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Abstract 

We define two new computational problems in the domain of perfect genome rearrangements, and propose three 
algorithms to solve them. The rearrangement scenarios modeled by the problems consider Reversal and Block 
Interchange operations, and a PQ‑tree is utilized to guide the allowed operations and to compute their weights. In 
the first problem, Constrained TreeToString Divergence ( CTTSD ), we define the basic structure‑informed rear‑
rangement measure. Here, we assume that the gene order members of the gene cluster from which the PQ‑tree 
is constructed are permutations. The PQ‑tree representing the gene cluster is ordered such that the series of gene 
IDs spelled by its leaves is equivalent to that of the reference gene order. Then, a structure‑informed genome rear‑
rangement distance is computed between the ordered PQ‑tree and the target gene order. The second problem, 
TreeToString Divergence ( TTSD ), generalizes CTTSD , where the gene order members are not necessarily permu‑
tations and the structure informed rearrangement measure is extended to also consider up to dS and dT  gene inser‑
tion and deletion operations, respectively, when modelling the PQ‑tree informed divergence process from the ref‑
erence gene order to the target gene order. The first algorithm solves CTTSD in O(nγ 2

· (mp · 1.381
γ
+mq)) 

time and O(n2) space, where γ is the maximum number of children of a node, n is the length of the string 
and the number of leaves in the tree, and mp and mq are the number of P‑nodes and Q‑nodes in the tree, respec‑
tively. If one of the penalties of CTTSD is 0, then the algorithm runs in O(nmγ 2) time and O(n2) space. The sec‑
ond algorithm solves TTSD in O(n2γ 2dT

2dS
2m2(mp · 5

γ γ +mq)) time and O(dT dSm(mn+ 5
γ )) space, where γ 

is the maximum number of children of a node, n is the length of the string, m is the number of leaves in the tree, 
mp and mq are the number of P‑nodes and Q‑nodes in the tree, respectively, and allowing up to dT  deletions 
from the tree and up to dS deletions from the string. The third algorithm is intended to reduce the space com‑
plexity of the second algorithm. It solves a variant of the problem (where one of the penalties of TTSD is 0) 
in O(nγ 2dT

2dS
2m2(mp · 4

γ γ 2n(dT + dS +m+ n)+mq)) time and O(γ 2nm2dT dS(dT + dS +m+ n)) space. The 
algorithm is implemented as a software tool, denoted MEM‑Rearrange, and applied to the comparative and evolu‑
tionary analysis of 59 chromosomal gene clusters extracted from a dataset of 1487 prokaryotic genomes.

Keywords PQ‑tree, Gene cluster, Breakpoint distance

Introduction
Recent advances in pyrosequencing techniques, com-
bined with global efforts to study infectious diseases, 
yield huge and rapidly-growing databases of microbial 
genomes [1, 2]. These big new data statistically empower 
genomic-context based approaches to functional and 
evolutionary analysis: the biological principle underly-
ing such analyses is that groups of genes that are located 
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close to each other across many genomes often code 
for proteins that interact with one another, suggesting a 
common functional association.

Groups of genes that are co-locally conserved across 
many genomes are denoted gene clusters. The order of 
the genes in distinct genomic occurrences of a gene clus-
ter may not be conserved. A specific order of the genes 
of a gene cluster, that is co-linearly conserved across 
many genomes, is denoted a gene order of the gene clus-
ter. The distinct genomes in which a gene order occurs 
are denoted instances of the gene order. Gene clusters in 
prokaryotic genomes often correspond to (one or several) 
operons; those are neighbouring genes that constitute a 
single unit of transcription and translation.

In this paper, our biological goal is to study the evolu-
tion of gene clusters in prokaryotes, by computing the 
divergence between pairs of gene orders that belong to 
the same gene cluster, based on genome rearrangement 
scenarios. When defining this computational task as an 
optimization problem, one needs to take into account 
that parsimony considerations may not be sufficient: 
driven by the objective to keep the genome small and 
efficient, in spite of the high rate of gene shuffling in the 
prokaryotic genome, only gene orders that are reinforced 
by conveying some advantage in fitness (i.e., in adaptation 
to some niche) will be kept in the genome. This calls for 
a Structure-Informed Genome Rearrangement (SIGR) 
divergence measure that will interleave parsimony con-
siderations with some learned structural and functional 
information regarding the gene cluster under study. Such 
a measure could more accurately assess the degree of 
divergence from one order of a gene cluster to another, 
and provide further understanding of gene-context level 
environmental-specific adaptations [3, 4].

To this end, we propose a new SIGR-based divergence 
measure and provide efficient algorithms to compute it. 
According to our approach, information regarding the 
structure of the gene cluster is learned from the known 
gene orders of the gene cluster and represented by a PQ-
tree (formally defined in “Preliminaries” section). The 
PQ-tree is then utilized to both guide the allowed opera-
tions and to compute their weights. A motivating exam-
ple for our proposed approach, including exemplifying 
figures, can be found in “A motivating example” section.

PQ-trees have been advocated as a representation for 
gene clusters [5–7]. A PQ-tree describes the possible per-
mutations of a given sequence, and can be constructed in 
polynomial-time [8]. The PQ-tree representing a given 
gene cluster describes its hierarchical inner structure and 
the relations between instances of the gene cluster suc-
cinctly, assists in predicting the functional association 
between the genes in the gene cluster, yields insights into 
the evolutionary history of the gene cluster, and provides 

a natural and meaningful way of visualizing complex 
gene clusters.

The biological assumptions underlying the representa-
tion of gene clusters as PQ-trees is that operons evolve 
mainly via progressive merging of sub-operons, where 
the most basic units in this recursive operon assembly are 
colinearly conserved sub-operons [9]. In the case where 
an operon is assembled from sub-operons that are colin-
early dependent, the conserved gene order could corre-
spond, e.g., to the order in which the transcripts of these 
genes interact in the metabolic pathway in which they are 
functionally associated [10]. Thus, rearrangement events 
that shuffle the order of the genes (or of smaller sub-
operons) within this sub-operon could affect the function 
of its product. On the other hand, inversion events in 
which the genes participating in this sub-operon remain 
colinearly ordered with respect to the transcription order, 
have less of an affect on the interactions between the sub-
operon’s gene products.

The case of colinearly conserved sub-operons is rep-
resented in the PQ-tree by a Q-node (marked with a 
rectangle in the exemplifying figures), and by a Rever-
sal operation in the corresponding pairwise gene order 
rearrangement scenario. In the case where an operon is 
assembled from sub-operons that are not colinearly co-
dependent, convergent evolution could yield various 
orders of the assembled components [9]. This case is rep-
resented in the PQ-tree by a P-node (marked with a circle 
in the exemplifying figures), and by a Block Interchange 
operation in the corresponding pairwise gene order rear-
rangement scenario.

Background on structure informed genome rearrangement 
(SIGR) scenarios
A generic formulation of genome rearrangement prob-
lems is, given two genomes and some allowed edit oper-
ations, to transform one genome into the other using a 
minimum number of edit operations [11–14]. A famous 
algorithmic result related to genome rearrangements 
concerns the problem of sorting signed permutations 
by Reversals. This problem aims at computing a shortest 
sequence of Reversals that transforms one signed permu-
tation into another, and can be solved in polynomial time 
[15–17]. It was later generalized to handle, still in poly-
nomial time, multichromosomal genomes with linear 
chromosomes, using rearrangements such as Transloca-
tions, Chromosome Fusions and Fissions [18, 19]. Then, 
a general operation called Double Cut-and-Join (DCJ), 
was introduced in [20] for handling problem instances 
where the common intervals are organized in a nonlin-
ear structure. A DCJ can be, among others, a Reversal, a 
Translocation, a Fusion or a Fission, but two consecutive 
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DCJ operations can also simulate a Block-Interchange or 
a Transposition.

Previous works proposed related forms of SIGR by con-
sidering rearrangement scenarios on two permutations 
that preserve their common intervals (groups of co-local-
ized genes). Such scenarios, which may not be shortest 
among all scenarios, are called perfect [21]. Computing 
a Reversal scenario of minimum length that preserves 
a given subset of the common intervals of two signed 
permutations is NP-hard [21] and several papers have 
explored this problem, describing families of instances 
that can be solved in polynomial time [22–25], fixed 
parameter tractable algorithms [23, 26], and an exponen-
tial time algorithm (which works also in the more general 
weighted case) [27]. We note that all the perfect scenarios 
mentioned above considered only Reversal operations, 
while for our settings Block-Interchange operations 
should also be considered. A heuristic approach that 
implements, among others perfect reversals and block 
interchange is described in [28].

In [29] the notion of perfect scenario was extended 
to the Perfect DCJ model, thus capturing additional 
operations in perfect scenarios, including Cut, Join and 
Block-Interchange. When considering the perfect rear-
rangement scenarios that best fit our problem, this is the 
model that is most relevant to our settings, as the other 
(non-heuristic) previous works do not include the Block-
Interchange operation. The operations considered by 
the Perfect DCJ model are very general, which renders 
the problem computationally intractable in its general 
setting. Indeed, Berard et al. [29] thus only obtain posi-
tive algorithmic results for special cases that, in particu-
lar, do not encompass the structure of a PQ-tree, and 
with a parameter that can often be of the magnitude of 
the entire input size. For us, the aforementioned special 
cases are too restricted, and cannot model the problem 
we have at hand. On the other hand, fortunately, for us, 
considering Cut and Join operations is an unjustified 
overhead. Specifically, we seek to model the considered 
evolutionary scenarios by a formulation that is more 
specific to our biological problem, in order to increase 
the divergence measure accuracy as well as tighten the 
parameters driving the complexity of the algorithms for 
the problem. Since, in our problem, we are dealing with 
prokaryotic gene clusters and the data in our experiment 
is typically confined to one chromosome per genome, 
we need not consider Cut and Join operations. In addi-
tion, the intervals in prokaryotic gene clusters follow a 
strongly conserved hierarchy, naturally modeled by the 
PQ-tree learned from the members of the gene cluster. In 
terms of divergence measure accuracy, we would like to 
enforce the PQ-tree structure as a constraint to the con-
sidered rearrangements. Furthermore, while the Perfect 

DCJ model is unweighted (and simply counts the number 
of DCJ operations applied), we use the PQ-tree as a guide 
affecting the weights of the applied rearrangement opera-
tions. In terms of tightening the parameters driving the 
complexity of the computation, the PQ-tree constraint 
enables us to use dynamic programming algorithms and 
to reduce the parameter from n to the out degree of the 
tree. In particular, this means that the more hierarchical 
the input is, the smaller our parameter is likely to be, and 
the faster our algorithm is—in other words, the running 
time of our algorithm naturally scales with the amount of 
structure given by the PQ-tree.

In general, our algorithm is intended for widely con-
served prokaryotic gene clusters (with cluster length 
bounded by tens of genes) that display a hierarchical 
structure. In such cases, the maximal degree of a P-node 
(which is the exponential factor in the time complexity of 
our proposed algorithm) is typically small, in particular 
with respect to the maximal degree of a Q-node (which 
affects the time complexity of the algorithm by a poly-
nomial factor.) This is due to the fact that gene clusters 
in bacteria are very highly colinearly conserved [30, 31], 
even when the benchmark dataset is large and spans a 
wide taxonomical range of prokaryotes [32]. Further-
more, the very same data set used in this study (consisting 
of 59 prokaryotic genomes) was previously analyzed by 
Svetlitsky et al. [32] in order to study the degree of con-
served collinearity among widely spread gene clusters in 
prokaryotic genomes. The study found a negative correla-
tion between the proportion of shuffled gene clusters and 
their length, i.e. the longer the gene cluster is, the more 
it is colinearly conserved. All this inspired us to develop 
an algorithm that, on one hand captures the structure 
of gene clusters in an informed way, while on the other 
hand employs the P-node out-degree as a bound on its 
exponential factor. To this end we propose an FPT algo-
rithm for the TTSD problem, where the structure of the 
gene cluster is represented by a PQ-tree, and the param-
eter binding the exponential factor of the algorithm is the 
maximal out-degree of a P-node in the tree.

Our contribution
 We propose a new, two-step approach to SIGR: In the 
first step, given the gene orders of the gene cluster under 
study, the internal topology properties of a gene clus-
ter are learned from its corresponding gene orders and 
a PQ-tree is constructed accordingly. Then, in the sec-
ond step, given a reference gene order and a target gene 
order, a SIGR scenario is computed from the reference to 
the target, such that colinear dependencies among genes 
and between sub-operons, as learned by the PQ-tree, are 
taken into account by the penalties assigned to the rear-
rangement operations.
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To this end, we define two new theoretical problems and 
propose three algorithms to solve them. In the first prob-
lem, denoted Constrained TreeToString Divergence 
( CTTSD ), we define the basic SIGR divergence measure. 
Here, we assume that the gene order members of the 
gene cluster from which the PQ-tree is constructed are 
permutations. The rearrangement operations considered 
by this problem include (weighted) Reversals and Block-
Interchange operations. In this problem, the PQ-tree rep-
resenting the gene cluster (Fig. 3A) is ordered such that 
the series of gene IDs spelled by its leaves is equivalent 
to the reference gene order (Fig.  3B). Then, a weighted 
SIGR measure is computed from the ordered PQ-tree to 
the target gene order (Fig. 3C).

The second problem, denoted TreeToString Divergence 
( TTSD ), is a generalization of the first problem, where 
the gene order members are not necessarily permutations 
and the genome rearrangement measure is extended to 
also consider up to dS gene insertion operations and up 
to dT gene deletion operations.

The first fixed parameter tractable (FPT) algorithm (in 
“Constrained TreeToString Divergence: algorithm” sec-
tion) solves CTTSD in O(nγ 2 · (mp · 1.381

γ +mq)) time 
and O(n2) space, where γ is the maximum number of 
children of a node, n is the length of the string and the 
number of leaves in the tree, and mp and mq are the num-
ber of P-nodes and Q-nodes in the tree, respectively. If 
one of the penalties of CTTSD is defined to be 0, then the 
algorithm runs in O(nmγ 2) time and O(n2) space.

The second FPT algorithm solves TTSD in 
O(n2γ 2dT

2dS
2m2(mp · 5

γ γ +mq)) time and 
O(dTdSm(mn+ 5γ )) space, where γ is the maximum 
number of children of a node, n is the length of the string, 
m is the number of leaves in the tree, mp and mq are the 
number of P-nodes and Q-nodes in the tree, respectively, 
and allowing dT deletions from the tree and dS deletions 
from the string.

Dynamic programming is common on trees, and on 
sequences, and our algorithms combine the two types. 
While our first algorithm is simple and intuitive (based 
on one dynamic programming and two greedy proce-
dures), for our second algorithm (based on three dynamic 
programming procedures), more technical ingredients 
are required. For example, one challenge is the need to 
compute a vertex cover in a graph that is not fully known 
by any single entry of our dynamic programming table. 
Specifically, when we consider a single entry, some of the 
relevant vertices are not yet processed, and for those that 
are processed, we cannot store enough information (for 
the sake of efficiency) so as to deduce which edges exist 
between them.

The third FPT algorithm is intended to reduce 
the space complexity of the second algorithm.  

It solves a variant of the problem (where one 
of the penalties of TTSD is defined to be 0) in 
O(nγ 2dT

2dS
2m2(mp · 4

γ γ 2n(dT + dS +m+ n)+mq)) 
time and O(γ 2nm2dTdS(dT + dS +m+ n)) space. This 
algorithm employs the principle of inclusion–exclusion 
for the sake of space reduction, which, to the best of our 
knowledge, is not commonly used in the study of prob-
lems in computational biology.

The proposed general algorithm is implemented as a 
software tool, denoted MEM-Rearrange, and applied to 
the comparative and evolutionary analysis of 59 chro-
mosomal gene clusters extracted from a dataset of 1487 
prokaryotic genomes (in “Results” section). Our prelimi-
nary results, based on the analysis of the 59 gene clusters, 
indicate that our proposed measure correlates well with 
an index that is computed by comparing the class com-
position of the genomic instances of the two compared 
gene orders. The correlations yielded by our measure are 
shown to significantly increase with the increase in con-
served structure of the corresponding gene clusters (as 
modelled by PQ-trees).

Roadmap
 The rest of the paper is organized as follows. In “A moti-
vating example” section we present a motivating biologi-
cal example. Previous works are reviewed in “Previous 
related works” section. In “Preliminaries” section, we for-
mally define the terminology used throughout the paper, 
and, in particular, the two problems studied in this paper. 
In “Constrained TreeToString Divergence: algorithm” 
section, we present our first algorithm, which solves the 
CTTSD problem. In “TreeToString Divergence: algo-
rithm” section, we present our second algorithm, which 
solves the TTSD problem. In “TTSD: polynomial space 
complexity” section, we present our third algorithm, 
which solves the CTTSD problem and improves the 
space complexity of the second algorithm. In “Methods 
and datasets” section, we specify the details of our data 
set construction and experiment. Finally, in “Results” 
section, we compare the performance of our proposed 
rearrangement measure versus that of signed break-
point distance on a benchmark of 59 chromosomal gene 
clusters. Concluding remarks are given in “Conclusions” 
section.

A motivating example
In this section we give a biological example to motivate 
the new problems defined in this paper. To this end, we 
chose to interpret the first result shown in Table 2 (found 
in “Appendix”), which corresponds to a gene cluster con-
sisting of three gene orders of a known ABC transporter 
operon, encoding genes participating in a carbohydrate 
uptake system [33]. This example is illustrated in Fig. 1. 
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In each of the gene orders shown in the figure, the prod-
uct of gene number one is responsible for regulating the 
transcription of the other genes. The genes numbered 
two, three and four code for proteins that are part of the 
transporter machine. Gene number five codes for a pro-
tein that is responsible for some metabolism of the trans-
ported substrate, such as breaking down a complex sugar 
into smaller ones [34]. The genes numbered two, three, 
four and five are located close to each other in all gene 
orders and are included in a single operon, whose tran-
scription is regulated by the product of gene number one 
[34].

