
Schaller et al.
Algorithms for Molecular Biology (2023) 18:16
https://doi.org/10.1186/s13015-023-00240-4

RESEARCH

Relative timing information and orthology
in evolutionary scenarios
David Schaller1, Tom Hartmann1, Manuel Lafond3, Peter F. Stadler1,5,6,7,8,9, Nicolas Wieseke4 and Marc Hellmuth2*

Abstract

Background Evolutionary scenarios describing the evolution of a family of genes within a collection of species
comprise the mapping of the vertices of a gene tree T to vertices and edges of a species tree S. The relative timing
of the last common ancestors of two extant genes (leaves of T) and the last common ancestors of the two species
(leaves of S) in which they reside is indicative of horizontal gene transfers (HGT) and ancient duplications. Orthologous
gene pairs, on the other hand, require that their last common ancestors coincides with a corresponding speciation
event. The relative timing information of gene and species divergences is captured by three colored graphs that have
the extant genes as vertices and the species in which the genes are found as vertex colors: the equal-divergence-time
(EDT) graph, the later-divergence-time (LDT) graph and the prior-divergence-time (PDT) graph, which together form
an edge partition of the complete graph.

Results Here we give a complete characterization in terms of informative and forbidden triples that can be read
off the three graphs and provide a polynomial time algorithm for constructing an evolutionary scenario that explains
the graphs, provided such a scenario exists. While both LDT and PDT graphs are cographs, this is not true for the EDT
graph in general. We show that every EDT graph is perfect. While the information about LDT and PDT graphs is nec-
essary to recognize EDT graphs in polynomial-time for general scenarios, this extra information can be dropped
in the HGT-free case. However, recognition of EDT graphs without knowledge of putative LDT and PDT graphs is NP-
complete for general scenarios. In contrast, PDT graphs can be recognized in polynomial-time. We finally connect
the EDT graph to the alternative definitions of orthology that have been proposed for scenarios with horizontal gene
transfer. With one exception, the corresponding graphs are shown to be colored cographs.

Keywords Gene tree, Species tree, Cograph, Perfect graph, Orthology, Xenology, Horizontal gene transfer,
Informative and forbidden triples, Relative timing, NP-hardness

Open Access

© Crown 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/
publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

*Correspondence:
Marc Hellmuth
marc.hellmuth@math.su.se
1 Bioinformatics Group, Department of Computer Science,
and Interdisciplinary Center for Bioinformatics, Universität Leipzig,
Härtelstraße 16-18, Leipzig 04107, Germany
2 Department of Mathematics, Faculty of Science, Stockholm University,
Stockholm 10691, Sweden
3 Department of Computer Science, Université de Sherbrooke, 2500 boul.
de l’Université, Sherbrooke J1K 2R1, Canada
4 Swarm Intelligence and Complex Systems Group, Faculty
of Mathematics and Computer Science, Leipzig University, Augustusplatz
10, Leipzig 04109, Germany

5 Competence Center for Scalable Data Services and Solutions Dresden/
Leipzig, Interdisciplinary Center for Bioinformatics, German Centre
for Integrative Biodiversity Research (iDiv), and Leipzig Research
Center for Civilization Diseases, Universität Leipzig, Augustusplatz 12,
Leipzig 04107, Germany
6 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22,
Leipzig 04109, Germany
7 Department of Theoretical Chemistry, University of Vienna, Währinger
Straße 17, Vienna 1090, Austria
8 Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá,
Ciudad Universitaria, Bogotá 111321, DC, Colombia
9 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe NM87501, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00240-4&domain=pdf

Page 2 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

Introduction
An evolutionary scenario describes the history of a gene
family relative to the phylogeny of a set of species. For-
mally, it comprises a mapping µ of the gene tree T into
the species tree S, usually called the reconciliation of S
and T. The conceptual relevance of scenarios in evolu-
tionary biology derives from the fact that they define
key relationships between genes, in particular orthol-
ogy, paralogy, and xenology [1]. On the practical side,
scenarios also imply relations on the set of genes that
can be inferred directly from sequence similarity data,
such as the best match relation [2, 3] or the later diver-
gence time (LDT) relation [4], which is closely related to
the inference of horizontal gene transfer (HGT) events.

In the absence of horizontal transfer, orthology is
characterized by the fact that the last common ancestor
of two genes x and y is exactly the speciation event that
separated the two species σ(x) and σ(y) in which x and
y, resp., reside [1]. A necessary condition for orthology,
therefore, is that the last common ancestor of the genes
x and y and the last common ancestor of the species
σ(x) and σ(y) have the same evolutionary age. Whether
or not x, y and σ(x), σ(y) have equal divergence time
(EDT) can be decided (at least at some level of accu-
racy) directly from sequence data. The graph G= whose
vertices are the genes and whose edges are the pairs of
genes with equal divergence time of x, y and σ(x), σ(y)
thus is an empirically accessible datum. By construc-
tion, furthermore, the EDT graph contains the orthol-
ogy graph as a subgraph.

The LDT and EDT relations can be complemented with
a “prior divergence time” relation (PDT). Together, the
EDT, LDT and PDT relations then define a 3-partition G
of the edge set of a complete graph with the genes as ver-
tices. Since the EDT relation has some connection with
orthology and the LDT relation with xenology, it seems
intuitive that the PDT relation might be connected with
paralogy. However, for none of the three relations this
connection is strict in the sense that it would enforce a
particular type of evolutionary event at the correspond-
ing last common ancestor. Figure 1 shows examples of
evolutionary scenarios with genes in EDT relation (top
row), LDT relation (middle row) and PDT relation (bot-
tom row) with the corresponding last common ancestor
being any of the event types speciation, HGT, and dupli-
cation. The EDT, LDT, and PDT relations are therefore
distinct from the orthology, xenology, and paralogy rela-
tions considered in [5]. Nevertheless, the relative timing
information from the last common ancestors of pairs of
extant genes can be used to construct the topologies of
the underlying gene and species tree as well as a recon-
ciliation between them. The reconciliation then deter-
mines the orthology, xenology, and paralogy relations.

The reconciliation, however, is in general not uniquely
determined by the 3-partition G.

We show here that a collection of informative and for-
bidden triples defined by G are the key criteria to deter-
mine whether or not G derives from a scenario S . While
both LDT and PDT graphs are cographs, this is not
always the case for the EDT graph. We shall see, how-
ever, that it is a cograph if both T and S are binary (fully
resolved) trees. In Section “Explanation of G by Relaxed
Scenarios” we derive a quartic time algorithm for the
recognition of edge-tripartitions that derive from a cor-
responding scenario. This construction is then used to
give a triple-based characterization. We then show that
the existence of an explaining scenario is sufficient to
guarantee that G can also be explained by scenarios with
several additional desirable properties. Importantly,
these restricted scenarios have properties that are often
assumed for valid reconciliations of T and S in the litera-
ture. For instance, it is possible to choose the scenarios
such that each event (inner node of T) has at least one
purely vertical descendant; this is the case for all scenar-
ios in Fig. 1. In Section “Orthology and Quasi-Orthol-
ogy”, EDT graphs are connected with several competing
notions of “orthology” proposed by different authors [1,
6–8].

Notation
Graphs We consider undirected simple graphs G = (V ,E)
with vertex set V (G):=V and edge set E(G):=E . We
write G ⊆ H if G = (V ,E) is a subgraph of H = (V ′,E′) ,
i.e., if V ⊆ V ′ and E ⊆ E′ . The subgraph of G that is
induced by the subset X ⊆ V will be denoted by G[X].
A connected component C of G is an inclusion-maximal
subset C ⊆ V such that G[C] is connected. The comple-
ment of a graph G = (V ,E) is the graph G = (V ,E) with
vertex set V and an edge xy ∈ E for x = y precisely if
xy /∈ E . We denote by Kn the graph on n vertices in which
every possible edge is present, hereafter called a com-
plete graph. A graph property � is a subset of the set of all
graphs. A graph property � is closed under complementa-
tion if G ∈ � implies G ∈ �.

Rooted trees Trees are connected and acyclic graphs.
All trees in this contribution have a distinguished
vertex ρ , called the root of the tree. For two vertices
x, y ∈ V (T) , we write y �T x if x lies on the unique path
from the root to y, in which case x is called an ances-
tor of y, and y is called a descendant of x. If, in addi-
tion, x and y are adjacent in T, then x is the parent of
y (denoted by par T (y)), and y is a child of x. The set of
children of x is denoted by child T (x) . We write edges
e = xy indicating that y �T x . It will be convenient to
extend the relation �T to the union V (T) ∪ E(T) as fol-
lows: For a vertex x ∈ V (T) and an edge e = uv ∈ E(T) ,

Page 3 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

we set x �T e if and only if x �T v ; and e �T x if and
only if u �T x . In addition, for edges e = uv and f = ab
in T, we put e �T f if and only if v �T b (note that under
this definition, uv �T uv). For x, y ∈ V (T) ∪ E(T) , we
may also write x �T y instead of y �T x . We use y ≺T x
for y �T x and x = y . Moreover, we say that x and y
are comparable if y �T x or x �T y holds and, other-
wise, x and y are incomparable. Note that �T is a par-
tial order with a unique maximal element ρ . The leaves
L = L(T) ⊆ V (T) of T are precisely the �T-minimal
elements.

From here on, we assume that the root ρ as well as
every non-leaf vertex of a tree have always at least two
children. Moreover, we write T(u) for the subtree of T

rooted at u, i.e, the tree that is induced by u and all its
descendants.

For a set of leaves A ⊆ L , we write lca T (A) for the last
common ancestor of A, i.e., the unique �T-minimal vertex
in V(T) such that x � lca T (A) for all x ∈ A . For simplic-
ity, we write lca T (x, y) instead of lca T ({x, y}) . The restric-
tion of T to a subset L′ ⊆ L , in symbols T|L′ , is obtained
from the minimal subtree of T that connects all leaves
in L′ by suppressing all vertices with degree two except
possibly the root ρT|L′

 . We often write T|x1...xk instead of
T|{x1,...,xk } . A tree T displays a tree T ′ with L(T ′) ⊆ L(T) if
T ′ is isomorphic to T|L(T ′).

Planted trees In order to accommodate evolutionary
events pre-dating ρ:= lca (L) , we consider planted trees,

Fig. 1 Examples of evolutionary scenarios depicted as gene trees (black inline trees) embedded into species trees (gray outline trees). In all
cases, the ancestral gene lca T (x , y) of x and y is highlighted as white circle while the corresponding species lca S(σ (x), σ(y)) is highlighted
as dashed line. Top row: scenario with x and y in EDT relation, i.e., the ancestral gene lca T (x , y) diverged concurrently with the corresponding
species lca S(σ (x), σ(y)) . The evolutionary event at lca T (x , y) is either a speciation (left), a horizontal gene transfer (center), or a duplication (right).
Middle row: scenario with x and y in LDT relation, i.e., the ancestral gene lca T (x , y) diverged after the corresponding species lca S(σ (x), σ(y)) .
The evolutionary event at lca T (x , y) is either a horizontal gene transfer (left), a speciation (center), or a duplication (right). Bottom row: scenario
with x and y in PDT relation, i.e., the ancestral gene lca T (x , y) diverged before the corresponding species lca S(σ (x), σ(y)) . The evolutionary event
at lca T (x , y) is either a duplication (left), a speciation (center), or a horizontal gene transfer (right)

Page 4 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

i.e., we assume an additional planted root 0T with degree
1 that is the parent of the “root” ρ . The inner vertices of T
are V 0(T):=V (T)\(L(T) ∪ {0T }) . In particular, a planted
tree T always displays the rooted tree T|L(T) obtained by
removing 0T and its incident edge 0Tρ.

Remark Unless explicitly stated otherwise, the trees
that appear in this contribution are planted phylogenetic
trees, i.e., 0T is the only vertex with exactly one child.
All other vertices are either leaves or have at least two
children.

Triples and fan triples A (rooted) triple is a
binary rooted tree on three vertices. We denote
by xy|z the rooted triple t with leaf set {x, y, z} and
lca t(x, y) ≺T lca t(x, z) = lca t(y, z) . A tree T displays
xy|z if lca T (x, y) ≺T lca T (x, z) = lca T (y, z) . A fan triple
x|y|z on leaves x, y, z is the tree (x, y, z). A tree T displays
the fan triple x|y|z if lca T (x, y) = lca T (x, z) = lca T (y, z).

As usual, we say that a set R of triples is consistent if
there is a tree T that displays all of the triples in R . If
(R,F) is a pair of two triple sets, we say that (R,F) is
consistent if there is a tree T that displays all of the triples
in R but none of the triples in F . In this case, we say that
T agrees with (R,F) . We will frequently make use of the
following simple observation that collects the structures
of the subtree T|L′∪L′′ on |L′ ∪ L′′| = 4 leaves implied by
two subtrees T|L′ and T|L′′ on three leaves (triples) sharing
|L′ ∩ L′′| = 2 common leaves. The statements are closely
related to the so-called “inference rules” for rooted tri-
ples, see in particular [9, 10]. We leave the elementary
proofs to the interested reader. We use Newick notation
for rooted trees, i.e., inner vertices correspond to match-
ing parentheses, leaves are given by their labels, and com-
mas are used to separate sibling to increase readability.
For example, the triple ab|c is equivalently represented as
((a, b), c).

Observation 1 Let T be a tree and a, b, c, d ∈ L(T) be
pairwise distinct leaves. Suppose T displays ab|c .

(i) If T displays cd|a , then T|abcd = ((a, b), (c, d)).
(ii) If T displays ac|d , then T|abcd = (((a, b), c), d).
(iii) If T displays ad|c , then T displays bd|c and T|abcd

is one of the trees (((a, d), b), c), (((b, d), a), c),
(((a, b), d), c), or ((a, b, d), c).

(iv) If T displays ab|d , then T|abcd is one of the
trees (((a, b), c), d), (((a, b), d), c), ((a, b), c, d), or
((a, b), (c, d)).

(v) If T|bcd = (b, c, d) , then T|abcd = ((a, b), c, d).

Suppose that T does not display any of the triples on
{a, b, c} , i.e., T|abc = (a, b, c) .

 (vi) If T|bcd = (b, c, d) , then T|abcd = (a, b, c, d) or
T|abcd = ((a, d), b, c).

We will make use of Obs. 1 throughout the subse-
quent proofs without explicit reference.

Cographs The join of two graphs G = (V ,E) and
H = (W , F) with disjoint vertex sets V ∩W = ∅
is the graph G▽H with vertex set and edge
set . Similarly, their disjoint
union has vertex set and edge set
. Cographs are recursively defined as the graphs that
either are K1 s or can be obtained from the join or dis-
joint union of two cographs. Cographs have been stud-
ied extensively. We summarize some basic results in the
next proposition.

Proposition 1 [11] Given an undirected graph G, the
following statements are equivalent:

1. G is a cograph.
2. G is explained by a cotree (T, t), i.e., a rooted tree T

with L(T) = V (G) and t : V 0(T) → {0, 1} such that
xy ∈ E(G) precisely if t(lca T (x, y)) = 1.

3. The complement graph G of G is a cograph.
4. G does not contain a P4 , i.e., a path on four vertices,

as an induced subgraph.
5. Every induced subgraph H of G is a cograph.

Equal divergence time graphs
Evolutionary scenarios
The vertices in phylogenetic trees designate evolution-
ary events such as speciations, gene duplications, or
horizontal gene transfers. Conceptually, any such event
x is associated with a specific point in time τT (x).

Definition 1 Let T be a rooted or planted tree. Then
τT : V (T) → R is a time map for T if x ≺T y implies
τT (x) < τT (y) . The tuple (T , τT) is called dated tree.

Definition 1 ensures that the ancestor relation x ≺T y
and the timing of the vertices are not in conflict. It also
pertains to arbitrary rooted trees since these can be
seen as restrictions of planted trees to V \ {0T } . Note
that for an edge uv of T, the convention that uv implies
v ≺T u , also implies τT (v) < τT (u) . Below we will make
use of the fact that time maps are easily constructed for
rooted trees:

Lemma 1 [4, Lemma 1] Given a tree T (planted or not),
a time map τT for T satisfying τT (x) = τ0(x) with arbi-
trary choices of τ0(x) for all x ∈ L(T) can be constructed
in linear time.

Page 5 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

It is usually difficult and often impossible to obtain reli-
able, accurate “time stamps” τT (x) for evolutionary rel-
evant events [12, 13]. Although the time map τT turns
out to be a convenient formal tool, we will never need to
make use of the absolute values of τT (x) . Instead, we will
only need relative timing information, i.e., it will be suffi-
cient to know whether an event pre-dates, post-dates, or
is concurrent with another one. This information is often
much easier to extract [14, 15]. For the sake of concrete-
ness, one may imagine that τ0(x) = 0 for all x ∈ L(T) ,
although this is not a requirement.

Definition 2 A relaxed scenario S = (T , S, σ ,µ, τT , τS)
consists of a dated gene tree (T , τT) , a dated species tree
(S, τS) , a leaf coloring σ : L(T) → M with M ⊆ L(S) , and
a reconciliation map µ : V (T) → V (S) ∪ E(S) such that

 (S0) µ(x) = 0S if and only if x = 0T .
 (S1) µ(x) ∈ L(S) if and only if x ∈ L(T) and, in par-

ticular, µ(x) = σ(x) in this case.
 (S2) If µ(x) ∈ V (S) , then τS(µ(x)) = τT (x).
 (S3) If µ(x) = uv ∈ E(S) , then τS(v) < τT (x) < τS(u).

The axioms (S2) and (S3) specify time consistency.
Note that we impose no (direct) restrictions on ances-
trality relationships, hence the relaxed nature of our
scenarios. In particular, for vertices x, y ∈ V (T) , it is
possible that x is a descendant of y, but that µ(x) is not
a descendant of µ(y) . This may occur if µ(x) and µ(y)
are incomparable because of the presence of horizontal
gene transfers on the path from y to x. This contrasts
with traditional reconciliation models that only sup-
port gene duplications and forbid this type of map.
By minimizing the amount of constraints imposed on
the model, we aim to characterize the broadest class
of divergence time patterns that could be explained
in some way. Conversely, this means that divergence
times that cannot be explained by our scenarios can be
deemed erroneous with more confidence, as they can-
not even meet a relaxed set of requirements. In the later
sections, however, we focus on more restrictive sce-
narios. As we shall see, relaxed scenarios allow “unob-
servable” transfers, for which the ancestral gene in the
origin species has no direct extant descendants (in the
sense that they were not transmitted by any transfer).
We will study restricted scenarios in which such unob-
servable transfers are forbidden, and then later on we
look at scenarios in which transfers are entirely for-
bidden. The scenarios considered in [16] as well as the
H-trees [17] admit the assignment of unique event type

(duplication, speciation, etc.) to a vertex x in the gene
tree T depending on its reconciliation and the recon-
ciliation of its children. This is not the case in relaxed
scenarios. Here a vertex in T may simultaneously rep-
resent multiple event types. For example a “speciation”
vertex with µ(x) ∈ V (S) may still have multiple direct
descendants in the same lineage, hence sharing prop-
erties of of a duplication. We first consider a few sim-
ple properties of reconciliation maps. In fact, these are
well-known properties for more restrictive definitions
of reconciliation.

Lemma 2 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario. If v,w ∈ V (T) such that v �T w and
µ(v) = µ(w) ∈ V 0(S) , then v = w.

Proof Set U :=µ(v) = µ(w) ∈ V 0(S) . Then τT (w) =

τT (v) = τS(U) . However, if v �T w and v = w , i.e.,
v ≺T w , then τT (v) < τT (w) by Def. 1; a contradiction. �

Lemma 3 If S = (T , S, σ ,µ, τT , τS) is a relaxed scenario
then x �T y implies µ(x) ≻S µ(y) for all x, y ∈ V (T).

Proof If x = y , then there is nothing to show. Oth-
erwise, x ≺T y and Def. 1 implies that τT (x) < τT (y) . If
µ(x) ∈ V (S) set u:=µ(x) , otherwise let u be the lower
delimiting vertex of the edge µ(x) ∈ E(S) . Similarly, set
v:=µ(y) if µ(y) ∈ V (S) , otherwise choose v as the upper
delimiting vertex of the edge µ(y) ∈ E(S) . By time con-
sistency, we have τS(u) ≤ τT (x) and τT (y) ≤ τS(v) .
Together with τT (x) < τT (y) , this yields τS(u) < τS(v) .
Now assume, for contradiction, that µ(x) ≻S µ(y) .
One easily verifies that this implies v �S u and thus
τS(v) ≤ τS(u) ; a contradiction. �

Definition 3 The HGT-labeling of a relaxed scenario S
is the map � : E(T) → {0, 1} such that �(uv) = 1 if and
only if µ(u) and µ(v) are incomparable in S.

We call an edge e ∈ E(T) with �(e) = 1 an HGT edge.

Definition 4 For a relaxed scenario
S = (T , S, σ ,µ, τT , τS) , we define the equal-divergence-
time (EDT) graph (G=(S), σ) , the later-divergence-time
(LDT) graph (G<(S), σ) and the prior-divergence-time
(PDT) graph (G>(S), σ) as follows: all graphs have as
vertex set L(T) and are equipped with vertex coloring
σ : L(T) → L(S) . However, they differ in their edge sets
defined as

Page 6 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

Moreover, we write G(S) = (G<(S),G=
(S),G>(S), σ).

A vertex-colored graph (G, σ) is an equal-diver-
gence-time (EDT) graph, if there is a relaxed scenario
S = (T , S, σ ,µ, τT , τS) such that G = G=(S) . In this
case, we say that S explains (G, σ) . By construction,
the edge sets of G=(S) , G<(S) , and G>(S) are pairwise
disjoint and their union is the edge set of the complete
graph on L(T). This motivates the definition of the fol-
lowing tuple of vertex-colored graphs.

Definition 5 A (colored) graph 3-partition, denoted by
G = (G< ,G= ,G> , σ) , is an ordered tuple of three edge-
disjoint graphs on the same vertex set L and with color-
ing σ : L → M such that
(i.e. every unordered pair of L is an edge of exactly one of
the three graphs).

We say that G is explained by a scenario S if G< = G<(S) ,
G= = G=(S) , and G> = G>(S).

An example for a graph 3-partition and a relaxed sce-
nario that explains it is shown in Fig. 2.

The restriction G|L′ of a graph 3-partition
G = (G< ,G= ,G> , σ) to a subset L′ ⊆ L of vertices is
given by (G< [L

′],G=[L
′],G> [L

′], σ|L′).

Lemma 4 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario. For all distinct vertices x, y ∈ L(T) with
σ(x) = σ(y) , it holds xy ∈ E(G>(S)).

Proof Since x = y , u:= lca T (x, y) is not a leaf. In
particular, therefore, we have τT (x), τT (y) < τT (u)
by the definition of time maps. Moreover, we have
τT (x) = τS(σ (x)) by the definition of scenarios. If
σ(x) = σ(y) , then lca S(σ (x), σ(y)) = σ(x) is a leaf and
thus τS(lca S(σ (x), σ(y))) = τS(σ (x)) = τT (x) < τT (u) .
Hence, xy ∈ E(G>(S)) . �

The edge set of G=(S) , G<(S) , and G>(S) are disjoint.
Lemma 4 therefore implies

Corollary 1 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario. If xy ∈ E(G=(S)) or xy ∈ E(G<(S)) , then

(1)
E(G=(S)):=

{

xy | x �= y and τT (lca T (x, y)) = τS(lca S(σ (x), σ(y))
}

,

E(G<(S)):=
{

xy | x �= y and τT (lca T (x, y)) < τS(lca S(σ (x), σ(y))
}

,

E(G>(S)):=
{

xy | x �= y and τT (lca T (x, y)) > τS(lca S(σ (x), σ(y))
}

.

σ(x) = σ(y) , i.e., G=(S) and G<(S) are always properly
colored.

Hence, neither the class of EDT graphs nor the class of
LDT graphs is closed under complementation because
the complements of G=(S) and G<(S) may contain edges
between vertices with same color.

Scenarios without HGT edges
In order to connect our discussion to the ample litera-
ture on DL-scenarios mentioned in the introduction, we
briefly consider the case of HGT-free scenarios.

Lemma 5 If S = (T , S, σ ,µ, τT , τS) is a relaxed scenario
without HGT-edges, then x �T y implies µ(x) �S µ(y) for
all x, y ∈ V (T).

Proof Suppose S does not contain HGT-edges,
i.e., µ(x) and µ(y) are comparable in S for all edges
yx ∈ E(T) . Two vertices x, y ∈ V (T) with x �T y
are either equal, implying µ(x) = µ(y) , or they lie
on a directed path v1:=y, v2, . . . vk :=x with k ≥ 2 . If
yx ∈ E(T) , then x ≺T y implies µ(x) �S µ(y) due to
Lemma 3. The vertices along a path in T therefore satisfy
µ(x) �S · · · �S µ(v2) �S µ(y) . By transitivity of �S , we
conclude that x ≺T y implies µ(x) �S µ(y) . �

Fig. 2 Left: a relaxed scenario S = (T , S, σ ,µ, τT , τS) . The maps
µ and σ are shown implicitly by the embedding of T into S
and the colors of the leaves of T, respectively. If a vertex x is drawn
higher than a vertex y, this means that τ(y) < τ ′(x) , τ , τ ′ ∈ {τT , τS} .
In the remainder of the paper, we will omit drawing the time axis
explicitly. Right: The graph 3-partition G(S) that is explained by S .
Throughout, the edges of the LDT graph G<(S) , EDT graph G= (S) ,
and PDT graph G>(S) will always be drawn as dashed, solid straight,
and wavy lines, respectively

Page 7 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

Lemma 6 If S is a relaxed scenario without HGT-
edges, then any pair of distinct leaves x, y ∈ L(T)
satisfies lca S(σ (x), σ(y)) �S µ(lca T (x, y)) and
τS(lca S(σ (x), σ(y))) ≤ τT (lca T (x, y)) . In particular,
we have lca S(σ (x), σ(y)) = µ(lca T (x, y)) if and only if
τS(lca S(σ (x), σ(y))) = τT (lca T (x, y)) , i.e., xy ∈ E(G=).

Proof Consider an arbitrary pair of distinct vertices
x, y and u:= lca T (x, y) ∈ V (T) . Then x, y �T u and by
Lemma 5 we have µ(x) �S µ(u) and µ(y) �S µ(u) . Since
x and y are leaves, we have σ(x) = µ(x) and σ(y) = µ(y) .
The definition of the ancestor order and the last com-
mon ancestor now imply lca S(σ (x), σ(y)) �S µ(u) .
If lca S(σ (x), σ(y)) = µ(u) , then time consistency
implies τS(lca S(σ (x), σ(y))) = τT (u) . Conversely, sup-
pose lca S(σ (x), σ(y)) ≺S µ(u) . If µ(u) is a vertex v of
S, then we have τS(lca S(σ (x), σ(y))) < τS(v) = τT (u) .
If µ(u) is an edge vw of S (with w ≺S v), then we have
τS(lca S(σ (x), σ(y))) ≤ τS(w) < τT (u) < τS(v) . In either
case we therefore obtain τS(lca S(σ (x), σ(y))) < τT (u) . �

As an immediate consequence of Lemma 6, we recover
[4, Cor. 6]:

Corollary 2 If S is a relaxed scenario without HGT-
edges, then G<(S) has no edges.

