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Abstract 

Background Evolutionary scenarios describing the evolution of a family of genes within a collection of species 
comprise the mapping of the vertices of a gene tree T to vertices and edges of a species tree S. The relative timing 
of the last common ancestors of two extant genes (leaves of T) and the last common ancestors of the two species 
(leaves of S) in which they reside is indicative of horizontal gene transfers (HGT) and ancient duplications. Orthologous 
gene pairs, on the other hand, require that their last common ancestors coincides with a corresponding speciation 
event. The relative timing information of gene and species divergences is captured by three colored graphs that have 
the extant genes as vertices and the species in which the genes are found as vertex colors: the equal-divergence-time 
(EDT) graph, the later-divergence-time (LDT) graph and the prior-divergence-time (PDT) graph, which together form 
an edge partition of the complete graph.

Results Here we give a complete characterization in terms of informative and forbidden triples that can be read 
off the three graphs and provide a polynomial time algorithm for constructing an evolutionary scenario that explains 
the graphs, provided such a scenario exists. While both LDT and PDT graphs are cographs, this is not true for the EDT 
graph in general. We show that every EDT graph is perfect. While the information about LDT and PDT graphs is nec-
essary to recognize EDT graphs in polynomial-time for general scenarios, this extra information can be dropped 
in the HGT-free case. However, recognition of EDT graphs without knowledge of putative LDT and PDT graphs is NP-
complete for general scenarios. In contrast, PDT graphs can be recognized in polynomial-time. We finally connect 
the EDT graph to the alternative definitions of orthology that have been proposed for scenarios with horizontal gene 
transfer. With one exception, the corresponding graphs are shown to be colored cographs.

Keywords Gene tree, Species tree, Cograph, Perfect graph, Orthology, Xenology, Horizontal gene transfer, 
Informative and forbidden triples, Relative timing, NP-hardness
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Introduction
An evolutionary scenario describes the history of a gene 
family relative to the phylogeny of a set of species. For-
mally, it comprises a mapping µ of the gene tree T into 
the species tree S, usually called the reconciliation of S 
and T. The conceptual relevance of scenarios in evolu-
tionary biology derives from the fact that they define 
key relationships between genes, in particular orthol-
ogy, paralogy, and xenology [1]. On the practical side, 
scenarios also imply relations on the set of genes that 
can be inferred directly from sequence similarity data, 
such as the best match relation [2, 3] or the later diver-
gence time (LDT) relation [4], which is closely related to 
the inference of horizontal gene transfer (HGT) events.

In the absence of horizontal transfer, orthology is 
characterized by the fact that the last common ancestor 
of two genes x and y is exactly the speciation event that 
separated the two species σ(x) and σ(y) in which x and 
y, resp., reside [1]. A necessary condition for orthology, 
therefore, is that the last common ancestor of the genes 
x and y and the last common ancestor of the species 
σ(x) and σ(y) have the same evolutionary age. Whether 
or not x,  y and σ(x), σ(y) have equal divergence time 
(EDT) can be decided (at least at some level of accu-
racy) directly from sequence data. The graph G= whose 
vertices are the genes and whose edges are the pairs of 
genes with equal divergence time of x, y and σ(x), σ(y) 
thus is an empirically accessible datum. By construc-
tion, furthermore, the EDT graph contains the orthol-
ogy graph as a subgraph.

The LDT and EDT relations can be complemented with 
a “prior divergence time” relation (PDT). Together, the 
EDT, LDT and PDT relations then define a 3-partition G 
of the edge set of a complete graph with the genes as ver-
tices. Since the EDT relation has some connection with 
orthology and the LDT relation with xenology, it seems 
intuitive that the PDT relation might be connected with 
paralogy. However, for none of the three relations this 
connection is strict in the sense that it would enforce a 
particular type of evolutionary event at the correspond-
ing last common ancestor. Figure  1 shows examples of 
evolutionary scenarios with genes in EDT relation (top 
row), LDT relation (middle row) and PDT relation (bot-
tom row) with the corresponding last common ancestor 
being any of the event types speciation, HGT, and dupli-
cation. The EDT, LDT, and PDT relations are therefore 
distinct from the orthology, xenology, and paralogy rela-
tions considered in [5]. Nevertheless, the relative timing 
information from the last common ancestors of pairs of 
extant genes can be used to construct the topologies of 
the underlying gene and species tree as well as a recon-
ciliation between them. The reconciliation then deter-
mines the orthology, xenology, and paralogy relations. 

The reconciliation, however, is in general not uniquely 
determined by the 3-partition G.