Note that even though random shuffling by evolution 
forms different gene orders, not every order is conserved. 
In prokaryotic genomes, gene clusters often correspond 
to operons, which are adjacently localized genes that are 
co-transcribed and co-translated. Here, selection for spe-
cific gene orders in operons can be due to the assembly 
order of a multifunctional enzymatic complex [35] or 
the performance of consecutive reactions in a metabolic 
pathway [36]. The conserved gene order within operons 
also facilitates the evolution of multiple post-transcrip-
tional and post-translational feedback mechanisms that 
regulate the expression of enzymes catalyzing different 
steps in the pathway according to metabolite availability 
[37]. Thus, the gene orders we see today are functionally 
conserved. In order to take this into consideration in our 
genome-rearrangement approach, we use a PQ-tree to 
represent the gene cluster and to model the possible evo-
lutionary events that yielded the various gene orders (see 
Fig. 3).

Considering the first two gene orders in the cluster, 
the signed break-point distance between them is 2 (see 
Fig.  2). Now, let’s use our knowledge of the evolution 
of the gene cluster, using the PQ-tree (in Fig.  3), and 
reconsider the break-point between genes one and two. 
Looking at the PQ-tree, we can see that the proposed 

break-point actually falls between gene one and the 
P-node y, which represents genes from the cluster that 
are included in the same operon. Notice that the adja-
cency of gene one and P-node y appears both in the first 
gene order and in the second gene order. Therefore, 
according to the PQ-tree, this proposed break-point 
is functionally irrelevant and should not be penalized 
by the corresponding SIGR score! This makes biologi-
cal sense, since gene 1 is a transcription factor that 
typically appears upstream to the operon it regulates, 

Fig. 1 Gene cluster of a known sugar transporter operon. A Three 
gene order instances of the gene cluster. B The color‑coding key 
for the functional categories of the genes

Fig. 2 Computing the signed break‑point distance between the first 
two gene orders from the example shown in Fig. 1. The two signed 
break‑points are denoted by the red lines

Fig. 3 Re‑considering the signed break‑points (marked in blue) 
between the two gene orders exemplified in Fig. 2, this time 
taking into account the PQ‑tree representing the corresponding 
gene cluster. A The PQ‑tree. Note that in this figures, as well 
as the following figures, P‑nodes are marked with circles and Q‑nodes 
are marked with rectangles. B The first gene order. C The second 
gene order
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regardless of how the genes are arranged within the 
operon [34].

Next, consider a comparative analysis between these 
two gene orders based on a perfect reversals distance 
scenario. A perfect reversals scenario would acknowl-
edge the observation that the transcription factor gene 
is not colinearly dependent on a specific gene from the 
transporter operon, however it would entail a long and 
expensive series of reversal operations: first, reversal of 
the sequence of genes 2–5, and then the individual rever-
sal of each one of these genes. Although this may have 
been the actual evolutionary scenario that led to the sec-
ond gene order, this scenario is quite uninformative in 
terms of both assessing the functional distance as well as 
interpreting the functional discrepency between the two 
gene orders. The point is, as would be observed by a PQ-
tree guided block-interchange operation, that in the first 
order the sugar transporter is transcribed prior to the 
transcription of the sugar-metabolising gene, while in the 
second gene order the transcription order of these units 
is reversed.

Previous related works
Permutations on strings representing syntenic gene 
blocks on genomes have been studied earlier by [38–
42] and the idea of a maximal permutation pattern was 
introduced by Eres et  al. [41]. In [8] an algorithm was 
proposed for representation and detection of gene clus-
ters in multiple genomes using PQ-trees. The proposed 
algorithm identifies a minimal consensus PQ-tree, and it 
is proven that this tree is equivalent to a maximal permu-
tation pattern and that each subgraph of the PQ-tree cor-
responds to a non-maximal permutation pattern. In that 
paper, the authors also present a general scheme to han-
dle gene multiplicity and missing genes in permutations 
and give a linear time algorithm to construct the mini-
mal consensus PQ-tree. These previous works fall in the 
domain of permutation discovery and PQ-tree construc-
tion. In contrast, the problems addressed in our paper 
take as input a previously constructed PQ-tree.

Three additional related works fall in the domain of 
“PQ-tree language distance computations”. The first 
problem is defined and solved in [7]. It asks, given a PQ-
tree T and a string s, to find, among all permutations that 
T can generate, a permutation p such that the edit dis-
tances between p and s is minimal. Thus, the work of [7] 
used the input PQ-tree only as a constraint to guide the 
alignment process, and did not project the guiding infor-
mation to the comparative score, as we do. Furthermore, 
the work of [7] did not consider genome rearangement 
operations at all, only string edit operations.

For break-point distance, two problems were proposed 
and solved in [43]. The first problem asks, given two 

PQ-trees over permutation gene orders, and a parameter 
k, whether there are two strings S1 and S2 generated from 
each of the trees, respectively, such that the break-point 
distance between S1 and S2 is up to k. The second prob-
lem asks, given a PQ-tree T, a set of p permutations and 
a parameter k, whether T can generate a permutation s 
such that the sum of the break-point distances between 
s and each of the given p permutations is bounded by k. 
However, in both of the problems addressed in [43], the 
order of the leaves in the input tree, as well as the actions 
taken on it are not taken into account. Additionally, the 
break-point distance is computed between two strings, 
and the tree is not a part of that distance computation. 
In this paper we employ a scoring strategy that takes the 
order of the leaves in the tree and the actions on the tree 
into account. In particular, we define the divergence from 
an ordered PQ-tree to a string by the rearrangement 
actions applied on the tree.

Preliminaries
Let S = s1...sn be a string. Denote by S[i] the character in 
position i in S, i.e. S[i] = si . In addition, denote by S[i : j] 
( i ≤ j ) the subsequence of S from position i to position j, 
i.e. S[i : j] = si...sj.

PQ‑tree—representing the pattern
A PQ-tree is a rooted tree with three types of nodes: 
P-nodes, Q-nodes and leaves. The children of a P-node 
can appear in any order, while the children of a Q-node 
must appear in either left-to-right order or right-to-left 
order. Booth and Lueker [5] were interested in permuta-
tions of a set, thus every member of U appears exactly 
once as a label of a leaf in the PQ-tree. We, on the other 
hand, allow each member of the set to appear as a label 
any non-negative number of times. The possible reorder-
ing of the children nodes in a PQ-tree can potentially cre-
ate many equivalent PQ-trees. Booth and Lueker defined 
two PQ-trees T and T ′ as equivalent (denoted T ≡ T ′ ) if 
and only if one tree can be obtained by legally reorder-
ing the nodes of the other; namely, randomly permuting 
the children of a P-node, and reversing the children of a 
Q-node. A generalization of their definition, to allow for 
insertions and deletions, is defined as follows.

Definition 1 (Quasi-Equivalence) Two PQ-trees T , T ′ 
are quasi-equivalent with parameter d, denoted by 
T ∼=d T ′ , if and only if T ′ can be obtained by (a) randomly 
permuting the children of the P-nodes of T, (b) revers-
ing the children of the Q-nodes of T, (c) deleting up to d 
leaves of T.

Denote by Tx the subtree of a PQ-tree T rooted in the 
node x. Denote by Leaves(x) the set of leaves of the 
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PQ-tree Tx , span(x) = |Leaves(x)| and for a set of nodes 
U, span(U) =

∑

v∈U span(v) . Denote by children(x) the 
set of children of the node x, and let rootT the root node 
of the tree T.

Given a PQ-tree T, we denote the label of a leaf x of T 
by label(x) . The frontier of the PQ-tree T, denoted F(T), 
is the sequence of labels on the leaves of T read from 
left to right. In addition to Definition 1, for each node 
in a PQ-tree (internal node or leaf ), we define a unique 
“color” which will help us distinguish and map between 
nodes of two quasi-equivalent PQ-trees. Colors are used 
only for the analysis—they are not used explicitly in the 
algorithm. In the input we receive one PQ-tree (T) and 
“assign” arbitrary (but unique) colors to its nodes. In the 
algorithms, we perform actions on T, which reorder its 
nodes. We refer by T ′ to the original tree (T) with reor-
dered nodes. Thus, we use colors just to keep track of the 
nodes after the shuffling, see Fig. 4. From now on, when 
we say that two PQ-trees T , T ′ are quasi-equivalent, 
we assume that the equivalence is with parameter d. In 
addition, we assume that the PQ-trees T , T ′ are colored 
in the same unique colors (each color is assigned only to 
one node in T and at most one node in T ′ , and the nodes 
in T ′ have the same colors as their corresponding nodes 
in T). In addition, we say that the frontier of T ′ , F(T ′) , is 
derived from T, and we call this a derivation. We can also 
say that T ′ is ordered as F(T ′) . When a string S is derived 
from Tx , we also say that S is derived from x.

Definition 2 (Equivalent Nodes) Given two quasi-
equivalent PQ-trees T , T ′ with parameter d and two 
nodes x ∈ T  and x′ ∈ T ′ , x and y are equivalent nodes if 
they share the same color.

In Fig.  4, the colors of the trees are shown as unique 
numbers near each node (notice that each node “keeps” 
its color in T ′ compared to T). We say that the string 
“abab ” is derived from T, because “abab ” is the frontier 
of T ′.

Break‑point distances
The definitions of our problems make use of the notion 
of break-point distance [43] to determine the distance 
between two strings, as defined below.

Definition 3 (Gene Mapping) Let G = g1, . . . , gn 
and H = h1, . . . , hm be two strings. A gene map-
ping of G and H, denoted by M , is a set of pairs 
(i, j) ∈ {1, . . . , n} × {1, . . . ,m} such that gi = hj

1 and every 
position in G and H is in exactly one pair in M . When no 
confusion arises, we suppose that the gene mapping con-
tains the pairs of genes (gi, hj) themselves.

Definition 4 (Break-Point) Given two strings 
G = g1, . . . , gn , H = h1, . . . , hm and a gene mapping M , 
a break-point between G and H is a pair of consecutive 
genes gigi+1 in G (resp. hihi+1 in H) such that the follow-
ing is true: gi and gi+1 (resp. hi and hi+1 ) belong to M , say, 
(gi, hj), (gi+1, hk) ∈ M (resp. (gj , hi), (gk , hi+1) ∈ M ), but 
neither k = j + 1 nor k = j − 1.

Denote by NUMBP(G,H ,M) the number of break-
points of G between G and H with respect to M.

Definition 5 (Break-Point Distance) Let S1 and S2 
be two strings. The break-point distance between S1 
and S2 , denoted by dBP(S1, S2) , is the minimum of 
NUMBP(G,H ,M) among all gene mappings M of G and 
H.

For example, suppose we are given the strings 
S1 = abcd and S2 = acbd . Then, there exists exactly one 
gene mapping of S1 and S2 . The break-points of S1 are the 
pairs (a,  b),  (c,  d). Therefore, the break-point distance 
between them is 2. We also can count the number of 
break-points of S2 , which are (a, c), (b, d).

We will use a variant of break-point distance that 
takes the signs of the characters in a string into account. 
Towards that, we define the notion of a signed string.

Definition 6 (Signed String) A signed string is a string 
where each character is assigned a sign (‘+’ or ‘−’).

Fig. 4 a PQ‑tree T. b PQ‑tree T ′ which is quasi‑equivalent to T. 
The colors are represented by the number assigned to each 
node, the labels of the leaves are the letters. Each internal node 
is T is marked by a letter (x for example), and its equivalent node 
is marked by the same letter with a dash ( x′)

1 That is, the character in position i in G is the same as the character in 
position j in H.
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When we say that a string S is a signed string, we sup-
pose to have a sign function sign that returns the sign of 
the character in each position in S. For the sake of illus-
tration, in our examples, we will indicate the sign of each 
character by ‘+’ or ‘−’ of its left side.

Definition 7 (Signed Break-Point) Given two signed 
strings G = g1, . . . , gn , H = h1, . . . , hm and a gene map-
ping M , a signed break-point between G and H is a 
pair of consecutive genes gigi+1 in G (resp. hjhj+1 in 
H) such that the following is true: gi and gi+1 (resp. 
hi and hi+1 ) belong to M , say, (gi, hj), (gi+1, hk) ∈ M 
(resp. (hi, gj), (hi+1, gk) ∈ M ) but neither k = j + 1 , 
signG(i) = signH (j) and signG(i + 1) = signH (k) 
nor k = j − 1 , signG(i) = −signH (j) and 
signG(i + 1) = −signH (k).

Denote by NUMSBP(G,H ,M) the number of signed 
break-points of G between G and H with respect to M.

Definition 8 (Signed Break-Point Distance) Let S1 and 
S2 be two signed strings. The signed break-point distance 
between S1 and S2 , denoted by dSBP(S1, S2) , is the mini-
mum of NUMSBP(G,H ,M) among all gene mappings M.

For example, consider the signed strings 
S1 = +a+ b+ c + d and S2 = +a− b− d − c . Then, 
there exists exactly one gene mapping of S1 and S2 . The 
signed break-points of S1 are the pairs (a, b), (b, c). There-
fore, dSBP(S1, S2) = 2 . We can also count the number of 
signed break-points of S2 , which are (a, b), (b, d).

To accommodate deletions, we will use Definition 8 
with respect to strings obtained from the given ones after 
deleting characters.

Problem preliminaries
Given an internal node x in a PQ-tree T, we define its 
sign, sign(x) , as the majority sign of the leaves in Tx , 
Leaves(x) . If the number of negative signed leaves is 
equal to the number of positive signed leaves, then we 
abuse notation and consider sign(x) as + as well as −.

Given a node x in a PQ-tree, let S(x) denote the 
signed string of colors of the nodes in children(x) as 
they are ordered in the tree (from left to right). For 
example, consider the PQ-tree shown in Fig.  5a where 
the character assigned to each internal node is its 
color, then S(z) = +b+ c , S(y) = +a+ z + d and 
S(x) = +y+ e + f .

In order to measure the divergence from an ordered 
PQ-tree to a string, we take into account the actions per-
formed on the PQ-tree to order it as needed. Towards 
defining the divergence from an (ordered) PQ-tree T to 
a string S, we first define a penalty for taking an action 

on an internal node of a PQ-tree, denoted by �violation . 
The penalty �violation is a combination of several types 
of penalties. The first type concerns cases where large 
units “jump” while reordering the children of a P-node 
x to have the same order as the children of its equiva-
lent node x′ . Specifically, we want to penalize according 
to the sizes of these units: We will not penalize a single 
leaf that jumps, but only units whose size is larger than 1, 
and the penalty for these units increases with their sizes. 
Thus, we consider the following penalty. If the size of a 
unit that jumps is t, then we penalize this operation by 
(t − 1)/2 . In particular, a leaf does not get penalized. To 
do so, we build a graph G(x, x′) (defined formally later), 
whose vertex set is the children of the P-node. Each ver-
tex has a weight relative (as mentioned before and will 
defined ahead) to its size (defined as the span of the child 
it represents). Roughly speaking, the graph G has an edge 
for each pair of children that “changed their order” (with 
respect to the their signs). To be precise, we need the fol-
lowing definition.

Definition 9 (Change Of Signed Order) Let x, x′ be two 
equivalent P-nodes of two quasi-equivalent PQ-trees T 
and T ′ with parameter d, S(x) = c1, . . . , cn be the signed 
string of colors of the nodes in children(x) that were not 
deleted, as they ordered in T, S(x′) = c′1, . . . , c

′
n′ be the 

signed string of colors of the nodes in children(x′) , as 
they ordered in T ′ , and M be the2 gene mapping of S(x) 
and S(x′) . Given two nodes y (with color ci and y′ is the 
equivalent node of y in T ′ ) and z (with color cj and z′ is 
the equivalent node of z in T ′ ) in children(x) , say, j > i , 
and such that (ci, c′k), (cj , c

′
t) ∈ M for some c′k and c′t , y 

Fig. 5 a A PQ‑tree T. b A PQ‑tree T ′ that is equivalent to T 

and is ordered as S 

2 S(x) and S(x′) are strings of colors (which are unique), thus there is only 
one gene mapping of S(x) and S(x′).
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and z change their signed order if the following are both 
false.

• t > k , sign(y) = sign(y′) and sign(z) = sign(z′).
• t < k , sign(y) = −sign(y′) and sign(z) = −sign(z′).

We denote by G[x, x′] the graph (described before Defi-
nition 9) of two equivalent P-nodes x and x′ of two quasi-
equivalent PQ-trees. Formally, it is defined as follows.

Definition 10 (G[x, x′] ) Given two equivalent P-nodes 
x, x′ of two quasi-equivalent PQ-trees with parameter 
d, G[x, x′] = (V ,E,w) is the undirected graph with ver-
tex set V, edge set E and vertex weight function w which 
defined as follows.

• V = children(x).
• E = {(v,u)|u and v changed their signed order}.
• For each x ∈ V , w(x) = (span(x)− 1)/2.

Notice that the graph is dependent on the colors, to 
determine the edge set.

After building G[x, x′] , we find the minimum weight of 
a vertex cover of G[x, x′] in order to sum all penalties for 
the units that jumped while reordering the children of a 
P-node. Observe that by computing the minimum weight 
of a vertex cover, we identify a “best” (in terms of penalty) 
set of nodes that jump.

Definition 11 (Minimum Weighted Vertex Cover) Let 
G = (V ,E,w) be a graph with vertex set V, edge set E and 
vertex weight function w. The minimum weighted vertex 
cover of G is the minimum weight3 among all vertex cov-
ers of G.4

Definition 12 (�P
jump(x, x

′) ) Given two equivalent 
P-nodes x and x′ of two quasi-equivalent PQ-trees with 
parameter d, and the weight t of a minimum weighted 
vertex cover of G[x, x′] , the jump violation between x and 
x′ , denoted by �P

jump(x, x
′) , is t.

Now, we define a violation between two equivalent 
internal nodes. Towards that, given two equivalent 
nodes x, x′ of two quasi-equivalent PQ-trees T and T ′ 
(where x is not deleted), let isFlipped(x, x′) be a proce-
dure that returns 1 if x and x′ “flipped”, and 0 otherwise. 

That is, if x and x′ are leaves, isFlipped(x, x′) = 1 if 
sign(x) = −sign(x′) ; otherwise, isFlipped(x, x′) = 0 . 
If x and x′ are internal nodes, isFlipped(x, x′) = 1 
if for each child y ∈ children(x) that is not deleted, 
isFlipped(y, y′) = 1 where y′ is the child of x′ that is 
equivalent node of y, and the order of children(x′) in T ′ 
is the reversal of the order of children(x) in T; otherwise, 
isFlipped(x, x′) = 0.

Given an internal node x, denote by S̃d(x) the set of 
signed strings where S̃ ∈ S̃d(x) if S̃ is obtained from S(x) 
by deleting up to d leaves from Tx.