Informative triples
If a graph 3-partition G = (G< ,G= ,G> , σ) is explained
by some relaxed scenario S = (T , S, σ ,µ, τT , τS) , several
structural constraints on T and S can be deduced directly
from G . In particular, we show in this section that many
subgraphs of G on three vertices enforce rooted triples
that are either required or forbidden in T or S.

Lemma 7 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario without HGT-edges, suppose σ(x) , σ(y) , and σ(z)
are pairwise distinct, the triple xy|z is displayed by T,
and µ(lca T (x, z)) = lca S(σ (x), σ(z)) . Then S displays
σ(x)σ (y)|σ(z).

Proof By assumption lca T (x, y) ≺T lca T (x, z) = lca T (y, z) .
Lemma 5 implies µ(lca T (x, y)) �S µ(lca T (x, z)) and

Lemma 2 implies µ(lca T (x, y)) = µ(lca T (x, z)) and thus
µ(lca T (x, y)) ≺T µ(lca T (x, z)) . Moreover, by Lemma 6
we have lca S(σ (x), σ(y)) �S µ(lca T (x, y)) . We there-
fore conclude lca S(σ (x), σ(y)) �S µ(lca T (x, y)) ≺S

µ(lca T (x, z)) = lca S(σ (x), σ(z)) . Therefore, S displays
σ(x)σ (y)|σ(z) . �

Lemma 7 defines the “informative species triples” [18–
20] that play a key role for the characterization of feasible
reconciliation maps in a slightly different setting.

We recall two results that link triples in T with the LDT
graph:

Lemma 8 [4, Lemma 7] Let S = (T , S, σ ,µ, τT , τS)
be a relaxed scenario with pairwise distinct leaves
x, y, z ∈ L(T) . If xy ∈ E(G<(S)) and xz, yz /∈ E(G<(S)) ,
then T displays xy|z.

Lemma 9 [4, Lemma 6] Let S = (T , S, σ ,µ, τT , τS) be
a relaxed scenario with leaves x, y, z ∈ L(T) and pair-
wise distinct colors X :=σ(x) , Y :=σ(y) , and Z:=σ(z) . If
xz, yz ∈ E(G<(S)) and xy /∈ E(G<(S)) , then S displays
XY |Z.

For example, Lemma 9 applies to b, c, d in Fig. 2:
bc, bd ∈ E(G<(S)) , cd /∈ E(G<(S)) , and σ(c)σ (d)|σ(b)
is a triple of the species tree. We next show a statement
similar to Lemma 8 for the corresponding PDT G>(S):

Lemma 10 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario with pairwise distinct leaves x, y, z ∈ L(T) . If
xz, yz ∈ E(G>(S)) and xy /∈ E(G>(S)) , then T displays
xy|z.

Proof Suppose xz, yz ∈ E(G>(S)) and xy /∈ E(G>(S)) .
Put X :=σ(x) , Y :=σ(y) , and Z:=σ(z) and observe that
X = Y by Cor. 1. Assume for contradiction that xy|z is
not displayed by T. Hence, the tree T displays either
xz|y or yz|x or lca T (x, y) = lca T (x, z) = lca T (y, z) .
One easily verifies that, in all three cases, it holds
lca T (x, y) �T lca T (x, z) and lca T (x, y) �T lca T (y, z) .
This together with the assumption that xz, yz ∈ E(G>(S))
and xy /∈ E(G>(S)) and time consistency implies

τS(lca S(X ,Y)) ≥ τT (lca T (x, y)) ≥ τT (lca T (x, z)) > τS(lca S(X ,Z)) and

τS(lca S(X ,Y)) ≥ τT (lca T (x, y)) ≥ τT (lca T (y, z)) > τS(lca S(Y ,Z)).

Page 8 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

In particular, this implies that Y = Z and X = Z ,
resp., and thus X, Y, and Z are pairwise distinct.
Since lca S(X ,Y) and lca S(X ,Z) are both ances-
tors of X, they are comparable in S. Together with
τS(lca S(X ,Y)) > τS(lca S(X ,Z)) and the definition of
time maps, this implies lca S(X ,Y) ≻S lca S(X ,Z) . Thus,
S displays the triple XZ|Y . By similar arguments, we
obtain that S also displays the triple YZ|X ; a contradic-
tion. Hence, T must display xy|z . �

Again using Fig. 2 as an example, one can check that
T must display ab|b′ because of Lemma 10. Let us now
consider the EDT graph:

Lemma 11 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario with pairwise distinct leaves x, y, z ∈ L(T)
and suppose that xz, yz ∈ E(G=(S)) . If xy /∈ E(G=(S)) ,
then T displays neither xz|y nor yz|x . In particular, if
xy ∈ E(G<(S)) , then T displays xy|z.

Proof Suppose that xz, yz ∈ E(G=(S)) and
xy /∈ E(G=(S)) . Recall that G=(S) , G<(S) , and G>(S)
are pairwise edge-disjoint. Put X :=σ(x) , Y :=σ(y) , and
Z:=σ(z) and observe that X = Z and Y = Z by Cor. 1.
If xy ∈ E(G<(S)) , then Lemma 8 implies that T dis-
plays xy|z and thus, none of xz|y or yz|x . Now suppose
xy ∈ E(G>(S)) and assume, for contradiction that T dis-
plays xz|y and thus lca T (x, z) ≺T lca T (x, y) = lca T (y, z) .
By assumption and time consistency, this implies
τS(lca S(X ,Z)) = τT (lca T (x, z)) < τT (lca T (y, z))

= τS(lca S(Y ,Z)) . The latter implies that X = Y
and thus X, Y, and Z are pairwise distinct.
Since lca S(X ,Z) and lca S(Y ,Z) are both ances-
tors of Z, they are comparable in S. Together with
τS(lca S(X ,Z)) < τS(lca S(Y ,Z)) and the definition
of time maps, this implies lca S(X ,Z) ≺S lca S(Y ,Z) .
Thus, S displays the triple XZ|Y . Therefore, we have
lca S(X ,Y) = lca S(Y ,Z) . In summary, we obtain
τS(lca S(X ,Y)) = τS(lca S(Y ,Z)) = τT (lca T (y, z)) =

τT (lca T (x, y)) ; a contradiction to xy ∈ E(G>(S)) . Hence,
T does not display xz|y . For similar reasons, T does not
display yz|x , which concludes the proof. �

The case that xz, yz ∈ E(G=(S)) , xy ∈ E(G>(S)) and
xy|z is not displayed by T is not covered by Lemma
11. To see that this situation is possible, consider the
trees S = ((X ,Y),Z) and T = (x, y, z) with σ(x) = X ,
σ(y) = Y and σ(z) = Z . Now choose µ such that
µ(ρT) = ρS . One easily verifies that xz, yz ∈ E(G=(S))
and xy ∈ E(G>(S)) while T by construction does not
displayed xy|z.

Lemma 12 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario with leaves x, y, z ∈ L(T) and pairwise distinct
colors X :=σ(x) , Y :=σ(y) , and Z:=σ(z) . Suppose that
xz, yz ∈ E(G=(S)) . If xy /∈ E(G=(S)) , then S displays nei-
ther XZ|Y nor YZ|X . If, in particular, xy ∈ E(G>(S)) then
S displays XY |Z.

Proof Suppose that xz, yz ∈ E(G=(S)) and
xy /∈ E(G=(S)) . By Lemma 11, T does not display xz|y or
yz|x . Suppose for contradiction that S displays XZ|Y , i.e.,
lca S(X ,Z) ≺S lca S(Y ,Z) . This together with the assump-
tion that xz, yz ∈ E(G=(S)) and time consistency implies
τT (lca T (x, z)) = τS(lca S(X ,Z)) < τS(lca S(Y ,Z))

= τT (lca T (y, z)) . Since lca T (x, z) and lca T (y, z) are
both ancestors of z, they must be comparable. This
together with τT (lca T (x, z)) < τT (lca T (y, z)) yields
lca T (x, z) ≺T lca T (y, z) and thus T displays xz|y ; a con-
tradiction. Therefore, S does not display XZ|Y . For simi-
lar reasons, YZ|X is not displayed.

Now assume in addition that xy ∈ E(G>(S)) . Since
T does not display xz|y and lca T (x, y) and lca T (x, z)
are both ancestors of x and thus comparable, we have
lca (x, y) �T lca T (x, z) . Now this together with time
consistency, xy ∈ E(G>(S)) , and xz ∈ E(G=(S)) yields
τS(lca S(X ,Y)) < τT (lca T (x, y)) ≤ τT (lca T (x, z))

= τS(lca S(X ,Z)) . Since lca S(X ,Y) and lca S(X ,Z) are
both ancestors of X, they are comparable in S. Together
with τS(lca S(X ,Y)) < τS(lca S(X ,Z)) and the definition
of time maps, this implies lca S(X ,Y) ≺S lca S(X ,Z) .
Thus, S displays the triple XY |Z . �

Finally, we consider the species triples implied by the
PDT graph. The following result in particular general-
izes the last statement in Lemma 12 above.

Lemma 13 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario with leaves x, y, z ∈ L(T) and pairwise distinct
colors X :=σ(x) , Y :=σ(y) , and Z:=σ(z) . If xy ∈ E(G>(S))
and xz, yz /∈ E(G>(S)) , then S displays XY |Z.

Proof Recall that by construction G<(S) , G=(S) ,
and G>(S) are edge-disjoint. If xz, yz ∈ E(G<(S)) or
xz, yz ∈ E(G=(S)) , the statement follows immedi-
ately from Lemma 9 and 12, respectively. Now con-
sider the case that xz ∈ E(G<(S)) and yz ∈ E(G=(S)) .
Hence, we have τT (lca T (x, y)) > τS(lca S(X ,Y)) and
τT (lca T (y, z)) = τS(lca S(Y ,Z)) . Moreover, T displays
xz|y by Lemma 8 and thus lca T (x, y) = lca T (y, z) . To
summarize, we have τS(lca S(Y ,Z)) = τT (lca T (y, z)) =

τT (lca T (x, y)) > τS(lca S(X ,Y)) . Since lca S(X ,Y) and

Page 9 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

lca S(Y ,Z) are both ancestors of Y, they are compara-
ble in S. Together with τS(lca S(Y ,Z)) > τS(lca S(X ,Y))
and the definition of time maps, this implies
lca S(X ,Y) ≺S lca S(Y ,Z) . Thus, S displays the triple
XY |Z . One proceeds similarly if yz ∈ E(G<(S)) and
xz ∈ E(G=(S)) . �

See a, b′, c in Fig. 2, which enforce σ(a)σ (b′)|σ(c) in the
species tree by Lemma 13. With the facts that we have
gathered, we can now define our set of required and for-
bidden triples.

Definition 6 Let G = (G< ,G= ,G> , σ) be a tuple of
three graphs on the same vertex set L and with vertex
coloring σ.

The set of informative triples on L, denoted by RT (G) ,
contains a triple xy|z if x, y, z ∈ L and one of the following
conditions holds

(a) xy ∈ E(G<) and xz, yz /∈ E(G<),
(b) xz, yz ∈ E(G>) and xy /∈ E(G>).

The set of forbidden triples on L, denoted by FT (G) , con-
tains a triple xz|y (and by symmetry also yz|x) if x, y, z ∈ L
and xz, yz ∈ E(G=) and xy /∈ E(G=).
The set of informative triples on σ(L) , denoted by RS(G) ,
contains a triple XY |Z if there are x, y, z ∈ L with pair-
wise distinct colors X :=σ(x) , Y :=σ(y) , and Z:=σ(z) and
one of the following conditions holds

 (a’) xz, yz ∈ E(G<) and xy /∈ E(G<),
 (b’) xy ∈ E(G>) and xz, yz /∈ E(G>).

The set of forbidden triples on L(S), denoted by FS(G) ,
contains a triple XZ|Y (and by symmetry also YZ|X) if
there are x, y, z ∈ L with pairwise distinct colors X :=σ(x) ,
Y :=σ(y) , Z:=σ(z) , and xz, yz ∈ E(G=) and xy /∈ E(G=).

The notation RT , FT , RS , and FS in Definition 6 is
motivated by Proposition 2 below, which shows that the
triples on L and L(S), resp., provide information of the
gene tree T and species tree S explaining G , provided such
trees exists. Summarizing Lemmas 8 to 13, we obtain:

Proposition 2 Let S = (T , S, σ ,µ, τT , τS) be a
relaxed scenario and G = (G<(S),G=(S),G>(S), σ) .
Then T agrees with (RT (G),FT (G)) and S agrees with
(RS(G),FS(G)).

The cograph structure
Cographs naturally appear as graph structures associ-
ated with vertex-labeled trees and more generally in
the context of binary relations associated with recon-
ciliations of gene trees and species trees. For example,
orthology graphs in scenarios without horizontal gene
transfer are cographs [21]. As we shall see below, both
G<(S) and G>(S) are cographs for all relaxed scenarios
S . In contrast, G=(S) is a cograph only under some
additional constraints. It is, however, always a so-called
perfect graph.

Lemma 14 [4, Lemma 8] Let S = (T , S, σ ,µ, τT , τS) be
a relaxed scenario. Then G<(S) is a cograph.

It may not come as a surprise, therefore, that an anal-
ogous result holds for G>(S):

Lemma 15 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. Then G>(S) is a cograph.

Proof Set A:=σ(a) , B:=σ(b) , C:=σ(c) , and
D:=σ(d) . Suppose for contradiction that G>(S) is not
a cograph, i.e., it contains an induced P4 a− b− c − d .
By Prop. 2, T displays the informative triples ac|b
and bd|c . Hence, T|abcd = ((a, c), (b, d)) and, there-
fore, lca T (a, d) = lca T (b, c) . Moreover, by Cor. 1, we
know that A = C , A = D , and B = D . Therefore, we
have to consider the cases (i) |{A,B,C ,D}| = 4 ; (ii)
|{A,B,C ,D}| = 2 ; (iii) |{A,B,C ,D}| = 3 and A = B , C, and
D are pairwise distinct; (iv) |{A,B,C ,D}| = 3 and A, B,
and C = D are pairwise distinct; and (v) |{A,B,C ,D}| = 3
and A, B = C , and D are pairwise distinct.

In Case (i), A, B, C, and D are pairwise distinct. By
Prop. 2, S displays the informative triples AB|D and
CD|A (see Definition 6.b’). Thus, S|ABCD = ((A,B), (C ,D))
and we have lca S(B,C) = lca S(A,D) . In Case (ii), we
must have A = B and C = D . Thus, we again obtain
lca S(B,C) = lca S(A,D).

In Case (iii), Prop. 2 implies that S displays the
informative triple CD|A(= CD|B) . Thus, we have
lca S(B,C) = lca S(A,D) . In Case (iv), Prop. 2 implies that
S displays the informative triple AB|D(= AB|C) . Thus,
we have lca S(B,C) = lca S(A,D) . In Case (v), Prop. 2
implies that S displays the informative triples AB|D and
CD|A(= BD|A) . Since S cannot displays both of these tri-
ples, Case (v) can be immediately excluded.

In Cases (i)–(iv), we have lca T (a, d) = lca T (b, c) and
lca S(B,C) = lca S(A,D) . Together with bc ∈ E(G>(S)) ,

Page 10 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

it follows τT (lca T (a, d)) = τT (lca T (b, c)) > τS(lca S(B,C))

= τS(lca S(A,D)) ; a contradiction to ad /∈ E(G>(S)).

In summary, G>(S) does not contain an induced P4 and
thus it is a cograph. �

Lemmas 14 and 15 naturally suggest to ask whether
an analogous result holds for G=(S) , i.e., whether
the EDT graph is always a cograph. If this is the case,
{G<(S),G=(S),G>(S)} form a “cograph 3-partition” in
the sense of [22, 23]. As illustrated in Fig. 3, this is not
the case in general. Therefore, we investigate in the fol-
lowing conditions under which G=(S) may or may not be
a cograph and their implications for the underlying tree
structure.

Lemma 16 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. If (G=(S), σ) contains an induced P4 a− b− c − d
on two colors, then T|abcd = ((a, d), b, c).

Proof By assumption and by Cor. 1, A:=σ(a)= σ(c) ,
B:=σ(b) = σ(d) , and A = B . Therefore, and since
ab, bc, cd ∈ E(G=(S)) , we have τT (lca T (a, b)) =

τT (lca T (b, c)) = τT (lca T (c, d)) = τS(lca S(A,B)) .
Def. 1 together with τT (lca T (a, b)) = τT (lca T (b, c))
implies that we can have neither lca T (a, b) ≺T lca T (b, c)
nor lca T (b, c) ≺T lca T (a, b) . Since lca T (a, b) and
lca T (b, c) are both ancestors of b and thus com-
parable in T, we conclude lca T (a, b) = lca T (b, c) .
Similarly, we obtain lca T (b, c) = lca T (c, d) .
Moreover, since ad /∈ E(G=(S)) , we have
τT (lca T (a, d)) = τS(lca S(A,B)) = τT (lca T (a, b)) and
thus lca T (a, d) = lca T (a, b) , which implies that T dis-
plays one of the triples t1 = ab|d or t ′1 = ad|b . By simi-
lar arguments, T displays one of the triples t2 = cd|a or
t ′2 = ad|c . We next examine the possible combination of
these triples.

If T displays t1 and t2 , then T|abcd = ((a, b), (c, d)) , in
which case lca T (a, b) = lca T (b, c) ; a contradiction. If
T displays t1 and t ′2 , then T|abcd = (((a, b), d), c) . Again

lca T (a, b) = lca T (b, c) ; again a contradiction. If T
displays t ′1 and t2 , then T|abcd = (((c, d), a), b) . Hence
lca T (a, b) = lca T (c, d) ; a contradiction. If T displays
t ′1 and t ′2 , then T|abcd is either of the form (((a, d), c), b),
(((a, d), b), c), ((a, d), b, c), or ((a, d), (b, c)). For the first
two cases, we obtain lca T (a, b) = lca T (c, d) , while
for the latter case we obtain lca T (b, c) = lca T (c, d) .
Thus we reach a contradiction in all three cases, leaving
T|abcd = ((a, d), b, c) as the only possibility. �

Note that the tree T|abcd = ((a, d), b, c) in Lemma 16 is
displayed by T but not binary. Hence, we obtain

Corollary 3 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. If (G=(S), σ) contains a 2-colored P4 , then T is not
a binary tree.

Lemma 17 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. If (G=(S), σ) contains an induced P4 a− b− c − a′
on three distinct colors with A = σ(a) = σ(a′) ,
B = σ(b) , and C = σ(c) , then S|ABC = (A,B,C) . In
particular, S is not a binary tree. Moreover, we have
T|abca′ = ((a, c), (b, a′)).

Proof By assumption P3 = a− b− c is an induced path.
Lemma 12 thus imply that S does not display AB|C and
BC|A . Similarly, the induced P3 = b− c − a′ implies
that S does not display BC|A and AC|B . This leaves
S|ABC = (A,B,C) as the only possibility. By Lemma 12,
we immediately see that ac, ba′ ∈ G<(S) since other-
wise S would display AC|B or AB|C . This, together with
Lemma 8 and ab, bc, ca′ /∈ G<(S) , implies that T displays
ac|b and ba′|c and, therefore, T|abca′ = ((a, c), (b, a′)) . �

Lemma 18 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. If E(G=(S)) contains an induced P4 a− b− c − b′
on three distinct colors with A = σ(a) , B = σ(b) = σ(b′)
and C = σ(c) , then S|ABC = ((A,C),B) and
T|abcb′ = ((a, b′), b, c).

Proof Suppose that G=(S) contains an induced P4
a− b− c − b′ on three distinct colors A = σ(a) ,
B = σ(b) = σ(b′) , and C = σ(c) = C . By Lemma 11, T
displays neither bc|b′ nor b′c|b . Hence, we have to con-
sider two cases: (1) T|bcb′ = (b, c, b′) , or (2) T|bcb′ = bb′|c .
By similar arguments, we have either (I) T|abc = (a, b, c)
or (II) T|abc = ac|b . We proceed by combining these
alternatives:

Fig. 3 (G= (S), σ) can contain a 2-colored P4 = a− b− a′ − b′ .
However, due to Cor. 3, T cannot be a binary tree in this case

Page 11 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

Case (1,I) yields (i) T|abcb′ = (a, b, c, b′) or
(ii) T|abcb′ = ((a, b′), b, c) , Case (1,II) yields
T|abcb′ = ((a, c), b, b′) , Case (2,I) yields
T|abcb′ = ((b, b′), a, c) , and Case (2,II) yields
T|abcb′ = ((b, b′), (a, c)) . In all cases except
Case (1,I,ii), we have lca T (a, b) = lca T (a, b

′)
and ab ∈ E(G=(S)) thus implies
τS(lca S(A,B)) = τT (lca T (a, b)) = τT (lca T (a, b

′)) and
ab′ ∈ E(G=(S)) ; a contradiction. This leaves Case (1,I,ii),
T|abcb′ = ((a, b′), b, c) , as the only possibility. Lemma 12
together with ab, bc ∈ E(G=(S)) and ac /∈ E(G=(S))
implies that either S|ABC = (A,B,C) or S|ABC = AC|B .
In the first case, we have lca S(A,C) = lca S(B,C) .
Together with T|abcb′ = ((a, b′), b, c) (and thus
lca T (b, c) = lca T (a, c)) and bc ∈ E(G=(S)) , we obtain
τS(lca S(A,C)) = τS(lca S(B,C)) = τT (lca T (b, c)) =

τT (lca T (a, c)) . Therefore, we must have ac ∈ E(G=) ;
a contradiction. In summary, therefore, we have
S|ABC = ((A,C),B) and T|abcb′ = ((a, b′), b, c) . �

Figure 4 shows two examples of scenarios that realize
EDT graphs containing P4 s on three colors as described
in Lemma 17 and Lemma 18, respectively.

Instead of considering the three graphs G< , G= , and G>
in isolation, we can alternatively think of a graph 3-parti-
tion G = {G< ,G= ,G> , σ } as a complete graph Kn whose
edges are colored with three different colors depend-
ing on whether they are contained in E(G<) , E(G=) , or
E(G>) . This links our results to the literature on edge-
colored graphs. Complete edge-colored permutation
graphs are characterized [24] as the edge-partitions of
Kn such that (i) each color class induces a permutation
graph in the usual sense [25], and (ii) the edge coloring
is a Gallai coloring, i.e., it contains no “rainbow triangle”
with three distinct colors. While every cograph is also a
permutation graph [25], rainbow triangles may appear
in the edge-coloring defined by {G< ,G= ,G>} that is
explained by a relaxed scenario. In fact, induced P4 s in G=
are always associated with rainbow triangles.

Lemma 19 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. If G=(S) contains an induced P4 = a− b− c − d ,
then either ad ∈ E(G<(S)) and ac, bd ∈ E(G>(S)) or
ad ∈ E(G>(S)) and ac, bd ∈ E(G<(S)) . In either case,
both {a, b, d} and {a, c, d} are rainbow triangles.

Proof Suppose G=:=G=(S) contains an induced
P4 = a− b− c − d and, therefore, ac, ad, bd /∈ E(G=) .
Since G= , G< :=G<(S) and G> :=G>(S) are edge-disjoint,
and G< and G> are cographs (cf. Lemmas 14 and 15),
the cases ac, ad, bd ∈ E(G<) and ac, ad, bd ∈ E(G>)
are not possible because otherwise b− d − a− c is an
induced P4 . Moreover, ab|c, bc|a ∈ FT (G(S)) as well
as cd|b, bc|d ∈ FT (G(S)) and thus T displays neither of
these two triples by Prop. 2. We consider two cases:

If ad ∈ E(G<) then at most one of the edges ac and bd
can be contained in G< . Suppose, for contradiction, that
ac ∈ E(G>) and bd ∈ E(G<) . Then ad, bd ∈ E(G<) and
ac, bc, cd /∈ E(G<) . Prop. 2 implies that T displays the
informative triples ad|c and bd|c . Hence, T also displays
ab|c ; a contradiction to ab|c ∈ FT (G(S)) . By similar
arguments, ac ∈ E(G<) and bd ∈ E(G>) implies that T
displays cd|b ; a contradiction to cd|b ∈ FT (G(S)) . This
leaves ac, bd ∈ E(G>) as the only possible case.

If ad ∈ E(G>) then at most one of the edges ac and bd
can be contained in G> . Suppose, for contradiction,
that ac ∈ E(G>) and bd ∈ E(G<) . Then bd ∈ E(G<) and
ab, ad /∈ E(G<) . Prop. 2 implies that T displays bd|a .
Moreover, ac, ad ∈ E(G>) and cd /∈ E(G>) imply that T
displays cd|a . Thus, T displays bc|a ; a contradiction. By
similar arguments, ac ∈ E(G<) and bd ∈ E(G>) implies
that T displays bc|d ; a contradiction to bc|d ∈ FT (G(S)) .
Again, we are left with ac, bd ∈ E(G<) as the only
possibility.

Fig. 4 Left: (G= (S1), σ) contains an induced path P4 = a− b− c − a′ on three colors with σ(a) = σ(a′) as in Lemma 17. Right: (G= (S2), σ
′)

contains an induced path P4 = a− b− c − b′ on three colors with σ ′(b) = σ ′(b′) as in Lemma 18

Page 12 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

In summary, we have ad ∈ E(G<) and ac, bd ∈ E(G>) or
ad ∈ E(G>) and ac, bd ∈ E(G<) , and thus both {a, b, d}
and {a, c, d} form a rainbow triangle in the edge coloring
defined by G(S) . �

As an immediate consequence, we obtain

Corollary 4 If the edge-coloring defined by G(S) does
not contain a rainbow triangle, then G=(S) is a cograph.

The converse of Cor. 4, however, is not true in general.
A counterexample is given in Fig. 5.

Lemma 20 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario. Suppose that (G=(S), σ) contains an induced
P4 = a− b− c − d on four distinct colors σ(a) = A ,
σ(b) = B , σ(c) = C , and σ(d) = D . Then, exactly one of
the following alternatives holds:

 (i) ad ∈ E(G<(S)) , ac, bd ∈ E(G>(S)) ,
S
|ABCD = ((A,C), (B,D)) and T

|abcd = ((a, d), b, c) or
 (ii) ad ∈ E(G>(S)) , ac, bd ∈ E(G<(S)) ,

S
|ABCD = ((A,D),B,C) and T|abcd = ((a, c), (b, d)).

Proof Set G:=G(S) , G< :=G<(S) , G=:=G=(S) , and
G> :=G>(S) . By Lemma 19, we have exactly one of
the following two alternatives (i’) ad ∈ E(G<) and
ac, bd ∈ E(G>) or (ii’) ad ∈ E(G>) , ac, bd ∈ E(G<).

