set of the i left-
most children of x (then, xℓ[i:j] is defined accordingly).
In Qr the children of x are considered in a right-to-left
order, namely, x1 is the rightmost child of x and xr[i] is the
set of the i rightmost children of x (then, xr[i:j] is defined

Page 22 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

accordingly). For abbreviation, from now on, Q is used
when a notion is true for both Qℓ and Qr . The children of
x that are not in x[i] are ignored under the partial deriva-
tion stored by the DP table entry Q[i, kT , kS , s, pos] , thus
they are neither deleted nor counted in the number of
deletions from the tree, kT . (They will be accounted for in
the computation of other entries of Q).

Similarly to the main algorithm and the P-Mapping
algorithm, some of the entries of the DP tables are inva-
lid, and their value is defined as ∞ . Formally, an entry
Q[i, kT , kS , s, pos] is invalid if one of the following is true:
kT > span(x(i)) , L(x[i], kT , kS) > |S′| , or pos is not con-
sistent with s.

Every entry Q[i, kT , kS , s, pos] for which i = 1 is ini-
tialized with D(x[i],s,xi ,pos,kT ,kS) (stored in D) which is the
divergence of the derivation rooted in Txi to the suffix of
S′[1 : E(x[i], kT , kS)] , with exactly kT deletions from the
tree, kS deletions from the string, pos leaves with posi-
tive sign in Tx′i

 such that s is consistent with pos (if it
exists, this derivation is stored in D). If such a deriva-
tion does not exist, D(x[i],s,xi ,pos,kT ,kS) = ∞.

After the initialization, the remaining entries of Q
are calculated using the recursion rule in Expression
2 ahead. The order of computation is ascending with

respect to the child index i, and for a given i, the order
of computation is ascending with respect to the number
of deletions from the string, and ascending with respect
to the number of positive signed leaves in Tx′(i) . In
Expression 2 we use the notation Nxi and Nxi ,xj , defined
as follows. Let xi and xj be two nodes whose signs in
Tx′(i) are s and s′ , respectively. If s = − then xi ∈ Nxi and
xi ∈ Nxi ,xj , and if s′ = − then xj ∈ Nxi ,xj . If s = + then
xi /∈ Nxi and xi /∈ Nxi ,xj , and if s′ = + then xj /∈ Nxi ,xj.

In the algorithm, Qt [i, kT , kS , s, pos] is computed by
taking the minimum between the following expressions

(we will refer the minimum of the three expressions as
Expression 2):

1. Qt [i, kT , kS − 1, s, pos] + ρS
del

 Explanation: Intuitively, every entry Q[i, kT , kS , s, pos]
defines some index e′ of S′ that is the end-point
of every partial derivation in D(x(i),N , y, kT , kS) .
Thus, S′[e′] must be a part of any partial derivation
µ ∈ D(x(i),N , y, kT , kS) , so, either S′[e′] is deleted
under µ or it is mapped under µ . The former option
is captured by this case.

Page 23 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

2.

min
µ ∈ D≤(x

t
[i],Nxi , xi, kT , kS)

min
1 ≤ j ≤ i − 1
s′ ∈ {+,−}

Qt [j, kT − µ.delT − span(xt[j+1:i−1]), kS − µ.delS , s
′, pos − µ.pos]

+ µ.score + δ
Q
ord · BPDelta2(x, xi, xj ,Nxi ,xj)+ ρT

del · span(x
t
[j+1:i−1])

we analyse Algorithms 5 and 6, which are used as proce-
dures in Algorithm 4. For a given PQ-tree, we denote by
γ the maximum number of children of an internal node.

Lemma 6.1 The P-Mapping algorithm, Algorithm 5,
takes (5γm2nd2Td

2
Sγ

3) time and O(5γmdTdS) space.

Proof The most space consuming part of the algo-
rithm is the 7-dimensional DP table. The first dimen-
sion, C, can be any subset of the set children(x) , the sec-
ond and third dimensions (C ′ and N) can be any subset
of C, therefore the size of all three dimensions together
is O(5γ) as explained next. Every choice of C ,C ′,N
defines (one-to-one) a partition of children(x) to five
sets, children(x)\C ,C\(C ′ ∪ N),C ′\N ,N\C ′,N ∩ C ′ .
Thus, in order to go over all C ,C ′,N , we can go over
all partitions of children(x) to five sets, which takes
O(5|children(x)|) = O(5γ) . The size of the fourth dimen-
sion (i.e. pos), in the worst case (where x is the root), is
span(x) = m . The fifth dimension, y, can be any node in
C, therefore the size of the dimension is O(γ) . The size
of the sixth and seventh dimensions (i.e. kT and kS) are
dT + 1 and dS + 1 , respectively. Hence, the space of the
algorithm is O(5γmγdTdS) = O(5γmdTdS).

The algorithm has three parts: initialization, filling
the DP table, and returning the derivations. The most
time consuming calculation required in the initializa-
tion is the calculation of D(C ,N ,y,pos,kT ,kS) and checking
if C ′ is a vertex cover of G[x(C), x′(C)] . For a given tuple
(C ,N , y, pos, kT , kS) it takes O(|D|) time to calculate the
set D(C ,N ,y,pos,kT ,kS) (by naively going over each derivation
in D and checking if it fits the values in the tuple); notice
that |D| = O(mndTdS) . We calculate this set for each
combination of (C ,N , y, pos, kT , kS) . Thus, the calcula-
tions for D(C ,N ,y,pos,kT ,kS) take O(22γ γm2nd2Td

2
S) . In addi-

tion, we check if C ′ is a vertex cover of G[x(C), x′(C)] . To
generate G[x(C), x′(C)] we go over all pairs of nodes in C,
check if they changed their signed order, and if required,
connect them with an edge in the graph. For a pair of
node, it takes O(γ) to check if they changed their signed
order (naively). Thus it takes O(γ 3) to generate the graph.
After that it takes O(γ 2) to check if C ′ is a vertex cover

 Explanation: If S′[e′] is mapped under µ , then due to
the hierarchical structure of Tx , it must be mapped
under some derivation µ′ of one of the children
of x that are in x[i] . Thus, we receive the second
case of the recursion rule. In this case, we consider
xj ∈ x[i−1] and derivations of xj only to suffixes of
S′[1 : E(x[j], kT − µ.delT , kS − µ.delS)].

 (2)
Once both DP tables are filled, for every combination of
(pos, kT , kS) the algorithm returns the divergence from Tx
to S′ . This is calculated by going over the partial deriva-
tions, and deleting the ignored nodes (while penalizing
the deletion accordingly), while considering both orders
of children(x).

Recall that we want to take into account the option of
x to flip, and penalize accordingly. Thus, we run Algo-
rithm 6 twice, and store the outputs for each combina-
tion (kT , kS , pos) , with small modifications in the second
run. The first time we run it as it is (while ignoring the
option of x to flip). In the second run, we capture the
option of x to flip. We can do that by looking only at deri-
vations where all the nodes changed there sign (if a node
y ∈ children(x) has sign of + in Tx , then we consider its
sign in the derivation as −, and vice versa). Specifically,
we run Algorithm 6 with the following modifications. In
Algorithm 6, in line 3 we define t = r , in line 6 we define
s as the opposite sign of xi in Tx , in line 21 we define t = r
and s as the opposite sign of xi in Tx . In Expression 2, we
define s′ as the opposite sign of xj in Tx . In addition, for
every combination (kT , kS , pos) , we apply the penalty for
flipping x, by adding δQflip to each value. After that, we
need to apply FlipCorrection(x, x′) (recall Definition 14)
where x′ is the equivalent node that corresponds to the
derivation of the entry. Note that we need to correct the
flip penalties of children(x) that are not deleted in the
derivation; to do so, we can simply backtrack the values
of the DP table to receive the derivation and in particular
find the children who are not deleted.

Finally, we return the minimum of the two runs for
every combination (kT , kS , pos).

Complexity analysis
In this section we analyse the time and space complexi-
ties of the algorithm that solves TTSD , Algorithm 4. First,

Page 24 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

(naively). Hence, the first part of the algorithm takes
O(5γmdTdSγ

3)+ O(22γ γm2nd
2
T
d
2
S
) = O(5γm2nd

2
T
d
2
S
γ 3).

The second part of the algorithm is done by calcu-
lating the value of every entry in the O(5γmdTdS)
entries of P , using the recursion rule in Expression 1.
The first line among the rule takes O(1) time, since it
involves looking in another entry of P and basic com-
putations. The second line of the rule involves going
over all derivations µ ∈ D≤(C ,N , y, kT , kS) . Namely,
going over all derivations of y with a specific end-
point, that has no more than a specific number of dele-
tions from the tree and string, and that are consistent
with N (i.e. µ.e = E(C , kT , kS) , µ.v = y , µ.delT ≤ kT ,
µ.delS ≤ kS and µ.pos ≤ (span(y)− µ.delT)/2 if y ∈ N
or µ.pos ≥ (span(y)− µ.delT)/2 if y /∈ N). The number
of deletions from the tree and string are bounded by dT
and dS , respectively, and the number of pos is bounded
by m. Afterwards, we go over all z ∈ C \ {y} , whose
number is bounded by γ . In addition, we use the proce-
dures BPDelta which can be calculated in O(γ) time and
JumpViolationDelta which takes O(1) time. Thus the
second line of the rule takes O(dTdSmγ 2) . The third line
of the rule is similar to the second line, except in addi-
tion we calculate Cy,z and calculate the span of Cy,z , which
take O(γ) time. Thus, the third line of the rule takes
O(dTdSmγ 2) time. Hence, the time to calculate one entry
of P is O(dTdSmγ 2) . In total, the second part of the algo-
rithm takes O(5γm2d2Td

2
Sγ

2) time.
Finally, to construct the returned set of derivations,

the algorithm goes over every combination kT , kS , pos
once, i.e. it takes O(dTdSm) time. In total, the algorithm
takes O(5γm2nd

2
T
d
2
S
γ 3)+ O(5γm2d

2
T
d
2
S
γ 2)+ (dTdSm)

= O(5γm2nd
2
T
d
2
S
γ 3) time. �

Lemma 6.2 The Q-Mapping algorithm, Algorithm 6,
takes O(γ 2d2Td

2
S m

2n) time and O(γdTdSm) space.