We show here that a collection of informative and for-
bidden triples defined by G are the key criteria to deter-
mine whether or not G derives from a scenario S . While 
both LDT and PDT graphs are cographs, this is not 
always the case for the EDT graph. We shall see, how-
ever, that it is a cograph if both T and S are binary (fully 
resolved) trees. In Section “Explanation of G by Relaxed 
Scenarios” we derive a quartic time algorithm for the 
recognition of edge-tripartitions that derive from a cor-
responding scenario. This construction is then used to 
give a triple-based characterization. We then show that 
the existence of an explaining scenario is sufficient to 
guarantee that G can also be explained by scenarios with 
several additional desirable properties. Importantly, 
these restricted scenarios have properties that are often 
assumed for valid reconciliations of T and S in the litera-
ture. For instance, it is possible to choose the scenarios 
such that each event (inner node of T) has at least one 
purely vertical descendant; this is the case for all scenar-
ios in Fig.  1. In Section “Orthology and Quasi-Orthol-
ogy”, EDT graphs are connected with several competing 
notions of “orthology” proposed by different authors [1, 
6–8].

Notation
Graphs We consider undirected simple graphs G = (V ,E) 
with vertex set V (G):=V  and edge set E(G):=E . We 
write G ⊆ H if G = (V ,E) is a subgraph of H = (V ′,E′) , 
i.e., if V ⊆ V ′ and E ⊆ E′ . The subgraph of G that is 
induced by the subset X ⊆ V  will be denoted by G[X]. 
A connected component C of G is an inclusion-maximal 
subset C ⊆ V  such that G[C] is connected. The comple-
ment of a graph G = (V ,E) is the graph G = (V ,E) with 
vertex set V and an edge xy ∈ E for x  = y precisely if 
xy /∈ E . We denote by Kn the graph on n vertices in which 
every possible edge is present, hereafter called a com-
plete graph. A graph property � is a subset of the set of all 
graphs. A graph property � is closed under complementa-
tion if G ∈ � implies G ∈ �.

Rooted trees Trees are connected and acyclic graphs. 
All trees in this contribution have a distinguished 
vertex ρ , called the root of the tree. For two vertices 
x, y ∈ V (T ) , we write y �T x if x lies on the unique path 
from the root to y, in which case x is called an ances-
tor of y, and y is called a descendant of x. If, in addi-
tion, x and y are adjacent in T, then x is the parent of 
y (denoted by par T (y) ), and y is a child of x. The set of 
children of x is denoted by child T (x) . We write edges 
e = xy indicating that y �T x . It will be convenient to 
extend the relation �T  to the union V (T ) ∪ E(T ) as fol-
lows: For a vertex x ∈ V (T ) and an edge e = uv ∈ E(T ) , 
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we set x �T e if and only if x �T v ; and e �T x if and 
only if u �T x . In addition, for edges e = uv and f = ab 
in T, we put e �T f  if and only if v �T b (note that under 
this definition, uv �T uv ). For x, y ∈ V (T ) ∪ E(T ) , we 
may also write x �T y instead of y �T x . We use y ≺T x 
for y �T x and x  = y . Moreover, we say that x and y 
are comparable if y �T x or x �T y holds and, other-
wise, x and y are incomparable. Note that �T  is a par-
tial order with a unique maximal element ρ . The leaves 
L = L(T ) ⊆ V (T ) of T are precisely the �T-minimal 
elements.

From here on, we assume that the root ρ as well as 
every non-leaf vertex of a tree have always at least two 
children. Moreover, we write T(u) for the subtree of T 

rooted at u, i.e, the tree that is induced by u and all its 
descendants.

For a set of leaves A ⊆ L , we write lca T (A) for the last 
common ancestor of A, i.e., the unique �T-minimal vertex 
in V(T) such that x � lca T (A) for all x ∈ A . For simplic-
ity, we write lca T (x, y) instead of lca T ({x, y}) . The restric-
tion of T to a subset L′ ⊆ L , in symbols T|L′ , is obtained 
from the minimal subtree of T that connects all leaves 
in L′ by suppressing all vertices with degree two except 
possibly the root ρT|L′

 . We often write T|x1...xk instead of 
T|{x1,...,xk } . A tree T displays a tree T ′ with L(T ′) ⊆ L(T ) if 
T ′ is isomorphic to T|L(T ′).

Planted trees In order to accommodate evolutionary 
events pre-dating ρ:= lca (L) , we consider planted trees, 

Fig. 1 Examples of evolutionary scenarios depicted as gene trees (black inline trees) embedded into species trees (gray outline trees). In all 
cases, the ancestral gene lca T (x , y) of x and y is highlighted as white circle while the corresponding species lca S(σ (x), σ(y)) is highlighted 
as dashed line. Top row: scenario with x and y in EDT relation, i.e., the ancestral gene lca T (x , y) diverged concurrently with the corresponding 
species lca S(σ (x), σ(y)) . The evolutionary event at lca T (x , y) is either a speciation (left), a horizontal gene transfer (center), or a duplication (right). 
Middle row: scenario with x and y in LDT relation, i.e., the ancestral gene lca T (x , y) diverged after the corresponding species lca S(σ (x), σ(y)) . 
The evolutionary event at lca T (x , y) is either a horizontal gene transfer (left), a speciation (center), or a duplication (right). Bottom row: scenario 
with x and y in PDT relation, i.e., the ancestral gene lca T (x , y) diverged before the corresponding species lca S(σ (x), σ(y)) . The evolutionary event 
at lca T (x , y) is either a duplication (left), a speciation (center), or a horizontal gene transfer (right)



Page 4 of 43Schaller et al. Algorithms for Molecular Biology           (2023) 18:16 

i.e., we assume an additional planted root 0T with degree 
1 that is the parent of the “root” ρ . The inner vertices of T 
are V 0(T ):=V (T )\(L(T ) ∪ {0T }) . In particular, a planted 
tree T always displays the rooted tree T|L(T ) obtained by 
removing 0T and its incident edge 0Tρ.