Case (i’): Since ac, bd ∈ E(G>) and ab, bc, cd /∈ E(G>) , S
displays the informative triples AC|B,BD|C ∈ RS(G) by
Prop 2. Hence, S|ABCD = ((A,C), (B,D)) . Furthermore,
by Prop. 2, T displays ad|b, ad|c ∈ RT (G) and none of
ab|c, bc|a, bc|d, cd|b ∈ FT (G) . If T displays ac|b , then this
together with T displaying ad|b implies that T also dis-
plays cd|b ; a contradiction. Thus, it holds T|abc = (a, b, c) .
Together with the fact that T displays ad|b , this implies
T|abcd = ((a, d), b, c) . In summary, Case (i) is satisfied.

Case (ii’): Since ac, bd ∈ E(G<) and ab, bc, cd /∈ E(G>) ,
T displays the informative triples ac|b, bd|c ∈ RT (G)
by Prop. 2. Hence, T|abcd = ((a, c), (b, d)) . Furthermore,
by Prop 2, S displays AD|B,AD|C ∈ RS(G) and none
of AB|C ,BC|A,BC|D,CD|B ∈ FS(G) . Re-using analo-
gous arguments as for T in Case (i’), we conclude that
S|ABCD = ((A,D),B,C) . In summary, Case (ii) is satisfied.
 �

Cor. 1 implies that two adjacent vertices in G=(S)
cannot have the same color. The 2− , 3− and 4-colored
P4 s considered in Lemmas 16, 17, 18, and 20 there-
fore cover all possible colorings of an induced P4 in
(G=(S), σ) . Moreover, in each case, the existence of a P4
in (G=(S), σ) implies that at least one of S and T is non-
binary. We summarize this discussion and Lemmas 14
and 15 in the following

Theorem 7 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. Then G<(S) and G>(S) are cographs. If both S and
T are binary trees, then G=(S) is also a cograph.

In the case of HGT-free scenarios, the condition that
S and T are binary is no longer necessary:

Lemma 21 Let S be a relaxed scenario without HGT-
edges. Then G=(S) is a cograph.

Proof By Cor. 2, G<(S) is edge-less. Therefore, G=(S)
is the complement of the cograph G>(S) (cf. Lemma 15)
and thus, by Prop. 1, also a cograph. �

The similarities of G and edge-colored permuta-
tions graphs noted above naturally lead to the ques-
tion whether G= is a permutation graph. The example in
Fig. 7 shows that this is not the case, however: The cycle
on six vertices, C6 , is not a permutation graph [26].

Lemma 22 If S is a relaxed scenario, then G=(S) does
not contain an induced P6.

Proof Set G< :=G<(S) , G=:=G=(S) , and G> :=G>(S) .
Suppose, for contradiction, that G= contains an
induced P6 = a− b− c − d − e − f (where the colors
of these six vertices are not necessarily all distinct).
Since a− b− c − d is an induced P4 in G= in this case,
Lemma 19 implies that either (i) ad ∈ E(G<) and
ac, bd ∈ E(G>) or (ii) ad ∈ E(G>) and ac, bd ∈ E(G<) .
Consider Case (i). Since b− c − d − e is an induced P4
in G= and bd ∈ E(G>) , Lemma 19 implies be ∈ E(G<)

Fig. 5 Example of a relaxed scenario S and corresponding graph
3-partition G(S) with G(S) containing rainbow triangles and G= (S)
being a cograph

Page 13 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

and ce ∈ E(G>) . Repeating this argument for the induced
P4 c − d − e − f in G= now yields cf ∈ E(G<) and
df ∈ E(G>) . Consider the pair af. If af ∈ E(G<) , then G<
contains the induced P4 d − a− f − c , a contradiction to
Lemma 14. Similarly, if af ∈ E(G>) , then G< contains the
induced P4 d − f − a− c , a contradiction to Lemma 15.
Thus, only af ∈ E(G=) remains, which contradicts that
a− b− c − d − e − f is an induced P6 in G= . Case (ii) is
not possible for analogous reasons. Hence, G=(S) cannot
contain an induced P6 . �

P6-free graphs have been characterized in [27, 28].
Since any induced Pk with k ≥ 6 also contains an induced
P6 , Lemma 22 implies that the longest possible induced
path in an EDT graph has 5 vertices. Figure 7 shows that
this situation can indeed be realized. In particular, the
P5 s in these examples are part of induced cycles on six
vertices. Using Lemma 19 and the arguments in the proof
of Lemma 22, we can conclude that G(S1) and G(S2) , as
shown in Fig. 7, are the only two configurations for an
induced C6 that can appear in an EDT graph.

A graph is odd-hole free it it does not contain an
induced cycle of odd length greater than three [29].

Proposition 3 If S is a relaxed scenario, then G=(S)
does not contain an induced C5 and induced cycles Cℓ on
ℓ ≥ 7 vertices. In particular, EDT graphs are odd-hole
free.

Proof Set G< :=G<(S) , G=:=G=(S) , and G> :=G>(S) .
Suppose, for contradiction, that G= contains an induced
C5 on vertices a, b, c, d, e with ab, bc, cd, de, ea ∈ E(G=) .
Thus, a− b− c − d is an induced P4 in G= and Lemma 19
implies that either (i) ad ∈ E(G<) and ac, bd ∈ E(G>) or
(ii) ad ∈ E(G>) and ac, bd ∈ E(G<) . In Case (i), we have
ad ∈ E(G<) and ac, bd ∈ E(G>) . Since b− c − d − e
is an induced P4 in G= and bd ∈ E(G>) , Lemma 19
implies be ∈ E(G<) and ce ∈ E(G>) . Repeating this argu-
ment for the induced P4 c − d − e − a in G= now yields
ac ∈ E(G<) ; a contradiction. Case (ii) is not possible
for analogous reasons. Hence, G=(S) cannot contain an
induced C5 . Moreover, by Lemma 22, G=(S) does not
contain induced P6 s. Since every induced Cℓ with ℓ ≥ 7
contains an induced P6 , such induced cycles cannot be
part of an EDT graph. In particular, this implies that EDT
graphs are odd-hole free. �

Prop. 3 implies that not every P6-free graph (G, σ) is
an EDT graph, even if we restrict ourselves to properly-
colored graphs. In particular, the cycle on 5 vertices with
pairwise distinct colors is a properly colored P6-free
graph that is not an EDT graph. Moreover, the example

in Fig. 7 shows that an EDT graph may contain induced
C6 s, i.e., they are in general not even-hole free. Moreo-
ver, EDT graphs may contain induced C4 s. To see this,
consider the trees T = ((a1, a2), (b1.b2)) , S = (A,B)
and assume that σ(ai) = A and σ(bi) = B , 1 ≤ i ≤ 2 .
Now put µ(ρT) = ρS and µ(lca T (a1, a2)) = ρSA and
µ(lca T (b1, b2)) = ρSB . It is now an easy exercise to ver-
ify that a1, b1, a2, b2 form an induced C4 in G=.

A graph G is perfect, if the chromatic number of every
induced subgraph equals the order of the largest clique of
that subgraph [30]. A Berge graph is a graph that contains
no odd-hole and no odd-antihole (the complement of an
odd-hole) [31]. The strong perfect graph theorem [32]
asserts that a graph is perfect iff it is a Berge graph.

Proposition 4 If S is a relaxed scenario, then G=(S) is
a perfect graph.

Proof By Prop. 3, G=(S) is odd-hole free. By the strong
perfect graph theorem, it suffices, therefore, to show that
G=(S) does not contain an odd-antihole. Assume, for
contradiction, that G=(S) contains an odd-antihole K. Its
complement K is, thus, an odd cycle that is entirely com-
posed of edges of G<(S) and G>(S) . Since K is a cycle of
odd length ≥ 5 , the edges along this cycle cannot be alter-
natingly taken from G<(S) and G>(S) . In other words,
in K there are at least two incident edges ab, bc that are
either both contained in G<(S) or G>(S) . In addition,
K must contain an edge cd and thus, cd /∈ E(G=(S)) .
This, however, implies that G=(S) contains an induced
P4 c − a− d − b . By Lemma 19, {c, a, b} should induce a
rainbow triangle, which is a contradiction since ab and bc
are both either in the graph G<(S) or G>(S) . �

Since perfect graphs are closed under complementa-
tion we obtain

Corollary 5 If S is a relaxed scenario, then
G<(S) ∪ G>(S) is a perfect graph.

The converse of Prop. 4 does not hold as shown
by the examples in Fig. 8, even under the restric-
tion to properly-colored graphs. Suppose the graph
(G, σ) in Fig. 8(A) is explained by a relaxed sce-
nario S . Put A:=σ(a) = σ(a′) , B:=σ(b) = σ(b′) ,
C:=σ(c) = σ(c′) , and D:=σ(d) = σ(d′) . By Lemma 20,
the induced P4 = a− b− c − d implies that
S|ABCD = ((A,C), (B,D)) or S|ABCD = ((A,D),B,C) ,
and the induced P4 = c′ − a′ − d′ − b′ implies that
S|ABCD = ((A,B), (C ,D)) or S|ABCD = ((B,C),A,D) ; a
contradiction. Clearly, G contains no odd hole and no
odd antihole and, thus, it is a perfect graph. Moreover,

Page 14 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

it is not sufficient to require that (G′, σ) is a prop-
erly colored cograph. To see this, suppose that the
cograph (G′, σ ′) in Fig. 8(B) is explained by a relaxed
scenario S . All possible assignments for the edges ac
and ad are shown on the right-hand side, i.e., we have
ac ∈ E(G>(S)) , ad ∈ E(G>(S)) , or ac, ad ∈ E(G<(S))
yielding the informative triples (for the species tree S)
AC|B , AD|B , and CD|A , respectively. However, all of
these three triples are forbidden triples for S as a con-
sequence of the three smaller connected components of
(G′, σ ′) ; a contradiction.

Explanation of G by relaxed scenarios
In [4], we derived an algorithmic approach that recog-
nizes LDT graphs and constructs a relaxed scenario S
for (G< , σ) in the positive case. Here, we adapt the algo-
rithmic idea to the case that, instead of (G< , σ) , the graph
3-partition G = (G< ,G= ,G> , σ) is given, see Algorithm 1,
which is illustrated in Fig. 9. As we shall see, the addi-
tional information can be leveraged to separate the con-
struction of S and T in such a way that a suitable species

Page 15 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

tree can be computed first using a well-known approach.
This then considerably simplifies the construction of a
corresponding gene tree T. More precisely, we construct
the gene tree and its reconciliation with S in a top-down
fashion via a recursive decomposition of L into subsets
that is guided by G and S. We first introduce three auxil-
iary graphs that we will use for this purpose.

Definition 8 Let G = (G< ,G= ,G> , σ) be a graph 3-par-
tition on vertex set L with coloring σ : L → M and S be a
tree on M.

For L′ ⊆ L and u ∈ V 0(S) such that σ(L′) ⊆ L(S(u)) , we
define the auxiliary graphs on L′:

By construction, H2 is a subgraph of H1 . In particular,
therefore, every connected component of H2 is entirely
included in some connected component of H1 . In turn,
one easily verifies that the connected components of H3
are complete graphs. Moreover, H3 contains all edges of
H2 ∩ G= while there might be edges of G< [L

′] that are
not contained in H3 . This implies that every connected
component of H3 is entirely included in some connected
component of H2.

We use the inclusion relation of the connected com-
ponents to construct the local topology of T in a
recursive manner, see Fig. 10 for an illustration of the
following description. In each step, i.e., for some L′ ⊆ L
and uS ∈ V (S) , we first construct a “local root” ρ′ (cf.
Algorithm 1, Line 6). If uS is a leaf of S (the base case of
the recursion), we directly attach the elements of L′ as
children of ρ′ (Lines 8–11). On the other hand, if uS is
an inner vertex, we create a new child of ρ′ for each con-
nected component of H1 in Line 15. For a specific con-
nected component Ci of H1 (corresponding to child ui of
ρ′), we then add a new child vj of ui for each connected
component Cj of H2 such that Cj ⊆ Ci in Line 18. We
proceed similarly for the connected components Ck of
H3 , which necessarily are subsets of a specific connected
component Cj of H2 . The vertex corresponding to Ck is
the “local root” created in a recursive call operating on Ck
as new subset of L and vS ∈ child S(uS) as new vertex of
S, which is chosen such that σ(Ck) ⊆ L(S(uS)) in Line 22.
If Cj = Ci or Ck = Cj , then the corresponding vertices vi
and vj , respectively, have a single child. As a consequence,

H1:= (L′,E(G< [L
′]) ∪ E(G=[L

′]))

H2:= (L′,E(G< [L
′]) ∪ {xy ∈ E(G=[L

′]) | σ(x), σ(y) ≺S v for some v ∈ child S(u)})

H3:= (L′, {xy | x and y are in the same connected component of H2 and

σ(x), σ(y) �S v for some v ∈ child S(u)})

the resulting tree T ′ is in general not phylogenetic. The
final gene tree T is then obtained by suppressing all verti-
ces with a single child (Line 26).

By definition, two vertices x and y are in the same
connected component Ck of the auxiliary graph H3
only if σ(x) and σ(y) are descendants of the same
child vS of the species tree vertex uS . In particular, we
therefore can always find vS ∈ child S(uS) such that
σ(Ck) ⊆ L(S(vS)) in Line 22 of Algorithm 1. This guar-
antees that all colors appearing on the vertices in L′ are
descendants of the species tree vertex uS in each recur-
sion step:

Observation 2 In every recursion step of Algorithm 1, it
holds σ(L′) ⊆ L(S(us)) . In particular, the auxiliary graphs

H1 , H2 , and H3 are always well-defined.

The recursion in Algorithm 1 can be thought of as a
tree with the root being the top-level call of BuildGe-
neTree on L and ρS and leaves being the calls in which
uS is a leaf of S. Note that, for some recursion steps
R on L′ and uS , all of its “descendant recursion steps”
have input L′′ and u′S satisfying L′′ ⊆ L′ and u′S ≺S uS .
Therefore, and because all leaves that are descendants
of ρ′ (created in R′) must have been attached in some
descendant recursion step of R, we have L(T ′(ρ′)) ⊆ L′ .
In turn, all elements x ∈ L′ are either directly attached
to ρ′ if uS is a leaf, or will eventually be passed down to
a recursion step on a leaf l ≺S uS because each x ∈ L′ is
in some connected component Ck of H3 , Ck is entirely
included in a connected component Cj of H2 , and Cj is
entirely included in a connected component Ci of H1 .
In this “leaf recursion step”, x is therefore attached to
some descendant of ρ′ , implying L′ ⊆ L(T ′(ρ′)) . There-
fore, we have L′ = L(T ′(ρ′)) . We can apply very similar
arguments to see that L(T ′(ui)) = Ci and L(T ′(vj)) = Cj
hold for each connected component Ci of H1 and Cj
of H2 with corresponding vertices ui and vj created in
Lines 15 and 18, respectively. Clearly, contraction of the
redundant vertices to obtain the final tree T does not
change these relationship. We summarize these consid-
erations as follows:

Page 16 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

Observation 3 Let T be a tree returned by Algorithm 1
and u ∈ V 0(T) be an inner vertex created in a recursion
step on L′ and uS .

1. If u is a vertex ρ′ created in Line 6, then L(T (u)) = L′

.
2. If u is a vertex ui created in Line 15, then

L(T (u)) = Ci where Ci is the connected component
of H1 corresponding to ui.

3. If u is a vertex vj created in Line 18, then
L(T (u)) = Cj where Cj is the connected component
of H2 corresponding to vj.

In particular, every x ∈ L(T (u)) satisfies x ∈ L′.
Algorithm 1 is a generalization of the algorithm pre-

sented in [4] for the construction of a relaxed scenario
S for a given LDT graph (G, σ) . A key property of the
algorithm is that the restriction of S to S(uS) , i.e., the
incomplete scenarios obtained for given uS satisfies the
time consistency constraints (S2) and (S3). The con-
struction of S in Algorithm 1 differs from the procedure
described in [4] only by including in V (T)\(L(T) ∪ {0T })
the additional vertices ui created in Line 15. These satisfy
µ(ui) = uS . In the following line, we set τT (ui) ← τS(uS) .
Hence, constraint (S2) remains satisfied and (S3) is void
because µ(ui) ∈ V (S) . One easily checks, furthermore,
that the reconciliation map µ constructed in Algorithm 1
satisfies (S0) (Line 27) and (S1) (Line 11).

Definition 9 G = (G< ,G= ,G> , σ) is a valid input for
Algorithm 1 if (G< ,G= ,G> , σ) is a 3-partition, G< and
G= are properly colored, G< and G> are cographs, and
(RS(G),FS(G)) is consistent.

Lemma 23 Given a valid input G = (G< ,G= ,G> , σ)
with vertex set L, Algorithm 1 returns a relaxed scenario
S = (T , S, σ ,µ, τT , τS) such that L(T) = L.

Proof In order to keep this contribution self-contained,
a detailed proof of Lemma 23, which largely parallels the
material in [4], is given in Appendix . �

We continue with a number of intermediate results that
we will need to establish the correctness of Algorithm 1.

Lemma 24 Let G = (G< ,G= ,G> , σ) with vertex set L be
a valid input for Algorithm 1. Consider a recursion step on
L′ ⊆ L and uS ∈ V 0(S) of Algorithm 1. Then there are no
x, y ∈ L′ in the same connected component of H1 such that
xy ∈ E(G>) and lca S(σ (x), σ(y)) = uS.

Proof Assume for contradiction that, for some L′ and
uS ∈ V 0(S) appearing in the recursion, there is a con-
nected component Ci of H1 with vertices x, y ∈ Ci and
colors X :=σ(x) and Y :=σ(y) such that xy ∈ E(G>) and
lca S(X ,Y) = uS . By assumption, uS is an interior ver-
tex and thus X = Y . Since the input G> is a cograph, the
induced subgraph G> [L

′] and its complement, which
by construction equals H1 = G< [L

′] ∪ G=[L
′] , are also

cographs (cf. Prop. 1).

Consider a shortest path P in H1 connecting x and y,
which exists since x, y ∈ Ci . Since G> [L

′] and H1 are edge-
disjoint and xy ∈ E(G> [L

′]) , P contains at least 3 vertices.
Since H1 is a cograph and thus does not contain induced
P4 s, P contains at most 3 vertices. Hence, P is of the form
x − z − y and we have xy ∈ E(G>) and xz, yz /∈ E(G>) .
Therefore, and since G< and G= are properly colored, we
have Z:=σ(z) /∈ {X ,Y } , and thus X, Y, Z are pairwise dis-
tinct colors. By Prop. 2, XY |Z ∈ RS(G) . Taken together,
the latter arguments and the construction of S in Line 1
imply that S displays the informative triple XY |Z . Since
x, y, z ∈ L′ , we have X ,Y ,Z ∈ L(S(us)) by Obs. 2. In
particular, therefore, Z �S uS . Thus XY |Z implies that
lca S(X ,Y) ≺S uS ; a contradiction. �

Lemma 25 Let G = (G< ,G= ,G> , σ) with vertex set L be
a valid input for Algorithm 1. Consider a recursion step
on L′ ⊆ L and uS ∈ V 0(S) of Algorithm 1. Then, for all
x, y ∈ L′ that are contained in the same connected compo-
nent of H2 but in distinct connected components of H3 , it
holds xy ∈ E(G<).

Proof Suppose that, for some L′ and uS ∈ V 0(S) appear-
ing in the recursion, there is a connected component
Cj of H2 with x, y ∈ Cj such that x and y are in distinct
connected components of H3 . In addition, suppose for
contradiction that xy /∈ E(G<) . We may assume w.l.o.g.
that x and y have minimal distance in H2 , i.e., there are
no vertices x′, y′ ∈ Cj such that x′ and y′ are in distinct
connected components of H3 , x′y′ /∈ E(G<) , and in addi-
tion the distance of x′ and y′ in H2 is smaller than that
of x and y. Set X :=σ(x) and Y :=σ(y) and let Cx and Cy
be the connected components of H3 that contain x and
y, respectively. By Obs. 2, we have σ(L′) ⊆ L(S(uS)) . This
and the fact that x and y are in distinct connected com-
ponents of H3 but in the same connected component
Cj of H2 implies that X �S vX and Y �S vY for two dis-
tinct children vX , vY ∈ child S(uS) . In particular, we have
X = Y and lca S(X ,Y) = uS . Moreover, by construction,
every connected component of H2 is contained in a con-
nected component of H1 and thus, x and y are in the same
connected component of H1 . The latter two arguments

Page 17 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

together with Lemma 24 imply xy /∈ E(G>) . In summary,
we therefore have xy ∈ E(G=).

Consider a shortest path P connecting x and y in H2 ,
which exists since x, y ∈ Cj . By construction, xy ∈ E(G=)
and lca S(X ,Y) = uS imply that xy /∈ E(H2) and thus
P contains at least 3 vertices. Let z ∈ Cj \ {x, y} be the
neighbor of x in P. We consider the two possibilities (a)
xz ∈ E(G=) and (b) xz ∈ E(G<) . Note that X = σ(z)=:Z
holds in both cases since G= and G< are properly colored.

In Case (a), we must have Z �S vX since xz is an edge in
H2 . This implies that Z = Y (and thus X, Y, Z are pair-
wise distinct) and lca S(Y ,Z) = uS . Based on the lat-
ter arguments, S must display the triple XZ|Y . Suppose
that yz /∈ E(G=) . Together with xy, xz ∈ E(G=) , we have
XZ|Y ∈ FS and thus, by construction of S in Line 1, S
cannot display XZ|Y ; a contradiction. Hence, yz ∈ E(G=)
must hold. Since Z �S vX and Y �S vY , we have
yz /∈ E(H3) . Note that connected components in H3 are
complete graphs. Hence, yz /∈ E(H3) implies that y and
z are in distinct connected components of H3 . However,
the distance of y and z in H2 is strictly smaller than that
of x and y (because z is closer to y than x in the shortest
path P); a contradiction to our choice of x and y. In sum-
mary, Case (a) therefore cannot occur.

In Case (b) we have xz ∈ E(G<) . If yz ∈ E(G<) , then
Y = Z (because G< is properly colored) and, by defini-
tion, XY |Z ∈ RS . By construction in Line 1, the species
tree S displays XY |Z . Together with X ,Y ,Z ∈ L(S(uS))
by Obs. 2, this contradicts that lca S(X ,Y) = uS . Simi-
larly, if yz ∈ E(G=) , then S displays neither of the forbid-
den triples XY |Z and YZ|X . Hence, S displays XZ|Y or
S|XYZ is the star tree on the three colors. In both cases, we
have lca S(Y ,Z) = lca S(X ,Y) = uS . In particular, there-
fore y and z are in distinct connected components of H3 .
As argued before, the distance of y and z is smaller than
that of x and y. Taken together the latter arguments again
contradict our choice of x and y, and thus yz ∈ E(G>) is
left as the only remaining choice.

In summary, only case (b) xz ∈ E(G<) is possible, which
in particular implies yz ∈ E(G>) . Therefore, we have
yz /∈ E(H2) and thus the path P contains at least 4 verti-
ces. Thus, consider the neighbor w ∈ Cj \ {x, y, z} of y in
P and set W :=σ(w) . We can apply analogous arguments
for x, y, w as we have used for x, y, z to exclude the case
(a’) yw ∈ E(G=) and, in case (b’) yw ∈ E(G<) , we obtain
xw ∈ E(G>) as the only possibility.

Taking the latter arguments together, it remains to
consider the case xy ∈ E(G=) , xz, yw ∈ E(G<) , and

xw, yz ∈ E(G>) . Since G< and G> are cographs, we
have zw ∈ E(G=) because otherwise x − z − w − y or
x − w − z − y would be an induced P4 in G< and G> ,
respectively.

Now, x and w must be in the same connected compo-
nent of H3 , as otherwise xw /∈ E(G<) and the fact that x
and w are at a shorter distance than x and y in H2 would
contradict our choice of x and y. Likewise, y and z are in
the same connected component of H3 since yz /∈ E(G<)
and they are closer than x and y in H2 . It follows that w
and z are in distinct connected components of H3 , again
yielding a contradiction since they are closer than x and
y in H2 and wz /∈ E(G<) . In summary, therefore, we have
xy ∈ E(G<) . �

The following result is a consequence of Lemma 25 and
will be helpful later on.

Corollary 6 Let G = (G< ,G= ,G> , σ) with vertex set
L be a valid input for Algorithm 1. Consider a recur-
sion step on L′ ⊆ L and uS ∈ V 0(S) of Algorithm 1. If
xy ∈ E(H1) \ E(H2) , then x and y are in distinct connected
components of H2.

Proof Suppose xy ∈ E(H1) \ E(H2) . By construction
of the auxiliary graphs, this implies that xy ∈ E(G=) and
there is no v ∈ child S(uS) such that σ(x), σ(y) ≺S v . The
latter in particular yields that xy /∈ E(H3) . This, together
with the fact that H3 is a graph whose connected com-
ponents are complete graphs, implies that x and y are
in distinct connected components of H3 . We can now
use Lemma 25 to conclude that x and y must also be in
distinct connected components of H2 as otherwise we
would obtain xy ∈ E(G<) ; a contradiction. �

We are now in the position to demonstrate that Algo-
rithm 1 is correct.

Lemma 26 Let G be a valid input for Algorithm 1.
0Then, Algorithm 1 returns a relaxed scenario
S = (T , S, σ ,µ, τT , τS) that explains G.

Proof Let G = (G< ,G= ,G> , σ) be a valid input with
vertex set L for Algorithm 1. By Lemma 23, Algorithm 1
returns a relaxed scenario S = (T , S, σ ,µ, τT , τS) such that
L(T) = L . We continue with showing that S explains G.

Consider two distinct vertices x, y ∈ L = L(T) and
their last common ancestor lca T (x, y) . Let L′ ⊆ L and
uS ∈ V (S) be the input of the recursive call of BuildGe-
neTree in which lca T (x, y) was created. By Obs. 2 and 3,

Page 18 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

we have σ(L′) ⊆ L(S(us)) and x, y ∈ L′ , respectively, and
therefore lca S(σ (x), σ(y)) �S uS . Moreover, time con-
sistency yields τS(lca S(σ (x), σ(y))) ≤ τS(uS) . The vertex
lca T (x, y) has been created in exactly one of the follow-
ing three locations in the algorithm: (a) in Line 6, (b) in
Line 15, and (c) in Line 18.

In Case (a), lca T (x, y) equals ρ′ in the recur-
sion step of interest. Suppose first that uS is a leaf
of S and thus σ(x) = σ(y) = uS . Hence, we have
xy ∈ E(G>(S)) by Cor. 1 and xy ∈ E(G>) , since G<
and G= are properly colored. Now suppose that uS
is not a leaf. Then lca T (x, y) = ρ′ implies that x and
y lie in distinct connected components of the aux-
iliary graph H1 and thus xy /∈ E(H1) . By construc-
tion of this graph, the latter yields xy ∈ E(G>) . More-
over, we have set τT (ρ

′) = τS(uS)+ ǫ > τS(uS) .
Together with lca T (x, y) = ρ′ , this implies
τS(lca S(σ (x), σ(y))) ≤ τS(uS) < τT (lca T (x, y)) and thus
xy ∈ E(G>(S)).