Proof The most space consuming part of the algorithm
is the 5-dimensional DP table. The first dimension, i, is
bounded by γ . The size of the second and third dimen-
sions (i.e. kT and kS) are dT + 1 and dS + 1 , respectively.
The size of the fourth dimension (i.e. s ∈ {+,−}) is 2. The
size of the fifth dimension (i.e. pos), in the worst case
(where x is the root), is span(x) = m . Hence, the space of
the algorithm is O(γdTdSm).

The algorithm has three parts: initialization, filling the
DP table, and returning the derivations. The most time
consuming calculation required in the initialization is
the calculation of D(x[i],s,xi ,pos,kT ,kS) . For a given tuple
(x[i], s, xi, pos, kT , kS) it takes O(|D|) time to calculate
the set D(C ,N ,y,pos,kT ,kS) (by naively going over all deriva-
tions in D and checking if it fits the values in the tuple),

notice that |D| = O(mndTdS) . We calculate this set for
each combination of (i, kT , kS , s, pos) where i = 1 . Thus,
the calculations for D(x[i],s,xi ,pos,kT ,kS) take O(m2ndTdS)
all together. Hence, the first part of the algorithm takes
O(m2ndTdS).

The second part of the algorithm is done by calculat-
ing the value of every entry in the O(γdTdSm) entries
of Q , using the recursion rule in Expression 2. The first
line among the rule takes O(1) time, since it involves
looking in another entry of Q and basic computations.
The second line of the rule involves going over all deri-
vations µ ∈ D≤(x[i],Nxi , xi, kT , kS) . Namely, going over
all derivations of y with a specific end-point, which have
no more than a specific number of deletions from the
tree and string, and which are consistent with Nxi (i.e.
µ.e = E(x[i], kT , kS) , µ.v = x.i , µ.delT ≤ kT , µ.delS ≤ kS
and µ.pos ≤ (span(xi)− µ.delT)/2 if xi ∈ Nxi or
µ.pos ≥ (span(xi)− µ.delT)/2 if y /∈ Nxi). The num-
ber of deletions from the tree and string are bounded
by dT and dS , respectively, and the number of values
for pos is bounded by m. Afterwards, we go over indi-
ces 1 ≤ j ≤ i − 1 and sign s′ ∈ {+,−} , whose number
is bounded by O(γ) . In addition, we use the procedure
BPDelta2 which can be calculated in O(γ) time. Thus,
the second line of the rule takes O(dTdSmγ) . Hence, the
second part of the algorithm takes O(γ 2d2Td

2
Sm

2) time.
Finally, to construct the returned set of derivations, the

algorithm goes over every combination kT , kS , pos once,
and taking the minimum over t ∈ {ℓ, r} , 1 ≤ i ≤ γ and
s ∈ {+,−} ; so, this takes O(dTdSmγ) = O(dTdSm) time.
Recall that we calculate both Qℓ and Qr , but this does not
affect the magnitude of the time. In addition, recall that
we run the algorithm twice, while in the second run there
are modifications that do not increase the time (in fact,
they even improve it). Hence, in total, the algorithm takes
O(m2ndTdS)+ O(γ 2d

2
T
d
2
S
m2)+ O(dTdSm) = O(γ 2d

2
T
d
2
S
m2n)

time. �

Lemma 6.3 The main algorithm, Algorithm 4,
takes O(n2γ 2dT

2dS
2m2(mp · 5

γ γ +mq)) time and
O(dTdSm(mn+ 5γ)) space.

Proof The number of leaves in the PQ-tree T is m,
hence there are O(m) nodes in the tree, i.e the size of the
first dimension of the DP table, A , is O(m). The size of
the second dimension (i.e. pos), in the worst case (where
x is the root), is span(x) = m . In the algorithm descrip-
tion (“The main algorithm” section) a bound for the pos-
sible start indices of subsequences derived from nodes in
T is given (for a node x, the start index i runs between
1 and n− (span(x)− dT)+ 1). The node with the larg-
est span in T is the root that has a span of m. The root
is mapped to the longest subsequence when there are

Page 25 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

dS deletions from the string. Hence, the size of the third
dimension of A is O(n− (m+ dS)+ 1) = O(n) . The
fourth and the fifth dimensions of A are of size dT + 1
and dS + 1 , respectively. In total, the DP table A is of size
O(dTdSm

2n).
In the initialization step, O(dTdSm

2n) entries
of A are computed. We go over 0 ≤ kS ≤ dS and
pos ∈ {0, 1} . The most time consuming step is the
generation of the set Ix,S,i,kS ,pos , and it can be gener-
ated in O(|children(x)|) = O(γ) time. Thus the ini-
tialization takes O(dTdSm

2nγ) . The P-Mapping
algorithm is called for every P-node in T and every
possible start index i, so the P-Mapping algorithm
is called O(nmp) times. Similarly, the Q-Mapping
algorithm is called O(nmq) times. Thus, it takes
O(dTdSm

2nγ)+ O(n · (mp · Time(P-Mapping)

+mq · Time(Q-Mapping))) time to fill the DP table.
In the final stage of the algorithm, the minimum over

the entries corresponding to every combination of
(0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS , 1 ≤ i ≤ n− (span(x)− dT)

+1}, 0 ≤ pos ≤ span(rootT)− kT) is computed. So, it
takes O(dTdSnm) time to find a derivation with mini-
mum score.
From Lemma 6.1, the P-Mapping algorithm takes
(5γm2nd2Td

2
Sγ

3) time and O(5γmdTdS) space, and from
Lemma 6.2, the Q-Mapping algorithm takes O(γ 2d2Td

2
S m

2n)
time and O(γdTdSm) space. Thus, in total, our algorithm
runs in O(dTdSm

2nγ)+ O(n · (mp · O(5γm2nd2Td
2
Sγ

3)

+mq · O(γ 2d2Td
2
S m

2n))) = O(n2γ 2dT
2dS

2m2(mp · 5
γ γ

+mq)) time. Adding to the space required for the
main DP table the space required for the P- Mapping
algorithm (the space needed for the Q-Mapping
algorithm is insignificant with respect to the P-Map-
ping algorithm) results in a total space complexity of
O(dTdSm

2n)+ O(5γmdTdS) = O(dTdSm(mn+ 5γ)) .
 �

TTSD : polynomial space complexity
In this section we propose an improved version (in terms
of space complexity) of the algorithm presented in “Tree-
ToString Divergence: algorithm” section 6, using the
inclusion–exclusion principle. Specifically, the space com-
plexity of the algorithm is polynomial instead of expo-
nential. Our P-Mapping algorithm (see “P-node mapping:
the algorithm”, Algorithm 5) uses a DP table whose size
is exponential. Thus, we propose a new version of the
P-Mapping algorithm, which uses a DP table whose size
is polynomial. In what follows, we first describe the inclu-
sion–exclusion principle (“Inclusion–exclusion principle”
section). Then, we describe the new version of the P-Map-
ping algorithm (“P-node mapping: polynomial space
complexity” section) that is used in Algorithm 4 instead
of Algorithm 5. Note that in this version, we are unable

to consider jumps of large units. So, when we calculate
Diverge , we assume that �P

jump = 0.

Inclusion–exclusion principle
Usually, the inclusion–exclusion principle is described as
a formula for computing |

n
⋃

i=1

Ai| for a collection of sets

A1, . . . ,An . We use the intersection version of inclusion–
exclusion, which is described as a formula for computing
|

n
⋂

i=1

Ai| . Denote by [n] the set of indices from 1 until n, i.e.

[n] = {1, . . . , n} . Let A1, . . . ,An ⊆ U , where U is a finite
set. Denote

⋂

i∈∅(U \ Ai) = U . Then,

In typical algorithmic applications of the inclusion–
exclusion formula we need to count some objects that
belong to a universe U, and it is in some sense hard. More
precisely, we are interested in objects that satisfy n
requirements A1, . . . ,An , and each requirement is
defined as the set of objects that satisfy it. Thus, the
inclusion–exclusion formula translates the problem of
computing |

⋂

i∈[n]

Ai| into computing 2n terms of the form

|
⋂

i∈X

(U \ Ai)| . In our application, computing these terms

is in some sense easy. If, for example, each of the terms
|
⋂

i∈X

(U\Ai)| can be computed in polynomial time, then

the inclusion–exclusion formula gives an algorithm that
performs 2nnO(1) arithmetic operations.