Definition 13 (�d
violation(x, x

′) ) Given two equivalent 
internal nodes x and x′ of two quasi-equivalent PQ-trees 
with parameter d, and input numbers δQord and δQflip , the 

violation between x and x′ , denoted by �d
violation(x, x

′) , is 
defined as follows.

• If x is a P-node, �P
violation

(x, x′) = min
S̃∈S̃d (x)

dSBP(S̃, S(x
′))

+�P

jump
(x, x′).

• If x is a Q-node, �Q

violation
(x, x′) = δ

Q

ord
· min
S̃∈S̃d(x)

dSBP

(S̃, S(x′))+ isFlipped(x, x′) · δ
Q

flip.

When we use the notation �d
violation , if d is clear from 

the context, we will use the notation �violation instead. 
In Definition  13, one of the penalties for reordering 
the children of a Q-node is the flip penalty ( δQflip ), and 
it is performed if the Q-node has flipped (as indicated 
by isFlipped ). When considering this event, notice 
the case where a Q-node x flipped and all of the non-
deleted children in children(x) flipped as well (including 
the P-nodes). In this case, we penalise each of the non-
deleted children in children(x) and x as well for flipping, 
but, in fact, the event is flipping only x. Thus, we unnec-
essarily penalise the non-deleted children in children(x) . 
Therefore, we employ a flip correction procedure as 
defined next.

Definition 14 (FlipCorrection(x, x′) ) Given two equiv-
alent internal nodes x and x′ of two quasi-equivalent 
PQ-trees with parameter d, the flip correction between 
them, denoted by FlipCorrection(x, x′) , is 0 if not all of 
children(x) flipped or deleted, and otherwise it is the sum 
of the flip penalties of all of the Q-nodes and leaves in 
children(x) that were not deleted.

Finally, after defining the violation between equivalent 
nodes, we simply sum up the violations (and corrections) 3 Weight of a set is the sum of weights of its vertices.

4 A vertex cover is a set S ⊆ V  such that every edge of G has at least one 
endpoint in S.
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of all internal nodes to define the divergence from an 
ordered and labeled PQ-tree to a signed string as follows.

Definition 15 (DivergedT ,dS (T , S) ) Let T be an (ordered 
and leaf-labeled) PQ-tree, and S be a signed string. Let 
OT be the set of all quasi-equivalent T ′ PQ-trees of T 
with parameter dT (i.e. T ∼=dT T ′ ) such that T ′ is ordered 
as a subsequence of S obtained by deleting up to dS char-
acters from S. For any T ′ ∈ OT , let MT ′ be the unique5 
mapping that maps each node in T ′ to its equivalent node 
in T. Then,

In case dT = 0 and dS = 0 , we will use the notation 
Diverge(T , S) instead of DivergedT ,dS (T , S) for simplicity.

For example, consider the ordered PQ-tree T in 
Fig.  5, which is ordered as +a+ b+ c + d + e + f  , 
and the signed string S = +f − c − b− a− d + e . To 
order T as S, we flip the Q-node z, and for this we pay 
�Q

violation(z, z
′) = δ

Q

flip . Now, consider the P-node y. We 
swap between a and z, so dSBP(S(y), S(y′)) = 1 , and 
hence �P

violation
(y, y′) = 1 (notice that there is no jump of 

a large unit, because the leaf a can jump). Finally, for the 
P-node x, �P

jump
(x, x′) = 0 (we can order the children by 

moving the leaf f to the left-most position). In addition, 
dSBP(S(x), S(x

′)) = 1 . Thus, for x we pay �P
violation

(x, x′) = 1 . In 
total Diverge(T , S) = �Q

violation(z, z
′)+�P

violation(y, y
′)+

�P
violation(x, x

′) = δ
Q

flip + 2.

Problem definitions
Constrained TreeToString Divergence

The input to CTTSD consists of two signed permuta-
tions of length n, S1 = σ1 · · · σn ∈ �n , |�| = n , such that 
σi  = σj for all 1 ≤ i < j ≤ n , and S2 = �1 · · · �n ∈ �n such 
that �i  = �j for all 1 ≤ i < j ≤ n ; a PQ-tree T ordered as 
S1 with mp P-nodes and mq Q-nodes; and two numbers 
δ
Q
ord and δQflip . We aim to perform actions on T to reorder 

it as S2 . That is, we reorder T as T ′ so that F(T ′) = S2 . If 
this is not possible, we answer “NO”. Else, we return the 
divergence from T to S2 . Concretely, CTTSD is defined 
as follows.

Definition 16 (Constrained TreeToString Divergence ) 
Given two signed permutations S1 and S2 of the same 
length and the same characters, two numbers δQord and 

DivergedT ,dS (T , S) = min
T ′∈OT

∑

(x,x′)∈MT ′

(�violation(x, x
′)− FlipCorrection(x, x′)).

δ
Q
flip , and a PQ-tree T ordered as S1 , return Diverge(T , S2) 

or answer “NO” if S2 cannot be derived from T.

In “Constrained TreeToString Divergence: algorithm” 
section, we propose an algorithm to solve this problem.

TreeToString Divergence Generalizing CTTSD , in 
TTSD we do not assume that the input strings are per-
mutations, and we allow deletions. The input to TTSD 
consists of two signed strings, S1 = σ1 · · · σm ∈ �m

T  and 
S2 = �1 · · · �n ∈ �n

S ; a PQ-tree T ordered as S1 with mp 

5 Note that uniqueness follows from our use of colors.

P-nodes and mq Q-nodes; dT ∈ N ∪ {0} , which specifies 
the number of allowed deletions from T; dS ∈ N ∪ {0} , 
which specifies the number of allowed deletions from 
S2 ; and two numbers δQord , δ

Q
flip indicating the penalty of 

the events of changing order and flipping, respectively, a 
Q-node. In TTSD we perform actions on T to reorder it as 
a subsequence S′2 of S2 , allowing dT deletions from T, and 
so that S′2 is obtained from S2 by using up to dS deletions 
from S2 . That is, after reordering T as T ′ (and performing 
up to dT deletions), F(T ′) = S′2 . If it is not possible, we 
answer “NO”. Else, we return the divergence from T to S′2 
corresponding to dT and dS . Concretely, TTSD is defined 
as follows.

Definition 17 (TreeToString Divergence ) Given two 
signed strings S1 and S2 , a PQ-tree T ordered as S1 , and 
parameters dT , dS , δQord , δ

Q
flip , return DivergedT ,dS (T , S2) or 

“NO” if S2 cannot be derived from T with respect to dT 
and dS.

Parameterized complexity
Let � be an NP-hard problem. In the framework of 
Parameterized Complexity, each instance of � is associ-
ated with a parameter k. Here, the goal is to confine the 
combinatorial explosion in the running time of an algo-
rithm for � to depend only on k. Formally, we say that � 
is fixed-parameter tractable (FPT) if any instance (I, k) of 
� is solvable in time f (k) · |I |O(1) , where f is an arbitrary 
function of k.

Algorithms preliminaries
Given a node x and the numbers of deletions kT and kS 
of a derivation, the length of the derived string S′ can be 
calculated using the length function given in Definition 
18 below.
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Definition 18 (The Length Function) 
L(x, kT , kS)

.
= span(x)− kT + kS.

Using the length function and the start point s of the 
derivation, the end-point of the derivation can be calcu-
lated using the end-point function given in Definition 19 
below.

Definition 19 (The End-Point Function) 
E(x, s, kT , kS)

.
= s − 1+ L(x, kT , kS).

Let A be a DP table used in an algorithm. Addressing 
A with some of its indices given as dots refers to the sub-
table of A that is comprised of all entries of A indexed by 
the indices that are specified (i.e., all indices not marked 
by dots). For example, A[x, ·, ·, ·, ·] , refers to the subtable 
of A that is comprised of all entries of A whose first entry 
is x.

In the algorithms, for a given node x in a PQ-tree T, 
number of positive signed leaves in Tx , pos, a possi-
ble sign s ∈ {+,−} , and the number of deletions from 
Tx , kT (if not implied by context, then kT = 0 ), we say 
that pos is consistent with s (or s is consistent with pos) 
if s = + and pos ≥ (span(x)− kT )/2 or if s = − and 
pos ≤ (span(x)− kT )/2 . Moreover, in some situations, 
for a given set of nodes C, we will sometimes use a set 
N ⊆ C to describe the nodes in C that have a negative 
sign: for a given node x ∈ C , if x ∈ N  , then sign(x) = − ; 
otherwise, sign(x) = + . In these situations, we say that 
pos is consistent with N (or N is consistent with pos) 
if x ∈ N  and pos ≤ (span(x)− kT )/2 or if x /∈ N  and 
pos ≥ (span(x)− kT )/2.

Constrained TreeToString Divergence : algorithm
In this section, we present a greedy algorithm to solve 
CTTSD . Our algorithm consists of three components: 
the main algorithm, and two procedures called P-Map-
ping and Q-Mapping. We first present and explain the 
main algorithm and the procedures. Afterwards, we 
demonstrate the execution of the algorithm and analyze 
its running time.

The main algorithm
Recall that the input to CTTSD consists of two signed 
permutations S1 and S2 of length n, two numbers δQord and 
δ
Q
flip , and a PQ-tree T ordered as S1 . If S2 can be derived 

from T, then the output of the algorithm is the diver-
gence from T to S2 , Diverge(T , S2) . Otherwise, the out-
put is “NO” (specifically, the algorithm returns ∞).

The main algorithm (whose pseudo-code is given in 
Algorithm 1) constructs a 2-dimensional DP table A of 
size m′ × n where m′ = n+mp +mq is the number of 
nodes in T. For each node x in T and index ℓ , A has an 
entry A[x, ℓ] . In the algorithm, for each node x, we keep 
two indices ℓ and r (denoted by x.ℓ and x.r respectively) 
such that S2[x.ℓ : x.r] is derived from Tx . Then, the pur-
pose of an entry of the DP table, A[x, x.ℓ] , is to hold 
the divergence from the subtree Tx to the subsequence 
S2[x.ℓ : x.r] of S2 . That is,

If any subsequence of S2 starting at position ℓ cannot be 
derived from Tx , then A[x, ℓ] = ∞.

Some entries of the DP table define illegal derivations. 
Such are derivations where the length of the frontier 
of the subtree is larger than the length of the longest 
subsrting starting at the specified index ℓ . These entries 
are called invalid entries and their value is defined as ∞ 
throughout the algorithm. Formally, an entry A[x, ℓ] is 
invalid if span(x) > n− ℓ+ 1.

The algorithm first initializes the entries of A that are 
meant to hold divergences of derivations of every pos-
sible subsequence of S2 (a single character) from the 
leaves of T. Specifically, for a leaf x, if it did not flip, we 
put 0 in the corresponding entry. If x did flip, we put 
δ
Q
flip . After that, we update x.ℓ and x.r. As described in 

the initialization, if label(x) = S2[ℓ] , S2[ℓ] ( S2[ℓ : ℓ] ) is 
derived from label(x) = S2[ℓ] , then we put 0 or δQflip in 
A[x, ℓ] and we put ℓ in x.ℓ and x.r.

After the initialization, all other entries of A are filled 
as follows. Go over the internal nodes of T in postorder. 
For every internal node x, go in descending order over 
every index 1 ≤ ℓ ≤ n that can be a start index for the 
subsequence of S2 derived from Tx (in case of invalid 
entry, we continue to the next iteration). For every x 
and ℓ , use the algorithm for P-mapping or Q-mapping 
according to the type of x. Both algorithms receive the 
following input: the node x, S2 , start and end indices 
ℓ, e of a subsequence of S2 , and the collection of deriva-
tions of the children of x (entries of A that have already 
been computed and hold the divergence of a deriva-
tion). In addition, the Q-Mapping algorithm receives as 
input the penalty parameters δQord and δQflip . After being 
called, both algorithms return the divergence from Tx 
to S2[ℓ : e] , that is, Diverge(Tx, S2[ℓ : e]).

A[x, x.ℓ] = Diverge(Tx, S2[x.ℓ : x.r]).
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Finally, having filled the DP table, A[rootT , 1] holds 
the divergence from T to S2 ( Diverge(T , S2) ), and so we 
return A[rootT , 1].

P‑node mapping: the algorithm
Recall that the input consists of a P-node x, a string S2 , 
two indices ℓ and e, and a set of derivations D . Notice 
that each value in D is the divergence from the subtree 
rooted in a child c of x to S2[c.ℓ : c.e] , where S2[c.ℓ : c.e] 
is a subsequence of S2[ℓ : e] that is derived from Tc . These 
values, A[c, c.ℓ] for each c ∈ children(x) , were calcu-
lated in earlier iterations and saved in D . If S2[ℓ : e] can 
be derived from Tx , then the output of the algorithm is 
the divergence from Tx to S2[ℓ : e] , Diverge(Tx, S2[ℓ : e]) . 
Otherwise, the output is “NO” (specifically, the algorithm 
returns ∞ ). Denote by T ′

x the quasi-equivalent PQ-tree 
of Tx ordered as S2[ℓ : e] . Note that if T ′

x exists, then it is 
unique (because we deal with permutations and forbid 
deletions).

The algorithm (whose pseudo-code is given in Algo-
rithm  2) first checks if the interval [ℓ, e] can be “com-
pleted” by all of the intervals defined by the indices 
of the children of x. Specifically, we check if there 
is any order of the children of x, say, ordered as 
c1, . . . , c|children(x)| ∈ children(x) , such that c1.ℓ = ℓ , 
c|children(x)|.e = e , and for each 1 ≤ j ≤ |children(x)| − 1 , 
cj .e + 1 = cj+1.ℓ . If there is no such order, then the inter-
val [ℓ, e] cannot be completed, and so S2[ℓ, e] cannot be 
derived from Tx . In this case, we return ∞ . Otherwise, 
S2[ℓ : e] can be derived from Tx by reordering the chil-
dren of x according to the unique order that completes 
the interval [ℓ, e] . Second, we sum up all of the values in 
D (and store the sum in the variable childrenDist). Next, 
we calculate the violation between x and its equivalent 
node x′ in T ′

x , �P
violation(x, x

′) , according to Definition 13 
(and store the result in the variable violation). Finally, we 
return the sum of childrenDist and violation, which is 
the divergence from Tx to S2[ℓ : e] , Diverge(x, S2[ℓ : e]) 
(according to Definition 15).



Page 13 of 37Ozeri et al. Algorithms for Molecular Biology           (2023) 18:17  

Q‑node mapping: the algorithm
Recall that the input consists of a Q-node x, a string S2 , 
two indices ℓ and e, a set of derivations D and penalty 
parameters δQord and δQflip . Notice that each value in D is 
the divergence from the subtree rooted in a child c of 
x to S2[c.ℓ : c.e] , where S2[c.ℓ : c.e] is a subsequence of 
S2[ℓ : e] and is derived from Tc . These values, A[c, c.ℓ] 
for each c ∈ children(x) , were calculated in earlier itera-
tions and saved in D . If S2[ℓ : e] can be derived from Tx , 
then the output of the algorithm is the divergence from 
Tx to S2[ℓ : e] , Diverge(Tx, S2[ℓ : e]) . Otherwise, the 
output is “NO” (specifically, the algorithm returns ∞ ). 
Denote by T ′

x the (unique) quasi-equivalent PQ-tree of 
Tx ordered as S2[ℓ : e].

The algorithm (whose pseudo-code is given in Algo-
rithm  3) first checks if the interval [ℓ, e] can be “com-
pleted consecutively” by all of the intervals defined 
by the indices of the children of x. Specifically, we 
check if there is a consecutive order of the children 
of x, say, ordered as c1, . . . , c|children(x)| ∈ children(x) , 

Fig. 6 a PQ‑tree T. b PQ‑tree T ′ , which is quasi‑equivalent to T 
and ordered as S2

Fig. 7 a PQ‑tree T. b PQ‑tree T ′ , which is quasi‑equivalent to T 
and ordered as S2

such that c1.ℓ = ℓ , c|children(x)|.e = e , and for each 
1 ≤ j ≤ |children(x)| − 1 , cj .e + 1 = cj+1.ℓ . As apposed 
to a P-node, here the order of the children completing 
the interval [ℓ, e] must be consecutive with respect to 
their indices (the same order as the children of x in T 
or the reverse order). If there is no such order, then the 
interval [ℓ, e] cannot be completed consecutively, and 
so S2[ℓ : e] cannot be derived from Tx . In this case, we 
return ∞ . Otherwise, S2[ℓ : e] can be derived from Tx 
by keeping the order of the children of x, or flipping it. 
Second, we sum up all of the values in D (and store the 
sum in the variable childrenDist). Next, we calculate 
the violation between x and its equivalent node x′ in T ′

x , 
�Q

violation(x, x
′) , according to Definition 13 (and store the 

result in the variable violation). Afterwards, we calcu-
late the flip correction according to Definition 14 (and 
store the result in the variable childrenFlipCorrection). 
Finally, we return the sum of childrenDist and violation 
minus childrenFlipCorrection, which is the divergence 
from Tx to S2[ℓ : e] , Diverge(x, S2[ℓ : e]) (according to 
Definition 15). 
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Example
Consider the following input: S1 = +a+ b+ c + d + e + f  , 
S2 = +f − c − b− a− d − e , PQ-tree T ordered as 
S1 , δ

Q
ord = 3 and δQflip = 3 . We iterate through the nodes 

of the tree in post-order, thus we initiate the leaves 
before their parents. For each leaf x ∈ Leaves(rootT ) , 
if label(x) = S2[ℓ] , then A(x, ℓ) = 0 ; otherwise, 
A(x, ℓ) = ∞.

Figure  6 describes the PQ-tree T and its quasi-equiv-
alent PQ-tree T ′ ordered as S2 , after the initialization of 
the leaves only. Notice that the order of the initialization 
is in fact different, in postorder; for simplicity, we show 
the tree where only the leaves are initialized. In addition, 
in the figures, the equivalent nodes of T and T ′ are shown 
as the same nodes. But in the explanations, in order to 
distinguish between them, for each node x ∈ T ′ , we 
denote it by x′ . The pair of numbers shown in the figure 
near a node represent its ℓ and r values. In addition, the 
sign + or − near a node represents its sign. For exam-
ple, for a ∈ T  , a.ℓ = a.r = 4 and sign(a) = + . For each 

internal node, the character assigned to it represents its 
color.