In Case (b), uS is an inner vertex of S and lca T (x, y)
equals ui . We have set τT (lca T (x, y)) = τT (ui) = τS(uS) .
By construction, moreover, x and y must be in the
same connected component Ci of H1 but in dis-
tinct connected components of H2 . Hence, we have
xy /∈ E(H2) which implies xy /∈ E(G<) by the construc-
tion of H2 . Suppose first lca S(σ (x), σ(y)) = uS . Then
xy ∈ E(G=) as otherwise it would hold xy ∈ E(G>) ;
a contradiction to Lemma 24. Moreover, we have
τT (lca T (x, y)) = τS(uS) = τS(lca S(σ (x), σ(y)))
and thus xy ∈ E(G=(S)) . Now suppose
lca S(σ (x), σ(y)) ≺S uS and thus, by time consist-
ency, τS(lca S(σ (x), σ(y))) < τS(uS) = τT (lca T (x, y)) .
This yields xy ∈ E(G>(S)) . Moreover, from
lca S(σ (x), σ(y)) ≺S uS , we conclude that σ(x), σ(y) �S w
for some child w ∈ child S(uS) . Therefore, we must have
xy ∈ E(G>) since otherwise xy ∈ E(G=) would imply that
xy ∈ E(H2).

In Case (c), uS is an inner vertex of S
and lca T (x, y) equals vj . We have set
τT (lca T (x, y)) = τT (vj) = τS(uS)− ǫ < τS(uS) . By con-
struction, moreover, x and y must be in the same con-
nected component Cj of H2 (and thus also in the same
connected component Ci of H1) but in distinct con-
nected components of H3 . This immediately implies (i)
that xy ∈ E(G<) by Lemma 25 and (ii), by construction of
H3 , that σ(x) and σ(y) lie below distinct children of uS .
In particular, therefore, we have lca S(σ (x), σ(y)) = uS
and thus τS(lca S(σ (x), σ(y))) = τS(uS) > τT (lca T (x, y)) .
This implies xy ∈ E(G<(S)).

In summary, we have shown that xy ∈ E(G<) iff
xy ∈ E(G<(S)) , xy ∈ E(G=) iff xy ∈ E(G=(S)) , and
xy ∈ E(G>) iff xy ∈ E(G>(S)) . Since x, y ∈ L where cho-
sen arbitrarily and L = L(T) , this proves that the relaxed
scenario S returned by the algorithm indeed explains the
input G . �

As outlined in the proof of Lemma 26, edges
xy ∈ E(G=) are considered only in Case (b) and we have
lca T (x, y) = ui and lca S(σ (x), σ(y)) = uS . In this case,
we put µ(ui) = uS in Line 16 of Algorithm 1. The rec-
onciliation map µ therefore has the following property:

Observation 4 Let S be a scenario produced by Algo-
rithm 1 for a valid input G = (G< ,G= ,G> , σ) . Then
xy ∈ E(G=) implies µ(lca T (x, y)) = lca S(σ (x), σ(y)).

A main result of this section is the following charac-
terization of graph 3-partitions that derive from relaxed
scenarios:

Theorem 10 A graph 3-partition G = (G< ,G= ,G> , σ)
can be explained by a relaxed scenario if and only if G<
and G= are properly colored, G< and G> are cographs, and
(RS(G),FS(G)) is consistent.

Proof Suppose first that G can be explained by a relaxed
scenario. Then G< and G= are properly colored by Cor. 1,
G< and G> are cographs by Lemmas 14 and 15, respec-
tively, and (RS(G),FS(G)) is consistent by Prop. 2. Con-
versely, suppose G< and G= are properly colored, G< and
G> are cographs, and (RS(G),FS(G)) is consistent. In this
case, G = (G< ,G= ,G> , σ) is a valid input for Algorithm 1
and Lemma 26 implies that Algorithm 1 returns a relaxed
scenario that explains G . �

This result implies almost immediately that the
property of being explainable by a relaxed scenario is
hereditary:

Corollary 7 A graph 3-partition G = (G< ,G= ,G> , σ)
with vertex set L can be explained by a relaxed scenario if
and only if G|L′ can be explained by a relaxed scenario for
all subsets L′ ⊆ L.

Proof The if-part is clear as G = G|L . Conversely, sup-
pose that G = (G< ,G= ,G> , σ) is explained by a relaxed
scenario S = (T , S, σ ,µ, τT , τS) and let L′ ⊆ L . By Prop. 2,
therefore, S agrees with (RS(G),FS(G)) . By Thm. 10, G<
and G= are properly colored and G< and G> are cographs.
Now consider G|L′ = (G< [L

′],G=[L
′],G> [L

′], σ|L′) .
Clearly, the induced subgraphs G< [L

′] and G=[L
′] are also

properly colored. By Prop. 1, G< [L
′] and G> [L

′] are also

Page 19 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

cographs. By definition of the informative and forbid-
den triples in Def. 6 and the induced subgraph relation-
ships, we observe furthermore that RS(G|L′) ⊆ RS(G)
and FS(G|L′) ⊆ FS(G) . Hence, S displays all triples in
RS(G|L′) and none of the triples in FS(G|L′) , which yields
that (RS(G|L′),FS(G|L′)) is consistent. We can now again
apply Thm. 10 to conclude that G|L′ is explainable. �

Using the characterization in Thm. 10, we can decide in
polynomial time whether a graph 3-partition is explain-
able by a relaxed scenario:

Corollary 8 It can be decided in O(|L|4 log |L|) time
whether a graph 3-partition G = (G< ,G= ,G> , σ) can be
explained by a relaxed scenario.

Proof It can be checked in O(|L|2) time whether
G< and G= are properly colored. It can be decided in
in O(|L| + |E|) time whether a graph G = (L,E) is a
cograph [33]. In particular, it can also be verified in
O(|L|2) time that G< and G> are cographs. Extrac-
tion of R:=RS(G) and F :=FS(G) according to Def. 6
requires O(|L|3) . Let M′ ⊆ M be the subset of colors
that appear on the leaves of the triples in R ∪ F .
By construction, we have |M′| ∈ O(|L|) . The algo-
rithm MTT, which stands for mixed triplets problem
restricted to trees and was described in [34], constructs
a tree on M′ that agrees with (R,F) , if one exists, in
O(|R| · |M′| + |F | · |M′| log |M′| + |M′|2 log |M′|) time.
This, together with |R|, |F | ∈ O(|L|3) and |M′| ∈ O(|L|)
implies that it can be decided in O(|L|4 log |L|) whether
(R,F) is consistent. �

In particular, it can be decided in O(|L|4 log |L|)
whether G = (G< ,G= ,G> , σ) can be explained by a
relaxed scenario without explicit construction of such
a scenario. We will show in the following that the con-
struction of relaxed scenarios is bounded by the same
complexity. For simplicity, we will explicitly require that
σ : L → M is surjective, i.e., that σ(L) = M holds. One
easily verifies, however, that the existence of “unused
colors” in M only increases the size of the species tree S
(in particular, the number of leaves in S that are attached
to ρS) but does not affect the existence of a relaxed sce-
nario that explains G.

Lemma 27 Algorithm 1 can be implemented to run in
O(|L|4 log |L|) time (for valid inputs G = (G< ,G= ,G> , σ)
such that σ is surjective).

Proof Let G = (G< ,G= ,G> , σ) with vertex set L be a
valid input and surjective coloring σ : L → M that is
given as input for Algorithm 1. By assumption, G< and
G= are properly colored, G< and G> are cographs, and
(RS(G),FS(G)) is consistent. Extraction of R:=RS(G)
and F :=FS(G) according to Def. 6 requires O(|L|3)
operations. As argued in the proof of Corollary 8, a tree
S on M that agrees with (R,F) can be constructed in
O(|L|4 log |L|) time using algorithm MTT [34].

A suitable time map τS can be constructed in
O(|M|) = O(|L|) time by Lemma 1.

We can employ the LCA data structure described
by Bender et al. [35], which pre-processes S in
O(|M|) = O(|L|) time to allow O(1)-query of the last com-
mon ancestor of pairs of vertices in S afterwards. In addi-
tion, we want to access the vertex w ∈ child S(u) satisfying
v �S w for two given vertices u, v ∈ V (T) with v ≺S u . To
achieve this, we pre-process S as follows: We first compute
depth (v) for each v ∈ V (T) , i.e., the number of edges on
the path from the root to v in a top-down traversal of S in
O(|L|) time. The Level Ancestor (LA) Problem asks for the
ancestor LA (v, d) of a given vertex v that has depth d, and
has solutions with O(|L|) pre-processing and O(1) query
time [36, 37]. Hence, we can obtain the desired vertex w as
LA (v, depth (u)+ 1) in constant time.

Since σ(L′) ⊆ L(S(uS)) always holds by Obs. 2, every
x ∈ L appears at most once in a loop corresponding to
Line 9. Hence, the total effort of handling the cases where
uS is a leaf is bounded by O(|L|) . Consider now one exe-
cution of BuildGeneTree (without the recursive calls)
in which uS is not a leaf. Construction of the auxiliary
graphs H1 and H2 is done in O(|L′|2) , where the condi-
tion σ(x), σ(y) ≺S v for some v ∈ child S(uS) in the con-
struction of H2 is equivalent to querying the LCA data
structure in O(1) time whether lca S(σ (x), σ(y)) = uS .
The connected components of H1 can be obtained in
O(|L′| + |E(H1)|) = O(|L′|2) time using breadth-first
search. Since H2 is a subgraph of H1 ,0 we can, for each
connected component Ci of H1 , determine the con-
nected components Cj of H2 with Cj ⊆ Ci again using
breadth-first search and only the vertices in Ci as start
vertices. The overall effort for this is again bounded by
O(|L′| + |E(H1)|) = O(|L′|2) . We can now, for each con-
nected component Cj of H2 , construct the connected
components Ck of H3 with Ck ⊆ Cj by (i) adding the
edge xy to H3 if lca S(σ (x), σ(y)) = uS for all x, y ∈ Cj
and (ii) performing breadth-first search on H3 using
only the vertices in Cj as start vertices. Again, the over-
all effort for these breadth-first searches is bounded

Page 20 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

by O(|L′|2) . The number of connected component of
the three graph H1 , H2 , and H3 is bounded by O(|L′|) .
For each connected component Cj of H2 , we have to
choose v∗S ∈ child S(uS) such that σ(Cj) ∩ L(S(v∗S)) �= ∅
in Line 19. To this end, we pick x ∈ Cj arbitrarily and
query v∗S = LA (σ (x), depth (uS)+ 1) . For each con-
nected component Ck of H3 , we can find vS ∈ child S(uS)
such that σ(Ck) ⊆ L(S(vS)) in Line 22 in the same way.
In summary, for each connected component of each
graph, the effort of creating a new vertex (in case of H1
and H2), attaching the vertex to the tree (H1 , H2 , and H3),
choosing v∗S in Line 19 (H2), choosing vS in Line 22 (H3),
and assigning the values for τT and µ for the newly cre-
ated vertices are all constant-time operations. The over-
all effort for one recursion step (excluding the recursive
calls) is therefore bounded by O(|L′|2).

To bound the total effort of BuildGeneTree, consider
the recursion tree R of the algorithm and let d be its maxi-
mum depth (i.e. the maximum distance from ρR to a leaf).
Notice that when a recursion receives uS ∈ V (S) as input,
it passes a child of uS to any recursive call that it makes.
Since terminal calls occur on leaves of S, it follows that
d is at most the height of S, which is O(|V (S)|) = O(|L|)
under the assumption that σ is surjective. For r ∈ V (R) ,
denote by L′r the set L′ received as input on the recursive
call corresponding to r. If r is not a leaf of R, then notice
that {L′q : q ∈ child R(r)} is a partition of L′r (without
repeated subsets), since a recursive call is made precisely
for each connected component of H3.

Let ℓ ∈ {0, 1, . . . , d} . We claim that for any two vertices
r, q ∈ V (R) at distance ℓ from ρR , L′r ∩ L′q = ∅ . This can
be seen by induction, with ℓ = 0 as the trivial base case.
Consider ℓ > 0 . If r and q have the same parent, then
L′r ∩ L′q = ∅ follows from the observation that recur-
sions partition their input L′ to their child calls. If r and
q have distinct parents in R, we know by induction that
L′parR(r) ∩ L′parR(q) = ∅ . Since recursions pass a subset of
their input L′ , L′r ∩ L′q = ∅ holds as well. Thus our claim
is true. Now, for a given depth ℓ ∈ {0, 1, . . . , d} , denote
by r1, . . . , rk the set of vertices of R at distance ℓ from ρR .
The total effort of these vertices is O(|L′r1 |

2 + . . .+ |L′rk |
2)

and, since |L′r1 | + . . .+ |L′rk | ≤ |L| by our claim, the total
time spent at depth ℓ is O(|L|2) . Because this holds for
every depth from 0 to d ∈ O(|L|) , the total time spent in
BuildGeneTree is O(|L|3).

It only remains to argue on the time spent construct-
ing the final output tree T. Note that in each recursion
with corresponding vertex r ∈ V (R) , BuildGeneTree
adds at most 2|L′r | + 1 nodes to the constructed tree T ′

(we always add ρ′ and, additionally, in non-terminal calls,
we add one ui and one vj vertex for each of the O(|L′r |)
connected components of H1 and H2 , respectively, and
in terminal calls we add |L′r | leaves). Since the vertices of
R at the same depth ℓ receive pairwise disjoint L′r sets, it
follows that a total of at most O(|L|) vertices are added
to T by the recursive calls at the same depth ℓ . Since
d ∈ O(|L|) , the resulting tree T ′ has at most O(|L|2) ver-
tices. To obtain the final gene tree T, we can traverse T ′
and suppress all vertices with a single child by remov-
ing the vertex and reconnecting its child to its parent in
(O(|V (T ′)|) = O(|L|2) total time.

Hence, the overall time complexity of Algorithm 1 is
O(|L|4 log |L|) . �

Explanation of G by restricted scenarios
Relaxed scenarios may contain combinations of HGT
and deletion events that render the HGT event “unob-
servable” from extant data, because the gene family died
out in the lineage from which that HGT originated. It is
therefore of interest to consider more restrictive classes
of scenarios that exclude such “unobservable” events. In
this section, we show that if a relaxed scenario explains G ,
then there is always some scenario without these “unob-
servable” events that also explains G . To this end, we
introduce the notion of a “witness”:

Definition 11 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario. We say that x ∈ L(T) is a witness for v ∈ V (T)
if x �T v and the path from v to x in T does not contain
an HGT-edge. The scenario S is fully witnessed if every
v ∈ V (T) has a witness.

It is not difficult to verify that, in order for a relaxed sce-
nario S = (T , S, σ ,µ, τT , τS) to be fully witnessed, it is
necessary and sufficient that every vertex v ∈ V 0(T) has a
child w such that µ(w) �S µ(v) . In essence, this matches
condition (2b) assumed in the work of Tofigh et al. [16] and
is also a direct consequence of condition (O2) in [19, 38].

A vertex x ∈ V (T) with µ(x) ∈ V (S) describes an
evolutionary event that coincides with a speciation.
This suggests to require additional constraints on µ
that exclude scenarios that do not have a simple bio-
logical interpretation. In particular, it seems natural to
prevent HGT-edges from emanating from such a ver-
tex. This amounts to the assumption that speciations
and HGT events are not allowed to be lumped into the
same event (cf. [19]). Another interesting constraint
on a speciation u is to require that they are witnessed
by a pair of descendants x and y in two of the line-
ages that are separated by the speciation, i.e., such that

Page 21 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

u = lca T (x, y) and µ(lca T (x, y)) = lca S(σ (x), σ(y)) .
This condition is reminiscent, but weaker, than the Last
Common Ancestor reconciliation [39, 40].

Definition 12 A relaxed scenario S = (T , S, σ ,µ, τT , τS)
is a restricted scenario if it satisfies the following three
constraints:

 (S4) S is fully witnessed.
 (S5) If µ(u) ∈ V 0(S) , then µ(v) ≺S µ(u) holds for all

v ∈ child T (u).
 (S6) If µ(u) ∈ V

0(S) , then there exist at least two leaves
x, y ∈ L(T) such that lca T (x, y) = u , both x and y
are witnesses for u, and µ(u) = lca S(σ (x), σ(y)).

It is worth noting that conditions (S4), (S5), and (S6)
are not necessarily satisfied by the most commonly
studied classes of evolutionary scenarios. For example,
the DTL scenarios considered in [38] do not need to
satisfy (S5) if S or T is non-binary. In the remainder of
this section, we show that—curiously enough—any data
G = (G< ,G= ,G> , σ) that can be explained by a relaxed
scenario can also be explained by a restricted scenario.
We start by showing that Algorithm 1 already enforces
some additional constraints.

Lemma 28 Given a valid input G = (G< ,G= ,G> , σ) ,
the scenario S = (T , S, σ ,µ, τT , τS) returned by Algo-
rithm 1 satisfies (S4), i.e., it is fully witnessed.

Proof Consider the intermediate tree T ′ constructed in
Algorithm 1 which is not necessarily phylogenetic. By a
slight abuse of notation, we will simply write µ and τT also
for restrictions to subsets of V(T). We start with showing
that each inner vertex u ∈ V 0(T ′) has a child v ∈ V (T ′)
such that µ(v) �S µ(u) and, thus, that uv is not an HGT
edge. Let L′ ⊆ L and uS ∈ V (S) be the input of the recur-
sive call of BuildGeneTree in which u ∈ V 0(T ′) was
created in one of Lines 6, 15, or 18.

Suppose first u = ρ′ was created in Line 6 and thus
µ(u) = par S(uS)uS . If uS is a leaf, then we attached all of
the elements x ∈ L′ as children of u and set µ(x) = σ(x) .
Since σ(L′) ⊆ L(S(uS)) = {uS} holds by Obs. 2, we have
µ(x) = σ(x) = uS . Therefore, and since L′ is non-empty, u
has a child v such that µ(v) = uS �S par S(uS)uS = µ(u) .
If uS is not a leaf, then we have attached at least one
vertex ui corresponding to a connected component Ci
of H1 as a child of u in the same recursion step. In par-
ticular, we have set µ(ui) = uS in Line 16, and thus,
µ(ui) = uS �S par S(uS)uS = µ(u).

Suppose u = ui was created in Line 15 and thus
µ(u) = uS . In particular, u = ui corresponds to some
connected component Ci of H1 . Since H2 ⊆ H1 there
is at least one connected component Cj of H2 such
that Cj ⊆ Ci and thus we have attached at least one
vertex vj as created in Line 18 as a child of u and set
µ(vj) = uSv

∗
S for some v∗S ∈ child S(uS) . Hence, we have

µ(vj) = uSv
∗
S �S uS = µ(u).

Suppose, finally, that u = vj was created in Line 18.
Hence, vj corresponds to some connected compo-
nent Cj of H2 and we have set µ(vj) = uSv

∗
S for some

v∗S ∈ child S(uS) such that σ(Cj) ∩ L(S(v∗S)) �= ∅ . The lat-
ter implies that there is x ∈ Cj such that σ(x) ∈ L(S(v∗S)) .
By construction of the auxiliary graphs, there is a con-
nected component Ck such that x ∈ Ck and Ck ⊆ Cj .
Moreover, we have chosen vS ∈ child S(uS) in Line 22
such that σ(Ck) ⊆ L(S(vS)) . This together with
σ(x) ∈ L(S(v∗S)) and σ(x) ∈ σ(Ck) implies that v∗S = vS .
In particular, we have attached the vertex ρ′ as a child
to u = vj that was created in Line 6 of the the recur-
sion step BuildGeneTree(Ck , v

∗
S) and that satis-

fies µ(ρ′) = par S(v
∗
S)v

∗
S = uSv

∗
S . Hence, we have

µ(ρ′) = uSv
∗
S �S uSv

∗
S = µ(u).

In summary, each inner vertex u ∈ V 0(T ′) has a child
v ∈ V (T ′) such that µ(v) �S µ(u) . Therefore and since T ′
is finite, we can find a descendant leaf x ∈ L(T ′) for each
u ∈ V 0(T ′) that can be reached from u by non-HGT-edges.

Now consider a vertex v ∈ V 0(T)\{0T } ⊆ V 0(T ′) .
By the arguments above, we find a path
P′ = (v=:v′1 − v′2 − · · · − v′k ′ :=x) in T ′ from v to some
of its descendant leaves x ∈ L(T ′) = L(T) that does not
contain any HGT-edge, i.e., it holds µ(v′i+1) � µ(v′i) for
all 1 ≤ i < k ′ . Therefore and since T is obtained from
T ′ by adding 0T and suppression of all vertices with a
single child, we have x ≺T v and, moreover, the path
P = (v=:v1 − v2 − · · · − vk :=x) connecting v and x in T
contains only vertices that are also contained in P′ in the
same order. We therefore conclude that µ(vi+1) � µ(vi)
holds for all 1 ≤ i < k , i.e., P does not contain any
HGT-edge. Hence, there is a witness for each vertex
v ∈ V 0(T)\{0T } By definition, each leaf x ∈ L(T) is a wit-
ness of itself. Finally, consider 0T (and its unique child
ρT). By construction, it holds µ(0T) = 0S . Therefore and
since every element z ∈ V (S) ∪ E(S) satisfies z �S 0T , we
have that µ(ρT) �S µ(0T) , and thus 0TρT is not an HGT-
edge. Hence, every witness of ρT is also a witness of 0T ,
which concludes the proof. �

Lemma 29 Given a valid input G = (G< ,G= ,G> , σ) , the
scenario S = (T , S, σ ,µ, τT , τS) returned by Algorithm 1

Page 22 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

satisfies (S5), i.e., µ(u) ∈ V 0(S) implies that µ(v) ≺S µ(u)
for all v ∈ child T (u).

Proof Suppose that µ(u) ∈ V 0(S) = V (S)\(L(S) ∪ {0S})
and let v ∈ child T (u) be an arbitrary child of u. Inspec-
tion of Algorithm 1 shows that u must have been created in
Line 15 in some recursion step on L′ ⊆ L and uS ∈ V 0(S)
and thus µ(u) = uS . Consider the intermediate tree T ′
constructed in the algorithm from which T is obtained by
adding the planted root 0T and suppression of all inner
vertices with a single child. In particular, the path con-
necting u and v in T ′ passes through some child v′ of u in
T ′ (where v = v′ is possible). By construction, we have set
µ(v′) = uSv

∗
S for some v∗S ∈ child S(uS) in Line 20. Re-

using the arguments in the proof of Lemma 28, we find a
path P = (v′=:v1 − · · · − vk :=x) in T ′ from v′ to some
of its descendant leaves x ∈ L(T ′) = L(T) that satisfies
µ(vi+1) �S µ(vi) for all 1 ≤ i < k . If v lies on the path P,
then the latter and transitivity of �S immediately implies
µ(v) �S µ(v′) = uSv

∗
S ≺S uS = µ(u) . Suppose for contra-

diction that v is not a vertex in P. Then there must be some
vertex vi(= v) with 1 ≤ i < k that is the last common ances-
tor of v and x in T ′ . In this case, vi must have at least two
children in T ′ and thus it was not suppressed. Since vi fur-
thermore lies on the path connecting u and v, this contra-
dicts that v ∈ child T (u) . Hence, the case that v is not a ver-
tex in P does not occur. Therefore, we have µ(v) ≺S µ(u) ,
which together with the fact that v ∈ child T (u) was chosen
arbitrarily, implies that S satisfies (S5). �

The example in Fig. 11 shows that Algorithm 1 is in
general not guaranteed to return a restricted scenario
since it may violate (S6).

As we shall see in the following, however, we can construct
such a scenario for any valid input G = (G< ,G= ,G> , σ) by
choosing the vertex v∗S ∈ child S(uS) in Line 19 in a more
sophisticated manner. More precisely, consider a connected
component Ci of H1 , for which we have created a corre-
sponding vertex ui in Line 15). If there is only one connected
component Cj of H2 such that Cj ⊆ Ci (thus implying
Cj = Ci), then we proceed as in the original algorithm. Oth-
erwise, Ci includes at least two connected components of
H2 . In this case, there exists an edge xy ∈ E(H1)\E(H2)
with x, y ∈ Ci . From Cor. 6 and H2 ⊆ H1 we obtain
x ∈ Cx ⊆ Ci and y ∈ Cy ⊆ Ci for two distinct connected
components Cx and Cy of H2 . From the construction of the
auxiliary graphs H1 and H2 and σ(L′) ⊆ L(S(uS)) , we know
that xy ∈ E(G=) . Moreover, we have σ(x) �S vσ(x) and
σ(y) �S vσ(y) for distinct vertices vσ(x), vσ(y) ∈ child S(uS)
because otherwise xy would be an edge in H2 . Upon
encountering Cx and Cy during the iteration over connected
components in Line 17, we simply choose vσ(x) and vσ(y) in
Line 19, respectively. Notice that this is in line with the con-
dition in Line 19 because σ(x) ∈ σ(Cx) ∩ L(S(vσ(x))) and
σ(y) ∈ σ(Cy) ∩ L(S(vσ(y))) . For all other connected com-
ponents, we simply choose v∗S as in the original algorithm.
These modifications of Algorithm 1 (which are restricted
to the else-block starting in Line 12) are summarized in
Algorithm 2.

Page 23 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

By the latter arguments we have only constrained
choices that were arbitrary in the original algorithm.
All results for Algorithm 1 (with exception of the com-
plexity results) therefore remain valid for the modified
version. As an immediate consequence of Lemmas 26,
28, and 29, we therefore obtain:

Observation 5 The modifications of Algorithm 1 sum-
marized in Algorithm 2 ensure that it returns a scenario
that explains the valid input G and satisfies (S4) and (S5).

For completeness we show that the modifications do
not increase the time complexity.

Lemma 30 Algorithm 1 with the modifications as sum-
marized in Algorithm 2 can be implemented to run in
O(|L|4 log |L|) time (for valid inputs G = (G< ,G= ,G> , σ)
such that σ is surjective).

Proof Re-using the arguments in the proof of
Lemma 27, it suffices to show that, in the modified algo-
rithm, the effort of the additional steps in one recursion
step on L′ ⊆ L and some inner vertex uS ∈ V 0(S) (exclud-
ing the recursive calls) is bounded by O(|L′|2).

We have already shown in the proof of Lemma 27 how
the lists L of connected components Cj of H2 such
that Cj ⊆ Ci are obtained using breadth-first search
with a total effort of O(|L′|2) time. We can store, for
each vertex x ∈ L′ , a pointer to the connected compo-
nent of H2 in a hash table in O(|L′|) time. For a given
connected component Ci of H1 , choosing an edge
xy ∈ E(H1[Ci]) \ E(H2[Ci]) is easily done by iterat-
ing over all pairs of vertices in Ci . Since distinct con-
nected components of H1 are vertex-disjoint, the overall
effort for this is again bounded by O(|L′|2) . For a given
connected component Ci of H1 , identifying the respec-
tive connected components Cx and Cy and vertices
vσ(x), vσ(y) ∈ child S(uS) can be done in constant time
by querying the above-mentioned hash table and the LA
data structure, respectively. Since H1 has at most O(|L′|)
connected components, the total effort for the latter
look-ups is bounded by O(|L′|) . Finally, checking whether
Cj = Cx and Cj = Cy can clearly be done in constant time
if we compare only pointers to the connected compo-
nents. The total time complexity of the second for-loop
in Algorithm 2 is therefore the same as in the original
algorithm.