P‑node mapping: polynomial space complexity
Recall that the input consists of an internal P-node x, a
string S′ , bounds on the number of deletions from the
tree T and the string S′ , kT and kS , respectively, and a
set of derivations D (see Eq. 1). The output of the algo-
rithm is the collection of divergences of derivations of x
to every possible prefix of S′ having exactly dT deletions
from the tree, dS deletions from the string, and pos leaves
with positive sign, for each combination of 0 ≤ kT ≤ dT ,
0 ≤ kS ≤ dS and 0 ≤ pos ≤ span(x) . Thus, there are
O(dT · dS · span(x)) derivations in the output.

Denote by γ the number of children of x, i.e.
γ = |children(x)| . First, we define the collection of sets
A1, . . . ,Aγ (see “Inclusion–exclusion principle” section).
Notice that the derivations we seek take into account all
of children(x) , using each child exactly once (mapped or
deleted). Thus, we define the collection A1, . . . ,Aγ where
Ai is the set of derivations that use the i’th child of x at
least once (mapped or deleted), and use exactly γ chil-
dren of x (including repetitions). In particular, note that

(5)

∣

∣

∣

∣

∣

∣

⋂

i∈[n]

Ai

∣

∣

∣

∣

∣

∣

=
∑

X⊆[n]

(−1)|X |

∣

∣

∣

∣

∣

⋂

i∈X

(U \ Ai)

∣

∣

∣

∣

∣

.

Page 26 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

the same child can be both mapped several times (to dif-
ferent subsrings) and deleted several times (even if it has
been mapped). As a result,

⋂

i∈[γ]

Ai is the set of derivations

that take into account all of children(x) , where each child
is used exactly once. We define U as the set of all partial
derivations using γ children of x (including repetitions).
Therefore,

⋂

i∈X

(U \ Ai) is the set of derivation that do not

use the children whose indices are in X, and use exactly γ
children of x (including repetitions).

Denote by ScoreSet the set of all possible divergence
values of all partial derivations of x to S′ . We use the col-
lection of sets A1, . . . ,Aγ as described above, for every
combination of (kT , kS , pos, score) where the divergence
values of the derivations in A1, . . . ,Aγ are at most score.
Specifically, Algorithm 7 constructs a 4-dimensional
DP table B , which has an entry for every 0 ≤ kT ≤ dT ,
0 ≤ kS ≤ dS , 0 ≤ pos ≤ span(x) and score ∈ ScoreSet .
The purpose of an entry B[kT , kS , pos, score] is to hold the
number of partial derivations rooted in x to a prefix of S′
with exactly kT deletions from the tree, kS deletions from
the string, pos leaves with positive sign in the derivation
whose divergence value is at most score. For each entry
in the DP table, we calculate its value using the intersec-
tion version of the inclusion–exclusion formula, shown
in “Inclusion–exclusion principle” section.

Lemma 7.1 Assuming that Algorithm 8 is correct,6
Algorithm 7 is correct, that is, it returns the collection of
divergences of derivations of x to every prefix of S′ hav-
ing exactly kT deletions from Tx , kS deletions from the
prefix of S′ and pos number of leaves with positive sign,
for each combination of 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS and
0 ≤ pos ≤ span(x).

Proof For each combination of 0 ≤ kT ≤ dT ,
0 ≤ kS ≤ dS , 0 ≤ pos ≤ span(x) and score ∈ ScoreSet , we
define Û ⊆ U as the set of all partial derivations using γ
children of x (including repetitions) with exactly kT dele-
tions from the tree, kS deletions from the string, pos
leaves with positive sign in the derivation whose diver-
gence value is at most score. We define Âi ⊆ Û as the set
of derivations that use the i’th child of x at least once
(mapped or deleted), and use exactly γ children of x
(including repetitions). For each combination
(kT , kS , pos, score) ,

⋂

i∈[γ]

Âi is the set of derivations with

exactly kT deletions from the tree, kS deletions from the
string, pos leaves with positive sign in the derivation
whose divergence value is at most score that take into
account all of children(x) , where each child is used
exactly once. For each combination (kT , kS , pos, score) ,
and given Y ⊆ [γ] , Algorithm 8 returns |

⋂

i∈Y

(Û \ Âi)| ,

which is the number of derivations that do not use the
children whose indices are in Y, and use exactly γ chil-
dren of x (including repetitions). In Algorithm 7 we cal-
culate |

⋂

i∈[γ]

Âi| for each combination (kT , kS , pos, score)

according to the Inclusion–Exclusion principle and store
the results in table B , using Eq. 5 as follows.

From the correctness of Algorithm 8 and the correctness
of Eq. 5, the values in B are correct.

Finally, for each combination of 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS
and 0 ≤ pos ≤ span(x) , Algorithm 7 returns the minimum
score ∈ ScoreSet for which B[kT , kS , pos, score] > 0 , mean-
ing that score is the minimum value of the possible deriva-
tions, that is, the desired divergence value to be returned.

 �

∣

∣

∣

∣

∣

∣

⋂

i∈[γ]

Âi

∣

∣

∣

∣

∣

∣

=
∑

Y⊆[γ]

(−1)|Y |

∣

∣

∣

∣

∣

⋂

i∈Y

(Û \ Âi)

∣

∣

∣

∣

∣

.

6 That is, given a P-node x, a subset C ⊆ children(x) , a string S′ , bounds on
the number of deletions from the tree T and the string S′ , dT and dS , respec-
tively, and a set of derivations D , it returns the number of all partial deri-
vations of x(C) to every prefix of S′ for each combination (kT , ks , pos, score)
having exactly kT deletions from the tree, kS deletions from the string, pos
leaves with positive sign, whose divergence value is at most score, and that
use γ children from C (including repetitions).

Page 27 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

Internal P‑node mapping
In this section, we describe Algorithm 8. The input con-
sists of an internal P-node x, a subset C ⊆ children(x) ,
a string S′ , bounds on the number of deletions from the
tree T and the string S′ , dT and dS , respectively, and a
set of derivations D (see Eq. 1). The output of the algo-
rithm is the number of all partial derivations of x(C) to
every prefix of S′ for each combination (kT , ks, pos, score)
having exactly kT deletions from the tree, kS deletions
from the string, pos leaves with positive sign, whose
divergence value is at most score, and that use γ chil-
dren from C (including repetitions). Thus, there are
O(dT · dS · span(x) · |ScoreSet|) derivations in the
output.

Algorithm 8 constructs an 8-dimensional DP table P ,
which has an entry for every 1 ≤ i ≤ |children(x)| , y ∈ C ,
s ∈ {+,−} , 1 ≤ j ≤ |S′| , 0 ≤ pos ≤ span(x) , 0 ≤ kT ≤ dT ,
0 ≤ kS ≤ dS , and for every score ∈ ScoreSet . The pur-
pose of an entry P[i, y, s, j, pos, kT , kS , score] is to hold the
number of all partial derivations rooted in x(C) to a suf-
fix of S′[1 : j] , which use exactly i children from C (not

necessarily different children), which map y to the suffix
of S′[1 : j] , with exactly kT deletions from the tree, kS dele-
tions from the string, pos leaves with positive sign in Ty′
such that s is the sign of y in the derivation and it is consist-
ent with pos, and whose divergence value is at most score.

Every entry P[i, y, s, j, pos, kT , kS , score] for which i = 1
is initialized with |D(i,y,s,j,pos,kT ,kS ,score)| , which is the size
of the set of all partial derivations rooted in Ty to a suffix
of S′[1 : j] , with exactly kT deletions from the tree, kS dele-
tions from the string, pos leaves with positive sign in Ty′
such that s is the sign of y in the derivation and it is consist-
ent with pos, and whose divergence value is at most score.

After the initialization, the remaining entries of P are
calculated using the recursion rule in Expression 3 ahead.
The order of computation is ascending with respect to the
number of children that should be used i, and it is also
ascending with respect to the number of deletions from
both tree and string. In addition, the order is ascending
with respect to the number of positive signed leaves in
the derivation, and it is also ascending with respect to the
maximum score of the derivations.

Page 28 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

In Expression 3 we use the notations Ny and Ny,z ,
defined as follows. Let y and z be two nodes where the
signs of them in Tx′(i) considered to be s and s′ respec-
tively. If s = − then y ∈ Ny and y ∈ Ny,z , and if s′ = −
then z ∈ Ny,z . If s = + then y /∈ Ny and y /∈ Ny,z , and if
s′ = + then z /∈ Ny,z . In addition, we use the notation
D≤(j,Ny, y, kT , kS) instead of D≤(C ,Ny, y, kT , kS) (see
Definition 22). The two sets are similar except that the
derivations in D≤(j,Ny, y, kT , kS) are derivations of y to a
suffixes of S′[1 : j].