First, consider the iteration where A[z, 2] is cal-
culated (the values for all other entries with node z 
is ∞ ). The intervals of the children of z, [3,  3] and 
[2,  2], complete the interval (2,  e) consecutively where 
e = 2+ span(z)− 1 = 3 . Thus, the subsequence S2[2 : 3] 
is derived from Tz , and in order to generate it we need to 
flip the order of children (z) . For this the penalty of flip-
ping, δQflip , is applied, and so �Q

violation(z, z
′) = δ

Q
flip = 3 . 

childrenDist = A[b, 3] +A[c, 2] = 6 because A[b, 3] 
= A[c, 2] = 3 . FlipCorrection(z, z′) = 6 because 
both b and c have been flipped. Therefore, 
A[z, 2] = childrenDist + violation− childrenFlipCorrection = 3 . 
Now, we update z’s indices, z.ℓ = 2 and z.r = 3 . Figure 7 
describes the PQ-tree T and its quasi-equivalent PQ-tree 
T ′ after calculating A[z, 2].

Next, consider the iteration where A[y, 2] is calcu-
lated (the values for all other entries with node y is 
∞ ). Recall that Fig.  7 describes T and T ′ after calculat-
ing the entries of the children of the P-node y. The 

Fig. 8 a PQ‑tree T. b PQ‑tree T ′ , which is quasi‑equivalent to T 
and ordered as S2 Fig. 9 a PQ‑tree T. b PQ‑tree T ′ , which is quasi‑equivalent to T 

and ordered as S2
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intervals of the children complete the interval (2, e), where 
e = 2+ span(y)− 1 = 5 , so we can continue with the 
iteration. childrenDist = A[a, 4] +A[z, 2] +A[d, 5] = 9 . 
dSBP(S(y), S(y

′)) = 1 where the pair (z,  d) is the only 
singed break-point (note that S(y) = +a+ z + d , 
S(y′) = −z − a− d ). �P

jump(y, y
′) = 0 because 

to reorder the children of y as S2[2 : 5] we 
can move z only (and its size is 1). Therefore, 
�P

violation(y, y
′) = dSBP(S(y), S(y

′))+�P
jump(y, y

′) = 1  . 
Then, A[y, 2] = 10 and we can update y’s indices, y.ℓ = 2 
and y.r = 5 . Figure  8 describes the PQ-tree T and its 
quasi-equivalent PQ-tree T ′ after calculating A[y, 2].

Finally, consider the iteration where A[x, 1] is calculated 
(the values for all other entries with node x is ∞ ). Figure 8 
describes T and T ′ after calculating the entries of the chil-
dren of the P-node x. The intervals of the children com-
plete the interval (1, e), where e = 1+ span(x)− 1 = 6 , 
so we can continue with the iteration. 
childrenDist = A[y, 2] +A[e, 6] +A[f , 1] = 10  . 
dSBP(S(x), S(x

′)) = 2 where the pairs (y,  e) 
and (e,  f) are the signed break-points (note 
that S(x) = +y+ e + f  , S(x′) = +f − y+ e ). 
�P

jump(x, x
′) = 0 because to reorder the children of x 

as S2 we can move f only (and its size is 1). Therefore, 
�P

violation(x, x
′) = dSBP(S(x), S(x

′))+�P
jump(x, x

′) = 2  . 
Then, A[x, 1] = 10+ 2 = 12 and the algorithm returns 
12. Figure 9 describes the PQ-tree T and its quasi-equiv-
alent PQ-tree T ′ after calculating A[x, 1].

Complexity analysis
In this section we analyse the time and space complexi-
ties of Algorithm 1, which solves CTTSD . First, we ana-
lyse Algorithms 2 and 3, which are used as procedures 
in Algorithm 1. For a given PQ-tree, we denote by γ the 
maximum number of children of an internal node.

Lemma 5.1 Algorithm  5 takes O(1.381γ γ 2) time and 
O(γ 2) space.

Proof The most space consuming part of the algorithm, 
besides the computation of a vertex cover, is to store x′ 
(which is equivalent to x and ordered as a specific string). 
We simply save the children of x in a specific order. Thus, 
the space is O(γ ).

The algorithm first checks if the interval [ℓ, e] can be 
“completed” by all of the intervals defined by the indi-
ces of the children of x. We can check this in O(γ 2) time 
(naively). Then, we sum up the values in D . Notice that 
|D| = |children(x)| = O(γ ) , thus this step takes O(γ ) time.

After that, we calculate �P
violation(x, x

′) , which its 
most time consuming calculation is the jump violation, 
�P

jump(x, x
′) , which requires to find a minimum weighted 

vertex cover of the graph G[x, x′] . In order to find such 
vertex cover, we can use, for example, the algorithm in 
[44] which takes O(1.381γ γ 2) time and O(γ 2) space. 
Thus, this step takes O(1.381γ γ 2) time and O(γ 2) space.

All other steps in the algorithm are basic operations 
and thus they take O(1) time. Hence, the algorithm takes 
O(1.381γ γ 2) time and O(γ 2) .  �

Lemma 5.2 The Q-Mapping algorithm, Algorithm  6, 
takes O(γ 2) time and O(γ ) space.

Proof The most space consuming part of the algorithm 
is to store x′ (which is equivalent to x and ordered as a 
specific string). We simply save the children of x in a spe-
cific order. Thus, the space of the algorithm is O(γ ).

The algorithm first checks if the interval [ℓ, e] can be 
“completed consecutively” by all of the intervals defined 
by the indices of the children of x. We can check this 
in O(γ ) time. Then, we sum up the values in D . Notice 
that |D| = |children(x)| = O(γ ) , thus this step takes 
O(γ ) time. After that, we calculate �Q

violation(x, x
′) and 

FlipCorrection(x, x′) , which take O(γ 2) time (naively). All 
other steps in the algorithm are basic operations and thus 
they take O(1) time. Hence, the algorithm takes O(γ 2) 
time.  �

Lemma 5.3 The main algorithm, Algorithm  1, takes 
O(nγ 2 · (mp · 1.381

γ +mq)) time and O(n2) space.

Proof The number of leaves in the PQ-tree T is n, hence 
there are O(n) nodes in the tree, thus the size of the first 
dimension of the DP table, A , is O(n). The size of the sec-
ond dimension ( 1 ≤ ℓ ≤ n ) is also n. Thus, the DP table A 
is of size O(n2).

In the initialization step, all calculations are 
basic and take O(1) time. The P-Mapping algo-
rithm is called for every P-node in T and every pos-
sible start index i, so the P-Mapping algorithm is 
called O(nmp) times. Similarly, the Q-Mapping 
algorithm is called O(nmq) times. Thus, it takes 
O(n · (mp · Time(P-Mapping)+mq · Time(Q-Mapping))) 
time to fill the DP table. In the final stage of the algo-
rithm, we return A[rootT , 1] , which takes O(1) time.

From Lemma 5.1, the P-Mapping algorithm takes 
O(1.381γ γ 2) time and O(γ 2) space, and from Lemma 
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5.2, the Q-Mapping algorithm takes O(γ 2) time and 
O(γ ) space. Thus, in total, our algorithm runs in 
O(1)+ O(n · (mp · (2

γ γ 2)+mq · (γ
2))) = O(nγ 2

· (mp

·1.381γ +mq)) time. Adding the space required for the 
P-Mapping and Q-Mapping algorithms to the space 
required for the main DP table results in a total space 
complexity of O(γ 2)+ O(γ )+ O(n2) = O(n2) .  �

Observe that is �P
jump is set to 0, then the computa-

tion of a vertex cover is not required. Hence, by the 
analysis above, we obtain the following time and space 
complexities.

Lemma 5.4 If �P
jump is set to 0, then the main algorithm, 

Algorithm 1, takes O(nmγ 2) time and O(n2) space.

TreeToString Divergence : algorithm
In this section, we develop a dynamic programming (DP) 
algorithm to solve TTSD . Our algorithm receives as input 
an instance of TTSD , (S1, S2,T , dT , dS , δ

Q
ord, δ

Q
flip) . The out-

put of the algorithm is the minimum divergence from T 
to a subsequence of S2 with up to dT deletions from T and 
up to dS deletions from the subsequence (or “NO”).

Brief overview: On a high level, our algorithm consists 
of three components: the main algorithm, and two other 
algorithms that are used as procedures by the main algo-
rithm. Apart from an initialization phase, the crux of the 
main algorithm is a loop that traverses the given PQ-tree, 
T. For each internal node x, it calls one of the two other 
algorithms: P-Mapping or Q-Mapping. These algorithms 
return the divergence from the subtree of T rooted in x, 
Tx , to subsequences of S, based on the type of x (P-node 
or Q-node). Then, these divergences are stored in the DP 
table.

In the following sections, we describe the main algo-
rithm (“The main algorithm” section), the P-Mapping 
algorithm (“P-node mapping: the algorithm” section) and 
the Q-Mapping algorithm (“Q-node mapping: the algo-
rithm” section).

The main algorithm
The algorithm (whose pseudocode is given in Algo-
rithm  4) constructs a 5-dimensional DP table A 
of size m′ ×m× n× dT + 1× dS + 1 , where 
m′ = m+mp +mq is the number of nodes in T. The 
purpose of an entry of the DP table, A[x, pos, i, kT , kS] , 
is to hold the divergence from the subtree Tx to a subse-
quence S′ of S2 starting at index i with kT deletions from 
Tx and kS deletions from S′ , where exactly pos leaves of 
Tx have a positive sign. If S′ cannot be derived from Tx , 
A[x, pos, i, kT , kS] = ∞.

Some entries of the DP table define illegal derivations, 
namely, derivations for which the number of deletions 

is inconsistent with the start index i, the derived node 
and S2 . For example, such are derivations that have more 
deletions from the string than there are characters in the 
derived string. These entries are called invalid entries, 
and their value is defined as ∞ throughout the algorithm. 
Formally, an entry A[x, pos, i, kT , kS] is invalid if one of 
the following is true: pos > span(x)− kT , kT > span(x) , 
kS > L(x, kT , kS) , or E(x, i, kS , kT ) > n.

Let x be a leaf, S be a signed string, i be an index, kS 
be the number of deletions from S and pos ∈ {0, 1} . Then, 
we define Ix,S,i,kS ,pos = {i ≤ j ≤ i + kS label(x) = S[j] 
and pos is consistent with sign(S[j])} . Intuitively, each 
j ∈ Ix,S,i,kS ,pos corresponds to a possible alignment of x to 
S[j], therefore the label of x must match S[j] and pos must 
be consistent with sign(S[j]).

The algorithm first initializes the entries of A that are 
meant to hold scores of derivations of the leaves of T to 
every possible subsequence of S using the following rule. 
For every 0 ≤ kS ≤ dS , every leaf x ∈ Leaves(T ) and 
each possible sign of y ( pos ∈ {0, 1} ), do: 

1 A[x, pos, i, 1, kS] = ρT
del + kS · ρ

S
del (if dT > 0).

2 A[x, pos, i, 0, kS] = ∞ if there is no derivation from x 
to a character in S2[i : i + kT ].

 Otherwise:

a. A[x, pos, i, 0, kS] = 0 if pos is consistent with 
sign(x) (no flipping).

b. A[x, pos, i, 0, kS] = δ
Q
flip if pos is not consistent 

with sign(x) (flipping).

After the initialization, all other entries of A are filled as 
follows. Go over the internal nodes of T in postorder. For 
every internal node x, go in ascending order over every 
index i that can be a start index for a subsequence of S2 
derived from Tx (the possible values of i are explained in 
the next paragraph). For every x and i, use the algorithm 
for P-mapping or Q-mapping according to the type of 
x. Both algorithms receive the following input: a subse-
quence S′ of S2 , the node x, its children x1, . . . , xγ , the col-
lection of all possible derivations of the children (denoted 
by D ), which have already been computed and stored in A 
(as will be explained ahead), and the deletion arguments 
dT , dS . Q-Mapping also receives the penalty arguments 
δ
Q
ord and δQflip as input. Intuitively, the subsequence S′ is the 

longest subsequence of S starting at index i that can be 
derived from Tx given dT and dS . After being called, both 
algorithms return a set of divergences of derivations of Tx 
to a prefix of S′ = S[i : e] . The set holds the divergences 
of derivations for every E(x, i, dT , 0) ≤ e ≤ E(x, i, 0, dS) 
and for every 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS.
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We now explain the possible values of i and 
the definition of S′ more formally. To this end, 
recall the length function given in Definition 18, 
L(x, kT , kS) = span(x)− kT + kS . Thus, on the one 
hand, a subsequence of maximum length is obtained 
when there are no deletions from the tree and dS dele-
tions from the string. Hence, S′ = S[i : E(x, i, 0, dS)] . 
On the other hand, a shortest subsequence is obtained 
when there are dT deletions from the tree and none 
from the string. Then, the length of the subsequence is 
L(x, dT , 0) = span(x)− dT . Hence, the index i runs 
between 1 and n− (span(x)− dT )+ 1.

We now turn to address the aforementioned input 
collection D in more detail. Formally, it contains deri-
vations of every child x′ of x to every subsequence of 

S′ with up to dT and dS deletions from the tree and 
string, respectively. It is obtained from the entries 
A[x′, pos′, i′, kT , kS] (where each entry yields one deriva-
tion) for all kT and kS , all i′ between i and the end index 
of S′ , i.e., i ≤ i′ ≤ E(x, i, 0, dS) , and all possible pos′ 
( 0 ≤ pos′ ≤ span(x)− kT).

In the final stage of the main algorithm, when the DP 
table is full, the score of a best derivation is the minimum 
of {A[rootT , pos, i, kT , kS] : kT ≤ dT , kS ≤ dS , 1 ≤ i ≤ n−

(span(rootT )− kT )+ 1, 0 ≤ pos ≤ span(rootT )− kT }.

P‑node and Q‑node mapping: terminology
Before describing the P-mapping and Q-mapping algo-
rithms, we set up some useful terminology.



Page 18 of 37Ozeri et al. Algorithms for Molecular Biology           (2023) 18:17 

We first define the notion of a partial derivation. In the 
P-Mapping and Q-Mapping algorithms, derivations of 
the input node x are built by considering subsets C of its 
children. With respect to such a subset C, a derivation µ 
of x is built as if x had only the nodes in C as children, 
and is called a partial derivation. We denote by µ.v the 
root of the subtree of the derivation ( Tµ.v ). µ.pos denotes 
the number of positive signed of leaves considered in the 
derivation (in Tµ.v ). µ.delT and µ.delS denote the number 
of deletions from Tµ.v and from the string in the deriva-
tion, respectively. µ.score denotes the divergence score of 
the derivation µ.

Definition 20 Let x be a node. µ is a partial derivation 
between x and a string if µ.v = x and there is a subset 
of children C ⊆ children(x) such that the two following 
conditions are true. 

1 For every u ∈ children(x) \ C , each of the leaves in 
Tu is neither mapped nor deleted under µ.

2 For every u ∈ C , each of the leaves in Tu is either 
mapped or deleted under µ.

For every u ∈ children(x) \ C , we say that u is ignored 
under µ . Notice that any derivation is a partial derivation, 
where the set of ignored nodes ( U ′ above) is empty.

In the P-Mapping algorithm for C ⊆ children(x) , the 
notation x(C) is used to indicate that the node x is consid-
ered as if its only children are the nodes in C (the nodes 
in children(x) \ C are ignored). Consequentially, the span 
of x(C) is defined as span(x(C)) =

∑

c∈C span(c) , and the 
set D(C ,N , y, kT , kS) (in Definition 21 where U = {x(C)} ) 
now refers to a set of partial derivations. To use x(C) to 
describe the base cases of the algorithm, let us define x(∅) 
( x(C) for C = ∅ ) as a tree with no labeled leaves to map.

Since all derivations that are computed in a sin-
gle call to the P-Mapping algorithm have the 
same start-point i, it can be omitted (for brev-
ity) from the end-point function; thus, we denote 
E(x, kT , kS) = L(x, kT , kS) . Also, for a set U of nodes, we 
define L(U , kT , kS) =

∑

x∈U span(x)+ kS − kT , and, 
accordingly, E(U , kT , kS) = L(U , kT , kS).

We now define certain collections of derivations with 
common properties (such as having the same number of 
deletions and end-point).

Definition 21 Let C be a set of nodes, N ⊆ C be the 
set of nodes which have negative sign among the nodes 
in C, and kT and kS be two numbers. The collection of all 
the derivations of y ∈ C to suffixes of S′[1 : E(C , kT , kS)] 
with exactly kT deletions from the tree and exactly kS 
deletions from the string and are consistent with N is 

denoted by D(C ,N , y, kT , kS) . By consistency with N 
we mean: if y ∈ N  , then for each µ ∈ D(C ,N , y, kT , kS) , 
µ.pos ≤ (span(y)− kT )/2 ; if y /∈ N  , then for each 
µ ∈ D(C ,N , y, kT , kS) , µ.pos ≥ (span(y)− kT )/2.

Definition 22 Let C be a set of nodes, N ⊆ C be a set 
of nodes which define the signs of the nodes in C, and 
kT and kS be two numbers. The collection of all deriva-
tions of y ∈ C to suffixes of S′[1 : E(C , kT , kS)] with 
up to kT deletions from the tree, and up to kS dele-
tions from the string is denoted by D≤(C ,N , y, kT , kS) . 
Specifically, for the node y ∈ C , k ′T ≤ kT and k ′S ≤ kS , 
the set D≤(C ,N , y, kT , kS) holds only one deriva-
tion of y to a suffix of S′[1 : EI (C , kT , kS)] with k ′T and 
k ′S deletions from the tree and string, respectively, if 
such derivation exists. In addition, the derivations in 
D≤(C ,N , kT , kS) are consistent with N: if y ∈ N  , then for 
each µ ∈ D≤(C ,N , y, kT , kS) , µ.pos ≤ (span(y)− kT )/2 ; 
if y /∈ N  , then for each µ ∈ D≤(C ,N , y, kT , kS) , 
µ.pos ≥ (span(y)− kT )/2.