In summary, the total effort of one recursion step
(excluding the recursive calls) is still bounded by O(|L′|2) ,
which completes the proof. �

We note that scenario S2 in Fig. 11 may be obtained
from Algorithm 1 using the subroutine in Algorithm 2 if
the edge ab′ ∈ E(H1[Ci]) \ E(H2[Ci]) is chosen (over the
alternative choice a′b) in the “if |L | ≥ 2 then” block.

Lemma 31 Given a valid input G = (G< ,G= ,G> , σ) ,
the scenario S = (T , S, σ ,µ, τT , τS) returned by Algo-
rithm 1 with the modifications as summarized in Algo-
rithm 2 satisfies (S6).

Proof Suppose that µ(u) ∈ V
0(S) = V (S)\(L(S) ∪ {0S}) .

Inspection of Algorithm 1 shows that u can only have
been created in Line 15 in some recursion step on
L′ ⊆ L and uS ∈ V 0(S) . In particular, we have µ(u) = uS
and u corresponds to some connected component Ci
of H1 . Consider the intermediate tree T ′ constructed
in the algorithm from which T is obtained by adding
the planted root 0T and suppression of all inner verti-
ces with a single child. Since u was not suppressed, we
must have added at least to distinct vertices as children
of u in the same recursion step. In particular, the out-
put of the modified algorithm satisfies µ(vj) = uSvS
and µ(vj′) = uSv

′
S for two distinct children vj , vj′ of

u and two distinct vertices vS , v′S ∈ child S(uS) . Re-
using the arguments in the proof of Lemma 28 and the
fact that µ(vj) = uSvS ≺S uS = µ(u) , we find a path
P′ = (u=:v′1 − vj=:v′2 − · · · − v′k ′ :=x) in T ′ from u to
some of its descendant leaves x ∈ L(T ′) = L(T) that
passes through vj and does not contain any HGT-edge,
i.e., it holds µ(v′i+1) � µ(v′i) for all 1 ≤ i < k ′ . In particu-
lar σ(x) = µ(x) ≺S µ(vj) = uSvS . Therefore, and because
T is obtained from T ′ by adding 0T and suppression of all
vertices with a single child, we have x ≺T u and, moreo-
ver, the path P = (u=:v1 − v2 − · · · − vk :=x) connecting
u and x in T contains only vertices that are also contained
in P′ in the same order. We therefore conclude that
µ(vi+1) � µ(vi) holds for all 1 ≤ i < k , i.e., P does not
contain any HGT-edge. Analogously, we find a descend-
ant leaf y ≺S u such that the path from u to y in T ′ passes
through vj′ , the path from u to y in T does not contain
HGT-edges, and furthermore σ(y) ≺S uSv

′
S.

By construction, we have lca T ′(x, y) = u , which implies
lca T (x, y) = u since we only added 0T and suppressed
the vertices with a single child to obtain T from T ′ . The
paths from u to x and to y in T do not contain HGT-
edges. Thus the path from x to y in T does not contain
HGT-edges. Finally σ(x) ≺S uSvS and σ(y) ≺S uSv

′
S

with vS and v′S being distinct children of uS implies
lca S(σ (x), σ(y)) = uS = µ(u) . Taken together, the latter
arguments imply that S satisfies (S6). �

Page 24 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

Theorem 13 A graph 3-partition G = (G< ,G= ,G> , σ)
can be explained by a relaxed scenario if and only if it
can be explained by a restricted scenario. In particular,
Algorithm 1 with the modifications summarized in Algo-
rithm 2 constructs a restricted scenario in this case.

Proof The if-direction trivially holds since every
restricted scenario is also a relaxed scenario. Conversely,
suppose G is explained by a relaxed scenario. Then Algo-
rithm 1 with the modifications as summarized in Algo-
rithm 2 returns a scenario S that explains G by Lemma 26.
By Lemmas 28, 29, and 31, respectively, S satisfies (S4),
(S5), and (S6), and thus, it is a restricted scenario. �

Corollary 9 Let G = (G< ,G= ,G> , σ) be graph
3-partition with vertex coloring σ : L → M . If
G = (G< ,G= ,G> , σ) can be explained by a relaxed sce-
nario, then, for every species tree S∗ on M that agrees
with (RS(G),FS(G)) , there is a relaxed scenario
S = (T , S∗, σ ,µ, τT , τS) that explains G . Moreover, S can
be chosen to be a restricted scenario.

Proof Suppose G = (G< ,G= ,G> , σ) can be explained
by a relaxed scenario. By Thm. 10, therefore, G is a valid
input for Algorithm 1 with the modifications in summa-
rized in Algorithm 2. Since the species tree S constructed
in Line 1 of Algorithm 1 is an arbitrary tree S∗ on M that
agrees with (RS(G),FS(G)) , i.e., not necessarily the tree
constructed by MTT [34], Obs. 5 immediately implies that
there is a relaxed scenario S = (T , S∗, σ ,µ, τT , τS) that
explains G . Moreover, if S is constructed using the modi-
fied algorithm, then it is a restricted scenario by Thm. 13.
 �

Explanation of EDT graphs by relaxed scenarios
In the two preceding sections, we have seen that it can be
decided efficiently whether a given vertex-colored graph
(G, σ) is an EDT graph provided we also know how the
complement (G, σ) is partitioned into a putative LDT
graph (G> , σ) and putative PDT graph (G< , σ) . It is of
immediate interest to understand whether the informa-
tion on (G> , σ) and (G< , σ) is necessary, or whether EDT
graphs can also be recognized efficiently in isolation. We
consider the following decision problem:

Problem 1 (EDT-Recognition)

Input: A colored graph (G, σ).

Question: Is (G, σ) an EDT graph?

As we shall see, EDT-Recognition can be answered
in polynomial-time, if we suppose that the scenario

explaining (G, σ) is HGT-free while, for the general case,
EDT-Recognition is NP-complete. We start with a
characterization of the EDT graphs that can be explained
by HGT-free relaxed scenarios. For this purpose, it will
be useful to note that edge-less LDT graphs rule out the
existence of HGT-edges in fully witnessed scenarios:

Lemma 32 If a relaxed scenario S is fully witnessed and
E(G<(S)) = ∅ , then S is HGT-free.

Proof Suppose for contradiction that
S = (T , S, σ ,µ, τT , τS) contains an HGT-edge uv ∈ E(T)
(where v ≺T u), i.e., µ(u) and µ(v) are incompara-
ble in S. By assumption, u has a witness x ∈ L(T) ,
and v has a witness y ∈ L(T) . In particular, it holds
σ(x) = µ(x) �S µ(u) and σ(y) = µ(y) �S µ(v)
which, together with µ(u) and µ(v) being incompa-
rable, implies that µ(u) ≺S lca S(σ (x), σ(y)) . Moreo-
ver, since uv is an HGT-edge and the path from u to x
does not contain an HGT-edge, x cannot be a descend-
ant of v. Hence, lca T (x, y) = u . We now distinguish
cases (a) µ(u) ∈ V (S) and (b) µ(u) ∈ E(S) . In Case (a),
we have τT (u) = τS(µ(u)) by Condition (S2) and
τS(µ(u)) < τS(lca S(σ (x), σ(y))) as a consequence
of µ(u) ≺S lca S(σ (x), σ(y)) . In Case (b), we have
µ(u) = ab ∈ E(S) and, by Condition (S3), τT (u) < τS(a) .
Moreover, µ(u) ≺S lca S(σ (x), σ(y)) implies
a �S lca S(σ (x), σ(y)) by the definition of �S . Hence, we
have τT (u) < τS(a) ≤ τS(lca S(σ (x), σ(y))) . In summary,
it holds τT (lca T (x, y)) = τT (u) < τS(lca S(σ (x), σ(y)))
and thus xy ∈ E(G<(S)) in both cases; a contradiction to
E(G<(S)) = ∅ . Therefore, S must be HGT-free. �

The recognition of EDT graphs can be achieved in pol-
ynomial-time in the HGT-free case.

Theorem 14 Let (G= = (L,E), σ) be a vertex-
colored graph, and let R be the set of triples such that
σ(x)σ (y)|σ(z) ∈ R iff xz, yz ∈ E and xy /∈ E for some
x, y, z ∈ L of pairwise distinct colors. Then (G= , σ) is an
EDT graph that can be explained by an HGT-free relaxed
scenario if and only if it is a properly colored cograph
and R is consistent. In particular, EDT graphs explained
by HGT-free relaxed scenario can be recognized in
O(|L|3 + |L||R|) time.

Proof Suppose (G= , σ) is an EDT graph that is explained
by the HGT-free relaxed scenario S . By Cor. 1 and Lem-
mas 21, (G= , σ) is a properly colored cograph. Suppose
xz, yz ∈ E and xy /∈ E . Since in addition G<(S) is edge-less
by Cor. 2, we have xz, yz /∈ E(G>(S)) and xy ∈ E(G>(S)) .

Page 25 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

Hence, we obtain R ⊆ RS(G(S)) . By Thm. 10, RS(G(S))
and thus also its subset R are consistent.

Now suppose (G= , σ) is a properly colored cograph and R
is consistent. Consider G = (G< :=(L,∅),G= ,G> :=G=) .
Since (G< , σ) is edge-less, it is a properly-colored
cograph. Since G> is the complement of the cograph G= ,
it is also a cograph. One easily verifies that R = RS(G)
and thus there is a tree S that displays all triples in RS(G) .
Now consider a triple XZ|Y ∈ FS(G) . By construction,
this implies that there are x, y, z ∈ L with pairwise dis-
tinct colors X = σ(x) , Y = σ(y) , and Z = σ(z) such (a)
xz, yz ∈ E(G=) and xy /∈ E(G=) or (b) xz, xy ∈ E(G=)
and yz /∈ E(G=) . In Case (a), we have xz, yz /∈ E(G>)
and xy ∈ E(G>) and thus S displays the informative tri-
ple XY |Z ∈ RS(G) . In Case (a), we have xz, xy /∈ E(G>)
and yz ∈ E(G>) and thus S displays the informative tri-
ple YZ|X ∈ RS(G) . Therefore, the tree S does not display
the forbidden triple XZ|Y . Since XZ|Y ∈ FS(G) was
chosen arbitrarily, we can conclude that S agrees with
(RS(G),FS(G)) . In summary, therefore, we can apply
Theorem 10 to conclude that G is explained by a relaxed
scenario S . By Theorem 13, S can be chosen to be fully
witnessed. This together with the fact that G<(S) = G<
is edge-less and Lemma 32 yields that S is HGT-free. In
summary, (G= , σ) is an EDT graph that can be explained
by a relaxed HGT-free scenario.

Checking whether (G = (L,E), σ) is properly colored
can be done in O(|E|) time, cographs can be recognized
in O(|L| + |E|) time [33], extraction of R requires O(|L|3)
time and testing whether R is consistent can be achieved
in O(|L||R|) time [41]. Thus, EDT graphs can be recog-
nized in time O(|L|3 + |L| |R|) in the HGT-free case. �

The examples in Fig. 8 have shown that the connected
components of a given vertex-colored graph (G, σ) are
not “independent” in the sense that (G, σ) is an EDT
graph if and only if all of its connected components are
EDT graphs, since the components may impose contra-
dictory constraints on the species tree. However, we will
show next that we can assume w.l.o.g. that, if a relaxed
scenario S explaining (G= , σ) exists, all pairs x, y ∈ L that
are in distinct connected components of G= form an edge
in G>(S) . More precisely, we have

Lemma 33 Suppose G = (G< ,G= ,G> , σ)
is explained by S and consider the edge set
F :={xy | x, y ∈ L are in distinct connected components of G=} .
Then G′ = (G′

<
,G= ,G

′
>
, σ) where G′

<
:=(L,E(G<)\F) and

G′
>
:=(L,E(G>) ∪ F) is explained by a relaxed scenario S ′.

Proof Observe first that all pairs x, y ∈ L that are in dis-
tinct connected components of G= satisfy xy ∈ E(G′

>
) . By

Theorem 10, G< and G= are properly colored, G< and G>
are cographs, and (RS(G),FS(G)) is consistent. Since G′

<

is a subgraph of G< , it is still properly colored.

Suppose for contradiction that G′
<
 is not a cograph, i.e.,

it contains an induced P4 = a− b− c − d . In this case,
ab, bc, cd ∈ E(G′

<
) implies that ab, bc, cd /∈ F and thus,

that a and b, b and c as well as c and d are contained in
the same connected component of G= . Consequently,
a, b, c, and d are contained in a single connected com-
ponent of G= , which implies that ac, bd, ad /∈ F .
Therefore, a− b− c − d is also an induced P4 in G< ;
a contradiction. Now suppose for contradiction that
G′

>
 contains an induced P4 = a− b− c − d . In this

case, ac, bd, ad /∈ E(G′
>
) implies ac, bd, ad /∈ G> and

ac, bd, ad /∈ F . The latter in particular implies that a, b,
c, and d are contained in a single connected component
of G= and thus ab, bc, cd /∈ F . It follows that ab, bc, and
cd must also be edges in G> and, thus, a− b− c − d is an
induced P4 in G> ; a contradiction. In summary, G′

<
 and G′

>

are cographs.

We continue with showing that (RS(G
′),FS(G

′))
remains consistent. Suppose XY |Z ∈ RS(G

′) , i.e., there
are x, y, z ∈ L with pairwise distinct colors X = σ(x) ,
Y = σ(y) , and Z = σ(z) such that (a’) xz, yz ∈ E(G′

<
)

and xy /∈ E(G′
<
) , or (b’) xy ∈ E(G′

>
) and xz, yz /∈ E(G′

>
) .

In both cases, we can apply similar arguments as before
to conclude that xy, xz, yz /∈ F . Thus, xz, yz ∈ E(G<)
and xy /∈ E(G<) , and xy ∈ E(G>) and xz, yz /∈ E(G>) ,
respectively. This in turn implies XY |Z ∈ RS(G) . Hence,
we have RS(G

′) ⊆ RS(G) . Moreover, FS(G
′) does only

depend on the (non-)edges of G= and since G= remained
unchanged in G′ , we have FS(G

′) = FS(G) . The latter two
arguments together with (RS(G),FS(G)) being consistent
imply that (RS(G

′),FS(G
′)) is also consistent.

In summary, G′
<
 and G= are properly colored, G′

<
 and G′

>

are cographs, and (RS(G
′),FS(G

′)) is consistent. Theo-
rem 10 therefore implies that G′ is explained by a relaxed
scenario S ′ . �

Corollary 10 If (G= , σ) is an EDT graph, then it
is explained by a relaxed scenario S that satisfies
xy ∈ E(G>(S)) for all x, y ∈ L that are contained in dis-
tinct connected components of G=.

Let us now turn the general case of EDT-Recogni-
tion. We show that it is NP-hard by reducing from a
problem of deciding whether there is a tree that dis-
plays a given set of fan triples and a suitable choice of

Page 26 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

rooted triples. The precise problem statement requires
some definitions. Let U be a set. Let CF be a set of fan
triples whose leaves are in U, and let CR be a set of unor-
dered pairs of rooted triples of the form {xy|z, xz|y} with
x, y, z ∈ U . We say that a tree S∗ on the leaf set U satisfies
(CF ,CR) if the following holds:

For each x|y|z ∈ CF , S∗ displays x|y|z;
For each {xy|z, xz|y} ∈ CR , S∗ displays either xy|z or
xz|y.

This suggests the following decision problem.

Problem 2 ((CF ,CR)-Satisfiability)

Input: A tuple (U, CF , CR) where U is a set,
CF is a set of fan triples and

CR is a set of pairs of rooted triples
of the form {xy|z , xz|y}.

Question: Does there exist a tree S∗ on leaf set
U that satisfies (CF , CR)?

Jansson et al. [42] showed that a slightly different ver-
sion of (CF ,CR)-Satisfiability, known as (F+−)-Con-
sistency, is NP-hard. In the (F+−)-Consistency
problem the input are two sets F+ and F− of fan triples
and one asks for a tree that displays all fan triples in F+
but none of the ones in F− . The latter is equivalent to
asking for a tree that that displays all fan triples in F+ and
that displays for every x|y|z ∈ F− exactly one of the tri-
ples xy|z , xz|y , or yz|x . This translated to a slightly dif-
ferent version of (CF ,CR)-Satisfiability by requiring (i)
the elements of CR to be of the form {xy|z, xz|y, yz|x} and
(ii) that one of the three triples must be displayed by the
final tree. For our purposes, we must restrict CR to pairs
of triples instead of triple sets of size 3. The NP-hardness
proof in [42] can be adapted to establish the following
result:

Theorem 15 (CF ,CR)-Satisfiability is NP-complete.

Proof See Appendix. �

Theorem 15, in turn, can be used to prove

Theorem 16 EDT-Recognition is NP-complete.
Moreover, it remains NP-complete if the input graph
(G, σ) is a cograph.

Proof See Appendix. �

Explanation of PDT graphs by relaxed scenarios
If only the information of G< ∈ G is available, it can be
tested whether G< is an LDT graph and, in the affirma-
tive case, a relaxed scenario that explains G< can be con-
structed in polynomial-time [4]. In contrast, we have seen
above that the problem of recognizing an EDT graph is
NP-hard (Theorem 16). This begs the question whether
recognition of PDT graphs is an easy or hard task.

Theorem 17 A graph (G, σ) is a PDT graph if and only
if the following conditions are satisfied:

1. G is a cograph, and
2. (G, σ) is properly colored, and
3. The set of triples R(G):={σ(x)σ (y)|σ(z) :

xy ∈ E(G) and xz, yz /∈ E(G) and σ(x), σ(y), σ(z)

are pairwise distinct} is consistent.

In particular, it can be verified if (G, σ) is a PDT graph
and, in the affirmative, a scenario that explains (G, σ) can
be constructed in polynomial time.
Proof

Suppose that (G, σ) is a PDT graph. Hence, there is a
relaxed scenario S such that G = G>(S) . By Lemma
15, G must be a cograph. Since G = G>(S) , its comple-
ment G comprises all edges of G=(S) and G<(S) . By Cor.
1, G=(S) and G<(S) are always properly colored and so
(G, σ) is also properly colored. The set R(G) is precisely
the set of triples as specified in Def. 6(b’) and, in particu-
lar, R(G) ⊆ RS(G) where G = (G<(S),G=(S),G>(S), σ) .
By Theorem 10, (RS(G),FS(G)) is consistent, an thus in
particular R(G) is consistent.
Conversely, assume that (G, σ) satisfies Conditions (1), (2)
and (3). Consider G = (G< ,G= ,G> , σ) such that G> = G ,
G= = (V (G),∅) and G< = G . Since G is a cograph and
G< = G , Prop. 1 implies that G< is a cograph. Moreover,
by Condition (2), (G< , σ) is a properly colored cograph.
Since there are no edges in G= , it follows that G= is also
a properly colored cograph. Since G= is edge-less, we
have FS(G) = ∅ . Moreover, since G is the comple-
ment of G< , Def. 6(b’) and the definition of R(G) imply
R(G) = RS(G) . Condition (3) now implies that RS(G)
is consistent. Together with FS(G) = ∅ this implies that
(RS(G),FS(G)) is consistent. Hence, all conditions of
Theorem 10 are satisfied and we conclude that there is
a relaxed scenario that explains G = (G< ,G= ,G> , σ) . In
particular, G = G> is a PDT graph. Re-using the argu-
ments in the proof of Lemma 27, we can construct a sce-
nario for G = (G< ,G= ,G> , σ) (and thus for G = G> in
O(ℓ4 log ℓ) where ℓ = max(|L|, |σ(L)|) . �

Page 27 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

We note that PDT graphs can be recognized faster
than the construction of an explaining scenario with
the help of Theorem 17. Cographs can be recognized in
O(|V | + |E|) time [33] and O(|V |2) operations are suf-
ficient to verify that the complement of G is properly
colored. The triple set R(G) contains at most O(|σ(V)|3)
triples which can be constructed in O(|V |3) time.
The Aho et al. algorithm checks triple consistency in
O(|R| |V |) time. Hence, PDT graphs can be recognized
in O(|V |(|V |2 + |σ(V)|3)) time.

Orthology and quasi‑orthology
Most of the mathematical results concerning orthol-
ogy have been obtained in an HGT-free setting. There,
a pair of genes x and y is orthologous if their last com-
mon ancestor lca T (x, y) coincides with the last common
ancestor of the two species in which they reside [1].
Thus, we expect a close connection between orthology
and the graph G=(S) . Thm. 14 in the previous section,
furthermore, is reminiscent of the characterization
of orthology graphs that can be reconciled with spe-
cies trees in HGT-free duplication/loss scenarios [18,
19]. We therefore close this contribution by connect-
ing the graph G=(S) with different notions of orthology
in scenarios with HGT that have been discussed in the
literature.

Disagreements on the “correct” definition of orthology
in the presence of HGT stem for the fact that, in general,
pairs of genes originating from a speciation event may be
separated by HGT, and thus become xenologs. They may
even eventually reside in the same species and therefore
appear as paralogs. Choanozoa, for example, have two
CCA-adding enzymes, one vertically inherited through
the eukaryotic lineage, the other horizontally acquired
from a bacterial lineage [43]. To accommodate such dif-
ferences, Darby et al. [8] proposed a classification of sub-
types of xenology and, in line with [1], reserve the terms
ortholog and paralog to situations in which the path
between x and y does not contain an HGT event. In this
section, we briefly survey notions of orthology that have
“natural” definitions in the setting of relaxed scenarios
and explore their mathematical properties and their rela-
tionships with EDT graphs.

Definition 18 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario. Two distinct vertices x, y ∈ L(T) are weak
quasi-orthologs if µ(lca T (x, y)) ∈ V 0(S).

Def. 18 is, in essence, Walter Fitch’s original, purely
event-based definition of orthology [6]. The graph �w(S)
with vertex set L(T) and the weak quasi-orthologous
pairs as its edges is the weak quasi-orthology graph of S.

In later work, Walter M. Fitch [1] emphasizes the con-
dition that “the common ancestor lies in the cenancestor
(i.e., the most recent common ancestor) of the taxa from
which the two sequences were obtained”, which translates
to the following notion:

Definition 19 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario. Then two distinct genes x, y ∈ L(T) are strict
quasi-orthologs if µ(lca T (x, y)) = lca S(σ (x), σ(y)).

The graph �s(S) with vertex set L(T) and the strict
quasi-orthologous pairs as its edges is the strict quasi-
orthology graph of S . By Obs. 4, all edges of G= form
strictly quasi-orthologous pairs in the scenarios pro-
duced by Algorithm 1.

Later definitions explicitly exclude xenologs [1, 7].
Translating the concept of orthology used by Darby et al.
[8] to our notation yields

Definition 20 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario. Two distinct vertices x, y ∈ L(T) are weak
orthologs if µ(lca T (x, y)) ∈ V 0(S) and �(e) = 0 for all
edges e along the path between x and y in T.

The graph �w(S) with vertex set L(T) and the pairs of
weak orthologs as its edges will be called the weak orthol-
ogy graph of S . The most restrictive notion of orthology
is obtained by enforcing both the matching of last com-
mon ancestors and the exclusion of horizontal transfer:

Definition 21 Let S = (T , S, σ ,µ, τT , τS) be a relaxed
scenario. Two distinct vertices x, y ∈ L(T) are strict
orthologs if µ(lca T (x, y)) = lca S(σ (x), σ(y)) and
�(e) = 0 for all edges e along the path between x and y
in T.

The graph �s(S) with vertex set L(T) and the pairs of
(strict) orthologs as its edges will be called the (strict)
orthology graph of S . We note that strict orthologs also
appear in the definition of property (S6): A relaxed sce-
nario satisfies (S6) if and only if µ(u) ∈ V 0(S) implies
that there is a pair of strict orthologs x and y with
lca T (x, y) = u . The alternative notions of orthology and
the proposed terminology are summarized in Table 1.

From µ(lca T (x, y)) = lca S(σ (x), σ(y)) , we obtain
µ(lca T (x, y)) ∈ V (S) . Furthermore, if x and y are dis-
tinct, then lca T (x, y) is not a leaf and (S1) in the defini-
tion of relaxed scenarios implies that µ(lca T (x, y)) is also
not a leaf. Hence we have:

Observation 6 If x, y ∈ L are distinct and
µ(lca T (x, y)) = lca S(σ (x), σ(y)) , then

Page 28 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

Fig. 6 (G= (S1), σ) = (G= (S2), σ) contains an induced path P4 = a− b− c − d on four colors as in Lemma 20

Fig. 7 The EDT graph may contain an induced C6 , i.e, a cycle on six vertices. In this case, the EDT graph also contains induced P5s

Fig. 8 A A properly-colored perfect graph (G, σ) on 8 vertices that is not an EDT graph. Next to the graph, the possible topologies of the species
tree that are implied by the induced P4 according to Lemma 20 are shown. B A properly-colored cograph (G′ , σ ′) that is not an EDT graph. All
possible assignments for the edges ac and ad are shown on the right-hand side together with the informative triples that they imply for the species
tree according to Prop. 2. The assignment of the gray edges do not affect the respective triple

Page 29 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

µ(lca T (x, y)) ∈ V 0(S) for every relaxed scenario
S = (T , S, σ ,µ, τT , τS).

As an immediate consequence, every strict quasi-
ortholog is a weak quasi-ortholog and every strict ortholog
is a weak ortholog. Furthermore strict or weak orthologs

are strict or weak quasi-orthologs, respectively. In terms of
the corresponding graphs, we therefore have the following
subgraph relations:

(2)
�s(S) ⊆ �s(S), �w(S) ⊆ �w(S),

�s(S) ⊆ �w(S), �s(S) ⊆ �w(S).