In the algorithm, P[i, y, s, j, pos, kT , kS , score] is com-
puted by taking the minimum between the following
expressions (we will refer the minimum of the three
expressions as Expression 3):

1. P[i, y, s, j − 1, pos, kT , kS − 1, score − ρS
del]

 Explanation: For every entry P[i, y, s, j, pos,

kT , kS , score] , j is the end-point of every partial deri-
vation. Thus, S′[j] must be a part of any partial deriva-
tion; so, S′[j] is either deleted or mapped. The former
option is captured by the first case of the recursion
rule.

2.

∑

z ∈ C
s′ ∈ {+,−}

P[i − 1, z, s′, j − span(y)+ µ.delT , pos − µ.pos, kT − µ.delT , kS − µ.delS , score

− µ.score − BPDelta(x, y, z,Ny,z)]

 Explanation: If S′[j] is mapped, then due to the hierar-
chical structure of Tx , it must be mapped under some
derivation µ′ of one of the children of x that are in C.
Thus, we receive the second and the third cases of the
recursion rule. In these cases we take into account
every z ∈ C to be aligned to the suffix of the deriva-
tion’s subsequence S′[1 : j − span(y)+ µ.delT].

3.

 Explanation: The third case captures the option of
deleting all the nodes between y and z (Cy,z), so that
after the deletion we consider y and z as adjacent in
Tx(C).

 (3)

∑

z ∈ Cs.t.Cy,z ⊆ C
s′ ∈ {+,−}

P[i − |Cy,z| − 1, z, s′, j − span(y)+µ.delT , pos−µ.pos, kT−µ.delT−span(Cy,z), kS − µ.delS , score

− µ.score − ρT
del · span(Cy,z)− BPDelta2(x, y, z,Ny,z)]

Once the entire DP table is filled, for every combina-
tion of (pos, kT , kS , score) the algorithm returns the num-
ber of all partial derivations of x(C) to every prefix of S′ ,
which is calculated by going over the the values of the DP
table and now delete the ignored nodes and penalize the
deletion (C ′ ⊆ C is the set of children considered to be
deleted).

Complexity analysis
In this section we analyse the time and space complexi-
ties of the improved algorithm that solves TTSD , Algo-
rithm 4, which uses the improved P-Mapping algorithm.
First, we analyse Algorithms 8 and 7, which are used as
sub procedures in Algorithm 4 (instead of Algorithm 5).

Lemma 7.2 The Internal P-Mapping algorithm, Algo-
rithm 8, takes O(2γ γ 4 m2n2d2Td

2
S(dT + dS +m+ n))

time and O(γ 2nmdTdS(dT + dS +m+ n)) space.

Proof The most space consuming part of the algo-
rithm is the 8-dimensional DP table. The first dimension,
1 ≤ i ≤ |children(x)| , is of size O(|children(x)|) = O(γ) .
The the second dimention, y, can be any node in

C, therefore the size of the second dimension is
O(|C|) = O(|children(x)|) = O(γ) . The third dimen-
sion, s ∈ {+,−} , is of size 2. The fourth dimension,
1 ≤ j ≤ |S′| , is of size O(n). The size of the fifth dimen-
sion (i.e. pos), in the worst case (where x is the root), is
span(x) = m . The size of the sixth and seventh dimen-
sions (i.e. kT and kS) are dT + 1 and dS + 1 , respec-
tively. The eighth dimension, score, can be any score in

ScoreSet. For fixed penalty parameters δQord and δQflip , in
the worst case, we pay the maximum number of possi-
ble break-point (bounded by m+ n), pay the maximum
number of deletions from the tree and string dT + dS ,

Page 29 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

and pay for a flip of all nodes in the tree (which yields
m values). Therefore the size of the eighth dimension is
O(|ScoreSet|) = O(dT + dS +m+ n) . Hence, the space
of the algorithm is O(γ 2nmdTdS(dT + dS +m+ n)).

The algorithm has three parts: initialization, fill-
ing the DP table, and returning the derivations. The
most time consuming calculation required in the ini-
tialization is the calculation of D(y,s,j,pos,kT ,kS ,score) . For
a given tuple (i, y, s, j, pos, kT , kS , score) it takes O(|D|)
time to calculate the set D(y,s,j,pos,kT ,kS ,score) (by naively
going over all derivations in D and checking if they fit
the values in the tuple); notice that |D| = O(mndTdS) .
We calculate this set for each combination of
(i, y, s, j, pos, kT , kS , score) . Thus, the first part of the algo-
rithm takes O(γn2m2d2Td

2
S(dT + dS +m+ n)) . The sec-

ond part of the algorithm is done by calculating the value
of every entry in the O(γ 2nmdTdS(dT + dS +m+ n))
entries of P , using the recursion rule in Expression 3.
The first line of the rule takes O(1) time, since it involves
looking in another entry of P and basic computations.
The second and the third lines of the rule involves
going over all derivations µ ∈ D≤(j,Ny, y, kT , kS) .
Namely, going over all derivations of y with a specific
end-point, that have no more than a specific num-
ber of deletions from the tree and string, and that are
consistent with N (i.e. µ.e = j , µ.v = y , µ.delT ≤ kT ,
µ.delS ≤ kS and µ.pos ≤ (span(y)− µ.delT)/2 if y ∈ N
or µ.pos ≥ (span(y)− µ.delT)/2 if y /∈ N). The num-
ber of deletions from the tree and string are bounded
by dT and dS , respectively, and the number of val-
ues of pos is bounded by m. Afterwards, we go over
z ∈ C , whose number is bounded by γ , and we go
over s′ ∈ {+,−} . In addition, we use the procedures
BPDelta and BPDelta2 , which can be calculated in
O(γ) time. Thus the second and third lines of the rule
take O(dTdSmγ 2) . Hence, the time to calculate one
entry of P is O(dTdSmγ 2) . In total, the second part of
the algorithm takes O(γ 4nm2d2Td

2
S(dT + dS +m+ n))

time. Finally, to construct the returned set of deriva-
tions, we go over every combination kT , kS , pos, score ,
and for every combination, we take the maximum
over C ′ ⊆ C , y ∈ C , s ∈ {+,−}, 0 ≤ j ≤ |S′| , i.e.
it takes O(2γ γdTdSmn(dT + dS +m+ n)) time.
In total, the algorithm takes O(γn2m2d

2
T
d
2
S
(dT+

dS +m+ n))+ O(γ 4nm2d
2
T
d
2
S
(dT + dS +m+ n))

+O(2γ γdTdSmn(dT + dS +m+ n)) = O(2γ γ 4 m2n2

d
2
T
d
2
S
(dT + dS +m+ n)) time. �

Lemma 7.3 The P-Mapping2 algorithm, Algorithm 7,
takes O(22γ γ 4m2n2d2Td

2
S(dT + dS +m+ n)) time and

O(γ 2nmdTdS(dT + dS +m+ n)) space.

Proof The most space consuming part of the algo-
rithm is the 4-dimensional table. The size of the first
and second dimensions (i.e. kT and kS) are dT + 1
and dS + 1 , respectively. The size of the third dimen-
sion (i.e. pos), in the worst case (where x is the root), is
span(x) = m . The fourth dimension, score, can be any
score in ScoreSet, therefore the size of the dimension is
O(|ScoreSet|) = O(dT + dS +m+ n) . In total, the DP
table B is of size O(dTdSm(dT + dS +m+ n)).

The algorithm has two parts: filling the table, and
returning the derivations. In the first part of the algorithm,
we go over every subset of children(x) , Y ⊆ children(x) ,
and for each one we call Algorithm 8. Thus we call Algo-
rithm 8 O(2|children(x)|) = O(2γ) times. In the second
part of the algorithm, after the table is full, for every
0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS , 0 ≤ pos ≤ span(x)− kT ,
we return the minimum over score ∈ ScoreSet such
that the value of the corresponding entry of the table is
positive. Hence, the second part of the algorithm takes
O(dTdSm(dT + dS +m+ n)) time.

From Lemma 7.2, the Internal P-Mapping algo-
rithm takes O(2γ γ 4 m2n2d2Td

2
S(dT + dS +m+ n))

time and O(γ 2nmdTdS(dT + dS +m+ n)) space.
Thus, in total, our algorithm runs in O(2γ 2γ γ 4

m2n2d
2
T
d
2
S
(dT + dS +m+ n)) = O(22γ γ 4 m2n2d

2
T
d
2
S

(dT + dS +m+ n)) time. Adding to the space
required for table the space required for the P-Map-
ping2 algorithm results in a total space complexity of
O(dTdSm(dT + dS +m+ n))+ O(γ 2nmdTdS(dT+

dS +m+ n)) = O(γ 2nmdTdS(dT + dS +m+ n)) . �

Lemma 7.4 The main algorithm, Algorithm 4,
using the improved P-Mapping algorithm, takes
O(nγ 2dT

2dS
2m2(mp · 2

2γ γ 2n(dT + dS +m+ n)+mq))
time and O(γ 2nm2dTdS(dT + dS +m+ n)) space.

Proof The number of leaves in the PQ-tree T is m,
hence there are O(m) nodes in the tree, i.e the size of the
first dimension of the DP table, A , is O(m). The size of
the second dimension (i.e. pos), in the worst case (where
x is the root), is span(x) = m . In the algorithm descrip-
tion (“The main algorithm” section) a bound for the pos-
sible start indices of subsequences derived from nodes in
T is given (for a node x, the start index i runs between
1 and n− (spanx − dT)+ 1). The node with the larg-
est span in T is the root that has a span of m. The root
is mapped to the longest subsequence when there are
dS deletions from the string. Hence, the size of the third
dimension of A is O(n− (m+ dS)+ 1) = O(n) . The
fourth and the fifth dimensions of A are of size dT + 1
and dS + 1 , respectively. In total, the DP table A is of size
O(dTdSm

2n).