It is important to distinguish between these two defi-
nitions. First, the derivations in D(C ,N , y, kT , kS) have 
exactly kT and kS deletions, while the derivations in 
D≤(C ,N , y, kT , kS) have up to kT and kS deletions. Sec-
ond, in D(C ,N , y, kT , kS) there can be several derivations 
that differ only in their scores and in the one-to-one map-
pings that yield them, while in D≤(C ,N , y, kT , kS) there is 
only one derivation for every deletion combination pair 
(k ′T , k

′
S) . Note that the end-points of all of the derivations 

are equal.
In every step of the P-Mapping algorithm, a different 

set of derivations of the children of x is examined, thus, 
Definition 22 is used for C ⊆ children(x) . In addition, 
the set of derivations D that is received as input to the 
algorithms can be described using Definition 22 as can be 
seen in Eq.  1 below. In this equation, the union is over 
all C ⊆ children(x) because in this way the derivations 
of all the children of x with every possible end-point are 
obtained (in contrast to having only C = children(x) , 
which results in the derivations of all the children of x 
with the end-point E(children(x), kT , kS)).

In the P-Mapping algorithm for C ⊆ children(x) , the 
notation x(C) is used to indicate that the node x is consid-
ered as if its only children are the nodes in C (the nodes 
in children(x) \ C are ignored). Consequentially, the span 
of x(C) is defined as span(x(C)) =

∑

c∈C span(c) , and the 
set D(C ,N , y, kT , kS) (in Definition 21 where C = {x(C)} ) 
now refers to a set of partial derivations. To use x(C) to 

(1)

D =
⋃

C⊆children(x)

⋃

N⊆C

⋃

y∈C

⋃

kT≤dT

⋃

kS≤dS

D≤(C ,N , y, kT , kS)
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describe the base cases of the algorithm, let us define x(∅) 
( x(C) for C = ∅ ) as a tree with no labeled leaves to map.

In the P-Mapping algorithm, we use the following 
notation.

Definition 23 Let C be a set of children of a P-node 
in a PQ-tree. For x, y ∈ C , the set of all nodes in C 
that are between x and y is denoted by Cx,y . That is, 
Cx,y = {v ∈ C : v is between x and y}.

See an example in Fig. 10.
In the algorithms, we take in account signed break-

points between the nodes in the derivations. So, we 
define a procedure which receives a node x, two children 
of x, y and z that are considered to be adjacent in a quasi-
equivalent tree Tx′ of Tx and a set N that defines the signs 
of y and z in Tx′ . The procedure returns 1 if there is a 
signed break-point between y and z, and 0 otherwise. The 
procedure checks if the nodes are adjacent in the tree Tx 
and if they changed their signed order (recall Definition 
9) according to N, as defined next.

Definition 24 

Similar to Definition 24, we define a procedure which 
is used in a case where we necessarily consider the two 
children y, z of x to be adjacent in the tree Tx (specifically, 
when Cy,z is deleted). This procedure returns 1 if there is 
a signed break-point between y and z, but does not check 
if they are adjacent.

(2)
BPDelta(x, y, z,N ) =

{

0, if y and z are adjacent in Tx and did not change their signed order
1, else

Definition 25 

In the P-Mapping algorithm, we calculate the jump 
violation (recall Definition 12). To do so, we define the 
procedure JumpViolationDelta , which receives a vertex 
cover C and a node x, and returns the penalty defined 
in Definition 12 of x as follows.

Definition 26 

P‑node mapping: the algorithm
Recall that the input consists of a P-node x, a string 
S′ , bounds on the number of deletions from T and S′ , 
dT  and dS , respectively, and a set of derivations D (see 
Eq.  1). The output of the algorithm is the collection 
of divergences of derivations of x to every prefix of S′ 
having exactly kT  deletions from Tx , kS deletions from 
the prefix of S′ and pos number of leaves with positive 
sign, for each combination of 0 ≤ kT ≤ dT  , 0 ≤ kS ≤ dS 
and 0 ≤ pos ≤ span(x) . Thus, the output contains 
O(dT · dS · span(x)) derivations.

The algorithm (whose pseudocode is given in Algo-
rithm 5) constructs a 7-dimensional DP table P , which 
has an entry for every 0 ≤ kT ≤ dT  , 0 ≤ kS ≤ dS , subset 
C ⊆ children(x) , subset C ′ ⊆ C , subset N ⊆ C , number 
0 ≤ pos ≤ span(x) and for every y ∈ C . Recall that we 
need to calculate JumpViolation for the children of x. 
To do so, we use the variables C ′ and N. The purpose 
of an entry P[C ,C ′,N , pos, y, kT , kS] is to hold the diver-
gence of a partial derivation rooted in x(C) to a prefix of 

S′ with exactly kT  deletions from the tree, kS deletions 
from the string, pos leaves with positive sign in Tx′(C) , 
where x′ is the node equivalent to x, while considering 
the nodes in N to have a negative sign, C ′ as a possible 
vertex cover set of G[x(C), x′(C)] (minus the children that 
were deleted), and considering derivations of y only to 
suffixes of S′[1 : E(C , kT , kS)] . The children of x that are 

(3)

BPDelta2(x, y, z,N )

=

{

0, if y and z did not change their signed order
1, else

(4)

JumpViolationDelta(C , x) =

{

(span(x)− 1)/2, if x ∈ C
0, else

Fig. 10 Cy ,f = {e, g}, Ca,d = {b}, Cy ,e = {}
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not in C are ignored under the partial derivation stored 
by the DP table entry P[C ,C ′,N , pos, y, kT , kS] , thus 
they are neither deleted nor counted in the number of 
deletions from the tree, kT  . (They will be accounted for 
in the computation of other entries of P).

Similarly to the main algorithm, some of the entries of 
P are invalid, and their value is defined as ∞ . Formally, 
an entry P[C ,C ′,N , pos, y, kT , kS] is invalid if one of the 
following is true: kT > span(C) , L(x(C), kT , kS) > len(S′) , 
pos is not consistent with N, or C ′ is not a vertex cover 
of G[x(C), x′(C)] where the signs of children(x′(C)) are 
defined by N.

Every entry P[C ,C ′,N , pos, y, kT , kS] for which |C| = 1 
is initialized with D(C ,N ,y,pos,kT ,kS) (stored in D ) which is 

the divergence of the derivation rooted in Ty to the suffix 
of S′[1 : E(C , kT , kS)] , with exactly kT deletions from the 
tree, kS deletions from the string, pos leaves with positive 
sign in Ty′ such that N is consistent with pos (if it exists, 
this derivation is stored in D ). If such a derivation does 
not exist, D(C ,N ,y,pos,kT ,kS) = ∞.

After the initialization, the remaining entries of P are 
calculated using the recursion rule in Expression 1 ahead. 
The order of computation is ascending with respect to the 
size of the subsets C of the children of x, and for a given 
C ⊆ children(x) , the order is ascending with respect to 
the number of deletions from both tree and string. With 
a lesser priority, the order is ascending with respect to 
the number of positive signed leaves in Tx′(C).



Page 21 of 37Ozeri et al. Algorithms for Molecular Biology           (2023) 18:17  

In the algorithm, P[C ,C ′,N , pos, y, kT , kS] is com-
puted by taking the minimum between the following 
expressions (we will refer the minimum of the three 
expressions as Expression 1): 

1. P[C ,C ′,N , y, kT , kS − 1] + ρS
del

 Explanation: Intuitively, every entry P[C ,C ′,N , pos,

y, kT , kS] defines some index e′ of S′ that is the end-
point of every partial derivation in D(C ,N , y, kT , kS) . 
Thus, S′[e′] must be a part of any partial derivation 
µ ∈ D(C ,N , y, kT , kS) ; so, either S′[e′] is deleted 
under µ or it is mapped under µ . The former option 
is captured by the first case of the recursion rule.

2. 

min
µ ∈ D≤(C ,N , y, kT , kS)
s.t. µ.delT < span(y)

min
z∈C\{y}

P[C\{y},C ′\{y},N\{y}, pos − µ.pos, z, kT − µ.delT , kS − µ.delS]

+ µ.score + BPDelta(x, y, z,N )+ JumpViolationDelta(C ′, y)

Q‑node mapping: the algorithm
The input and output of the Q-Mapping algorithm are 
the same as the input and output of the P-mapping algo-
rithm (“P-node mapping: the algorithm” section), respec-
tively, except for the type of the node x received as input, 
and the penalty parameters δQord and δQflip , which are also 
part of the input.

Given that the children of x in consecutive order 
are x1, x2, . . . , xγ and given an index 1 ≤ i ≤ γ , x[i] 
denotes the set of the first i children of x. Formally, 
x[i] = {x1, . . . , xi} . In addition, x(i) , denotes the node x as 
if its only children are the nodes in x[i] . Consequentially, 
the span of x(i) is defined as 

∑i
j=1 span(xj) and the set 

D(x(i),N , y, kT , kS) (see Definition 21 where C = {x[i]} ) 
now refers to a set of partial derivations. In addition, x[i:j] 

 Explanation: If S′[e′] is mapped under µ , then due to 
the hierarchical structure of Tx , it must be mapped 
under some derivation µ′ of one of the children of x 
that are in C. Thus, we receive the second and third 
cases of the recursion rule. In the second case, we 
consider z ∈ C \ {y} and derivations of z only to suf-
fixes of S′[1 : E(C \ {y}, kT − µ.delT , kS − µ.delS)].

3. 

min
µ ∈ D≤(C ,N , y, kT , kS)
s.t. µ.delT < span(y)

min
z ∈ C\{y}
s.t.Cy,z ⊆ C

P[C\Cy,z\{y},C
′\Cy,z\{y},N\Cy,z\{y}, z, kT − µ.delT − span(Cy,z), kS − µ.delS]

+ µ.score + ρT
del · span(Cy,z)+ BPDelta2(x, y, z,N )+ JumpViolationDelta(C ′, y)

 Explanation: The third case captures the option 
of deletion of all the nodes between y and z 
( Cy,z ), so that after the deletion we consider y 
and z as adjacent in Tx(C) . In this case we consider 
z ∈ C \ {y} and derivations of z only to suffixes  
of S′[1 : E(C\Cy,z\{y}, kT − µ.delT − span(Cy,z),

kS − µ.delS)] (1)
Once the entire DP table is filled, for every combination 

of (pos, kT , kS) the algorithm returns the divergence 
from Tx to S′ . This is done by going over the par-
tial derivations in P as well as deleting the ignored 
nodes (and penalizing the deletion accordingly).

denotes the set of children of x from child i to child j; for-
mally, x[i:j]

.
= {xi, . . . , xj} . In case i > j , x[i:j] = ∅.

The algorithm (whose pseudocode is given in Algo-
rithm  6) constructs two 5-dimensional DP tables Qℓ 
and Qr . Both have an entry for every 0 ≤ kT ≤ dT , 
0 ≤ kS ≤ dS , index 0 ≤ i ≤ γ , s ∈ {+,−} and num-
ber 0 ≤ pos ≤ span(x) . The purpose of an entry 

Qℓ[i, kT , kS , s, pos] (and similarly Qr[i, kT , kS , s, pos] ) 
is to hold the divergence of a partial derivation in 
D(x(i),N , y, kT , kS) , i.e. a partial derivation rooted in x(i) 
to a prefix of S′ with exactly kT deletions from the tree, 
kS deletions from the string, while s is the sign of xi in the 
derivation and pos is the number of positive signed leaves 
in x(i) . The difference between Qℓ and Qr is in the order 
in which the children of x are arranged. In Qℓ the chil-
dren of x are considered in a left-to-right order, namely, 
x1 is the leftmost child of x and xℓ[i] is the set of the i left-
most children of x (then, xℓ[i:j] is defined accordingly). 
In Qr the children of x are considered in a right-to-left 
order, namely, x1 is the rightmost child of x and xr[i] is the 
set of the i rightmost children of x (then, xr[i:j] is defined 
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accordingly). For abbreviation, from now on, Q is used 
when a notion is true for both Qℓ and Qr . The children of 
x that are not in x[i] are ignored under the partial deriva-
tion stored by the DP table entry Q[i, kT , kS , s, pos] , thus 
they are neither deleted nor counted in the number of 
deletions from the tree, kT . (They will be accounted for in 
the computation of other entries of Q).

Similarly to the main algorithm and the P-Mapping 
algorithm, some of the entries of the DP tables are inva-
lid, and their value is defined as ∞ . Formally, an entry 
Q[i, kT , kS , s, pos] is invalid if one of the following is true: 
kT > span(x(i)) , L(x[i], kT , kS) > |S′| , or pos is not con-
sistent with s.

Every entry Q[i, kT , kS , s, pos] for which i = 1 is ini-
tialized with D(x[i],s,xi ,pos,kT ,kS) (stored in D ) which is the 
divergence of the derivation rooted in Txi to the suffix of 
S′[1 : E(x[i], kT , kS)] , with exactly kT  deletions from the 
tree, kS deletions from the string, pos leaves with posi-
tive sign in Tx′i

 such that s is consistent with pos (if it 
exists, this derivation is stored in D ). If such a deriva-
tion does not exist, D(x[i],s,xi ,pos,kT ,kS) = ∞.

After the initialization, the remaining entries of Q 
are calculated using the recursion rule in Expression 
2 ahead. The order of computation is ascending with 

respect to the child index i, and for a given i, the order 
of computation is ascending with respect to the number 
of deletions from the string, and ascending with respect 
to the number of positive signed leaves in Tx′(i) . In 
Expression 2 we use the notation Nxi and Nxi ,xj , defined 
as follows. Let xi and xj be two nodes whose signs in 
Tx′(i) are s and s′ , respectively. If s = − then xi ∈ Nxi and 
xi ∈ Nxi ,xj , and if s′ = − then xj ∈ Nxi ,xj . If s = + then 
xi /∈ Nxi and xi /∈ Nxi ,xj , and if s′ = + then xj /∈ Nxi ,xj.

In the algorithm, Qt [i, kT , kS , s, pos] is computed by 
taking the minimum between the following expressions 

(we will refer the minimum of the three expressions as 
Expression 2): 

1. Qt [i, kT , kS − 1, s, pos] + ρS
del

 Explanation: Intuitively, every entry Q[i, kT , kS , s, pos] 
defines some index e′ of S′ that is the end-point 
of every partial derivation in D(x(i),N , y, kT , kS) . 
Thus, S′[e′] must be a part of any partial derivation 
µ ∈ D(x(i),N , y, kT , kS) , so, either S′[e′] is deleted 
under µ or it is mapped under µ . The former option 
is captured by this case.
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2. 

min
µ ∈ D≤(x

t
[i],Nxi , xi, kT , kS)

min
1 ≤ j ≤ i − 1
s′ ∈ {+,−}

Qt [j, kT − µ.delT − span(xt[j+1:i−1]), kS − µ.delS , s
′, pos − µ.pos]

+ µ.score + δ
Q
ord · BPDelta2(x, xi, xj ,Nxi ,xj )+ ρT

del · span(x
t
[j+1:i−1])

we analyse Algorithms 5 and 6, which are used as proce-
dures in Algorithm 4. For a given PQ-tree, we denote by 
γ the maximum number of children of an internal node.

Lemma 6.1 The P-Mapping algorithm, Algorithm  5, 
takes (5γm2nd2Td

2
Sγ

3) time and O(5γmdTdS) space.

Proof The most space consuming part of the algo-
rithm is the 7-dimensional DP table. The first dimen-
sion, C, can be any subset of the set children(x) , the sec-
ond and third dimensions ( C ′ and N) can be any subset 
of C, therefore the size of all three dimensions together 
is O(5γ ) as explained next. Every choice of C ,C ′,N  
defines (one-to-one) a partition of children(x) to five 
sets, children(x)\C ,C\(C ′ ∪ N ),C ′\N ,N\C ′,N ∩ C ′ . 
Thus, in order to go over all C ,C ′,N  , we can go over 
all partitions of children(x) to five sets, which takes 
O(5|children(x)|) = O(5γ ) . The size of the fourth dimen-
sion (i.e. pos), in the worst case (where x is the root), is 
span(x) = m . The fifth dimension, y, can be any node in 
C, therefore the size of the dimension is O(γ ) . The size 
of the sixth and seventh dimensions (i.e. kT and kS ) are 
dT + 1 and dS + 1 , respectively. Hence, the space of the 
algorithm is O(5γmγdTdS) = O(5γmdTdS).

The algorithm has three parts: initialization, filling 
the DP table, and returning the derivations. The most 
time consuming calculation required in the initializa-
tion is the calculation of D(C ,N ,y,pos,kT ,kS) and checking 
if C ′ is a vertex cover of G[x(C), x′(C)] . For a given tuple 
(C ,N , y, pos, kT , kS) it takes O(|D|) time to calculate the 
set D(C ,N ,y,pos,kT ,kS) (by naively going over each derivation 
in D and checking if it fits the values in the tuple); notice 
that |D| = O(mndTdS) . We calculate this set for each 
combination of (C ,N , y, pos, kT , kS) . Thus, the calcula-
tions for D(C ,N ,y,pos,kT ,kS) take O(22γ γm2nd2Td

2
S) . In addi-

tion, we check if C ′ is a vertex cover of G[x(C), x′(C)] . To 
generate G[x(C), x′(C)] we go over all pairs of nodes in C, 
check if they changed their signed order, and if required, 
connect them with an edge in the graph. For a pair of 
node, it takes O(γ ) to check if they changed their signed 
order (naively). Thus it takes O(γ 3) to generate the graph. 
After that it takes O(γ 2) to check if C ′ is a vertex cover 

 Explanation: If S′[e′] is mapped under µ , then due to 
the hierarchical structure of Tx , it must be mapped 
under some derivation µ′ of one of the children 
of x that are in x[i] . Thus, we receive the second 
case of the recursion rule. In this case, we consider 
xj ∈ x[i−1] and derivations of xj only to suffixes of 
S′[1 : E(x[j], kT − µ.delT , kS − µ.delS)].

 (2)
Once both DP tables are filled, for every combination of 
(pos, kT , kS) the algorithm returns the divergence from Tx 
to S′ . This is calculated by going over the partial deriva-
tions, and deleting the ignored nodes (while penalizing 
the deletion accordingly), while considering both orders 
of children(x).