Fig. 9 Illustration of Algorithm 1 with a valid input G = (G< ,G= ,G> , σ) . We have σ(a) = σ(a′)=:A and σ(b) = σ(b′)=:B . Line 1 constructs
species tree S that agrees with (RS(G),FS(G)) . Here, RS(G) = FS(G) = ∅ and S is unique. In Line 2, a time map τS for S such that τS(x) = 0 for all
x ∈ L(S) is initialized. We choose τS(0S) = 6 and τS(ρS) = 3 , see panel (a). Hence, ǫ = 1 (Line 3). Line 25 then calls BuildGeneTree({a, a′ , b, b′}, ρS)
for the first time, hence uS = ρS . In Line 6 a vertex ρ′ is created. Its time map is set to τT (ρ′) = τS(ρS)+ ǫ = 3+ 1 = 4 and the reconciliation is set
to µ(ρ′) = 0SρS in Line 7. Since uS = ρS is not a leaf, we proceed with computing H1 , H2 , and H3 for L = {a, a′ , b, b′} and ρS in Line 13, illustrated
in the top row. Since H1 has only one connected component C, the for-loop in Line 14 runs only once. In Line 15, we thus create a single vertex u1
as a child of ρ′ . We then consider the two connected components C1 and C2 of H2 as both satisfy Cj ⊆ C , j ∈ {1, 2} . Here, we start with considering
the component C1 that is induced by the vertices a and b and create a vertex v1 as a child of u1 in Line 18. We choose v∗S = A in Line 19 (note that we
also could have chosen v∗S = B) and set τT (v1) = τS(ρS)− ǫ = 2 and µ(v1) = ρSA in Line 20. These steps are illustrated in panel (b). Line 21 then
considers the connected components Ck of H3 that satisfy Ck ⊆ C1 = {a, b} ; both of these connected components are the single vertex graphs
induced by a and b, respectively. Starting with C ′ = {a} , Line 22 identifies vS ∈ child S(ρS) such that σ(C ′) = {A} ⊆ L(S(vS)) , i.e., vS = A and calls
BuildGeneTree({a}, A) ; the subtree returned by this call is attached as a child of v1 in Line 23. Hence, we are now back in Line 6 where uS = A . In Line 6,
a further (new) vertex ρ′ is created. Line 7 computes τT (ρ′) = τS(A)+ ǫ = 0+ 1 = 1 and µ(ρ′) = ρSA . Now uS = A is a leaf of S, hence we proceed
in Line 8 and connect each x ∈ L′ = {a} as a child of ρ′ in Line 10. In Line 11, we put τT (a) = 0 and µ(a) = σ(a) = A . These steps are illustrated
in panel (c). Then BuildGeneTree({b}, B) is executed and we obtain the “partial” gene tree and reconciliation shown in panel (d). The algorithm
proceeds on component C2 of H2 , which is induced by the vertices a′ and b′ and creates a vertex v2 as a child of u1 in Line 18. Again, we chose v∗S = A
in Line 19. By similar arguments as in the previous part, we obtain the “partial” gene tree and reconciliation shown in panel (e). The tree T ′ returned
in Line 25 is the gene tree shown in panel (e) except for the planted root 0T , which is added in Line 26. In addition, all resulting inner degree-2
vertices (highlighted as black circuits) are suppressed in Line 26. The resulting gene tree (without specified time map) and the resulting relaxed
scenario is shown in panel (f). Note, if we choose v∗S = B in Line 19 when proceeding on the connected component C2 of H2 induced by a′ and b′ ,
we would obtain the restricted scenario S2 as shown in Fig. 11

Page 30 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

That is, we have �s(S) ⊆ �s(S) ⊆ �w(S) and
�s(S) ⊆ �w(S) ⊆ �w(S) , while �s(S) and �w(S) are
incomparable w.r.t. the subgraph relation.

Lemma 34 The weak quasi-orthology graph �w(S) and
the weak orthology graph �w(S) are cographs for every
relaxed scenario S.

Fig. 10 Illustration of a recursion step in BuildGeneTree (Algorithm 1). A The current vertex in the species tree, uS , is a leaf. B The current
vertex in the species tree, uS , is an inner vertex. The connected components of H1 , H2 , and H3 are represented by the orange, green, and blue boxes,
respectively. For simplicity, only those connected components of H2 and H3 are shown that are included in Ci and Cj , respectively. Two vertices
x and y must form an edge in (a) G> (wavy lines) if they are in distinct components of H1 , (b) G> or G= (solid straight lines) if they are in the same
component of H1 but distinct components of H2 , and (c) G< (dashed lines) if they are in the same component of H2 but distinct components of H3 .
Below, the construction of the reconciliation map and the time map is illustrated. The half circles indicate that L′ = L(T (ρ′)) , Ci = L(T (ui)) , etc.
if the respective vertex is not suppressed

Fig. 11 The graph 3-partition G = (G< ,G= ,G> , σ) used in Fig. 9 as illustration of Algorithm 1 is explained by different scenarios: Depending
on the choice in Line 19, Algorithm 1 can return S1 as well as the restricted scenario S2 . To ensure that always a restricted scenario is returned we
provide an alternative subroutine (summarized in Algorithm 2 below) that can be used in Algorithm 1

Page 31 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

Proof Let S = (T , S, σ ,µ, τT , τS) be a relaxed scenario.
Consider the labeling t : V 0(T) → {0, 1} with t(u) = 1
iff µ(u) ∈ V 0(S) . We have xy ∈ E(�w(S)) if and only
if t(lca T (x, y)) = 1 . Thus (T, t) is a cotree that explains
�w(S) . By Prop. 1, �w(S) is a cograph.

Consider (T, t) and remove all HGT-edges from T to
obtain the forest (T ∗, t) . Although the tree(s) in (T ∗, t) are
not necessarily phylogenetic, we can obtain a cograph G
with edges xy ∈ E(G) precisely if x, y are leaves of a con-
nected component of (T ∗, t) and t(lca T∗(x, y)) = 1 . One
easily verifies that any two leaves x and y in a connected
component of T ∗ satisfy lca T∗(x, y) = lca T (x, y) . There-
fore, xy ∈ E(G) precisely if the path connecting x and y
in T does not contain an HGT edge and t(lca T (x, y)) = 1
(or, equivalently µ(u) ∈ V 0(S)). Consequently,
G = �w(S) and thus, �w(S) is a cograph. �

It is worth noting that xy ∈ E(�w(S)) does not
imply σ(x) = σ(y) , i.e., (�w(S), σ) is not necessar-
ily properly colored. The genes a and a′ in Fig. 3 serve
as an example. Now consider the two relaxed scenar-
ios S as shown in Fig. 6. In both cases, one observes
that G=(S) = �s(S) . In each case, G=(S) contains an
induced P4 . Therefore, we obtain

Observation 7 In general, �s(S) is not a cograph.

Lemma 35 The strict orthology graph �s(S) is a cograph
for every relaxed scenario S.

Proof Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. Note that �s(S) ⊆ �w(S) . Furthermore, if
xx′ ∈ E(�w(S)) , then x and x′ are leaves in the same
subtree of the forest F(T) obtained by removing all HGT
edges from T, i.e., x and x′ are witnesses of lca T (x, x

′) . By
definition, we have �s(S) = �w(S) if and only if there
are two vertices x, x′ ∈ L(T) with µ(lca T (x, x

′)) ∈ V 0(S)
but µ(lca T (x, x

′)) �= lca S(σ (x), σ(x
′)) , and there

is no HGT-edge on the path between x and x′ in
T. Note that the latter condition is equivalent to x
and x′ being witnesses of lca T (x, x

′) . In this case,

xx′ ∈ E(�w(S)) but xx′ /∈ E(�s(S)) and Lemma 6 implies
lca S(σ (x), σ(x

′)) ≺S µ(lca T (x, x
′)) . In the following, set

p:= lca T (x, x
′) , w:=µ(p) , �s:=�s(S) and �w:=�w(S).

We proceed by modifying (T , τT) and the reconcilia-
tion map µ to obtain a scenario S ′ = (T ′, S, σ ,µ′, τ ′T , τS)
such that �s = �s(S ′) remains unchanged and the edge
xx′ is removed from �w . This, in particular, ensures that
�s ⊆ �w(S ′) � �w holds.

Since lca S(σ (x), σ(x
′)) ≺S w = µ(p) , and both x and x′

are witnesses of p, there is a unique child w∗ ∈ child S(w)
such that lca S(σ (x), σ(x

′)) �S w∗ . For this vertex w∗ , let
A∗ ⊆ child T (p) be the subset of all children q of p that
satisfy (i) q has a witness and (ii) for every witness y of q
holds σ(y) ∈ L(S(w∗)) . By construction, the unique chil-
dren qx and qx′ of p that satisfy x �T qx and x′ �T qx′ are
contained in A∗ , i.e., A∗ �= ∅ . Moreover, for any two dis-
tinct q1, q2 ∈ A∗ and all x1 ∈ L(T (q1)) and x2 ∈ L(T (q2))
such that x1 is a witness of q1 and x2 is a witness q2 , we
have lca S(σ (x1), σ(x2)) �S w∗ . Note that pq cannot be
an HGT-edge of T for all q ∈ A∗ , since incomparability
of µ(p) and µ(q) would imply that at least one edge uv
along the path from q to its witness xq must satisfy that
µ(u) and µ(v) are incomparable (otherwise, condition (ii)
in the construction of A∗ is is not possible). Thus, if
pq ∈ E(T) is an HGT edge for some q ∈ child T (p) , then
q /∈ A∗.

Now construct a modified gene tree T ′ as follows: If
A∗ = child T (p) we set T ′ = T and relabel p as p∗ . Oth-
erwise, we insert an additional vertex p∗ into T that has
p as its parent and the vertices qi ∈ A∗ , 1 ≤ i ≤ |A∗| as
its children. Note that by construction w∗ has at least 2
children. The time map for the modified tree is set by
τT ′(v) = τT (v) , v ∈ V (T) , and τT ′(p∗) = τT (p)− ǫ for
sufficiently small ǫ > 0 . Since we started with a relaxed
scenario that explains �s , T ′ remains a phylogenetic
tree. Moreover, we define the modified reconciliation µ′
by setting µ(p∗) = ww∗ ∈ E(S) and µ′(v) = µ(v) for all
v ∈ V (T ′)\{p∗} and set S ′:=(T ′, S,µ′, σ , τT ′ , τS) . By con-
struction, lca T ′(x, x′) = p∗ and thus, µ(p∗) ∈ E(S) implies
xx′ /∈ E(�w(S ′)) . Furthermore, if lca T (y1, y2) = p ,
y1 ∈ L(T (q1)) for some q1 ∈ A∗ and y2 ∈ L(T (q2))
for some q2 ∈ child T (p)\A

∗ , then lca T ′(y1, y2) = p
because y2 is not a descendant of p∗ in S ′ . Finally, if
lca T (y1, y2) = p , then lca T ′(y1, y2) = lca T (y1, y2) .
The latter two arguments together with the fact that
the reconciliation maps for T and T ′ coincide for all
vertices distinct from p∗ imply �s(S ′) = �s . Further-
more, x1x2 ∈ E(�w(S ′)) if and only if x1x2 ∈ E(�w) and
lca T ′(x1, x2) �= p∗ . In particular, |E(�w(S ′)| < |E(�w)| .
The modification of S also preserves witnesses: if x is a

Table 1 Summary of the alternative notions of orthology in the
presence of HGT events

Reconciliation condition HGT irrelevant HGT excluded

µ(lca T (x , y)) ∈ V0(S) �w(S) �w(S)

Weak quasi-ortholog Weak ortholog

µ(lca T (x , y)) = lca S(σ (x), σ(y)) �
s(S) �s(S)

Strict quasi-ortholog (Strict) ortholog

Page 32 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

witness of v = p in S then x remains a witness of v in S ′ ;
if x is a witness of p in S then it is a witness of p∗ in S ′
and, since pp∗ is not a HGT-edge, x remains a witness of
p. Thus q ∈ A∗ has a witness x that is also a witness of p
in both S and S ′ , and a witness of p∗ in S ′ . In particu-
lar, therefore, p∗q with q ∈ A∗ is not an HGT edge. Con-
versely, if pq ∈ E(T) is an HGT edge in S , pq is also an
HGT edge in S ′ because µ′(p) = µ(p) and µ′(q) = µ(q)
and S remains unchanged. The latter argument holds for
all HGT edges in S , resp., S ′ . Therefore, uv is an HGT-
edge in S if and only if uv it an HGT edge in S ′ . In par-
ticular, therefore, if the path from u ∈ V 0(T) to the leaf
x ∈ L(T) is HGT-free in S , then it is also HGT-free in S ′.

Repeating this construction produces a finite sequence
of scenarios S = S0,S1, . . . ,Sk with the same strict
orthology graphs �s = �s(S1) = · · · = �s(Sk) and
in each step strictly reduces the number of edges in
the weak orthology graph, i.e., �w(Si) � �w(Si−1)
for 1 ≤ i ≤ k as long as in Si−1 there is a vertex p with
a set A∗ with |A∗| ≥ 2 . Eventually we arrive at a relaxed
scenario Sk with a refined gene tree Tk that contains no
vertex p with set A∗ as defined above. In Sk , therefore,
w = µk(lca Tk

(x, y)) ∈ V 0 implies lca S(σ (x), σ(y)) = w ,
which in turn implies �w(Sk) = �s(Sk) = �s . The asser-
tion now follows since �w(Sk) is a cograph by Lemma 34.
 �

The modification of a relaxed scenario S in the proof of
Lemma 35 only affects the last common ancestors of pairs
of genes x, x′ with µ(lca T (x, x;)) ≻S lca S(σ (x), σ(x

′))
and thus xy ∈ E(G<) . Furthermore, in the modi-
fied scenario S ′ , by construction we still
have µ(lca T ′(x, x;)) ≻S lca S(σ (x), σ(x

′)) ,
since either lca T ′(x, x′) = lca T (x, x

′) or
τT (lca T ′(x, x′)) = τT (lca T ′(x, x′))− ǫ for an arbitrarily
small ǫ . Therefore, we have G(S) = G(S ′) in each step,
which immediately implies

Proposition 5 A graph 3-partition G is explained by a
relaxed scenario if and only if it is explained by a relaxed
scenario satisfying �s(S) = �w(S).

Finally, we show that every valid input
G = (G< ,G= ,G> , σ) has an explanation such that the
EDT graph G= represents the strict quasi-orthologs. This
explanation can, in particular, by obtained with Alg. 1. To
see this, we first provide

Lemma 36 Let S be a relaxed scenario. Then
�s(S) ⊆ G=(S).

Proof Assume that xy ∈ E(�s(S)) . Thus we have x = y
and µ(lca T (x, y)) = lca S(σ (x), σ(y)) ∈ V (S) , which in
turn yields τS(µ(lca T (x, y))) = τS(lca S(σ (x), σ(y))) .
Together with (S2), this implies that
τS(lca S(σ (x), σ(y))) = τT (lca T (x, y)) and, therefore,
xy ∈ E(G=(S)) . Hence, we have �s(S) ⊆ G=(S) . �

Lemma 37 If S is a scenario produced by Algorithm 1
to explain the valid input G = (G< ,G= ,G> , σ) , then
G= = �s(S).

Proof Obs. 4 implies that G= ⊆ �s(S) for every scenario
S produced by Algorithm 1. Conversely, every scenario S
produced by Algorithm 1 with input G = (G< ,G= ,G> , σ)
is relaxed (cf. Lemma 26) and satisfies, in particular,
G= = G=(S) . Hence, we can apply Lemma 36 to conclude
that �s(S) ⊆ G=(S) = G= . �

It is important to note, however, that there are sce-
narios for which G= ⊆ �s(S) is not true. As an exam-
ple, consider the scenario S in Fig. 1(top row, middle) in
which xy ∈ G=(S) but µ(lca T (x, y)) = lca S(σ (x), σ(y))
and thus, xy /∈ �s(S).

Generic Scenarios. It will sometimes be useful to
assume that time maps are generic in the sense that two
inner vertices of the gene or species tree have the same
time stamp only if they belong to the same biological
event. For our purposes, it seems sufficient to rule out
that concurrent nodes are mapped to different posi-
tions in the species tree, i.e., we postulate the following
“genericity” axiom for evolutionary scenarios:

(G) If τT (v) = τS(U) for v ∈ V 0(T) and U ∈ V 0(S) ,
then µ(v) = U .

Axiom (G) stipulates that no two distinct speciation
events, i.e., inner nodes of the species tree are concur-
rent and that no other evolutionary event (duplica-
tion or horizontal transfer) happens concurrent with
a speciation. Note that two vertices of the gene tree
“belong” to the same speciation event if they are recon-
ciled with the same vertex of S. Thus u,u′ ∈ V (T) with
µ(u) = µ(u′) ∈ V (S) are considered as the same specia-
tion event and thus also necessarily have the same time
stamp τT (u) = τT (u

′).
As an immediate consequence of (G), we observe that

τT (lca T (x, y)) = τS(U) implies µ(lca T (x, y)) = U . Con-
versely, since T is phylogenetic, every v ∈ V 0(T) (except
the planted root) is the last common ancestor of some
pair of vertices, and µ(0T) = 0S , we can equivalently
express (G) as

 (G’) If τT (lca T (x, y)) = τS(U) for x, y ∈ L(T) and
U ∈ V 0(S) , then µ(lca T (x, y)) = U .

Page 33 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

Definition 22 A relaxed scenario satisfying (G), or
equivalently (G’), is called generic.

We note in passing that it is not a trivial endeavor to
modify a relaxed scenario S to a generic one S ′ such
that G(S) = G(S ′) . Simply adjusting the time maps is,
in general, not enough. For example, consider scenario
S3 = (T , S, σ ,µ, τT , τS) in Fig. 13(C). Without adjust-
ing the reconciliation map µ , any generic scenario
S ′ = (T , S, σ ,µ, τ ′T , τ

′
S) would satisfy ab /∈ E(G=(S

′))
although ab ∈ E(G=(S3)) . Hence, additional effort
is needed to adjust µ , i.e., to map lca T (a, b) to
lca S(σ (a), σ(b)) instead of mapping it to the edge ρSσ(c) .
However, for every scenario S , there exists a (possibly
alternative) scenario S ′ that is computed using G(S) as
input for Algorithm 1 in conjunction with Algorithm 2.
Therefore, S ′ satisfies G(S ′) = G(S) and the conditions
provided in Observation 4 and 5. These strong con-
straints on S ′ might be helpful in transforming it into a
generic scenario.

Theorem 23 For a generic scenario
S = (T , S, σ ,µ, τT , τS) it always holds that
G=(S) = �s(S) and thus, G=(S) ⊆ �w(S) . In particular,
if S is HGT-free or S and T are binary, then �s(S) is a
cograph.

Proof Let S = (T , S, σ ,µ, τT , τS) be a generic scenario.
Assume first that xy ∈ E(G=(S)) . By definition, x = y
and τT (lca T (x, y)) = τS(lca S(σ (x), σ(y))) . By (G’),
µ(lca T (x, y)) = lca S(σ (x), σ(y)) . Hence, xy ∈ E(�s(S))
and, therefore, G=(S) ⊆ �s(S).

By Lemma 36, we have �s(S) ⊆ G=(S) and,
thus, �s(S) = G=(S) . By Equ. (2), we have
G=(S) = �s(S) ⊆ �w(S) . Moreover, �s(S) = G=(S)
together with Lemma 21 and Theorem 7 implies that
�s(S) is a cograph whenever S is HGT-free or S and T
are binary. �

Note that a pair of weak quasi-orthologs
x, y ∈ L(T) may have arisen in a speciation and have
been transferred to the species σ(x) and σ(y) in
which they are found at later points in time. Thus
τT (lca T (x, y)) ≶ τS(lca S(σ (x), σ(y)) is possible, see
Fig. 12 for two examples. Consequently, �w(S) = G=(S)
is possible for generic scenarios.

As an immediate consequence of Lemma 6, equal-
ity between �w(S) and G=(S) also holds for HGT-free
scenarios. In particular, by definition, �s(S) = �s(S) .
Hence, together with Lemma 21, we obtain

Corollary 11 Every relaxed scenario S without HGT-
edges satisfies G=(S) = �s(S) = �s(S) . In this case,
�s(S) is a cograph.

Corollary 12 Let S be a generic sce-
nario. Then G=(S) = �w(S) if and only if
µ(lca T (x, y)) = lca S(σ (x), σ(y)) for all xy ∈ E(�w(S)) ,
which holds if and only if �s(S) = �w(S) . In this case,
�s(S) is a cograph.

The example in Fig. 13C show that the condition (G)
cannot be dropped in Cor. 12.

Equ. 2 and Thm. 23 immediately imply

Corollary 13 Every generic scenario S satisfies
�s(S) ⊆ �s(S) = G=(S) ⊆ �w(S).

Concluding remarks
We have developed a complete characterization of graph
3-partition G on a species-colored set of vertices that
can be explained by an relaxed scenario S (Thm. 10). We
showed, furthermore, that whenever such an explaining
relaxed scenario exists, one can also find explanations
from a much more restricted class of scenarios that are
fully witnessed and satisfy certain natural constraints for
“speciation events” (Thm. 13). The existence of such sce-
narios can be tested in polynomial time, and in the posi-
tive case, both relaxed and restricted scenarios explaining
the input 3-partition can be constructed, again in polyno-
mial time. If only the information of G= ∈ G is available,
it can be tested in polynomial-time as whether G= is an
EDT graph in the HGT-free case (cf. Thm. 14), while the
problem becomes NP-hard for general relaxed scenarios
(cf. Thm. 16). In contrast, PDT graphs can be recognized
in polynomial-time (cf. Thm. 17). These approaches
extend earlier work on LDT graphs, which serve as the

Fig. 12 The two pairs x and y as well as x′ and y′
are weak quasi-orthologs in S1 = (T , S, σ ,µ, τT , τS)
and S2 = (T ′ , S′ , σ ′ ,µ′ , τT ′ , τS′) , respectively,
but it holds τT (lca T (x , y)) < τS(lca S(σ (x), σ(y))
and τT ′ (lca T ′ (x

′ , y′)) > τS′ (lca S′ (σ
′(x′), σ ′(y′))

Page 34 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

basis for indirect methods for the inference of HGT
events [4]. If only the information of G< ∈ G is available,
it can be tested whether G< is an LDT graph and, in the
affirmative case, a relaxed scenario that explains G< can
be constructed in polynomial-time [4].

Relaxed scenarios also can be used to formalize Wal-
ter Fitch’s concept of xenologous gene pairs [1, 8].
Given a relaxed scenario S = (T , S, σ ,µ, τT , τS) , we
define the xenology relation R by setting (x, y) ∈ R
precisely if x, y ∈ L(T) and the unique path connect-
ing x and y in T contains an HGT edge. The resulting
graph ̥ (S):=(L(T),R) is known as symmetrized Fitch
graph [45–47]. It is always a properly colored multipar-
tite graph. Thm. 5 in [4] shows that for every properly
colored multipartite graph there is a relaxed scenario
S such that G<(S) = ̥ (S) . On the other hand, by [4,
Thm. 4], the LDT graph G<(S) is always a subgraph
of ̥ (S) for every relaxed scenario S . Thus, for every S
and every xy ∈ G<(S) , the two genes x and y are sepa-
rated by at least on HGT-event. There are examples of
relaxed scenarios S for which G<(S) = ̥ (S) (cf. [4,
Fig. 7]). Whether G<(S) � ̥ (S) or G<(S) = ̥ (S)
heavily depends on the particular scenario S . Given
G = (G< ,G= ,G> , σ) , which may be estimated empirically
from sequence similarity data, an explaining scenario S is
not uniquely determined in general. This begs the ques-
tion whether there is a relaxed scenario S that explains
G and satisfies G< = ̥ (S) . To see that this is not the
case, consider G:=G(S2) , where S2 is the scenario as
in Fig. 4. In this case, G< is not a complete multipartite
graph and thus, G< � ̥ (S) for every relaxed scenario S
that explains G< . Consequently, the information on HGT-
events is not always provided entirely by the knowledge
of G< alone. The graphs G= and G> thus may add addi-
tional information for the inference of HGT. It will there-
fore be an interesting topic for future work to understand
how to employ G = (G< ,G= ,G> , σ) to detect HGT-
events and to which extend HGT-events are uniquely
determined for a given G.

Relaxed scenarios provide a very general framework
in which the concepts of orthology, paralogy, and xenol-
ogy can be studied in a rigorous manner. In Section

“Orthology and Quasi-Orthology”, we compared different
concepts of orthology that have been proposed for situa-
tions with horizontal transfer. We obtained simple results
describing the mutual relationships of the corresponding
variants of “orthology graphs” on L(T), and their relations
with G= . With the exception of the strict quasi-orthology
graph �w(S) , the alternative notions lead to colored
cographs similar to the HGT-free case, see [21]. The latter
connections are of practical importance since the EDT
graph G= , or the 3-partition graphs, can be estimated
from sequence similarities. It will be interesting, there-
fore, to explore if techniques similar to those employed
by Schaller et al. [48] can be used to identify the edges on
G= that do not correspond to orthology-relationships.

We found that, similar to LDT graphs, PDT graphs
are also cographs. This is in general not the case for
EDT graphs, although EDT graphs are perfect (Prop. 4).
If both gene tree and species tree are binary, i.e., fully
resolved, then the EDT graph is a cograph. However, not
all proper vertex colorings of a cograph result in an EDT
graph (Fig. 8). It remains an interesting open problem to
characterize the “EDT-colorings” of cographs in analogy
to the hc-colorings of cograph that appear in the context
of reciprocal best match graphs [49, 50]. Moreover, it is
at least of theoretical interest to ask how difficult it is
to decide whether a suitable coloring σ exists such that
(G< ,G= ,G> , σ) is explained by a relaxed scenario. Find-
ing such a coloring corresponds to assigning species to
genes, a problem that arises in metagenomics. Indeed,
when DNA is extracted from bulk samples taken from
the environment, the species that contains each sequence
is unknown since they belong to members of a diverse
population (for instance, microbial or fungal). Popu-
lar techniques to recover a species assignment include
sequence similarity analysis [51] and phylogenetic recon-
structions [52]. Since our approaches combine these two
ideas, it will be interesting to see whether EDT-colorings
can be useful in the context of metagenomics.

The reconciliation of T and S implicitly determines
what kind of evolutionary event corresponds to a ver-
tex v ∈ V 0(T) . Given a relaxed or restricted scenario
S , the assignment of an event label t(v) ∈ Q from some

Fig. 13 A A HGT-free relaxed scenario where G= (S1) � �w(S1) . The vertices a and a′ are weak quasi-orthologs but aa′ /∈ E(G= (S1)) .
B An HGT-free, non-generic relaxed scenario. C A non-generic relaxed scenario for which G= (S3) �= �w(S3) even
though µ(lca T (x , y)) = lca S(σ (x), σ(y)) holds for all xy ∈ E(�w(S3))

Page 35 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

pre-defined set Q of event types is, of course, a mat-
ter of biological interpretation of S . The definitions of
“DTL scenarios” as in [16, 53, 54] assign event labels to
the inner vertices of T that then must satisfy certain con-
sistency conditions with the local behavior of the rec-
onciliation map µ . Event labelings t : V 0(T) → Q also
play a key role in orthology detection in duplication/loss
scenarios [18, 19, 48, 55]. In relaxed scenarios, it is not
always possible to assign event types that match with
straightforward biological interpretations in an unam-
biguous manner. For example, from a biological perspec-
tive, speciation events are usually defined as “passing on
the entire ancestral genome to each offspring lineage”. In
Fig. 3, however, lca T (a, a

′) describes a gene duplication
that occurs together with the speciation event. As noted
in [3, Fig.2], this issue already arises in the setting of DL-
scenarios with multifurcating trees even in HGT-free
scenarios that satisfy the speciation constraint S6, see
also [2]. Some further pertinent results on event-based
reconciliation in the presence of HGT were discussed by
Nøjgaard et al. [38]. These point out subtle differences for
non-binary species trees in the definition of event-based
DTL-scenarios [16] and suggest a natural notion of event-
annotated relaxed scenarios. Because of these difficulties
we have avoided to consider event types as a formal level
in this contribution. Instead, these issues will be the focus
of a forthcoming contribution.