Page 30 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

In the initialization step O(dTdSm
2n) entries

of A are computed. We go over 0 ≤ kS ≤ dS and
pos ∈ {0, 1} . The most time consuming is the gen-
eration of the set Ix,S,i,kS ,pos , and can be generated in
O(|children(x)|) = O(γ) time. Thus the initialization
takes O(dTdSm

2nγ) . The improved P-Mapping algo-
rithm is called for every P-node in T and every pos-
sible start index i, i.e. the P-Mapping algorithm
is called O(nmp) times. Similarly, the Q-Mapping
algorithm is called O(nmq) times. Thus, it takes
O(dTdSm

2nγ)+ O(n (mp · Time(P-Mapping)+mq·

Time(Q-Mapping))) time to fill the DP table. In the final
stage of the algorithm, the minimum over the entries
corresponding to every combination of (0 ≤ kT ≤ dT ,
0 ≤ kS ≤ dS , 1 ≤ i ≤ n− (span(x)− dT)+ 1}, 0 ≤ pos

≤ span(rootT)− kT) is computed. So, it takes
O(dTdSnm) time to find a derivation with minimum
score.

From Lemma 7.3, the P-Mapping2 algorithm
takes O(22γ γ 4m2n2d2Td

2
S(dT + dS +m+ n)) time

and O(γ 2nmdTdS(dT + dS +m+ n)) space, and
from Lemma 6.2, the Q-Mapping algorithm takes
O(γ 2d2Td

2
S m

2) time and O(γdTdSm) space. Thus, in
total, our algorithm runs in O(dTdSm

2nγ)+ O(n(mp·

O(22γ γ 4 m2n2d2Td
2
S(dT + dS +m+ n))+mq · O(γ 2d2Td

2
S m

2)))

= O(nγ 2dT
2dS

2 m2(mp · 2
2γ γ 2n(dT + dS +m+ n)+mq))

time. Adding to the space required for the main DP table
the space required for the P-Mapping2 and Q-Map-
ping algorithms, results in a total space complexity of
O(dTdSm

2n)+ O(γ 2nmdTdS(dT + dS +m+ n))+

O(γdTdSm) = O(γ 2nm2dTdS(dT + dS +m+ n)) . �

Methods and datasets
Dataset and gene cluster generation
 1487 fully sequenced prokaryotic strains with COG ID
annotations were downloaded from GenBank (NCBI;
ver 10/2012). The gene clusters were generated from this
data using the tool CSBFinder-S [45]. CSBFinder-S was
applied to all the genomes in the dataset after removing
their plasmids, using parameters q = 10 (a colinear gene
cluster is required to appear in at least ten genomes) and
k = 0 (no insertions are allowed in a colinear gene clus-
ter), resulting in 79,017 colinear gene orders. From these
gene orders, only gene orders whose number of distinct
COGs is between 4 and 9 were kept, leaving 28,537 gene
orders. Next, ignoring strand and gene order informa-
tion, colinear gene orders that contain the exact same
COGs were united to form the generalized set of 91 gene
clusters that abide by the requirements that each gene
cluster contains at least 3 gene orders and each COG
appears only once in each gene order. For each gene clus-
ter, the most abundant gene order was designated as the

“reference” (centroid) gene order. Based on this, the clus-
ters were further filtered to keep only 63 gene clusters
whose designated reference has instances in at least 30
genomes. Finally, clusters containing one or more gene
orders that are identical to the designated reference gene
order, in terms of the list of classes in which they have
instances, were removed, leaving a benchmark set of 59
gene clusters.

PQ‑tree construction
 The input PQ-trees for our algorithm where constructed
using the tool PQFinder (available on GitHub [46]).
PQFinder was applied to each of the gene clusters in the
dataset, to build the PQ-tree representing each cluster. In
addition, each Q-node with exactly two children, whose
height in the tree is greater than 1, was changed to a
P-node (in this special case all children of the node were
observed in all shuffling options, which in our opinion
better fits the syntax of a P-node than that of a Q-node.)

Parameter settings
 In our experiment, we set the parameters of the algo-
rithm as follows. δQord = 1.5 , δQflip = 0.5 , dT = 0 , dS = 0 .

The stronger penalty for δQord versus δQflip is based on the

observation that gene clusters in prokaryotes are very
strongly colinearly conserved [30, 31], even when the
benchmark dataset is large and spans a wide taxonomical
range of prokaryotes [32].

Strand information
 Our approach to the comparison of two gene orders
focuses on adaptive fitness (in terms of the order by
which the gene products are produced). Therefore, we
do not distinguish between two gene orders that appear
in distinct strands, however are identical in terms of the
order and direction of their genes (with respect to the
transcription start site). Furthermore, the tool by which
the gene orders were identified (CSBfinder [45]) groups
together instances from distinct strands into the same
CSB. To this end, for any two gene orders being com-
pared in our benchmarks, we compute the rearrange-
ment distance twice: in the first computation, both gene
orders preserve the original strand, and in the second
computation one of the compared gene order is modi-
fied by reversing both the order and the directions of its
genes.

Results
Evaluation
In this section we evaluate the accuracy of our approach
in measuring the evolutionary divergence between two
gene orders that belong to the same gene cluster. To this

Page 31 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

end, we aim to generate a set of “control” distances, com-
puted from real data, against which the divergence scores
computed by our tool can be compared and evaluated.

Recall that in our application, each of the input
sequences does not correspond to a specific genomic
sequence but rather represents a gene order that occurs
in multiple genomes. In addition, abundant gene clusters
typically display several paralogous occurrences of dis-
tinct gene orders, and possibly several paralogous occur-
rences of a specific gene order, within the same genome.
Furthermore, each distinct occurrence of a specific gene
order could differ substantially from another occur-
rence of the same gene order in terms of its encoding
genomic sequence, since each COG represents a clus-
ter of genomic sequences that are not identical however
are similar enough (possibly based on local sequence
similarity) to be clustered to the same gene orthology
group. This poses a challenge in creating a set of “con-
trol” distances by which to evaluate the performance
of our approach in comparison to extant genome rear-
rangement distances, since the “ground truth” regarding
the evolutionary distance between two gene orders can
not be estimated by computing the sequence alignment
between the underlying genomic sequences.

Thus, we chose to represent each gene order by the
assemblage of its instances, i.e. the set of genomes in
which it occurs, and to employ comparative assemblage
analysis as a “control” measure. Several similarity (or
overlap) indices based on presence/absence (incidence)
data have been proposed in the literature [47, 48]. A clas-
sical and widely used index in comparative assemblage
analysis is the Jaccard index [48]. In our comparative

evaluation the instance assemblages are used to estimate
divergence rather than similarity, and therefore we use
the inverse Jaccard Index as an estimator of the instance
assemblage based divergence between two gene orders.

Our proposed divergence measure was evaluated, per
each cluster, as follows: first, we applied our approach
(Algorithm 1) to measure the structure informed diver-
gence from the cluster’s designated reference (explained
in “Methods and datasets” section) to each of the other
gene orders. Then, we calculated the Inverse Jaccard
based distance from the set of instances of the refer-
ence gene order to the sets of instances of each of the
other gene orders. In order to tolerate the noise due to
inter-specie and inter-genus horizontal transfer of gene
orders, we first converted the assemblages of genomes
to the assemblages of (taxonomic) classes to which
these genomes belong. This resulted in two series of

Table 1 A comparison between our proposed rearrangement
measure (Diverge), signed break‑point distance (dSBP) as in
Definition 8, and the CREx reversals distance (dreversals) [28],
based on their correlation to a taxonomical instance abundance
measure

Num of
Q‑nodes

Correlation Diverge dSBP dreversals

0 Pearson 0.767 0.777 0.824

Spearman 0.680 0.673 0.647

1 Pearson 0.883 0.869 0.845

Spearman 0.775 0.753 0.697

2 Pearson 0.927 0.859 0.842

Spearman 0.907 0.845 0.823

Fig. 11 Distributions of Pearson correlations computed between a series of genomic rearrangement scores and the corresponding series
of instance abundance indexes. A Our proposed rearrangement measure (Diverge). B Signed break‑point distance (dSBP) as in Definition 8. C
CREx reversals distance (dreversals) [28]. For each measure in A–C, the distribution is computed and shown separately per each gene cluster group,
as described above: “corr” (Y‑axis) denotes the Pearson correlation, “num of Q‑nodes” denotes the number of Q‑nodes in the PQ‑trees of the gene
clusters belonging to the specific group

Page 32 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

scores, which were then subjected to the computation
of Spearman and Pearson correlations between them.
The same evaluation procedure was then repeated
twice, once using the signed break-point distance (as in
Definition 8) instead of our structure-informed diver-
gence measure, and once using the CREx reversal dis-
tance [28].