Recall that we want to take into account the option of 
x to flip, and penalize accordingly. Thus, we run Algo-
rithm  6 twice, and store the outputs for each combina-
tion (kT , kS , pos) , with small modifications in the second 
run. The first time we run it as it is (while ignoring the 
option of x to flip). In the second run, we capture the 
option of x to flip. We can do that by looking only at deri-
vations where all the nodes changed there sign (if a node 
y ∈ children(x) has sign of + in Tx , then we consider its 
sign in the derivation as −, and vice versa). Specifically, 
we run Algorithm 6 with the following modifications. In 
Algorithm 6, in line 3 we define t = r , in line 6 we define 
s as the opposite sign of xi in Tx , in line 21 we define t = r 
and s as the opposite sign of xi in Tx . In Expression 2, we 
define s′ as the opposite sign of xj in Tx . In addition, for 
every combination (kT , kS , pos) , we apply the penalty for 
flipping x, by adding δQflip to each value. After that, we 
need to apply FlipCorrection(x, x′) (recall Definition 14) 
where x′ is the equivalent node that corresponds to the 
derivation of the entry. Note that we need to correct the 
flip penalties of children(x) that are not deleted in the 
derivation; to do so, we can simply backtrack the values 
of the DP table to receive the derivation and in particular 
find the children who are not deleted.

Finally, we return the minimum of the two runs for 
every combination (kT , kS , pos).

Complexity analysis
In this section we analyse the time and space complexi-
ties of the algorithm that solves TTSD , Algorithm 4. First, 
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(naively). Hence, the first part of the algorithm takes 
O(5γmdTdSγ

3)+ O(22γ γm2nd
2
T
d
2
S
) = O(5γm2nd

2
T
d
2
S
γ 3).

The second part of the algorithm is done by calcu-
lating the value of every entry in the O(5γmdTdS) 
entries of P , using the recursion rule in Expression 1. 
The first line among the rule takes O(1) time, since it 
involves looking in another entry of P and basic com-
putations. The second line of the rule involves going 
over all derivations µ ∈ D≤(C ,N , y, kT , kS) . Namely, 
going over all derivations of y with a specific end-
point, that has no more than a specific number of dele-
tions from the tree and string, and that are consistent 
with N (i.e. µ.e = E(C , kT , kS) , µ.v = y , µ.delT ≤ kT , 
µ.delS ≤ kS and µ.pos ≤ (span(y)− µ.delT )/2 if y ∈ N  
or µ.pos ≥ (span(y)− µ.delT )/2 if y /∈ N  ). The number 
of deletions from the tree and string are bounded by dT 
and dS , respectively, and the number of pos is bounded 
by m. Afterwards, we go over all z ∈ C \ {y} , whose 
number is bounded by γ . In addition, we use the proce-
dures BPDelta which can be calculated in O(γ ) time and 
JumpViolationDelta which takes O(1) time. Thus the 
second line of the rule takes O(dTdSmγ 2) . The third line 
of the rule is similar to the second line, except in addi-
tion we calculate Cy,z and calculate the span of Cy,z , which 
take O(γ ) time. Thus, the third line of the rule takes 
O(dTdSmγ 2) time. Hence, the time to calculate one entry 
of P is O(dTdSmγ 2) . In total, the second part of the algo-
rithm takes O(5γm2d2Td

2
Sγ

2) time.
Finally, to construct the returned set of derivations, 

the algorithm goes over every combination kT , kS , pos 
once, i.e. it takes O(dTdSm) time. In total, the algorithm 
takes O(5γm2nd

2
T
d
2
S
γ 3)+ O(5γm2d

2
T
d
2
S
γ 2)+ (dTdSm)

= O(5γm2nd
2
T
d
2
S
γ 3) time.  �

Lemma 6.2 The Q-Mapping algorithm, Algorithm  6, 
takes O(γ 2d2Td

2
S m

2n) time and O(γdTdSm) space.

Proof The most space consuming part of the algorithm 
is the 5-dimensional DP table. The first dimension, i, is 
bounded by γ . The size of the second and third dimen-
sions (i.e. kT and kS ) are dT + 1 and dS + 1 , respectively. 
The size of the fourth dimension (i.e. s ∈ {+,−} ) is 2. The 
size of the fifth dimension (i.e. pos), in the worst case 
(where x is the root), is span(x) = m . Hence, the space of 
the algorithm is O(γdTdSm).

The algorithm has three parts: initialization, filling the 
DP table, and returning the derivations. The most time 
consuming calculation required in the initialization is 
the calculation of D(x[i],s,xi ,pos,kT ,kS) . For a given tuple 
(x[i], s, xi, pos, kT , kS) it takes O(|D|) time to calculate 
the set D(C ,N ,y,pos,kT ,kS) (by naively going over all deriva-
tions in D and checking if it fits the values in the tuple), 

notice that |D| = O(mndTdS) . We calculate this set for 
each combination of (i, kT , kS , s, pos) where i = 1 . Thus, 
the calculations for D(x[i],s,xi ,pos,kT ,kS) take O(m2ndTdS) 
all together. Hence, the first part of the algorithm takes 
O(m2ndTdS).

The second part of the algorithm is done by calculat-
ing the value of every entry in the O(γdTdSm) entries 
of Q , using the recursion rule in Expression 2. The first 
line among the rule takes O(1) time, since it involves 
looking in another entry of Q and basic computations. 
The second line of the rule involves going over all deri-
vations µ ∈ D≤(x[i],Nxi , xi, kT , kS) . Namely, going over 
all derivations of y with a specific end-point, which have 
no more than a specific number of deletions from the 
tree and string, and which are consistent with Nxi (i.e. 
µ.e = E(x[i], kT , kS) , µ.v = x.i , µ.delT ≤ kT , µ.delS ≤ kS 
and µ.pos ≤ (span(xi)− µ.delT )/2 if xi ∈ Nxi or 
µ.pos ≥ (span(xi)− µ.delT )/2 if y /∈ Nxi ). The num-
ber of deletions from the tree and string are bounded 
by dT and dS , respectively, and the number of values 
for pos is bounded by m. Afterwards, we go over indi-
ces 1 ≤ j ≤ i − 1 and sign s′ ∈ {+,−} , whose number 
is bounded by O(γ ) . In addition, we use the procedure 
BPDelta2 which can be calculated in O(γ ) time. Thus, 
the second line of the rule takes O(dTdSmγ ) . Hence, the 
second part of the algorithm takes O(γ 2d2Td

2
Sm

2) time.
Finally, to construct the returned set of derivations, the 

algorithm goes over every combination kT , kS , pos once, 
and taking the minimum over t ∈ {ℓ, r} , 1 ≤ i ≤ γ and 
s ∈ {+,−} ; so, this takes O(dTdSmγ ) = O(dTdSm) time. 
Recall that we calculate both Qℓ and Qr , but this does not 
affect the magnitude of the time. In addition, recall that 
we run the algorithm twice, while in the second run there 
are modifications that do not increase the time (in fact, 
they even improve it). Hence, in total, the algorithm takes 
O(m2ndTdS)+ O(γ 2d

2
T
d
2
S
m2)+ O(dTdSm) = O(γ 2d

2
T
d
2
S
m2n) 

time.  �

Lemma 6.3 The main algorithm, Algorithm  4, 
takes O(n2γ 2dT

2dS
2m2(mp · 5

γ γ +mq)) time and 
O(dTdSm(mn+ 5γ )) space.

Proof The number of leaves in the PQ-tree T is m, 
hence there are O(m) nodes in the tree, i.e the size of the 
first dimension of the DP table, A , is O(m). The size of 
the second dimension (i.e. pos), in the worst case (where 
x is the root), is span(x) = m . In the algorithm descrip-
tion (“The main algorithm” section) a bound for the pos-
sible start indices of subsequences derived from nodes in 
T is given (for a node x, the start index i runs between 
1 and n− (span(x)− dT )+ 1 ). The node with the larg-
est span in T is the root that has a span of m. The root 
is mapped to the longest subsequence when there are 
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dS deletions from the string. Hence, the size of the third 
dimension of A is O(n− (m+ dS)+ 1) = O(n) . The 
fourth and the fifth dimensions of A are of size dT + 1 
and dS + 1 , respectively. In total, the DP table A is of size 
O(dTdSm

2n).
In the initialization step, O(dTdSm

2n) entries 
of A are computed. We go over 0 ≤ kS ≤ dS and 
pos ∈ {0, 1} . The most time consuming step is the 
generation of the set Ix,S,i,kS ,pos , and it can be gener-
ated in O(|children(x)|) = O(γ ) time. Thus the ini-
tialization takes O(dTdSm

2nγ ) . The P-Mapping 
algorithm is called for every P-node in T and every 
possible start index i, so the P-Mapping algorithm 
is called O(nmp) times. Similarly, the Q-Mapping 
algorithm is called O(nmq) times. Thus, it takes 
O(dTdSm

2nγ )+ O(n · (mp · Time(P-Mapping)

+mq · Time(Q-Mapping))) time to fill the DP table.
In the final stage of the algorithm, the minimum over 

the entries corresponding to every combination of 
( 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS , 1 ≤ i ≤ n− (span(x)− dT )

+1}, 0 ≤ pos ≤ span(rootT )− kT ) is computed. So, it 
takes O(dTdSnm) time to find a derivation with mini-
mum score.
From Lemma 6.1, the P-Mapping algorithm takes 
(5γm2nd2Td

2
Sγ

3) time and O(5γmdTdS) space, and from 
Lemma 6.2, the Q-Mapping algorithm takes O(γ 2d2Td

2
S m

2n) 
time and O(γdTdSm) space. Thus, in total, our algorithm 
runs in O(dTdSm

2nγ )+ O(n · (mp · O(5γm2nd2Td
2
Sγ

3)

+mq · O(γ 2d2Td
2
S m

2n))) = O(n2γ 2dT
2dS

2m2(mp · 5
γ γ

+mq)) time. Adding to the space required for the 
main DP table the space required for the P- Mapping 
algorithm (the space needed for the Q-Mapping  
algorithm is insignificant with respect to the P-Map-
ping algorithm) results in a total space complexity of 
O(dTdSm

2n)+ O(5γmdTdS) = O(dTdSm(mn+ 5γ )) . 
  �

TTSD : polynomial space complexity
In this section we propose an improved version (in terms 
of space complexity) of the algorithm presented in “Tree-
ToString Divergence: algorithm” section  6, using the 
inclusion–exclusion principle. Specifically, the space com-
plexity of the algorithm is polynomial instead of expo-
nential. Our P-Mapping algorithm (see “P-node mapping: 
the algorithm”, Algorithm  5) uses a DP table whose size 
is exponential. Thus, we propose a new version of the 
P-Mapping algorithm, which uses a DP table whose size 
is polynomial. In what follows, we first describe the inclu-
sion–exclusion principle (“Inclusion–exclusion principle” 
section). Then, we describe the new version of the P-Map-
ping algorithm (“P-node mapping: polynomial space 
complexity” section) that is used in Algorithm  4 instead 
of Algorithm  5. Note that in this version, we are unable 

to consider jumps of large units. So, when we calculate 
Diverge , we assume that �P

jump = 0.

Inclusion–exclusion principle
Usually, the inclusion–exclusion principle is described as 
a formula for computing |

n
⋃

i=1

Ai| for a collection of sets 

A1, . . . ,An . We use the intersection version of inclusion–
exclusion, which is described as a formula for computing 
|

n
⋂

i=1

Ai| . Denote by [n] the set of indices from 1 until n, i.e. 

[n] = {1, . . . , n} . Let A1, . . . ,An ⊆ U , where U is a finite 
set. Denote 

⋂

i∈∅(U \ Ai) = U . Then,

In typical algorithmic applications of the inclusion–
exclusion formula we need to count some objects that 
belong to a universe U, and it is in some sense hard. More 
precisely, we are interested in objects that satisfy n 
requirements A1, . . . ,An , and each requirement is 
defined as the set of objects that satisfy it. Thus, the 
inclusion–exclusion formula translates the problem of 
computing |

⋂

i∈[n]

Ai| into computing 2n terms of the form 

|
⋂

i∈X

(U \ Ai)| . In our application, computing these terms 

is in some sense easy. If, for example, each of the terms 
|
⋂

i∈X

(U\Ai)| can be computed in polynomial time, then 

the inclusion–exclusion formula gives an algorithm that 
performs 2nnO(1) arithmetic operations.

P‑node mapping: polynomial space complexity
Recall that the input consists of an internal P-node x, a 
string S′ , bounds on the number of deletions from the 
tree T and the string S′ , kT and kS , respectively, and a 
set of derivations D (see Eq. 1). The output of the algo-
rithm is the collection of divergences of derivations of x 
to every possible prefix of S′ having exactly dT deletions 
from the tree, dS deletions from the string, and pos leaves 
with positive sign, for each combination of 0 ≤ kT ≤ dT , 
0 ≤ kS ≤ dS and 0 ≤ pos ≤ span(x) . Thus, there are 
O(dT · dS · span(x)) derivations in the output.

Denote by γ the number of children of x, i.e. 
γ = |children(x)| . First, we define the collection of sets 
A1, . . . ,Aγ (see “Inclusion–exclusion principle” section). 
Notice that the derivations we seek take into account all 
of children(x) , using each child exactly once (mapped or 
deleted). Thus, we define the collection A1, . . . ,Aγ where 
Ai is the set of derivations that use the i’th child of x at 
least once (mapped or deleted), and use exactly γ chil-
dren of x (including repetitions). In particular, note that 

(5)

∣
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∣

∣

∣

∣

⋂

i∈[n]
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∣
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∣

∣

∣

=
∑

X⊆[n]

(−1)|X |
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∣

∣

∣

∣

⋂
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∣

∣

∣

∣

.
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the same child can be both mapped several times (to dif-
ferent subsrings) and deleted several times (even if it has 
been mapped). As a result, 

⋂

i∈[γ ]

Ai is the set of derivations 

that take into account all of children(x) , where each child 
is used exactly once. We define U as the set of all partial 
derivations using γ children of x (including repetitions). 
Therefore, 

⋂

i∈X

(U \ Ai) is the set of derivation that do not 

use the children whose indices are in X, and use exactly γ 
children of x (including repetitions).

Denote by ScoreSet the set of all possible divergence 
values of all partial derivations of x to S′ . We use the col-
lection of sets A1, . . . ,Aγ as described above, for every 
combination of (kT , kS , pos, score) where the divergence 
values of the derivations in A1, . . . ,Aγ are at most score. 
Specifically, Algorithm  7 constructs a 4-dimensional 
DP table B , which has an entry for every 0 ≤ kT ≤ dT , 
0 ≤ kS ≤ dS , 0 ≤ pos ≤ span(x) and score ∈ ScoreSet . 
The purpose of an entry B[kT , kS , pos, score] is to hold the 
number of partial derivations rooted in x to a prefix of S′ 
with exactly kT deletions from the tree, kS deletions from 
the string, pos leaves with positive sign in the derivation 
whose divergence value is at most score. For each entry 
in the DP table, we calculate its value using the intersec-
tion version of the inclusion–exclusion formula, shown 
in “Inclusion–exclusion principle” section.

Lemma 7.1 Assuming that Algorithm  8 is correct,6  
Algorithm 7 is correct, that is, it returns the collection of 
divergences of derivations of x to every prefix of S′ hav-
ing exactly kT deletions from Tx , kS deletions from the 
prefix of S′ and pos number of leaves with positive sign, 
for each combination of 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS and 
0 ≤ pos ≤ span(x).

Proof For each combination of 0 ≤ kT ≤ dT , 
0 ≤ kS ≤ dS , 0 ≤ pos ≤ span(x) and score ∈ ScoreSet , we 
define Û ⊆ U as the set of all partial derivations using γ 
children of x (including repetitions) with exactly kT dele-
tions from the tree, kS deletions from the string, pos 
leaves with positive sign in the derivation whose diver-
gence value is at most score. We define Âi ⊆ Û as the set 
of derivations that use the i’th child of x at least once 
(mapped or deleted), and use exactly γ children of x 
(including repetitions). For each combination 
(kT , kS , pos, score) , 

⋂

i∈[γ ]

Âi is the set of derivations with 

exactly kT deletions from the tree, kS deletions from the 
string, pos leaves with positive sign in the derivation 
whose divergence value is at most score that take into 
account all of children(x) , where each child is used 
exactly once. For each combination (kT , kS , pos, score) , 
and given Y ⊆ [γ ] , Algorithm  8 returns |

⋂

i∈Y

(Û \ Âi)| , 

which is the number of derivations that do not use the 
children whose indices are in Y, and use exactly γ chil-
dren of x (including repetitions). In Algorithm 7 we cal-
culate |

⋂

i∈[γ ]

Âi| for each combination (kT , kS , pos, score) 

according to the Inclusion–Exclusion principle and store 
the results in table B , using Eq. 5 as follows.

From the correctness of Algorithm 8 and the correctness 
of Eq. 5, the values in B are correct.

Finally, for each combination of 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS 
and 0 ≤ pos ≤ span(x) , Algorithm 7 returns the minimum 
score ∈ ScoreSet for which B[kT , kS , pos, score] > 0 , mean-
ing that score is the minimum value of the possible deriva-
tions, that is, the desired divergence value to be returned.

 �
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∣
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∣
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∣

∣

∣
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6 That is, given a P-node x, a subset C ⊆ children(x) , a string S′ , bounds on 
the number of deletions from the tree T and the string S′ , dT and dS , respec-
tively, and a set of derivations D , it returns the number of all partial deri-
vations of x(C) to every prefix of S′ for each combination (kT , ks , pos, score) 
having exactly kT deletions from the tree, kS deletions from the string, pos 
leaves with positive sign, whose divergence value is at most score, and that 
use γ children from C (including repetitions).
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Internal P‑node mapping
In this section, we describe Algorithm 8. The input con-
sists of an internal P-node x, a subset C ⊆ children(x) , 
a string S′ , bounds on the number of deletions from the 
tree T and the string S′ , dT and dS , respectively, and a 
set of derivations D (see Eq. 1). The output of the algo-
rithm is the number of all partial derivations of x(C) to 
every prefix of S′ for each combination (kT , ks, pos, score) 
having exactly kT deletions from the tree, kS deletions 
from the string, pos leaves with positive sign, whose 
divergence value is at most score, and that use γ chil-
dren from C (including repetitions). Thus, there are 
O(dT · dS · span(x) · |ScoreSet|) derivations in the 
output.