It is reassuring that a graph 3-partition G that can
be explained by a relaxed scenario can always also be
explained by a restricted scenario. This begs the ques-
tion, however, whether there is a simple, local editing
algorithm that converts a “true” scenario in a restricted
or at least a fully witnessed one. In the case of HGT-free
scenarios, there is a simple rule to exclude “non-observ-
able” vertices in T: in this restricted setting, it suffices to
recursively remove all deleted genes and all inner vertices
with a single child [18]. The situation seems to be much
less obvious for relaxed scenarios, since these models are
somewhat more general than “event-driven” scenarios.
For instance, relaxed scenarios allow multiple descend-
ants from nodes v ∈ V (T) with µ(v) ∈ V (S) . As a con-
sequence, is seems difficult to interpret a vertex v that
is reconciled with a vertex in the species tree as a “spe-
ciation event” in the strict sense. The exact meaning of
“events”, therefore, deserves a more detailed analysis in
the setting of relaxed scenarios.

Appendix
Proof of Lemma 23 In this section, we show in detail
that, given a valid input G = (G< ,G= ,G> , σ) with ver-
tex set L, Algorithm 1 indeed returns a relaxed scenario

S = (T , S, σ ,µ, τT , τS) such that L(T) = L . The proof
parallels the arguments in the proof of Thm. 2 in [4].

Proof of Lemma 23 Let σ : L → M and set R = RS(G)
and F = FS(G) . By a slight abuse of notation, we will
simply write µ and τT also for restrictions to subsets of
V(T). By assumption, (R,F) is consistent, and thus, a tree
S on M that displays S exists, and can be constructed in
Line 1 e.g. using MTT [34]. By Lemma 1, we can always
construct a time map τS for S satisfying τS(x) = 0 for all
x ∈ L(S) in Line 2. By definition, τS(y) > τS(x) must hold for
every edge yx ∈ E(S) , and thus, we obtain ǫ > 0 in Line 3.
Recall that σ(L′) ⊆ L(S(uS)) holds in every recursion step
by Obs. 2 and note that we reach the else-block starting
in Line 13 only if uS is not a leaf. Therefore, the auxil-
iary graphs H1 , H2 , and H3 are well-defined and there is
a vertex v∗S ∈ child S(uS) such that σ(Cj) ∩ L(S(v∗S)) �= ∅
for every connected component Cj of H2 in Line 19, and
a vertex vS ∈ child S(uS) such that σ(Ck) ⊆ L(S(vS)) for
every connected component Ck of H3 in Line 22. Moreo-
ver, par S(uS) is always defined since we have uS = ρS and
thus par S(uS) = 0S in the top-level recursion step, and
recursively call the function BuildGeneTree on verti-
ces vS such that vS ≺S uS.

In summary, all assignments are well-defined in every
recursion step. It is easy to verify that the algorithm ter-
minates since, in each recursion step, we either have that
uS is a leaf, or we recurse on vertices vS that lie strictly
below uS . We argue that the resulting tree T ′ is a (not
necessarily phylogenetic) tree on L by observing that, in
each step, each x ∈ L′ is either attached to the tree as a
leaf (if uS is a leaf) or passed down to a recursion step on
some connected component of H3 since each connected
component Ck of H3 satisfies Ck ⊆ Cj for some connected
component Cj of H2 which in turn satisfies Cj ⊆ Ci for
some connected component Ci of H1 . Nevertheless, T ′
is turned into a phylogenetic tree T by suppression of
degree-two vertices in Line 26. Finally, µ(x) and τT (x) are
assigned for all vertices x ∈ L(T ′) = L in Line 11, and for
all newly created inner vertices in Lines 7, 16, and 20.

Before we continue to show that S is a relaxed scenario,
we first show that the conditions for time maps and time
consistency are satisfied for (T ′, S, σ ,µ, τT , τS):

Claim 1 For all x, y ∈ V (T ′) with x ≺T ′ y , we have
τT (x) < τT (y) . Moreover, for all x ∈ V (T ′) , the following
statements are true:

 (i) if µ(x) ∈ V (S) , then τT (x) = τS(µ(x)) , and

Page 36 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

 (ii) if µ(x) = (a, b) ∈ E(S) , then τS(b) < τT (x) < τS(a).

Proof of Claim Recall that we always write an edge uv of a
tree T such that v ≺T u . For the first part of the statement,
it suffices to show that τT (x) < τT (y) holds for every edge
yx ∈ E(T ′) , and thus to consider all vertices x = ρT ′
in T ′ and their unique parent, which will be denoted
by y in the following. Likewise, we have to consider all
vertices x ∈ V (T ′) including the root to show the second
statement. The root ρT ′ of T ′ corresponds to the vertex ρ′
created in Line 6 in the top-level recursion step on L and
ρS . Hence, we have µ(ρT ′) = par S(ρS)ρS = 0SρS ∈ E(S)
and τT (ρT ′) = τS(ρS)+ ǫ (cf. Line 7). Therefore,
we have to show Subcase (ii). Since ǫ > 0 ,
it holds that τS(ρS) < τT (ρT ′) . Moreover,
τS(0S)− τS(ρS) ≥ 3ǫ holds by construction, and thus
τS(0S)− (τT (ρT ′)− ǫ) ≥ 3ǫ and τS(0S)− τT (ρT ′) ≥ 2ǫ ,
which together with ǫ > 0 implies τT (ρT ′) < τS(0S).
We now consider the remaining vertices x ∈ V (T ′)\{ρT ′ } .
Every such vertex x is introduced into T ′ in some recur-
sion step on L′ and uS in exactly one of the following four
ways:

(a) x ∈ L(T ′) is a leaf attached to some inner vertex ρ′
in Line 10,

(b) x = ui is created in Line 15,
(c) x = vj is created in Line 18, and
(d) x = wk :=BuildGeneTree(Ck , vS) is attached to

the tree in Line 23.

Note that if x = ρ′ is created in Line 6, then
ρ′ is either the root of T ′ , or equals a vertex
wk :=BuildGeneTree(Ck , vS) that is attached to the
tree in Line 23 in the “parental” recursion step.
In Case (a), we have that x ∈ L(T ′) is a leaf and
attached to some inner vertex y = ρ′ . Since uS must
be a leaf in this case, and thus τS(uS) = 0 , we have
τT (y) = 0+ ǫ = ǫ and τT (x) = 0 (cf. Lines 7 and 11).
Since ǫ > 0 , this implies τT (x) < τT (y) . Moreover, we
have µ(x) = σ(x) ∈ L(S) ⊂ V (S) (cf. Line 11), and
thus have to show Subcase (i). Since uS is a leaf and
σ(L′) ⊆ L(S(uS)) , we conclude σ(x) = uS . Thus we
obtain τT (x) = 0 = τS(uS) = τS(µ(x)).

In Case (b), we have that x = ui is created in Line 15 and
attached as a child to some vertex y = ρ′ created in the
same recursion step. Thus, we have τT (y) = τS(uS)+ ǫ ,
τT (x) = τS(uS) and µ(x) = uS ∈ V (S) (cf. Lines 7 and 16).
Therefore and becauseǫ > 0 , it holds τT (x) < τT (y) and
Subcase (i) is satisfied.

In Case (c), we have that x = vj is created in Line 18
and attached as a child to some vertex y = ui created in
the same recursion step. Thus, we have τT (y) = τS(uS)
and τT (x) = τS(uS)− ǫ (cf. Lines 16 and 20). There-
fore and since ǫ > 0 , it holds τT (x) < τT (y) . Moreover,
we have µ(x) = uSv

∗
S ∈ E(S) for some v∗S ∈ child S(uS) .

Hence, we have to show Subcase (ii). By a similar cal-
culation as before, ǫ > 0 , τS(uS)− τS(v

∗
S) ≥ 3ǫ and

τT (x) = τS(uS)− ǫ imply τS(v∗S) < τT (x) < τS(uS).

In Case (d), x = wk :=BuildGeneTree(Ck , vS) is
attached to the tree in Line 23 and equals ρ′ as cre-
ated in Line 6 in some “child” recursion step with
vS ∈ child S(uS) . Thus, we have τT (x) = τS(vS)+ ǫ and
µ(x) = uSvS ∈ E(S) (cf. Line 7). Moreover, x is attached
as a child of some vertex y = vj as created in Line 18.
Thus, we have τT (y) = τS(uS)− ǫ . By construction
and since uSvS ∈ E(S) , we have τS(uS)− τS(vS) ≥ 3ǫ .
Therefore, (τT (y)+ ǫ)− (τT (x)− ǫ) ≥ 3ǫ and thus
τT (y)− τT (x) ≥ ǫ . This together with ǫ > 0 implies
τT (x) < τT (y) . Moreover, since µ(x) = uSvS ∈ E(S) for
some vS ∈ child S(uS) , we have to show Subcase (ii). By a
similar calculation as before, ǫ > 0 , τS(uS)− τS(vS) ≥ 3ǫ
and τT (x) = τS(vS)+ ǫ imply τS(vS) < τT (x) < τS(uS) . �

The tree T is obtained from T ′ by first adding a planted
root 0T (and connecting it to the original root) and then
suppressing all inner vertices except 0T that have only a
single child in Line 26. In particular, T is a planted phy-
logenetic tree by construction. The root constraint (S0)
µ(x) = 0S if and only if x = 0T also holds by construction
(cf. Line 27). Since we clearly have not contracted any
outer edges (y, x), i.e. with x ∈ L(T ′) , we conclude that
L(T ′) = L(T) = L . As argued before, we have τT (x) = 0
and µ(x) = σ(x) whenever x ∈ L(T ′) = L(T) (cf.
Line 11). Since, in addition, all other vertices are mapped
by µ to some edge of S, inner vertex, or 0S (cf. Lines 7, 16,
20, and 27), the leaf constraint (S1) is satisfied.

By construction, we have V (T) \ {0T } ⊆ V (T ′) .
Moreover, suppression of vertices clearly preserves
the �-relation between all vertices x, y ∈ V (T)\{0T } .
Together with Claim 1, this implies τT (x) < τT (y) for
all vertices x, y ∈ V (T)\{0T } with x ≺T y . For the sin-
gle child ρT of 0T in T, we have τT (ρT) ≤ τS(ρS)+ ǫ
where equality holds if the root of T ′ was not suppressed
and thus is equal to ρT . Moreover, τT (0T) = τS(0S)
and τS(0S)− τS(ρS) ≥ 3ǫ hold by construction.
Taken together the latter two arguments imply that
τT (ρT) < τT (0T) . In particular, we obtain τT (x) < τT (y)
for all vertices x, y ∈ V (T) with x ≺T y . Hence, τT is a
time map for T, which, moreover, satisfies τT (x) = 0 for
all x ∈ L(T).

Page 37 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

To show that S = (T , S, σ ,µ, τT , τS) is a relaxed sce-
nario, it remains to show the two time consistency
constraints (S2) and (S3) in Def. 2. For 0T , we have
τT (0T) = τS(0S) = τS(µ(0T)) . Hence, condition in (S2) is
satisfied for 0T . The remaining vertices of T are all verti-
ces of T ′ as well. The latter two arguments together with
Claim 1 imply that conditions (S2) and (S3) are also satis-
fied, and thus S is a relaxed scenario. �

Hardness of EDT graph recognition
To establish the NP-hardness of (CF ,CR)-Satisfiability
and EDT-Recognition, we start from

Problem 3 (3-Set Splitting)

Input: A finite set U and a collection B = {B1, . . . , Bm} of subsets of U

s.t. |Bi | = 3 for all i.

Question: Is there a partition {U1,U2} of U into two sets such that,
for each Bj ∈ B,

we have Bj ∩ U1 �= ∅ and Bj ∩ U2 �= ∅.

In other words, none of the Bj ∈ B is entirely contained
in either U1 or U2.

Lovász [56] showed that the “unrestricted” version of
3-Set Splitting, in which elements in Bj ∈ B have size
|Bi| ≤ 3 instead of |Bi| = 3 , is NP-complete. There does
not seem to be a published proof for the NP-complete-
ness of the “restricted” variant of 3-Set Splitting. For
completeness, we include a simple argument starting
from

Problem 4 (monotone NAE-3-SAT)

Input: Given a set of clauses C = {C1, . . . , Cm} over a set U
of Boolean variables

s.t. |Ci | = 3 for all i and Ci contains no negated variables.

Question: Is there a truth assignment to U such that in each Ci
not all three literals are set to true?

As shown by Porschen et al. [57, Thm. 3], monotone
NAE-3-SAT is NP-complete. Its is straightforward to see
that monotone NAE-3-SAT and 3-Set Splitting are
equivalent in the following sense: Interpret the Ci ∈ C
as sets and put B = C . Then (C, U) is a yes-instance of
monotone NAE-3-SAT if and only if (B, U) is a yes-
instance of 3-Set Splitting because we can obtain a
solution {U1,U2} for (B, U) from a solution for (C, U) by
setting U1:={x ∈ U | x is true} and U2:=U \ U1 . Con-
versely, a solution for (C, U) is obtained from a solu-
tion {U1,U2} for (B, U) by assigning “true” exactly to all
x ∈ U1 . Consequently, we have

Proposition 6 3-Set Splitting is NP-complete.

We are now in the position to prove NP-completeness
of (CF ,CR)-Satisfiability (Thm. 15).

Proof of Theorem 15 Given a tree S∗ , it can be verified
in polynomial-time as whether S∗ satisfies (CF ,CR) .
Hence, (CF ,CR)-Satisfiability∈ NP . To show
NP-hardness we use a reduction from 3-Set Splitting.
Given an instance (U, B) of 3-Set Splitting, con-
struct an instance (U ′,CF ,CR) of (CF ,CR)-Satisfi-
ability as follows. For Bj ∈ B , we order its three
elements arbitrarily and write Bj = {b1j , b

2
j , b

3
j } . Let

U ′:=U ∪ {x, z′, z′′} ∪ {αj : 1 ≤ j ≤ m} and let

It is easy to verify that this reduction can be performed in
polynomial time. We show that there exists a 3-set split-
ting of B if and only if there exists a tree S∗ that satisfies
(CF ,CR).

Assume first that (U, B) is a yes-instance of 3-Set Split-
ting, i.e., there is a partition {U1,U2} of U such that
|Bj ∩ U1| ∈ {1, 2} for each Bj ∈ B . We construct a tree S∗
that satisfies (CF ,CR) , see Fig. 14 for an illustrative exam-
ple. Start with S∗ as the tree in which the root has three
children x,w1,w2 . Then, add each element of {z′} ∪U1 as
a child of w1 , and add each element of {z′′} ∪U2 as a child
of w2 . Notice that S∗ displays x|z′|z′′ as required by CF .
Moreover, because each ui has either z′ or z′′ as a sibling
but not both, S∗ displays either uiz′|z′′ or uiz′′|z′ for each
ui ∈ U , and thus satisfies the constraints in CR . We next
add the remaining αj leaves as children of existing ver-
tices of S∗ , which cannot alter the triples and fan triples
gathered so far.

For each Bj ∈ B , exactly two of b1j , b
2
j and b3j have the

same parent w ∈ {w1,w2} in S∗ , because {U1,U2} is a 3-set
splitting. There are three cases, and in each one, we let
the reader verify that S∗ displays x|b1j |αj and b2j |b

3
j |αj:

if either b1j and b2j or b1j and b3j have the same parent w,
then add αj as a child of the root of S∗;

if b2j and b3j have the same parent w, then add αj as a child
of w.

CF :={x|z′|z′′} ∪

m
⋃

j=1

{ x|b1j |αj , b
2
j |b

3
j |αj },

CR:={ {uiz
′|z′′,uiz

′′|z′} : ui ∈ U }

Page 38 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

It is now straightforward to verify that S∗ satisfies
(CF ,CR).

Suppose now that (U ′,CF ,CR) is a yes-instance of
(CF ,CR)-Satisfiability, i.e., there exists a tree S∗ that
satisfies (CF ,CR) . By the construction of CR , for ui ∈ U ,
S∗ displays either uiz′|z′′ or uiz′′|z′ . We claim that the par-
tition {U1,U2} where

is a 3-set splitting of B. In fact, U1 ∩ U2 = ∅ , since S∗
cannot display both uiz′|z′′ and uiz′′|z′ at the same time.
Moreover, by construction of CR and since S∗ satisfies
(CF ,CR) , at least one of the triples uiz′|z′′ and uiz′′|z′
must be displayed by S∗ for all ui ∈ U . Consequently,
U1 ∪ U2 = U .

Assume, for contradiction, that {U1,U2} is not a 3-set
splitting of B. Hence, there is a Bj = {b1j , b

2
j , b

3
j } in B

such that either Bj ⊆ U1 or Bj ⊆ U2 . First, suppose
that Bj ⊆ U1 . By construction of U1 , S∗ displays b1j z

′|z′′ ,
b2j z

′|z′′ , and b3j z
′|z′′ . Since S∗ displays x|z′|z′′ ∈ CF , we

have r:= lca S∗(x, z
′) = lca S∗(x, z

′′) = lca S∗(z
′, z′′) . Let

y′ be the unique child of r such that z′ �S∗ y
′ , and note

that x and z′′ are not descendants of y′ . Since S∗ displays
b1j z

′|z′′ , b2j z
′|z′′ , and b3j z

′|z′′ , it follows that b1j , b
2
j , and b3j

are all descendants of y′ . Now, αj cannot be a descendant
of y′ , as otherwise S∗ would display b1j αj|x , as opposed
to the fan triple x|b1j |αj ∈ CF that S∗ must display.
On the other hand, if αj is not a descendant of y′ , then
b
j
2, b

j
3 ≺S∗ y

′ implies that S∗ displays b2j b
3
j |αj , a contradic-

tion since b2j |b
3
j |αj ∈ CF . Hence, Bj ⊆ U1 is not possible.

By interchanging the roles of z′ and z′′ and using similar
arguments, one shows that Bj ⊆ U2 is not possible either.
In summary, {U1,U2} is a 3-set splitting. �

U1:={ui : S
∗ displays uiz

′|z′′} and

U2:={ui : S
∗ displays uiz

′′|z′}

We are now in the position to prove NP-completeness
of EDT-Recognition (Thm. 16).

Proof of Theorem 16 First note that the problem
is in NP, since a scenario that explains a given instance
(G, σ) can easily be verified in polynomial time. We
show that EDT-Recognition is NP-hard by reduction
from the (CF ,CR)-Satisfiability problem. Let
(U ,CF ,CR) be an instance of (CF ,CR)-Satisfiability.
We proceed by constructing a corresponding instance
(G, σ) of EDT-Recognition as the disjoint union of
colored graphs Ft for all t ∈ CF and Rt for all t ∈ CR.
The color set � comprises a distinct color σ(u) for each
u ∈ U , and a distinct color σ(t) for each t ∈ CR . Note that
for each pair of triples t = {xy|z, xz|y} ∈ CR a single color
σ(t) is used. Hence, � contains |U | + |CR| colors.

For each t:=x|y|z ∈ CF , we define Ft as the vertex colored
graph with

vertex set V (Ft):={xt , yt , zt , x
′
t , y

′
t , z

′
t},

edge set E(Ft):={xtyt , ytzt , x
′
tz

′
t , z

′
ty

′
t} , and

vertex coloring σ(xt) = σ(x′t) = σ(x) ,
σ(yt) = σ(y′t) = σ(y) , and σ(zt) = σ(z′t) = σ(z).

By construction Ft consists of two connected compo-
nents, namely the two P3 s xt − yt − zt and x′t − z′t − y′t on
three colors. In particular, Ft is properly colored. More-
over, Ft and Ft ′ are vertex disjoint for distinct t, t ′ ∈ CF
even though t and t ′ may have leaves in common and
thus, the vertices in V (Ft) and V (Ft ′) may share colors.
For each t:={xy|z, xz|y} ∈ CR we define Rt as the vertex
colored graph with

vertex set V (Rt):={xt , yt , zt ,wt , y
′
t , z

′
t ,w

′
t},

Fig. 14 An example instance of SeT-SpliTTinG with solution U1 = {u1, u2},U2 = {u3, u4, u5} . The elements of B1, B2, B3 are in the order chosen
by the reduction. The constructed tree S∗ is shown, along with the x|b1j |αj and b2j |b

3
j |αj fan triples that must be displayed. Note that each

of the three cases in which two elements of Bj have the same parent occurs

Page 39 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

edge set E(Rt):={xtwt , xtyt ,wtyt ,wtzt ,w
′
ty

′
t , y

′
t z

′
t} ,

and
vertex coloring σ(xt) = σ(x) , σ(yt) = σ(y′t) = σ(y) ,
σ(zt) = σ(z′t) = σ(z) , and σ(wt) = σ(w′

t) = σ(t).

By construction, Rt consists of two connected compo-
nents, a so-called paw graph on the four vertices xt , yt ,
zt , and wt and the P3 w′

t − y′t − z′t . In particular, Rt is
properly colored. Again, Rt and Rt ′ for distinct t, t ′ ∈ CR
are vertex disjoint but may share certain colors. Since
CF ∩ CR = ∅ , we have t = t ′ for any Ft and Rt ′ , i.e., each
t unambiguously refer to either a subgraph Ft or a sub-
graph Rt of (G, σ) . The graphs Ft and Rt are illustrated in
Fig. 15(A) and (B), respectively.

Since Ft and Rt can be constructed in constant time for
each t ∈ CF ∪ CR , the graph (G, σ) can be constructed
in polynomial time. Every connected component of G is
either a paw component” or a “ P3 component”. By con-
struction, any two vertices that are in the same connected
component of (G, σ) have different colors. Thus (G, σ) is
properly colored.

We proceed by showing that there exists a tree S∗
that satisfies (CF ,CR) if and only if there exists a relaxed
scenario S that explains (G, σ) . As we shall see, Ft
ensures that the species tree S∗ displays the fan triple
σ(x)|σ(y)|σ(z) , while Rt enforces the species tree to dis-
play either σ(x)σ (y)|σ(z) or σ(x)σ (z)|σ(y).

In the following we simplify the notation and denote
the color of a vertex u in G by ũ instead of σ(u).

Suppose first that (G, σ) is a yes-instance of EDT-
Recognition and thus, there exists a relaxed scenario
S = (T , S, σ ,µ, τT , τS) that explains (G, σ) . We show
that there exists a tree S∗ that satisfies (CF ,CR) . Con-
sider G = (G<(S),G=(S),G>(S), σ) , where by assump-
tion G=(S) = G . By Prop. 2, the species tree S of S agrees
with (RS(G),FS(G)).

We claim that S|x̃ỹz̃ coincides with the fan triple x̃|ỹ|z̃
for every t = x|y|z ∈ CF . To see this, consider the sub-
graph Ft in G. It contains xt − yt − zt and x′t − z′t − y′t

as induced P3 s. By Definition 6, therefore, x̃ỹ|z̃ , x̃z̃|ỹ ,
and ỹz̃|x̃ are forbidden triples of FS(G) , and thus S|x̃ỹz̃
must display x̃|ỹ|z̃ as claimed. We next claim that for
each t = {xy|z, xz|y} ∈ CR , S|x̃ỹz̃ is either x̃ỹ|z̃ or x̃z̃|ỹ .
Consider the subgraph Rt in G. It contains w′

t − y′t − z′t
as an induced P3 . By Definition 6, therefore, w̃ỹ|z̃ and
ỹz̃|w̃ are forbidden triples of FS(G) . We argue next
that ytzt ∈ E(G<(S)) . To this end, suppose for con-
tradiction that ytzt ∈ E(G>(S)) . This together with
Definition 6 and wtyt ,wtzt ∈ E(G) = E(G=(S)) implies
that ỹz̃|w̃ is an informative triple of RS(G) ; a con-
tradiction to ỹz̃|w̃ being a forbidden triple. Together
with ytzt /∈ E(G) , this leaves ytzt ∈ E(G<(S)) as the
only possibility. Now consider xtzt , which is not an
edge in G = G=(S) . We have the two possibilities
xtzt ∈ E(G<(S)) and xtzt ∈ E(G>(S)) . Again using
Definition 6, xtzt , ytzt ∈ E(G<(S)) and xtyt /∈ E(G<(S))
yield the informative triple x̃ỹ|z̃ in the former case;
and xtzt ∈ E(G>(S)) and xtyt , ytzt /∈ E(G>(S)) yield the
informative triple x̃z̃|ỹ . Hence, in either case, S|x̃ỹz̃ is
either x̃ỹ|z̃ or x̃z̃|ỹ , as claimed.

We now construct a tree S∗ that satisfies (CF ,CR) from
S as follows. We first set S′:=S|{ũ:u∈U} . In other words, S′
is the minimal phylogenetic subtree of S that connects
all leaves that are distinct from w̃t for t ∈ CR . Moreo-
ver, since wt is not part of any of the aforementioned
triples and fan triples, the tree S′ still displays, for
every t = x|y|z ∈ CF , the fan triple x̃|ỹ|z̃ and, for every
t = {xy|z, xz|y} ∈ CR , either the triple x̃ỹ|z̃ or the triple
x̃z̃|ỹ . The tree S∗ obtained from S′ by relabeling, for
each u ∈ U , the leaf ũ by u therefore satisfies (CF ,CR).

Suppose that (U ,CF ,CR) is a yes-instance of (CF ,CR)

-Satisfiability and thus, there exists a tree S∗ on
leaf set U that satisfies (CF ,CR) . We first construct a
graph 3-partition G = (G< ,G= ,G> , σ) and then use
Theorem 10 to argue that G can be explained by some
relaxed scenario.

We start by setting G=:=G and proceed as follows:

Fig. 15 The graphs Ft and Rt as constructed in the proof of Theorem 16

Page 40 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

 (A1) for any two distinct connected components H1
and H2 of G and any x ∈ H1, y ∈ H2 , add xy to
E(G>);

 (A2) for each t = x|y|z ∈ CF , add xtzt and x′ty′t to
E(G<);

 (A3) for each t = {xy|z, xz|y} ∈ CR , add ytzt and w′
t z

′
t

to E(G<) and, for xtzt , there are two cases:

(a) if S∗ displays xy|z , then add xtzt to E(G<);
(b) if S∗ displays xz|y , then add xtzt to E(G>).

 Note that no other case is possible since S∗ sat-
isfies (CF ,CR).

This completes the construction of G . Since rules (A2)
and (A3) assign an edge in either G> or G< to every non-
adjacent pair of vertices within the same connected com-
ponent, i.e., induced P3 or paw graph of G= , and rule (A1)
covers all edges between these connected components, G is
a graph 3-partition.

Claim 2 For each ab ∈ E(G<) , a and b are in the same
connected component of G. Moreover, the connected com-
ponents of G< are isolated edges or induced P3s.