To this end, the 59 gene clusters were distributed to
three groups according to the number of Q-nodes in
their representative PQ-trees, as we consider the num-
ber of Q-nodes in a PQ-tree to be a good estimate of the
hierarchical complexity of its colinear components. This
yielded 8 gene clusters whose representative tree has
no Q-nodes, 41 gene clusters whose representative tree
has one Q-node, and 10 gene clusters whose representa-
tive tree has two or more Q-nodes. For each group, the
average Spearman and Pearson correlation scores were
computed for each of the three compared measures. The
results are summarized in Table 1. Additional details
regarding the comparative results per each gene cluster,
as well as the functional categories of the genes in the
cluster, are given in Tables 2 and 3. Note that the rows of
Table 2 are sorted by decreasing value of the difference
Diverge− dreversals , and the first result from the table is
interpreted in detail in “A motivating example” section.

Table 1 indicates that, in general, the rearrangement-
based divergence between a reference gene order and
its target gene orders correlates well with the divergence
in the taxonomic distribution of their corresponding
instances, which is a very interesting result on its own,
supporting our choice of gene order instance assemblage-
based distance as a control measure for our comparative
analysis.

As expected, in gene clusters where there is very
weakly conserved structure or none at all, the results
are comparable to the other measures. However, the
table shows that as the conserved structure of the gene
cluster increases, so does our advantage over the signed
break-point distance and the CREx reversal distance. In
Fig. 11 we further analyse the affect of the level of col-
inear component co-dependency on the correlation
results. Interestingly, a Kruskal-Wallis test indicates
significant difference between the correlations com-
puted for our proposed measure Diverge for the three
groups of gene clusters (χ2(2) = 7.537 , P-val= 0.023),
while such is not the for the other compared meas-
ures, dSBP (χ2(2) = 2.599 , P-val= 0.273) and dreversals
(χ2(2) = 0.981 , P-val= 0.612).

Our implementation of the first algorithm took 0.72 s
to complete the analysis of the full dataset when run
on a laptop with an Intel(R) Core(TM) i7-8550U CPU
(1.99 GHz) using 8 GB RAM. Our implementation of

the second algorithm took 5.4 min to complete the same
analysis on the same laptop.

Conclusions
In this paper, we defined two (genome rearrangement-
based) problems in comparative genomics, denoted
TTSD (TreeToString Divergence) and CTTSD
(Constrained TTSD), where the second problem is a spe-
cial case of the first one. Both problems take as input two
sequences of genes S1 and S2 , a PQ-tree T representing
the known gene orders of a gene cluster of interest, with
its leaves ordered according to sequence S1 . TTSD also
takes as input integer arguments dT and dS (we assume
that in CTTSD , dT = dS = 0). The objective is to reorder
T as a subsequence S′2 of S2 , allowing up to dT deletions
of leaves from T, and such that S′2 is obtained from S2 by
using up to dS deletions from S2 , while calculating a cor-
responding score that serves as the objective divergence
measure.

We proposed an algorithm that solves CTTSD in
O∗(1.381γ) time and O∗(1) space. The parameter γ is the
maximum degree of a P-node in T and O∗ is used to hide
polynomial factors in the input size. In the special case
where the jump penalty is set to 0, the time complexity of
our proposed algorithm is O∗(1) . In addition, we proposed
a parameterized algorithm that solves TTSD in O∗(5γ)
time and O∗(5γ) space. Lastly, we proposed a parameter-
ized algorithm that solves a variant of TTSD , where the
jump penalty is set to 0, that reduces the space complexity
of the prior algorithm, using the inclusion–exclusion prin-
ciple. The algorithm take O∗(4γ) time and O∗(1) space.

The proposed general algorithm was implemented as a
software tool and applied to the comparative and evolu-
tionary analysis of 59 chromosomal gene clusters extracted
from a dataset of 1487 prokaryotic genomes. Our prelimi-
nary results, based on the analysis of the 59 gene clusters,
indicate that our proposed measure correlates well with an
instance-abundance index that is computed by compar-
ing the class composition of the genomic instances of two
compared gene orders. Comparative analysis versus two
extant methods (using very preliminary and simple scoring
parameter values for our proposed engine) yields equiva-
lent results in terms of the average correlations to the
instance-abundance index values obtained for the bench-
mark dataset. In future work we propose to assemble a
large dataset of prokaryotic gene clusters (large enough to
train a more sophisticated scoring scheme model) and use
it to train our scoring scheme parameters.

Our proposed measure, however, is shown to more
sensitively capture and utilize the conserved structural
information characterizing a gene cluster: The statisti-
cal test we conducted indicates that as the structural
information of a gene cluster, as encoded by its PQ-tree,

Page 33 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

increases - our proposed measure significantly improves
in terms of computing rearrangement scenarios between
gene orders belonging to the cluster. This, as opposed to
the other two extant measures tested the experiment.

One of the downsides of using PQ-trees to represent
gene clusters is that very rare gene orders taken into
account in the tree construction could greatly increase
the number of allowed rearrangements and thus sub-
stantially lower the specificity of the PQ-tree. Thus, a
natural continuation of our research would be to increase
the specificity of the model by considering a stochastic
variation of the algorithms presented in this paper, or

alternatively to identify and exclude gene order outliers
during PQ-tree construction. In addition, future exten-
sions of this work could also aim to increase the sensitiv-
ity of the model by taking into account gene duplications
(or at least tandem duplications) and gene-fusion events,
which are typical events in gene cluster evolution.

Appendix
See Tables 2, 3, 4.

Table 2 59 gene clusters analyzed in our experiment

Gene cluster ID Diverge dSBP dreversals Size PQ‑tree

1 19876 1.000 0.655 0.500 3 ((0− [1− 2− 3−]) 4+)

2 21344 0.905 0.615 0.439 4 ([0− 1−] [2+ 3+])

3 19877 0.997 0.915 0.592 3 ([0+ 1+ 2+] 3+)

4 27180 0.828 0.828 0.436 3 ([0− 1− 2−] 3+)

5 14602 0.978 0.985 0.654 4 (0− [1− 2− 3− 4−])

6 23340 0.974 0.809 0.684 3 (0− (1+ [2+ 3+]))

7 19853 0.967 0.825 0.703 3 (0− ([1+ 2+ 3+] 4+))

8 14790 0.994 0.994 0.808 3 ([0− 1− 2− 3−] 4− 5−)

9 26244 0.971 0.996 0.817 3 (0− [1− 2− 3−])

10 26243 0.903 0.909 0.757 4 (([0− 1−] 2−) 3−)

11 26476 0.925 0.998 0.791 3 (0+ [1+ 2+ 3+])

12 15297 0.991 0.945 0.866 3 (0− ([1− 2−] [3− 4+]))

13 22866 0.845 0.600 0.722 5 ([0+ 1+] [2+ 3+])

14 26238 0.785 0.807 0.663 7 ([0− 1−] 2− 3−)

15 18995 0.770 0.621 0.681 9 ((0+ [1+ 2+]) 3+)

16 28119 0.559 0.559 0.478 5 (0− 1− 2− 3−)

17 25371 0.983 0.942 0.907 4 (0− ([1− 2−] 3−))

18 26231 0.974 0.802 0.909 4 ((0+ [1+ 2+]) 3+)

19 14796 0.760 0.686 0.700 9 (0− 1− [2− 3−] 4−)

20 20007 0.999 0.999 0.960 3 (0− 1− 2− [3− 4−])

21 22299 0.929 0.929 0.891 3 (0− 1− 2− 3−)

22 19255 0.948 0.940 0.918 5 ([0− 1−] [2− 3−] 4−)

23 20764 0.880 0.987 0.852 3 ([0+ 1+ 2+] 3+)

24 21553 0.982 0.982 0.961 3 (0− [1− 2−] 3− 4−)

25 27851 1.000 1.000 0.982 3 (0+ [1+ 2+] 3+)

26 27427 0.866 0.866 0.866 3 (0+ [1+ 2+ 3+])

27 15467 1.000 1.000 1.000 3 ([0− 1− 2− 3−] 4− 5−)

28 19610 0.998 0.998 0.998 3 (0− ([1− 2−] 3− 4−))

29 20078 0.982 0.945 0.982 3 (0+ (1+ [2+ 3+]))

30 22181 0.912 0.940 0.912 3 (([0+ 1+] 2+) 3+)

31 25612 0.997 0.888 0.997 4 ([0− 1−] [2− 3−])

32 27177 0.945 0.945 0.945 3 (0− [1+ 2+ 3+])

33 8962 0.933 0.933 0.933 3 (0− 1− [2− 3− 4− 5− 6−])

34 27530 0.999 0.974 0.999 3 [[0− 1−] 2− 3−]

35 19256 0.779 0.737 0.798 8 (0− 1− 2− 3−)

36 21317 0.974 0.974 0.995 3 (0+ 1+ [2+ 3+ 4+])

Page 34 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

Table 2 (continued)

Gene cluster ID Diverge dSBP dreversals Size PQ‑tree

37 19852 0.890 0.821 0.919 6 (0− [1− 2−] 3−)

38 27250 0.967 0.967 0.997 3 ([0+ 1+] [2+ 3+])

39 30976 0.963 1.000 0.996 3 [0− 1+ [2+ 3+]]

40 28245 0.715 0.715 0.775 3 (0− 1− 2− 3−)