Algorithm  8 constructs an 8-dimensional DP table P , 
which has an entry for every 1 ≤ i ≤ |children(x)| , y ∈ C , 
s ∈ {+,−} , 1 ≤ j ≤ |S′| , 0 ≤ pos ≤ span(x) , 0 ≤ kT ≤ dT , 
0 ≤ kS ≤ dS , and for every score ∈ ScoreSet . The pur-
pose of an entry P[i, y, s, j, pos, kT , kS , score] is to hold the 
number of all partial derivations rooted in x(C) to a suf-
fix of S′[1 : j] , which use exactly i children from C (not 

necessarily different children), which map y to the suffix 
of S′[1 : j] , with exactly kT deletions from the tree, kS dele-
tions from the string, pos leaves with positive sign in Ty′ 
such that s is the sign of y in the derivation and it is consist-
ent with pos, and whose divergence value is at most score.

Every entry P[i, y, s, j, pos, kT , kS , score] for which i = 1 
is initialized with |D(i,y,s,j,pos,kT ,kS ,score)| , which is the size 
of the set of all partial derivations rooted in Ty to a suffix 
of S′[1 : j] , with exactly kT deletions from the tree, kS dele-
tions from the string, pos leaves with positive sign in Ty′ 
such that s is the sign of y in the derivation and it is consist-
ent with pos, and whose divergence value is at most score.

After the initialization, the remaining entries of P are 
calculated using the recursion rule in Expression 3 ahead. 
The order of computation is ascending with respect to the 
number of children that should be used i, and it is also 
ascending with respect to the number of deletions from 
both tree and string. In addition, the order is ascending 
with respect to the number of positive signed leaves in 
the derivation, and it is also ascending with respect to the 
maximum score of the derivations.
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In Expression 3 we use the notations Ny and Ny,z , 
defined as follows. Let y and z be two nodes where the 
signs of them in Tx′(i) considered to be s and s′ respec-
tively. If s = − then y ∈ Ny and y ∈ Ny,z , and if s′ = − 
then z ∈ Ny,z . If s = + then y /∈ Ny and y /∈ Ny,z , and if 
s′ = + then z /∈ Ny,z . In addition, we use the notation 
D≤(j,Ny, y, kT , kS) instead of D≤(C ,Ny, y, kT , kS) (see 
Definition 22). The two sets are similar except that the 
derivations in D≤(j,Ny, y, kT , kS) are derivations of y to a 
suffixes of S′[1 : j].

In the algorithm, P[i, y, s, j, pos, kT , kS , score] is com-
puted by taking the minimum between the following 
expressions (we will refer the minimum of the three 
expressions as Expression 3): 

1. P[i, y, s, j − 1, pos, kT , kS − 1, score − ρS
del]

 Explanation: For every entry P[i, y, s, j, pos,

kT , kS , score] , j is the end-point of every partial deri-
vation. Thus, S′[j] must be a part of any partial deriva-
tion; so, S′[j] is either deleted or mapped. The former 
option is captured by the first case of the recursion 
rule.

2. 

∑

z ∈ C
s′ ∈ {+,−}

P[i − 1, z, s′, j − span(y)+ µ.delT , pos − µ.pos, kT − µ.delT , kS − µ.delS , score

− µ.score − BPDelta(x, y, z,Ny,z)]

 Explanation: If S′[j] is mapped, then due to the hierar-
chical structure of Tx , it must be mapped under some 
derivation µ′ of one of the children of x that are in C. 
Thus, we receive the second and the third cases of the 
recursion rule. In these cases we take into account 
every z ∈ C to be aligned to the suffix of the deriva-
tion’s subsequence S′[1 : j − span(y)+ µ.delT ].

3. 

 Explanation: The third case captures the option of 
deleting all the nodes between y and z ( Cy,z ), so that 
after the deletion we consider y and z as adjacent in 
Tx(C).

 (3)

∑

z ∈ Cs.t.Cy,z ⊆ C
s′ ∈ {+,−}

P[i − |Cy,z| − 1, z, s′, j − span(y)+µ.delT , pos−µ.pos, kT−µ.delT−span(Cy,z), kS − µ.delS , score

− µ.score − ρT
del · span(Cy,z)− BPDelta2(x, y, z,Ny,z)]

Once the entire DP table is filled, for every combina-
tion of (pos, kT , kS , score) the algorithm returns the num-
ber of all partial derivations of x(C) to every prefix of S′ , 
which is calculated by going over the the values of the DP 
table and now delete the ignored nodes and penalize the 
deletion ( C ′ ⊆ C is the set of children considered to be 
deleted).

Complexity analysis
In this section we analyse the time and space complexi-
ties of the improved algorithm that solves TTSD , Algo-
rithm 4, which uses the improved P-Mapping algorithm. 
First, we analyse Algorithms 8 and 7, which are used as 
sub procedures in Algorithm 4 (instead of Algorithm 5).

Lemma 7.2 The Internal P-Mapping algorithm, Algo-
rithm  8, takes O(2γ γ 4 m2n2d2Td

2
S(dT + dS +m+ n)) 

time and O(γ 2nmdTdS(dT + dS +m+ n)) space.

Proof The most space consuming part of the algo-
rithm is the 8-dimensional DP table. The first dimension, 
1 ≤ i ≤ |children(x)| , is of size O(|children(x)|) = O(γ ) . 
The the second dimention, y, can be any node in 

C, therefore the size of the second dimension is 
O(|C|) = O(|children(x)|) = O(γ ) . The third dimen-
sion, s ∈ {+,−} , is of size 2. The fourth dimension, 
1 ≤ j ≤ |S′| , is of size O(n). The size of the fifth dimen-
sion (i.e. pos), in the worst case (where x is the root), is 
span(x) = m . The size of the sixth and seventh dimen-
sions (i.e. kT and kS ) are dT + 1 and dS + 1 , respec-
tively. The eighth dimension, score, can be any score in 

ScoreSet. For fixed penalty parameters δQord and δQflip , in 
the worst case, we pay the maximum number of possi-
ble break-point (bounded by m+ n ), pay the maximum 
number of deletions from the tree and string dT + dS , 
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and pay for a flip of all nodes in the tree (which yields 
m values). Therefore the size of the eighth dimension is 
O(|ScoreSet|) = O(dT + dS +m+ n) . Hence, the space 
of the algorithm is O(γ 2nmdTdS(dT + dS +m+ n)).

The algorithm has three parts: initialization, fill-
ing the DP table, and returning the derivations. The 
most time consuming calculation required in the ini-
tialization is the calculation of D(y,s,j,pos,kT ,kS ,score) . For 
a given tuple (i, y, s, j, pos, kT , kS , score) it takes O(|D|) 
time to calculate the set D(y,s,j,pos,kT ,kS ,score) (by naively 
going over all derivations in D and checking if they fit 
the values in the tuple); notice that |D| = O(mndTdS) . 
We calculate this set for each combination of 
(i, y, s, j, pos, kT , kS , score) . Thus, the first part of the algo-
rithm takes O(γn2m2d2Td

2
S(dT + dS +m+ n)) . The sec-

ond part of the algorithm is done by calculating the value 
of every entry in the O(γ 2nmdTdS(dT + dS +m+ n)) 
entries of P , using the recursion rule in Expression 3. 
The first line of the rule takes O(1) time, since it involves 
looking in another entry of P and basic computations. 
The second and the third lines of the rule involves 
going over all derivations µ ∈ D≤(j,Ny, y, kT , kS) . 
Namely, going over all derivations of y with a specific 
end-point, that have no more than a specific num-
ber of deletions from the tree and string, and that are 
consistent with N (i.e. µ.e = j , µ.v = y , µ.delT ≤ kT , 
µ.delS ≤ kS and µ.pos ≤ (span(y)− µ.delT )/2 if y ∈ N  
or µ.pos ≥ (span(y)− µ.delT )/2 if y /∈ N  ). The num-
ber of deletions from the tree and string are bounded 
by dT and dS , respectively, and the number of val-
ues of pos is bounded by m. Afterwards, we go over 
z ∈ C , whose number is bounded by γ , and we go 
over s′ ∈ {+,−} . In addition, we use the procedures 
BPDelta and BPDelta2 , which can be calculated in 
O(γ ) time. Thus the second and third lines of the rule 
take O(dTdSmγ 2) . Hence, the time to calculate one 
entry of P is O(dTdSmγ 2) . In total, the second part of 
the algorithm takes O(γ 4nm2d2Td

2
S(dT + dS +m+ n)) 

time. Finally, to construct the returned set of deriva-
tions, we go over every combination kT , kS , pos, score , 
and for every combination, we take the maximum 
over C ′ ⊆ C , y ∈ C , s ∈ {+,−}, 0 ≤ j ≤ |S′| , i.e. 
it takes O(2γ γdTdSmn(dT + dS +m+ n)) time. 
In total, the algorithm takes O(γn2m2d

2
T
d
2
S
(dT+

dS +m+ n))+ O(γ 4nm2d
2
T
d
2
S
(dT + dS +m+ n))

+O(2γ γdTdSmn(dT + dS +m+ n)) = O(2γ γ 4 m2n2

d
2
T
d
2
S
(dT + dS +m+ n)) time.  �

Lemma 7.3 The P-Mapping2 algorithm, Algorithm  7, 
takes O(22γ γ 4m2n2d2Td

2
S(dT + dS +m+ n)) time and 

O(γ 2nmdTdS(dT + dS +m+ n)) space.

Proof The most space consuming part of the algo-
rithm is the 4-dimensional table. The size of the first 
and second dimensions (i.e. kT and kS ) are dT + 1 
and dS + 1 , respectively. The size of the third dimen-
sion (i.e. pos), in the worst case (where x is the root), is 
span(x) = m . The fourth dimension, score, can be any 
score in ScoreSet, therefore the size of the dimension is 
O(|ScoreSet|) = O(dT + dS +m+ n) . In total, the DP 
table B is of size O(dTdSm(dT + dS +m+ n)).

The algorithm has two parts: filling the table, and 
returning the derivations. In the first part of the algorithm, 
we go over every subset of children(x) , Y ⊆ children(x) , 
and for each one we call Algorithm 8. Thus we call Algo-
rithm  8 O(2|children(x)|) = O(2γ ) times. In the second 
part of the algorithm, after the table is full, for every 
0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS , 0 ≤ pos ≤ span(x)− kT  , 
we return the minimum over score ∈ ScoreSet such 
that the value of the corresponding entry of the table is 
positive. Hence, the second part of the algorithm takes 
O(dTdSm(dT + dS +m+ n)) time.

From Lemma 7.2, the Internal P-Mapping algo-
rithm takes O(2γ γ 4 m2n2d2Td

2
S(dT + dS +m+ n)) 

time and O(γ 2nmdTdS(dT + dS +m+ n)) space. 
Thus, in total, our algorithm runs in O(2γ 2γ γ 4

m2n2d
2
T
d
2
S
(dT + dS +m+ n)) = O(22γ γ 4 m2n2d

2
T
d
2
S

(dT + dS +m+ n)) time. Adding to the space 
required for table the space required for the P-Map-
ping2 algorithm results in a total space complexity of 
O(dTdSm(dT + dS +m+ n))+ O(γ 2nmdTdS(dT+

dS +m+ n)) = O(γ 2nmdTdS(dT + dS +m+ n)) . �

Lemma 7.4 The main algorithm, Algorithm  4, 
using the improved P-Mapping algorithm, takes 
O(nγ 2dT

2dS
2m2(mp · 2

2γ γ 2n(dT + dS +m+ n)+mq)) 
time and O(γ 2nm2dTdS(dT + dS +m+ n)) space.

Proof The number of leaves in the PQ-tree T is m, 
hence there are O(m) nodes in the tree, i.e the size of the 
first dimension of the DP table, A , is O(m). The size of 
the second dimension (i.e. pos), in the worst case (where 
x is the root), is span(x) = m . In the algorithm descrip-
tion (“The main algorithm” section) a bound for the pos-
sible start indices of subsequences derived from nodes in 
T is given (for a node x, the start index i runs between 
1 and n− (spanx − dT )+ 1 ). The node with the larg-
est span in T is the root that has a span of m. The root 
is mapped to the longest subsequence when there are 
dS deletions from the string. Hence, the size of the third 
dimension of A is O(n− (m+ dS)+ 1) = O(n) . The 
fourth and the fifth dimensions of A are of size dT + 1 
and dS + 1 , respectively. In total, the DP table A is of size 
O(dTdSm

2n).
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In the initialization step O(dTdSm
2n) entries 

of A are computed. We go over 0 ≤ kS ≤ dS and 
pos ∈ {0, 1} . The most time consuming is the gen-
eration of the set Ix,S,i,kS ,pos , and can be generated in 
O(|children(x)|) = O(γ ) time. Thus the initialization 
takes O(dTdSm

2nγ ) . The improved P-Mapping algo-
rithm is called for every P-node in T and every pos-
sible start index i, i.e. the P-Mapping algorithm 
is called O(nmp) times. Similarly, the Q-Mapping 
algorithm is called O(nmq) times. Thus, it takes 
O(dTdSm

2nγ )+ O(n (mp · Time(P-Mapping)+mq·

Time(Q-Mapping))) time to fill the DP table. In the final 
stage of the algorithm, the minimum over the entries 
corresponding to every combination of ( 0 ≤ kT ≤ dT , 
0 ≤ kS ≤ dS , 1 ≤ i ≤ n− (span(x)− dT )+ 1}, 0 ≤ pos

≤ span(rootT )− kT ) is computed. So, it takes 
O(dTdSnm) time to find a derivation with minimum 
score.

From Lemma 7.3, the P-Mapping2 algorithm 
takes O(22γ γ 4m2n2d2Td

2
S(dT + dS +m+ n)) time 

and O(γ 2nmdTdS(dT + dS +m+ n)) space, and 
from Lemma 6.2, the Q-Mapping algorithm takes 
O(γ 2d2Td

2
S m

2) time and O(γdTdSm) space. Thus, in 
total, our algorithm runs in O(dTdSm

2nγ )+ O(n(mp·

O(22γ γ 4 m2n2d2Td
2
S(dT + dS +m+ n))+mq · O(γ 2d2Td

2
S m

2)))

= O(nγ 2dT
2dS

2 m2(mp · 2
2γ γ 2n(dT + dS +m+ n)+mq)) 

time. Adding to the space required for the main DP table 
the space required for the P-Mapping2 and Q-Map-
ping algorithms, results in a total space complexity of 
O(dTdSm

2n)+ O(γ 2nmdTdS(dT + dS +m+ n))+

O(γdTdSm) = O(γ 2nm2dTdS(dT + dS +m+ n)) .  �

Methods and datasets
Dataset and gene cluster generation
 1487 fully sequenced prokaryotic strains with COG ID 
annotations were downloaded from GenBank (NCBI; 
ver 10/2012). The gene clusters were generated from this 
data using the tool CSBFinder-S [45]. CSBFinder-S was 
applied to all the genomes in the dataset after removing 
their plasmids, using parameters q = 10 (a colinear gene 
cluster is required to appear in at least ten genomes) and 
k = 0 (no insertions are allowed in a colinear gene clus-
ter), resulting in 79,017 colinear gene orders. From these 
gene orders, only gene orders whose number of distinct 
COGs is between 4 and 9 were kept, leaving 28,537 gene 
orders. Next, ignoring strand and gene order informa-
tion, colinear gene orders that contain the exact same 
COGs were united to form the generalized set of 91 gene 
clusters that abide by the requirements that each gene 
cluster contains at least 3 gene orders and each COG 
appears only once in each gene order. For each gene clus-
ter, the most abundant gene order was designated as the 

“reference” (centroid) gene order. Based on this, the clus-
ters were further filtered to keep only 63 gene clusters 
whose designated reference has instances in at least 30 
genomes. Finally, clusters containing one or more gene 
orders that are identical to the designated reference gene 
order, in terms of the list of classes in which they have 
instances, were removed, leaving a benchmark set of 59 
gene clusters.

PQ‑tree construction
 The input PQ-trees for our algorithm where constructed 
using the tool PQFinder (available on GitHub [46]). 
PQFinder was applied to each of the gene clusters in the 
dataset, to build the PQ-tree representing each cluster. In 
addition, each Q-node with exactly two children, whose 
height in the tree is greater than 1, was changed to a 
P-node (in this special case all children of the node were 
observed in all shuffling options, which in our opinion 
better fits the syntax of a P-node than that of a Q-node.)

Parameter settings
 In our experiment, we set the parameters of the algo-
rithm as follows. δQord = 1.5 , δQflip = 0.5 , dT = 0 , dS = 0 . 

The stronger penalty for δQord versus δQflip is based on the 

observation that gene clusters in prokaryotes are very 
strongly colinearly conserved [30, 31], even when the 
benchmark dataset is large and spans a wide taxonomical 
range of prokaryotes [32].

Strand information
 Our approach to the comparison of two gene orders 
focuses on adaptive fitness (in terms of the order by 
which the gene products are produced). Therefore, we 
do not distinguish between two gene orders that appear 
in distinct strands, however are identical in terms of the 
order and direction of their genes (with respect to the 
transcription start site). Furthermore, the tool by which 
the gene orders were identified (CSBfinder [45]) groups 
together instances from distinct strands into the same 
CSB. To this end, for any two gene orders being com-
pared in our benchmarks, we compute the rearrange-
ment distance twice: in the first computation, both gene 
orders preserve the original strand, and in the second 
computation one of the compared gene order is modi-
fied by reversing both the order and the directions of its 
genes.

Results
Evaluation
In this section we evaluate the accuracy of our approach 
in measuring the evolutionary divergence between two 
gene orders that belong to the same gene cluster. To this 
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end, we aim to generate a set of “control” distances, com-
puted from real data, against which the divergence scores 
computed by our tool can be compared and evaluated.

Recall that in our application, each of the input 
sequences does not correspond to a specific genomic 
sequence but rather represents a gene order that occurs 
in multiple genomes. In addition, abundant gene clusters 
typically display several paralogous occurrences of dis-
tinct gene orders, and possibly several paralogous occur-
rences of a specific gene order, within the same genome. 
Furthermore, each distinct occurrence of a specific gene 
order could differ substantially from another occur-
rence of the same gene order in terms of its encoding 
genomic sequence, since each COG represents a clus-
ter of genomic sequences that are not identical however 
are similar enough (possibly based on local sequence 
similarity) to be clustered to the same gene orthology 
group. This poses a challenge in creating a set of “con-
trol” distances by which to evaluate the performance 
of our approach in comparison to extant genome rear-
rangement distances, since the “ground truth” regarding 
the evolutionary distance between two gene orders can 
not be estimated by computing the sequence alignment 
between the underlying genomic sequences.