Proof of Claim 2 Only Steps (A2) and (A3) add edges
to G< , and they only add edges between vertices of the
same P3 or paw component of G. Moreover, in each such
component, these steps never add more than two edges to
G< , and so the connected components of G< are isolated
edges or induced P3 s, as claimed. ⋄
Claim 3 The graphs G< and G= are properly colored.

Proof of Claim 3 Because G= = G , the graph G= is
properly colored by construction. As for G< , the endpoints
of G< edges always belong to the same P3 on three colors
or P4 on four colors in G by Claim 2, and they have a
different color by construction. ⋄

Claim 4 The graphs G< and G> are cographs.

Proof of Claim 4 For G< , this holds because its con-
nected components have at most 3 vertices by Claim 2
and, thus, it cannot contain an induced P4 . Now consider
the graph G= ∪ G< . Since only Steps (A2) and (A3) add
edges to G< , and they only add edges between vertices of
the same P3 or paw component of G, the connected com-
ponents of G= ∪ G< all have 3 or 4 vertices. In particular,
upon inspection of Fig. 15 and Steps (A2) and (A3), one

easily verifies that none of these components contains
an induced P4 . Therefore, G= ∪ G< must be a cograph.
Finally, since G is a graph 3-partition, G> is the comple-
ment graph of G= ∪ G< and thus also a cograph. ⋄

By Theorem 10, it remains to show that
(RS(G),FS(G)) is consistent. To this end, we construct a
species tree S that agrees with (RS(G),FS(G)) . First, we
set S:=S∗ and, for each u ∈ U , relabel the leaf u in S to
ũ . Second, we insert the remaining leaves {w̃t : t ∈ CR}
to S. To this end, for each t:={xy|z, xz|y} ∈ CR , we add
w̃t as a child of lca S(ỹ, z̃) . We note that if S contains a
fan triple ã|b̃|c̃ (resp. rooted triple ãb̃|c̃) for ã, b̃, c̃ ∈ � ,
then after inserting a leaf as a child of an existing vertex
of S, the tree S still displays ã|b̃|c̃ or ãb̃|c̃ , respectively.
Therefore, each insertion of a leaf w̃t preserves the tri-
ples and fan triples that are already displayed by S.

We continue by showing that S agrees with
(RS(G),FS(G)).

Claim 5 The species tree S displays every triple in RS(G).

Proof of Claim 5 Suppose that there are a, b, c ∈ V (G)
that imply an informative triple σ(a)σ (b)|σ(c) ∈ RS(G)
(we refrain from using x, y, z as in Definition 6 to avoid
confusion with the xt , yt , zt vertices). Together with
Definition 6, this implies that one of the following two
cases holds: (1) ac, bc ∈ E(G<) and ab /∈ E(G<) or (2)
ab ∈ E(G>) and ac, bc /∈ E(G>).
Case (1): ac, bc ∈ E(G<) and ab /∈ E(G<) . By rule (A1),
vertices of distinct connected components of G are con-
nected by edges in G> . Since ac, bc ∈ E(G<) , the verti-
ces a, b and c must be contained in the same connected
component of G. Clearly, each P3 component contains
at most one edge in G< (since two of the three possible
edges are edges in G = G=). Therefore, a, b, c must be
part of a paw component belonging to an Rt subgraph,
with t = {xy|z, xz|y} ∈ CR . In particular, we must have
a = xt , b = yt , and c = zt (noting that the roles of a and
b are interchangeable). Since xtzt = ac ∈ E(G<) , S∗ must
display xy|z according to rule (A3) and, thus, S displays
x̃ỹ|z̃ = σ(a)σ (b)|σ(c).

Case (2): ab ∈ E(G>) and ac, bc /∈ E(G>) . By rule (A1),
vertices of distinct connected components of G are
connected by edges in G> . Since ac, bc /∈ E(G>) , the
vertices a, b and c must be contained in the same con-
nected component of G. Since we never add G> edges
between vertices in a P3 component, a, b, c must be
part of a paw component belonging to an Rt subgraph,
with t = {xy|z, xz|y} ∈ CR . In particular, we must have
a = xt and b = zt (again, the roles of a and b are inter-
changeable). Since xtzt = ab ∈ E(G>) , S∗ must display

Page 41 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

xz|y according to rule (A3) and, thus, S displays x̃z̃|ỹ .
By construction of S, w̃t is a child of lca S(ỹ, z̃) . Together
with S displaying x̃z̃|ỹ , this implies that S also displays
x̃z̃|w̃t . For c, the two possibilities c = yt and c = wt
remain, for which we obtain σ(a)σ (b)|σ(c) = x̃z̃|ỹ
and σ(a)σ (b)|σ(c) = x̃z̃|w̃t , respectively. Hence,
σ(a)σ (b)|σ(c) is displayed by S in both cases.

In summary, S displays every informative triple of RS(G) .
⋄

Claim 6 The species tree S does not display any triple in
FS(G).

Proof of Claim 6 Suppose that there are
vertices a, b, c ∈ V (G) that imply a forbidden triple
σ(a)σ (b)|σ(c) ∈ FS(G) . By Definition 6, we have (1)
ab, bc ∈ E(G=) and ac /∈ E(G=) or (2) ab, ac ∈ E(G=) and
bc /∈ E(G=) . In the following, we consider only Case (1),
since analogous arguments apply in Case (2). Because
ab, bc /∈ E(G>) , we know that a, b and c are contained in
the same connected component of G.
Suppose that a, b, and c are in the same P3 compo-
nent of some Ft subgraph where t = x|y|z ∈ CF . Thus
{σ(a), σ(b), σ(c)} = {x̃, ỹ, z̃} . In this case, since S∗ con-
tains x|y|z , S contains x̃|ỹ|z̃ = σ(a)|σ(b)|σ(c) and thus
does not contain the forbidden triple implied by a, b, c.

Suppose that a, b, and c are in the same P3 component
of some Rt component where t = {xy|z, xz|y} ∈ CR . Thus
{σ(a), σ(b), σ(c)} = {w̃t , ỹ, z̃} . Since we have added w̃t as
a child of lca S(ỹ, z̃) , S contains w̃t |ỹ|z̃ = σ(a)|σ(b)|σ(c)
and thus does not contain the forbidden triple implied by
a, b, c.

Finally, suppose that a, b, and c are in the same
paw component of some Rt component where
t = {xy|z, xz|y} ∈ CR . Then either (i) a = yt , b = wt ,
c = zt ; (ii) a = zt , b = wt , c = yt ; (iii) a = xt , b = wt ,
c = zt ; or (iv) a = zt , b = wt , c = xt . In Cases (i) and (ii),
we again have {σ(a), σ(b), σ(c)} = {w̃t , ỹ, z̃} and, as
argued before, S does not contain the forbidden triples
implied by a, b, c. Now consider Cases (iii) and (iv), and
thus σ(a)σ (b)|σ(c) = x̃w̃t |z̃ and σ(a)σ (b)|σ(c) = z̃w̃t |x̃ ,
respectively. Since S∗ displays either xy|z or xz|y , S dis-
plays x̃ỹ|z̃ or x̃z̃|ỹ . Since we have moreover added w̃t as
a child of lca S(ỹ, z̃) , S displays x̃|z̃|w̃t or x̃z̃|w̃t , respec-
tively. Hence, S displays none of the two forbidden triples
obtained in Cases (iii) and (iv).

Taken together, S does not display a triple in FS(G) . ⋄

We have constructed the graph 3-partition
G = (G< ,G= ,G> , σ) such that G< and G= are properly
colored by Claim 3, G< and G> are cographs by Claim 4,
and (RS(G),FS(G)) is consistent by Claim 5 and Claim 6.
By Theorem 10, this implies that G can be explained by a
relaxed scenario S . Since G=(S) = G= = G , we can con-
clude that G is an EDT graph.

In summary, we have established that EDT-Recogni-
tion is NP-complete. Moreover, the graph G constructed
in the reduction from the (CF ,CR)-Satisfiability prob-
lem is a cograph because it does not contain a P4 as an
induced subgraph. Therefore EDT-Recognition remains
NP-hard if the input graph is a cograph. �

Acknowledgements
The authors would like to thank the Institute Mittag-Leffler in Djursholm, Swe-
den for hosting the conference Emerging Mathematical Frontiers in Molecular
Evolution in August 2022, where this work was finalized.

Author contributions
 All authors contributed to deriving the mathematical results, the interpreta-
tion of results and the writing of the manuscript.

Funding
Open access funding provided by Stockholm University. This work was
funded in part by theDeutsche Forschungsgemeinschaft(DFG, proj.no.
214087123) and theNatural Sciences and Engineering Research Council of
Canada(NSERC, proj.no. RGPIN-2019-05817).

Data availability
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 10 March 2023 Accepted: 23 August 2023

References
 1. Fitch WM. Homology: a personal view on some of the problems. Trends

Genet. 2000;16:227–31. https:// doi. org/ 10. 1016/ S0168- 9525(00) 02005-9.
 2. Geiß M, González Laffitte ME, López Sánchez A, Valdivia DI, Hellmuth M,

Hernández Rosales M, Stadler PF. Best match graphs and reconciliation of
gene trees with species trees. J Math Biol. 2020;80:1459–95. https:// doi.
org/ 10. 1007/ s00285- 020- 01469-y.

 3. Stadler PF, Geiß M, Schaller D, López A, Gonzalez Laffitte M, Valdivia D,
Hellmuth M, Hernandez Rosales M. From pairs of most similar sequences
to phylogenetic best matches. Alg Mol Biol. 2020;15:5. https:// doi. org/ 10.
1186/ s13015- 020- 00165-2.

 4. Schaller D, Lafond M, Stadler PF, Wieseke N, Hellmuth M. Indirect identifi-
cation of horizontal gene transfer. J Math Biol. 2021;83:10. https:// doi. org/
10. 1007/ s00285- 021- 01631-0.

 5. Hellmuth M, Wieseke N. From sequence data incl. orthologs, paralogs,
and xenologs to gene and species trees. In: Pontarotti P, editor. Evolution-
ary Biology: convergent evolution, evolution of complex traits, concepts
and methods. Cham: Springer; 2016. p. 373–92. https:// doi. org/ 10. 1007/
978-3- 319- 41324-2_ 21.

 6. Fitch WM. Distinguishing homologous from analogous proteins. Syst
Zool. 1970;19:99–113. https:// doi. org/ 10. 2307/ 24124 48.

https://doi.org/10.1016/S0168-9525(00)02005-9
https://doi.org/10.1007/s00285-020-01469-y
https://doi.org/10.1007/s00285-020-01469-y
https://doi.org/10.1186/s13015-020-00165-2
https://doi.org/10.1186/s13015-020-00165-2
https://doi.org/10.1007/s00285-021-01631-0
https://doi.org/10.1007/s00285-021-01631-0
https://doi.org/10.1007/978-3-319-41324-2_21
https://doi.org/10.1007/978-3-319-41324-2_21
https://doi.org/10.2307/2412448

Page 42 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

 7. Gray GS, Fitch WM. Evolution of antibiotic resistance genes: the DNA
sequence of a kanamycin resistance gene from Staphylococcus aureus.
Mol Biol Evol. 1983;1:57–66. https:// doi. org/ 10. 1093/ oxfor djour nals.
molbev. a0402 98.

 8. Darby CA, Stolzer M, Ropp PJ, Barker D, Durand D. Xenolog classification.
Bioinformatics. 2017;33:640–9. https:// doi. org/ 10. 1093/ bioin forma tics/
btw686.

 9. Dekker MCH. Reconstruction methods for derivation trees. Master’s
thesis, Vrije Universiteit, Amsterdam, Netherlands. 1986.

 10. Bryant D, Steel M. Extension operations on sets of leaf-labelled trees. Adv
Appl Math. 1995;16(4):425–53. https:// doi. org/ 10. 1006/ aama. 1995. 1020.

 11. Corneil DG, Lerchs H, Steward Burlingham L. Complement reducible
graphs. Discr Appl Math. 1981;3:163–74. https:// doi. org/ 10. 1016/ 0166-
218X(81) 90013-5.

 12. Rutschmann F. Molecular dating of phylogenetic trees: a brief review
of current methods that estimate divergence times. Divers Distrib.
2006;12:35–48. https:// doi. org/ 10. 1111/j. 1366- 9516. 2006. 00210.x.

 13. Sauquet H. A practical guide to molecular dating. Comptes Rendus
Palevol. 2013;12:355–67. https:// doi. org/ 10. 1016/j. crpv. 2013. 07. 003.

 14. Ford D, Matsen FA, Stadler T. A method for investigating relative timing
information on phylogenetic trees. Syst Biol. 2009;58:167–83. https:// doi.
org/ 10. 1093/ sysbio/ syp018.

 15. Szöllősi G, Höhna S, Williams TA, Schrempf D, Daubin V, Boussau B. Rela-
tive time constraints improve molecular dating. Syst Biol. 2022;71:797–
809. https:// doi. org/ 10. 1093/ sysbio/ syab0 84.

 16. Tofigh A, Hallett M, Lagergren J. Simultaneous identification of duplica-
tions and lateral gene transfers. IEEE/ACM Trans Comp Biol Bioinf.
2011;8(2):517–35. https:// doi. org/ 10. 1109/ TCBB. 2010. 14.

 17. Górecki P. H-trees: a model of evolutionary scenarios with horizontal gene
transfer. Fundamenta Informaticae. 2010;103:105–28. https:// doi. org/ 10.
3233/ FI- 2010- 321.

 18. Hernandez-Rosales M, Hellmuth M, Wieseke N, Huber KT, Moulton V,
Stadler PF. From event-labeled gene trees to species trees. BMC Bioinf.
2012;13(Suppl. 19):6. https:// doi. org/ 10. 1186/ 1471- 2105- 13- S19- S6.

 19. Hellmuth M. Biologically feasible gene trees, reconciliation maps and
informative triples. Alg Mol Biol. 2017;12:23. https:// doi. org/ 10. 1186/
s13015- 017- 0114-z.

 20. Lafond M, Hellmuth M. Reconstruction of time-consistent species trees.
Algorithms for Molecular Biology. 2020;15(1):16. https:// doi. org/ 10. 1186/
s13015- 020- 00175-0.

 21. Hellmuth M, Hernandez-Rosales M, Huber KT, Moulton V, Stadler PF,
Wieseke N. Orthology relations, symbolic ultrametrics, and cographs. J
Math Biol. 2013;66:399–420. https:// doi. org/ 10. 1007/ s00285- 012- 0525-x.

 22. Hellmuth M, Wieseke N. On symbolic ultrametrics, cotree representa-
tions, and cograph edge decompositions and partitions. In: Xu D, Du D,
Du D. (eds.) Computing and Combinatorics, 21st International Confer-
ence, COCOON 2015. Lect. Notes Comp. Sci., vol. 9198, pp. 609–623.
Springer, Cham (2015). https:// doi. org/ 10. 1007/ 978-3- 319- 21398-9_ 48.

 23. Hellmuth M, Wieseke N. On tree representations of relations and
graphs: symbolic ultrametrics and cograph edge decomposi-
tions. J Comb Optim. 2018;36(2):591–616. https:// doi. org/ 10. 1007/
s10878- 017- 0111-7.

 24. Hartmann T, Bannach M, Middendorf M, Stadler PF, Wieseke N, Hell-
muth M. Complete edge-colored permutation graphs. Adv Appl Math.
2022;139: 102377. https:// doi. org/ 10. 1016/j. aam. 2022. 102377.

 25. Bose P, Buss JF, Lubiw A. Pattern matching for permutations. Inf Proc
Lett. 1998;65:277–83. https:// doi. org/ 10. 1016/ S0020- 0190(97) 00209-3.

 26. Gallai T. Transitiv orientierbare graphen. Acta Math Acad Sci Hung.
1967;18:25–66. https:// doi. org/ 10. 1007/ BF020 20961.

 27. Liu J, Peng Y, Zhao C. Characterization of P6-free graphs. Discr Appl
Math. 2007;155:1038–43. https:// doi. org/ 10. 1016/j. dam. 2006. 11. 005.

 28. van ’t Hof P, Paulusma D. A new characterization of P6-free graphs. Discr
Appl Math. 2010;158:731–40. https:// doi. org/ 10. 1016/j. dam. 2008. 08.
025.

 29. Conforti M, Cornuéjols G, Vušković K. Decomposition of odd-hole-free
graphs by double star cutsets and 2-joins. Discr Appl Math. 2004;141:41–
91. https:// doi. org/ 10. 1016/ S0166- 218X(03) 00364-0.

 30. Berge C. Färbung von Graphen, deren sämtliche bzw. deren ungerade
Kreise starr sind (Zusammenfassung). Wiss. Z. Martin Luther Univ. Halle-
Wittenberg, Math.-Natur. Reihe 1961;10:114–115.

 31. Chudnovsky M, Cornuéjols G, Liu X, Seymour P, Vušković K. Recognizing
Berge graphs. Combinatorica. 2005;25:143–86. https:// doi. org/ 10. 1007/
s00493- 005- 0012-8.

 32. Chudnovsky M, Robertson N, Seymour P, Thomas R. The strong perfect
graph theorem. Ann Math. 2006;164:51–229. https:// doi. org/ 10. 4007/
annals. 2006. 164. 51.

 33. Corneil DG, Perl Y, Stewart KL. A linear recognition algorithm for cographs.
SIAM J Comput. 1985;14:926–34. https:// doi. org/ 10. 1137/ 02140 65.

 34. He Y-J, Huynh TND, Jansson J, Sung W-K. Inferring phylogenetic relation-
ships avoiding forbidden rooted triplets. J Bioinf Comp Biol. 2006;4:59–74.
https:// doi. org/ 10. 1142/ S0219 72000 60017 09.

 35. Bender MA, Farach-Colton M, Pemmasani G, Skiena S, Sumazin P. Lowest
common ancestors in trees and directed acyclic graphs. J Algorithms.
2005;57(2):75–94. https:// doi. org/ 10. 1016/j. jalgor. 2005. 08. 001.

 36. Berkman O, Vishkin U. Finding level-ancestors in trees. J Comput Syst Sci.
1994;48(2):214–30. https:// doi. org/ 10. 1016/ S0022- 0000(05) 80002-9.

 37. Bender MA, Farach-Colton M. The level ancestor problem simplified.
Theor Comput Sci. 2004;321(1):5–12. https:// doi. org/ 10. 1016/j. tcs. 2003.
05. 002.

 38. Nøjgaard N, Geiß M, Merkle D, Stadler PF, Wieseke N, Hellmuth M. Time-
consistent reconciliation maps and forbidden time travel. Alg Mol Biol.
2018;13:2. https:// doi. org/ 10. 1186/ s13015- 018- 0121-8.

 39. Guigó R, Muchnik I, Smith TF. Reconstruction of ancient molecular phy-
logeny. Mol Phylogenet Evol. 1996;6:189–213. https:// doi. org/ 10. 1006/
mpev. 1996. 0071.

 40. Page RDM, Charleston MA. Reconciled trees and incongruent gene and
species trees. DIMACS Ser Discrete Math Theor Comput Sci. 1997;37:57–
70. https:// doi. org/ 10. 1090/ dimacs/ 037/ 04.

 41. Aho AV, Sagiv Y, Szymanski TG, Ullman JD. Inferring a tree from lowest
common ancestors with an application to the optimization of relational
expressions. SIAM J Comput. 1981;10:405–21. https:// doi. org/ 10. 1137/
02100 30.

 42. Jansson J, Lingas A, Rajaby R, Sung WK. Determining the consistency of
resolved triplets and fan triplets. J Comput Biol. 2018;25:740–54. https://
doi. org/ 10. 1089/ cmb. 2017. 0256.

 43. Betat H, Mede T, Tretbar S, Müller L, Stadler PF, Mörl M, Prohaska SJ. The
ancestor of modern Holozoa acquired the CCA-adding enzyme from
Alphaproteobacteria by horizontal gene transfer. Nucleic Acids Res.
2015;43:6739–46. https:// doi. org/ 10. 1093/ nar/ gkv631.

 44. Kahn AB. Topological sorting of large networks. Commun ACM.
1962;5(11):558–62.

 45. Geiß M, Anders J, Stadler PF, Wieseke N, Hellmuth M. Reconstructing gene
trees from Fitch’s xenology relation. J Math Biol. 2018;77:1459–91. https://
doi. org/ 10. 1007/ s00285- 018- 1260-8.

 46. Hellmuth M, Seemann CR. Alternative characterizations of Fitch’s
xenology relation. J Math Biol. 2019;79:969–86. https:// doi. org/ 10. 1007/
s00285- 019- 01384-x.

 47. Hellmuth M, Long Y, Geiß M, Stadler PF. A short note on undirected Fitch
graphs. Art Discr Appl Math. 2018;1:1–08. https:// doi. org/ 10. 26493/ 2590-
9770. 1245. 98c.

 48. Schaller D, Geiß M, Stadler PF, Hellmuth M. Complete characterization
of incorrect orthology assignments in best match graphs. J Math Biol.
2021;82:20. https:// doi. org/ 10. 1007/ s00285- 021- 01564-8.

 49. Geiß M, Stadler PF, Hellmuth M. Reciprocal best match graphs. J Math
Biol. 2020;80:865–953. https:// doi. org/ 10. 1007/ s00285- 019- 01444-2.

 50. Valdivia DI, Geiß M, Hellmuth M, Hernández Rosales M, Stadler PF. Hierar-
chical and modularly-minimal vertex colorings. Art Discr Appl Math. 2023.
https:// doi. org/ 10. 26493/ 2590- 9770. 1422. 9b6.

 51. Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner FO. TETRA: a
web-service and a stand-alone program for the analysis and compari-
son of tetranucleotide usage patterns in DNA sequences. BMC Bioinf.
2004;5:163. https:// doi. org/ 10. 1186/ 1471- 2105-5- 163.

 52. Darling AE, Jospin G, Lowe E, Matsen FA IV, Bik HM, Eisen JA. PhyloSift:
phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:243.
https:// doi. org/ 10. 7717/ peerj. 243.

 53. Bansal MS, Alm EJ, Kellis M. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformat-
ics. 2012;28:283–91. https:// doi. org/ 10. 1093/ bioin forma tics/ bts225.

 54. Stolzer M, Lai H, Xu M, Sathaye D, Vernot B, Durand D. Inferring duplica-
tions, losses, transfers and incomplete lineage sorting with nonbinary

https://doi.org/10.1093/oxfordjournals.molbev.a040298
https://doi.org/10.1093/oxfordjournals.molbev.a040298
https://doi.org/10.1093/bioinformatics/btw686
https://doi.org/10.1093/bioinformatics/btw686
https://doi.org/10.1006/aama.1995.1020
https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/10.1111/j.1366-9516.2006.00210.x
https://doi.org/10.1016/j.crpv.2013.07.003
https://doi.org/10.1093/sysbio/syp018
https://doi.org/10.1093/sysbio/syp018
https://doi.org/10.1093/sysbio/syab084
https://doi.org/10.1109/TCBB.2010.14
https://doi.org/10.3233/FI-2010-321
https://doi.org/10.3233/FI-2010-321
https://doi.org/10.1186/1471-2105-13-S19-S6
https://doi.org/10.1186/s13015-017-0114-z
https://doi.org/10.1186/s13015-017-0114-z
https://doi.org/10.1186/s13015-020-00175-0
https://doi.org/10.1186/s13015-020-00175-0
https://doi.org/10.1007/s00285-012-0525-x
https://doi.org/10.1007/978-3-319-21398-9_48
https://doi.org/10.1007/s10878-017-0111-7
https://doi.org/10.1007/s10878-017-0111-7
https://doi.org/10.1016/j.aam.2022.102377
https://doi.org/10.1016/S0020-0190(97)00209-3
https://doi.org/10.1007/BF02020961
https://doi.org/10.1016/j.dam.2006.11.005
https://doi.org/10.1016/j.dam.2008.08.025
https://doi.org/10.1016/j.dam.2008.08.025
https://doi.org/10.1016/S0166-218X(03)00364-0
https://doi.org/10.1007/s00493-005-0012-8
https://doi.org/10.1007/s00493-005-0012-8
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.1137/0214065
https://doi.org/10.1142/S0219720006001709
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1016/S0022-0000(05)80002-9
https://doi.org/10.1016/j.tcs.2003.05.002
https://doi.org/10.1016/j.tcs.2003.05.002
https://doi.org/10.1186/s13015-018-0121-8
https://doi.org/10.1006/mpev.1996.0071
https://doi.org/10.1006/mpev.1996.0071
https://doi.org/10.1090/dimacs/037/04
https://doi.org/10.1137/0210030
https://doi.org/10.1137/0210030
https://doi.org/10.1089/cmb.2017.0256
https://doi.org/10.1089/cmb.2017.0256
https://doi.org/10.1093/nar/gkv631
https://doi.org/10.1007/s00285-018-1260-8
https://doi.org/10.1007/s00285-018-1260-8
https://doi.org/10.1007/s00285-019-01384-x
https://doi.org/10.1007/s00285-019-01384-x
https://doi.org/10.26493/2590-9770.1245.98c
https://doi.org/10.26493/2590-9770.1245.98c
https://doi.org/10.1007/s00285-021-01564-8
https://doi.org/10.1007/s00285-019-01444-2
https://doi.org/10.26493/2590-9770.1422.9b6
https://doi.org/10.1186/1471-2105-5-163
https://doi.org/10.7717/peerj.243
https://doi.org/10.1093/bioinformatics/bts225

Page 43 of 43Schaller et al. Algorithms for Molecular Biology (2023) 18:16

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

species trees. Bioinformatics. 2012;28:409–15. https:// doi. org/ 10. 1093/
bioin forma tics/ bts386.

 55. Lafond M, El-Mabrouk N. Orthology and paralogy constraints: satisfiability
and consistency. BMC Genomics. 2014;15:12. https:// doi. org/ 10. 1186/
1471- 2164- 15- S6- S12.

 56. Lovász L. Coverings and colorings of hypergraphs. In: Proceedings of the
Fourth Southeastern Conference of Combinatorics, Graph Theory, and
Computing. Congressus Numerantium, vol. 8, pp. 3–12 (1973). Utilitas
Mathematica Publishing

 57. Porschen S, Schmidt T, Speckenmeyer E, Wotzlaw A. XSAT and NAE-SAT
of linear CNF classes. Discr Appl Math. 2014;167:1–14. https:// doi. org/ 10.
1016/j. dam. 2013. 10. 030.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/bts386
https://doi.org/10.1093/bioinformatics/bts386
https://doi.org/10.1186/1471-2164-15-S6-S12
https://doi.org/10.1186/1471-2164-15-S6-S12
https://doi.org/10.1016/j.dam.2013.10.030
https://doi.org/10.1016/j.dam.2013.10.030

	Relative timing information and orthology in evolutionary scenarios
	Abstract
	Background
	Results

	Introduction
	Notation
	Equal divergence time graphs
	Evolutionary scenarios
	Scenarios without HGT edges
	Informative triples

	The cograph structure
	Explanation of by relaxed scenarios
	Explanation of by restricted scenarios
	Explanation of EDT graphs by relaxed scenarios
	Explanation of PDT graphs by relaxed scenarios
	Orthology and quasi-orthology
	Concluding remarks
	Acknowledgements
	References