41 26257 0.933 0.988 0.999 3 ((0+ [1+ 2+]) 3+)

42 14839 0.860 0.912 0.928 8 ([0− 1−] 2− 3− 4−)

43 27207 0.748 0.749 0.824 7 (0− [1− 2−] 3+)

44 12685 0.917 0.917 0.994 3 ([0− 1− 2−] 3− 4− 5−)

45 21268 0.876 0.876 0.956 4 ([0+ 1+] [2+ 3+])

46 23083 0.832 0.916 0.912 5 (([0− 1−] 2−) 3−)

47 25597 0.810 0.817 0.892 5 (0+ [1+ 2+] 3+)

48 19005 0.902 0.997 0.997 3 ((0+ 1+ 2+) 3+)

49 15035 0.623 0.671 0.732 4 ((0+ ([1+ 2+] 3+)) 4+)

50 28547 0.828 0.828 0.961 7 (0− 1− 2− 3−)

51 25375 0.866 0.866 1.000 3 ([0− 1−] 2− 3−)

52 20332 0.860 0.860 0.997 5 (0+ 1+ [2+ 3+])

53 26364 0.839 0.869 0.988 5 (0+ 1+ 2+ 3+)

54 19909 0.818 0.818 0.968 6 (0− [1− 2−] 3−)

55 20601 0.586 0.586 0.756 5 (0− 1− 2− 3−)

56 15391 0.784 0.784 0.999 3 (0− (1− [2− 3− [4− 5−]]))

57 14573 0.501 0.501 0.722 4 (0− 1− (2− [3− 4−]) 5−)

58 25554 0.721 0.971 0.971 3 (([0+ 1+] 2+) 3+)

59 19526 0.543 0.471 0.814 4 ((0− [1− 2−]) 3−)

For each gene cluster (row in the table) we report the Pearson correlation versus the corresponding instance-abundance measure for each of the three genome
rearrangement measures compared in our experiment: our proposed measure (Diverge), signed break-point distance (dSBP) as in Definition 8 and CREx reversals
distance (dreversals) [28]. The column denoted “Size” gives the number of genes in the gene cluster, and the column denoted “PQ-tree” gives the corresponding PQ-tree
representing the gene cluster. The functional category annotations for each cluster are given in Tables 3 and 4

Table 3 The functional categories for the gene clusters described in Tables 2, based on their COG annotations

Gene Cluster ID Functional category

1 19876 Carbohydrate transport and metabolism—transcription

2 21344 Signal transduction mechanisms—cell wall/membrane/envelope biogenesis—defense mechanisms

3 19877 Carbohydrate transport and metabolism—general function prediction only

4 27180 Carbohydrate transport and metabolism—transcription

5 14602 Inorganic ion transport and metabolism

6 23340 Transcription—inorganic ion transport and metabolism

7 19853 Transcription—carbohydrate transport and metabolism

8 14790 Amino acid transport and metabolism—lipid transport and metabolism

9 26244 Carbohydrate transport and metabolism

10 26243 Carbohydrate transport and metabolism—transcription

11 26476 Inorganic ion transport and metabolism

12 15297 Energy production and conversion—coenzyme transport and metabolism

13 22866 Signal transduction mechanisms—cell wall/membrane/envelope biogenesis

14 26238 Carbohydrate transport and metabolism—transcription

15 18995 Carbohydrate transport and metabolism—transcription

16 28119 Carbohydrate transport and metabolism

17 25371 Coenzyme transport and metabolism—amino acid transport and metabolism

18 26231 Carbohydrate transport and metabolism

Page 35 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

The first 47 gene clusters (out of 59), this table is continued in Table 4

Gene Cluster ID Functional category

19 14796 Amino acid transport and metabolism

20 20007 Amino acid transport and metabolism

21 22299 Lipid transport and metabolism

22 19255 Posttranslational modification, protein turnover, chaperones—amino acid transport and metabolism

23 20764 Carbohydrate transport and metabolism

24 21553 Carbohydrate transport and metabolism

25 27851 Cell wall/membrane/envelope biogenesis—inorganic ion transport and metabolism

26 27427 Transcription—inorganic ion transport and metabolism

27 15467 Energy production and conversion

28 19610 Lipid transport and metabolism—general function prediction only

29 20078 Cell wall/membrane/envelope biogenesis—general function prediction only

30 22181 Energy production and conversion—posttranslational modification, protein turnover, chaperones

31 25612 Amino acid transport and metabolism

32 27177 Carbohydrate transport and metabolism

33 8962 Signal transduction mechanisms—inorganic ion transport and metabolism

34 27530 Energy production and conversion—transcription

35 19256 Amino acid transport and metabolism

36 21317 General function prediction only—posttranslational modification, protein turnover, chaperones

37 19852 Carbohydrate transport and metabolism

38 27250 Energy production and conversion

39 30976 Transcription—cell wall/membrane/envelope biogenesis —secondary metabolites biosynthesis,
transport and catabolism

40 28245 Coenzyme transport and metabolism—carbohydrate transport and metabolism

41 26257 Carbohydrate transport and metabolism

42 14839 Amino acid transport and metabolism

43 27207 Cell wall/membrane/envelope biogenesis—defense mechanisms—transcription

44 12685 Posttranslational modification, protein turnover, chaperones—general function prediction only

45 21268 Defense mechanisms—signal transduction mechanisms

46 23083 Carbohydrate transport and metabolism—general function prediction only

47 25597 Amino acid transport and metabolism—posttranslational modification, protein turnover, chaperones

Table 3 (continued)

Table 4 The functional categories for the gene clusters described in Table 2, based on their COG annotations

The last 12 gene clusters (out of 59), this table continues Table 3

Gene cluster ID Functional Category

48 19005 Carbohydrate transport and metabolism

49 15035 Cell motility

50 28547 Cell wall/membrane/envelope biogenesis

51 25375 Coenzyme transport and metabolism

52 20332 Amino acid transport and metabolism—energy production and conversion

53 26364 Inorganic ion transport and metabolism

54 19909 Amino acid transport and metabolism

55 20601 Inorganic ion transport and metabolism—coenzyme transport and metabolism

56 15391 Amino acid transport and metabolism

57 14573 Transcription—carbohydrate transport and metabolism

58 25554 Amino acid transport and metabolism

59 19526 Cell motility

Page 36 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

Acknowledgements
Many thanks to the anonymous WABI reviewers for their very helpful
comments.

Author contributions
MZ and MZU initiated and guided the research. EO developed and imple‑
mented the presented algorithms, and participated in the application of the
algorithms to the experimental benchmarks. EO developed the bioinformatic
pipeline and performed the experiments and the data analysis. EO wrote the
paper, with guidance by MZ and MZU. All authors read and approved the final
manuscript.

Funding
The research of EO was partially supported by the Planning and Budgeting
Committee of the Council for Higher Education in Israel and by the Frankel
Center for Computer Science at Ben Gurion University. The research of EO, MZ
and MZU was partially supported by the Israel Science Foundation and by the
European Research Council (ERC) Starting Grant titled PARAPATH Israel Science
Foundation

Availability of data and materials
The code for our tool, the data used in the experiments, and the log file pro‑
duced by the run of the reported benchmark, can be found on GitHub: http://
www. github. com/ edeno zery/ MEM‑ Rearr ange.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 30 March 2023 Accepted: 17 August 2023

References
 1. Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. Refseq microbial

genomes database: new representation and annotation strategy. Nucleic
Acids Res. 2014;42(D1):553–9. https:// doi. org/ 10. 1093/ nar/ gkt12 74.

 2. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie
JJ, Gough R, Hix D, Kenyon R, et al. Patric, the bacterial bioinformatics
database and analysis resource. Nucleic Acids Res. 2014;42(D1):581–91.
https:// doi. org/ 10. 1093/ nar/ gkt10 99.

 3. Gatt YE, Margalit H. Common adaptive strategies underlie within‑host
evolution of bacterial pathogens. Mol Biol Evol. 2021;38(3):1101–21.

 4. Alm E, Huang K, Arkin A. The evolution of two‑component systems in
bacteria reveals different strategies for niche adaptation. PLoS Comput
Biol. 2006;2(11):143.

 5. Booth KS, Lueker GS. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ‑tree algorithms. J Comput Syst Sci.
1976;13(3):335–79.

 6. Bergeron A, Gingras Y, Chauve C. Formal models of gene clusters. In:
Bioinformatics algorithms: techniques and applications, vol. 8. John Wiley
and Sons, Inc; 2008. p. 177–202.

 7. Zimerman GR, Svetlitsky D, Zehavi M, Ziv‑Ukelson M. Approximate search
for known gene clusters in new genomes using PQ‑trees; 2020. arXiv
preprint arXiv: 2007. 03589

 8. Landau GM, Parida L, Weimann O. Gene proximity analysis across whole
genomes via PQ trees1. J Comput Biol. 2005;12(10):1289–306.

 9. Fondi M, Emiliani G, Fani R. Origin and evolution of operons and meta‑
bolic pathways. Res Microbiol. 2009;160(7):502–12. https:// doi. org/ 10.
1016/j. resmic. 2009. 05. 001.

 10. Wells JN, Bergendahl LT, Marsh JA. Operon gene order is optimized for
ordered protein complex assembly. Cell Rep. 2016;14(4):679–85.