Thus, we chose to represent each gene order by the 
assemblage of its instances, i.e. the set of genomes in 
which it occurs, and to employ comparative assemblage 
analysis as a “control” measure. Several similarity (or 
overlap) indices based on presence/absence (incidence) 
data have been proposed in the literature [47, 48]. A clas-
sical and widely used index in comparative assemblage 
analysis is the Jaccard index [48]. In our comparative 

evaluation the instance assemblages are used to estimate 
divergence rather than similarity, and therefore we use 
the inverse Jaccard Index as an estimator of the instance 
assemblage based divergence between two gene orders.

Our proposed divergence measure was evaluated, per 
each cluster, as follows: first, we applied our approach 
(Algorithm 1) to measure the structure informed diver-
gence from the cluster’s designated reference (explained 
in “Methods and datasets” section) to each of the other 
gene orders. Then, we calculated the Inverse Jaccard 
based distance from the set of instances of the refer-
ence gene order to the sets of instances of each of the 
other gene orders. In order to tolerate the noise due to 
inter-specie and inter-genus horizontal transfer of gene 
orders, we first converted the assemblages of genomes 
to the assemblages of (taxonomic) classes to which 
these genomes belong. This resulted in two series of 

Table 1 A comparison between our proposed rearrangement 
measure ( Diverge ), signed break‑point distance ( dSBP ) as in 
Definition 8, and the CREx reversals distance ( dreversals ) [28], 
based on their correlation to a taxonomical instance abundance 
measure

Num of 
Q‑nodes

Correlation Diverge dSBP dreversals

0 Pearson 0.767 0.777 0.824

Spearman 0.680 0.673 0.647

1 Pearson 0.883 0.869 0.845

Spearman 0.775 0.753 0.697

2 Pearson 0.927 0.859 0.842

Spearman 0.907 0.845 0.823

Fig. 11 Distributions of Pearson correlations computed between a series of genomic rearrangement scores and the corresponding series 
of instance abundance indexes. A Our proposed rearrangement measure ( Diverge ). B Signed break‑point distance ( dSBP ) as in Definition 8. C 
CREx reversals distance ( dreversals ) [28]. For each measure in A–C, the distribution is computed and shown separately per each gene cluster group, 
as described above: “corr” (Y‑axis) denotes the Pearson correlation, “num of Q‑nodes” denotes the number of Q‑nodes in the PQ‑trees of the gene 
clusters belonging to the specific group
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scores, which were then subjected to the computation 
of Spearman and Pearson correlations between them. 
The same evaluation procedure was then repeated 
twice, once using the signed break-point distance (as in 
Definition 8) instead of our structure-informed diver-
gence measure, and once using the CREx reversal dis-
tance [28].

To this end, the 59 gene clusters were distributed to 
three groups according to the number of Q-nodes in 
their representative PQ-trees, as we consider the num-
ber of Q-nodes in a PQ-tree to be a good estimate of the 
hierarchical complexity of its colinear components. This 
yielded 8 gene clusters whose representative tree has 
no Q-nodes, 41 gene clusters whose representative tree 
has one Q-node, and 10 gene clusters whose representa-
tive tree has two or more Q-nodes. For each group, the 
average Spearman and Pearson correlation scores were 
computed for each of the three compared measures. The 
results are summarized in Table  1. Additional details 
regarding the comparative results per each gene cluster, 
as well as the functional categories of the genes in the 
cluster, are given in Tables 2 and 3. Note that the rows of 
Table  2 are sorted by decreasing value of the difference 
Diverge− dreversals , and the first result from the table is 
interpreted in detail in “A motivating example” section.

Table  1 indicates that, in general, the rearrangement-
based divergence between a reference gene order and 
its target gene orders correlates well with the divergence 
in the taxonomic distribution of their corresponding 
instances, which is a very interesting result on its own, 
supporting our choice of gene order instance assemblage-
based distance as a control measure for our comparative 
analysis.

As expected, in gene clusters where there is very 
weakly conserved structure or none at all, the results 
are comparable to the other measures. However, the 
table shows that as the conserved structure of the gene 
cluster increases, so does our advantage over the signed 
break-point distance and the CREx reversal distance. In 
Fig.  11 we further analyse the affect of the level of col-
inear component co-dependency on the correlation 
results. Interestingly, a Kruskal-Wallis test indicates 
significant difference between the correlations com-
puted for our proposed measure Diverge for the three 
groups of gene clusters ( χ2(2) = 7.537 , P-val= 0.023 ), 
while such is not the for the other compared meas-
ures, dSBP ( χ2(2) = 2.599 , P-val= 0.273 ) and dreversals 
( χ2(2) = 0.981 , P-val= 0.612).

Our implementation of the first algorithm took 0.72 s 
to complete the analysis of the full dataset when run 
on a laptop with an Intel(R) Core(TM) i7-8550U CPU 
(1.99 GHz) using 8 GB RAM. Our implementation of 

the second algorithm took 5.4 min to complete the same 
analysis on the same laptop.

Conclusions
In this paper, we defined two (genome rearrangement-
based) problems in comparative genomics, denoted 
TTSD ( TreeToString Divergence ) and CTTSD 
( Constrained TTSD ), where the second problem is a spe-
cial case of the first one. Both problems take as input two 
sequences of genes S1 and S2 , a PQ-tree T representing 
the known gene orders of a gene cluster of interest, with 
its leaves ordered according to sequence S1 . TTSD also 
takes as input integer arguments dT and dS (we assume 
that in CTTSD , dT = dS = 0 ). The objective is to reorder 
T as a subsequence S′2 of S2 , allowing up to dT deletions 
of leaves from T, and such that S′2 is obtained from S2 by 
using up to dS deletions from S2 , while calculating a cor-
responding score that serves as the objective divergence 
measure.

We proposed an algorithm that solves CTTSD in 
O∗(1.381γ ) time and O∗(1) space. The parameter γ is the 
maximum degree of a P-node in T and O∗ is used to hide 
polynomial factors in the input size. In the special case 
where the jump penalty is set to 0, the time complexity of 
our proposed algorithm is O∗(1) . In addition, we proposed 
a parameterized algorithm that solves TTSD in O∗(5γ ) 
time and O∗(5γ ) space. Lastly, we proposed a parameter-
ized algorithm that solves a variant of TTSD , where the 
jump penalty is set to 0, that reduces the space complexity 
of the prior algorithm, using the inclusion–exclusion prin-
ciple. The algorithm take O∗(4γ ) time and O∗(1) space.

The proposed general algorithm was implemented as a 
software tool and applied to the comparative and evolu-
tionary analysis of 59 chromosomal gene clusters extracted 
from a dataset of 1487 prokaryotic genomes. Our prelimi-
nary results, based on the analysis of the 59 gene clusters, 
indicate that our proposed measure correlates well with an 
instance-abundance index that is computed by compar-
ing the class composition of the genomic instances of two 
compared gene orders. Comparative analysis versus two 
extant methods (using very preliminary and simple scoring 
parameter values for our proposed engine) yields equiva-
lent results in terms of the average correlations to the 
instance-abundance index values obtained for the bench-
mark dataset. In future work we propose to assemble a 
large dataset of prokaryotic gene clusters (large enough to 
train a more sophisticated scoring scheme model) and use 
it to train our scoring scheme parameters.

Our proposed measure, however, is shown to more 
sensitively capture and utilize the conserved structural 
information characterizing a gene cluster: The statisti-
cal test we conducted indicates that as the structural 
information of a gene cluster, as encoded by its PQ-tree, 



Page 33 of 37Ozeri et al. Algorithms for Molecular Biology           (2023) 18:17  

increases - our proposed measure significantly improves 
in terms of computing rearrangement scenarios between 
gene orders belonging to the cluster. This, as opposed to 
the other two extant measures tested the experiment.

One of the downsides of using PQ-trees to represent 
gene clusters is that very rare gene orders taken into 
account in the tree construction could greatly increase 
the number of allowed rearrangements and thus sub-
stantially lower the specificity of the PQ-tree. Thus, a 
natural continuation of our research would be to increase 
the specificity of the model by considering a stochastic 
variation of the algorithms presented in this paper, or 

alternatively to identify and exclude gene order outliers 
during PQ-tree construction. In addition, future exten-
sions of this work could also aim to increase the sensitiv-
ity of the model by taking into account gene duplications 
(or at least tandem duplications) and gene-fusion events, 
which are typical events in gene cluster evolution.

Appendix
See Tables 2, 3, 4.

Table 2 59 gene clusters analyzed in our experiment

# Gene cluster ID Diverge dSBP dreversals Size PQ‑tree

1 19876 1.000 0.655 0.500 3 ((0− [1− 2− 3−]) 4+)

2 21344 0.905 0.615 0.439 4 ([0− 1−] [2+ 3+])

3 19877 0.997 0.915 0.592 3 ([0+ 1+ 2+] 3+)

4 27180 0.828 0.828 0.436 3 ([0− 1− 2−] 3+)

5 14602 0.978 0.985 0.654 4 (0− [1− 2− 3− 4−])

6 23340 0.974 0.809 0.684 3 (0− (1+ [2+ 3+]))

7 19853 0.967 0.825 0.703 3 (0− ([1+ 2+ 3+] 4+))

8 14790 0.994 0.994 0.808 3 ([0− 1− 2− 3−] 4− 5−)

9 26244 0.971 0.996 0.817 3 (0− [1− 2− 3−])

10 26243 0.903 0.909 0.757 4 (([0− 1−] 2−) 3−)

11 26476 0.925 0.998 0.791 3 (0+ [1+ 2+ 3+])

12 15297 0.991 0.945 0.866 3 (0− ([1− 2−] [3− 4+]))

13 22866 0.845 0.600 0.722 5 ([0+ 1+] [2+ 3+])

14 26238 0.785 0.807 0.663 7 ([0− 1−] 2− 3−)

15 18995 0.770 0.621 0.681 9 ((0+ [1+ 2+]) 3+)

16 28119 0.559 0.559 0.478 5 (0− 1− 2− 3−)

17 25371 0.983 0.942 0.907 4 (0− ([1− 2−] 3−))

18 26231 0.974 0.802 0.909 4 ((0+ [1+ 2+]) 3+)

19 14796 0.760 0.686 0.700 9 (0− 1− [2− 3−] 4−)

20 20007 0.999 0.999 0.960 3 (0− 1− 2− [3− 4−])

21 22299 0.929 0.929 0.891 3 (0− 1− 2− 3−)

22 19255 0.948 0.940 0.918 5 ([0− 1−] [2− 3−] 4−)

23 20764 0.880 0.987 0.852 3 ([0+ 1+ 2+] 3+)

24 21553 0.982 0.982 0.961 3 (0− [1− 2−] 3− 4−)

25 27851 1.000 1.000 0.982 3 (0+ [1+ 2+] 3+)

26 27427 0.866 0.866 0.866 3 (0+ [1+ 2+ 3+])

27 15467 1.000 1.000 1.000 3 ([0− 1− 2− 3−] 4− 5−)

28 19610 0.998 0.998 0.998 3 (0− ([1− 2−] 3− 4−))

29 20078 0.982 0.945 0.982 3 (0+ (1+ [2+ 3+]))

30 22181 0.912 0.940 0.912 3 (([0+ 1+] 2+) 3+)

31 25612 0.997 0.888 0.997 4 ([0− 1−] [2− 3−])

32 27177 0.945 0.945 0.945 3 (0− [1+ 2+ 3+])

33 8962 0.933 0.933 0.933 3 (0− 1− [2− 3− 4− 5− 6−])

34 27530 0.999 0.974 0.999 3 [[0− 1−] 2− 3−]

35 19256 0.779 0.737 0.798 8 (0− 1− 2− 3−)

36 21317 0.974 0.974 0.995 3 (0+ 1+ [2+ 3+ 4+])
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Table 2 (continued)

# Gene cluster ID Diverge dSBP dreversals Size PQ‑tree

37 19852 0.890 0.821 0.919 6 (0− [1− 2−] 3−)

38 27250 0.967 0.967 0.997 3 ([0+ 1+] [2+ 3+])

39 30976 0.963 1.000 0.996 3 [0− 1+ [2+ 3+]]

40 28245 0.715 0.715 0.775 3 (0− 1− 2− 3−)

41 26257 0.933 0.988 0.999 3 ((0+ [1+ 2+]) 3+)

42 14839 0.860 0.912 0.928 8 ([0− 1−] 2− 3− 4−)

43 27207 0.748 0.749 0.824 7 (0− [1− 2−] 3+)

44 12685 0.917 0.917 0.994 3 ([0− 1− 2−] 3− 4− 5−)

45 21268 0.876 0.876 0.956 4 ([0+ 1+] [2+ 3+])

46 23083 0.832 0.916 0.912 5 (([0− 1−] 2−) 3−)

47 25597 0.810 0.817 0.892 5 (0+ [1+ 2+] 3+)

48 19005 0.902 0.997 0.997 3 ((0+ 1+ 2+) 3+)

49 15035 0.623 0.671 0.732 4 ((0+ ([1+ 2+] 3+)) 4+)

50 28547 0.828 0.828 0.961 7 (0− 1− 2− 3−)

51 25375 0.866 0.866 1.000 3 ([0− 1−] 2− 3−)

52 20332 0.860 0.860 0.997 5 (0+ 1+ [2+ 3+])

53 26364 0.839 0.869 0.988 5 (0+ 1+ 2+ 3+)

54 19909 0.818 0.818 0.968 6 (0− [1− 2−] 3−)

55 20601 0.586 0.586 0.756 5 (0− 1− 2− 3−)

56 15391 0.784 0.784 0.999 3 (0− (1− [2− 3− [4− 5−]]))

57 14573 0.501 0.501 0.722 4 (0− 1− (2− [3− 4−]) 5−)

58 25554 0.721 0.971 0.971 3 (([0+ 1+] 2+) 3+)

59 19526 0.543 0.471 0.814 4 ((0− [1− 2−]) 3−)

For each gene cluster (row in the table) we report the Pearson correlation versus the corresponding instance-abundance measure for each of the three genome 
rearrangement measures compared in our experiment: our proposed measure ( Diverge ), signed break-point distance ( dSBP ) as in Definition 8 and CREx reversals 
distance ( dreversals ) [28]. The column denoted “Size” gives the number of genes in the gene cluster, and the column denoted “PQ-tree” gives the corresponding PQ-tree 
representing the gene cluster. The functional category annotations for each cluster are given in Tables 3 and 4

Table 3 The functional categories for the gene clusters described in Tables 2, based on their COG annotations

# Gene Cluster ID Functional category

1 19876 Carbohydrate transport and metabolism—transcription

2 21344 Signal transduction mechanisms—cell wall/membrane/envelope biogenesis—defense mechanisms

3 19877 Carbohydrate transport and metabolism—general function prediction only

4 27180 Carbohydrate transport and metabolism—transcription

5 14602 Inorganic ion transport and metabolism

6 23340 Transcription—inorganic ion transport and metabolism

7 19853 Transcription—carbohydrate transport and metabolism

8 14790 Amino acid transport and metabolism—lipid transport and metabolism

9 26244 Carbohydrate transport and metabolism

10 26243 Carbohydrate transport and metabolism—transcription

11 26476 Inorganic ion transport and metabolism

12 15297 Energy production and conversion—coenzyme transport and metabolism

13 22866 Signal transduction mechanisms—cell wall/membrane/envelope biogenesis

14 26238 Carbohydrate transport and metabolism—transcription

15 18995 Carbohydrate transport and metabolism—transcription

16 28119 Carbohydrate transport and metabolism

17 25371 Coenzyme transport and metabolism—amino acid transport and metabolism

18 26231 Carbohydrate transport and metabolism
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The first 47 gene clusters (out of 59), this table is continued in Table 4

# Gene Cluster ID Functional category

19 14796 Amino acid transport and metabolism

20 20007 Amino acid transport and metabolism

21 22299 Lipid transport and metabolism

22 19255 Posttranslational modification, protein turnover, chaperones—amino acid transport and metabolism

23 20764 Carbohydrate transport and metabolism

24 21553 Carbohydrate transport and metabolism

25 27851 Cell wall/membrane/envelope biogenesis—inorganic ion transport and metabolism

26 27427 Transcription—inorganic ion transport and metabolism

27 15467 Energy production and conversion

28 19610 Lipid transport and metabolism—general function prediction only

29 20078 Cell wall/membrane/envelope biogenesis—general function prediction only

30 22181 Energy production and conversion—posttranslational modification, protein turnover, chaperones

31 25612 Amino acid transport and metabolism

32 27177 Carbohydrate transport and metabolism

33 8962 Signal transduction mechanisms—inorganic ion transport and metabolism

34 27530 Energy production and conversion—transcription

35 19256 Amino acid transport and metabolism

36 21317 General function prediction only—posttranslational modification, protein turnover, chaperones

37 19852 Carbohydrate transport and metabolism

38 27250 Energy production and conversion

39 30976 Transcription—cell wall/membrane/envelope biogenesis —secondary metabolites biosynthesis, 
transport and catabolism

40 28245 Coenzyme transport and metabolism—carbohydrate transport and metabolism

41 26257 Carbohydrate transport and metabolism

42 14839 Amino acid transport and metabolism

43 27207 Cell wall/membrane/envelope biogenesis—defense mechanisms—transcription

44 12685 Posttranslational modification, protein turnover, chaperones—general function prediction only

45 21268 Defense mechanisms—signal transduction mechanisms

46 23083 Carbohydrate transport and metabolism—general function prediction only

47 25597 Amino acid transport and metabolism—posttranslational modification, protein turnover, chaperones

Table 3 (continued)

Table 4 The functional categories for the gene clusters described in Table 2, based on their COG annotations

The last 12 gene clusters (out of 59), this table continues Table 3

# Gene cluster ID Functional Category

48 19005 Carbohydrate transport and metabolism

49 15035 Cell motility

50 28547 Cell wall/membrane/envelope biogenesis

51 25375 Coenzyme transport and metabolism

52 20332 Amino acid transport and metabolism—energy production and conversion

53 26364 Inorganic ion transport and metabolism

54 19909 Amino acid transport and metabolism

55 20601 Inorganic ion transport and metabolism—coenzyme transport and metabolism

56 15391 Amino acid transport and metabolism

57 14573 Transcription—carbohydrate transport and metabolism

58 25554 Amino acid transport and metabolism

59 19526 Cell motility
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