 11. Fertin G, Labarre A, Rusu I, Vialette S, Tannier E. Combinatorics of genome
rearrangements. MIT press; 2009.

 12. Braga MD, Sagot M‑F, Scornavacca C, Tannier E. Exploring the solution
space of sorting by reversals, with experiments and an application to
evolution. IEEE/ACM Trans Comput Biol Bioinform. 2008;5(3):348–56.

 13. Darling AE, Miklós I, Ragan MA. Dynamics of genome rearrangement in
bacterial populations. PLoS Genet. 2008;4(7):1000128.

 14. Lemaitre C, Braga MD, Gautier C, Sagot M‑F, Tannier E, Marais GA. Foot‑
prints of inversions at present and past pseudoautosomal boundaries in
human sex chromosomes. Genome Biol Evol. 2009;1:56–66.

 15. Hannenhalli S, Pevzner PA. Transforming cabbage into turnip: polynomial
algorithm for sorting signed permutations by reversals. J ACM (JACM).
1999;46(1):1–27.

 16. Bergeron A, Mixtacki J, Stoye J. Mathematics of evolution and phylogeny,
chapter the inversion distance problem. Oxford University Press; 2005.

 17. Tannier E, Bergeron A, Sagot M‑F. Advances on sorting by reversals. Discr
Appl Math. 2007;155(6–7):881–8.

 18. Hannenhalli S, Pevzner PA. Transforming men into mice (polynomial
algorithm for genomic distance problem). In: Proceedings of IEEE 36th
annual foundations of computer science. IEEE; 1995. p. 581–92.

 19. Jean G, Nikolski M. Genome rearrangements: a correct algorithm for
optimal capping. Inf Process Lett. 2007;104(1):14–20.

 20. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permu‑
tations by translocation, inversion and block interchange. Bioinformatics.
2005;21(16):3340–6.

 21. Figeac M, Varré J‑S. Sorting by reversals with common intervals. In:
International workshop on algorithms in bioinformatics. Springer; 2004.
p. 26–37.

 22. Bérard S, Bergeron A, Chauve C. Conservation of combinatorial structures
in evolution scenarios. In: RECOMB workshop on comparative genomics.
Springer; 2004. p. 1–14.

 23. Bérard S, Bergeron A, Chauve C, Paul C. Perfect sorting by reversals is not
always difficult. IEEE/ACM Trans Comput Biol Bioinform. 2007;4:4–16.
https:// doi. org/ 10. 1145/ 12299 68. 12299 72.

 24. Sagot M‑F, Tannier E. Perfect sorting by reversals. In: International com‑
puting and combinatorics conference. Springer; 2005. p. 42–51.

 25. Diekmann Y, Sagot M‑F, Tannier E. Evolution under reversals: parsimony
and conservation of common intervals. IEEE/ACM Trans Comput Biol
Bioinform. 2007;4(2):301–9.

 26. Bérard S, Chauve C, Paul C. A more efficient algorithm for perfect sorting
by reversals. Inf Process Lett. 2008;106(3):90–5.

 27. Hartmann T, Bernt M, Middendorf M. An exact algorithm for sorting by
weighted preserving genome rearrangements. IEEE/ACM Trans Comput
Biol Bioinform. 2018;16(1):52–62.

 28. Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel
M, Stadler PF, Middendorf M. Crex: inferring genomic rearrangements
based on common intervals. Bioinformatics. 2007;23(21):2957–8.

 29. Bérard S, Chateau A, Chauve C, Paul C, Tannier E. Computation of perfect
DCJ rearrangement scenarios with linear and circular chromosomes. J
Comput Biol. 2009;16(10):1287–309.

 30. Ling X, He X, Xin D. Detecting gene clusters under evolutionary con‑
straint in a large number of genomes. Bioinformatics. 2009;25(5):571–7.

 31. Winter S, Jahn K, Wehner S, Kuchenbecker L, Marz M, Stoye J, Böcker
S. Finding approximate gene clusters with gecko 3. Nucleic Acids Res.
2016;44(20):9600–10.

 32. Svetlitsky D, Dagan T, Ziv‑Ukelson M. Discovery of multi‑operon
colinear syntenic blocks in microbial genomes. Bioinformatics.
2020;36(Supplement‑1):21–9.

 33. Chandravanshi M, Gogoi P, Kanaujia SP. Structural and thermodynamic
correlation illuminates the selective transport mechanism of disaccharide
α‑glycosides through abc transporter. FEBS J. 2020;287(8):1576–97.

 34. Gopal S, Berg D, Hagen N, Schriefer E‑M, Stoll R, Goebel W, Kreft J. Maltose
and maltodextrin utilization by listeria monocytogenes depend on an
inducible abc transporter which is repressed by glucose. PLoS ONE.
2010;5(4):10349.

 35. Marsh JA, Hernández H, Hall Z, Ahnert SE, Perica T, Robinson CV,
Teichmann SA. Protein complexes are under evolutionary selection to
assemble via ordered pathways. Cell. 2013;153(2):461–70.

 36. Jackson EN, Yaetofsky C. The region between the operator and first
structural gene of the tryptophan operon of Escherichia coli may have a
regulatory function. J Mol Biol. 1973;76(1):89–101.

http://www.github.com/edenozery/MEM-Rearrange
http://www.github.com/edenozery/MEM-Rearrange
https://doi.org/10.1093/nar/gkt1274
https://doi.org/10.1093/nar/gkt1099
http://arxiv.org/abs/2007.03589
https://doi.org/10.1016/j.resmic.2009.05.001
https://doi.org/10.1016/j.resmic.2009.05.001
https://doi.org/10.1145/1229968.1229972

Page 37 of 37Ozeri et al. Algorithms for Molecular Biology (2023) 18:17

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 37. Plumbridge J. Regulation of the utilization of amino sugars by Escherichia
coli and Bacillus subtilis: same genes, different control. Microbial Physiol‑
ogy. 2015;25(2–3):154–67.

 38. Uno T, Yagiura M. Fast algorithms to enumerate all common intervals of
two permutations. Algorithmica. 2000;26(2):290–309.

 39. Heber S, Stoye J. Algorithms for finding gene clusters. In: International
workshop on algorithms in bioinformatics. Springer; 2001. p. 252–63.

 40. Bergeron A, Corteel S, Raffinot M. The algorithmic of gene teams. In:
International workshop on algorithms in bioinformatics. Springer; 2002.
p. 464–76.

 41. Eres R, Landau GM, Parida L. A combinatorial approach to automatic
discovery of cluster‑patterns. In: WABI. Springer; 2003. p. 139–50.

 42. Schmidt T, Stoye J. Quadratic time algorithms for finding common inter‑
vals in two and more sequences. In: Combinatorial pattern matching.
Springer; 2004. p. 347–58.

 43. Jiang H, Chauve C, Zhu B. Breakpoint distance and PQ‑trees. In: Annual
symposium on combinatorial pattern matching. Springer; 2010. p. 112–24.

 44. Shachnai H, Zehavi M. A multivariate framework for weighted FPT algo‑
rithms. J Comput Syst Sci. 2017;89:157–89. https:// doi. org/ 10. 1016/j. jcss.
2017. 05. 003.

 45. Svetlitsky D, Dagan T, Ziv‑Ukelson M. Discovery of multi‑operon colinear
syntenic blocks in microbial genomes. Bioinformatics. 2020. https:// doi.
org/ 10. 1093/ bioin forma tics/ btaa5 03.

 46. Zimerman GR. The PQFinder tool. www. github. com/ Galia Zim/ PQFin der
 47. Magurran AE. Measuring biological diversity. Curr Biol.

2021;31(19):1174–7.
 48. Chao A, Chazdon RL, Colwell RK, Shen T‑J. Abundance‑based similarity

indices and their estimation when there are unseen species in samples.
Biometrics. 2006;62(2):361–71.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/j.jcss.2017.05.003
https://doi.org/10.1016/j.jcss.2017.05.003
https://doi.org/10.1093/bioinformatics/btaa503
https://doi.org/10.1093/bioinformatics/btaa503
http://www.github.com/GaliaZim/PQFinder

	New algorithms for structure informed genome rearrangement
	Abstract
	Introduction
	Background on structure informed genome rearrangement (SIGR) scenarios
	Our contribution
	Roadmap

	A motivating example
	Previous related works
	Preliminaries
	PQ-tree—representing the pattern
	Break-point distances
	Problem preliminaries
	Problem definitions
	Anchor 14
	

	Parameterized complexity
	Algorithms preliminaries

	 : algorithm
	The main algorithm
	P-node mapping: the algorithm
	Q-node mapping: the algorithm
	Example
	Complexity analysis

	 : algorithm
	The main algorithm
	P-node and Q-node mapping: terminology
	P-node mapping: the algorithm
	Q-node mapping: the algorithm
	Complexity analysis

	 : polynomial space complexity
	Inclusion–exclusion principle
	P-node mapping: polynomial space complexity
	Internal P-node mapping
	Complexity analysis

	Methods and datasets
	Dataset and gene cluster generation
	PQ-tree construction
	Parameter settings
	Strand information

	Results
	Evaluation

	Conclusions
	Acknowledgements
	References