Remark Unless explicitly stated otherwise, the trees 
that appear in this contribution are planted phylogenetic 
trees, i.e., 0T is the only vertex with exactly one child. 
All other vertices are either leaves or have at least two 
children.

Triples and fan triples A (rooted) triple is a 
binary rooted tree on three vertices. We denote 
by xy|z the rooted triple t with leaf set {x, y, z} and 
lca t(x, y) ≺T lca t(x, z) = lca t(y, z) . A tree T displays 
xy|z if lca T (x, y) ≺T lca T (x, z) = lca T (y, z) . A fan triple 
x|y|z on leaves x, y, z is the tree (x, y, z). A tree T displays 
the fan triple x|y|z if lca T (x, y) = lca T (x, z) = lca T (y, z).

As usual, we say that a set R of triples is consistent if 
there is a tree T that displays all of the triples in R . If 
(R,F) is a pair of two triple sets, we say that (R,F) is 
consistent if there is a tree T that displays all of the triples 
in R but none of the triples in F  . In this case, we say that 
T agrees with (R,F) . We will frequently make use of the 
following simple observation that collects the structures 
of the subtree T|L′∪L′′ on |L′ ∪ L′′| = 4 leaves implied by 
two subtrees T|L′ and T|L′′ on three leaves (triples) sharing 
|L′ ∩ L′′| = 2 common leaves. The statements are closely 
related to the so-called “inference rules” for rooted tri-
ples, see in particular [9, 10]. We leave the elementary 
proofs to the interested reader. We use Newick notation 
for rooted trees, i.e., inner vertices correspond to match-
ing parentheses, leaves are given by their labels, and com-
mas are used to separate sibling to increase readability. 
For example, the triple ab|c is equivalently represented as 
((a, b), c).

Observation 1 Let T be a tree and a, b, c, d ∈ L(T ) be 
pairwise distinct leaves. Suppose T displays ab|c . 

(i) If T displays cd|a , then T|abcd = ((a, b), (c, d)).
(ii) If T displays ac|d , then T|abcd = (((a, b), c), d).
(iii) If T displays ad|c , then T displays bd|c and T|abcd 

is one of the trees (((a,  d),  b),  c), (((b,  d),  a),  c), 
(((a, b), d), c), or ((a, b, d), c).

(iv) If T displays ab|d , then T|abcd is one of the 
trees (((a,  b),  c),  d), (((a,  b),  d),  c), ((a,  b),  c,  d), or 
((a, b), (c, d)).

(v) If T|bcd = (b, c, d) , then T|abcd = ((a, b), c, d).

Suppose that T does not display any of the triples on 
{a, b, c} , i.e., T|abc = (a, b, c) . 

 (vi) If T|bcd = (b, c, d) , then T|abcd = (a, b, c, d) or 
T|abcd = ((a, d), b, c).

We will make use of Obs.  1 throughout the subse-
quent proofs without explicit reference.

Cographs The join of two graphs G = (V ,E) and 
H = (W , F) with disjoint vertex sets V ∩W = ∅ 
is the graph G▽H  with vertex set  and edge 
set . Similarly, their disjoint 
union  has vertex set  and edge set 
. Cographs are recursively defined as the graphs that 
either are K1 s or can be obtained from the join or dis-
joint union of two cographs. Cographs have been stud-
ied extensively. We summarize some basic results in the 
next proposition.

Proposition 1 [11] Given an undirected graph G, the 
following statements are equivalent: 

1. G is a cograph.
2. G is explained by a cotree (T,  t), i.e., a rooted tree T 

with L(T ) = V (G) and t : V 0(T ) → {0, 1} such that 
xy ∈ E(G) precisely if t( lca T (x, y)) = 1.

3. The complement graph G of G is a cograph.
4. G does not contain a P4 , i.e., a path on four vertices, 

as an induced subgraph.
5. Every induced subgraph H of G is a cograph.

Equal divergence time graphs
Evolutionary scenarios
The vertices in phylogenetic trees designate evolution-
ary events such as speciations, gene duplications, or 
horizontal gene transfers. Conceptually, any such event 
x is associated with a specific point in time τT (x).

Definition 1 Let T be a rooted or planted tree. Then 
τT : V (T ) → R is a time map for T if x ≺T y implies 
τT (x) < τT (y) . The tuple (T , τT ) is called dated tree.

Definition 1 ensures that the ancestor relation x ≺T y 
and the timing of the vertices are not in conflict. It also 
pertains to arbitrary rooted trees since these can be 
seen as restrictions of planted trees to V \ {0T } . Note 
that for an edge uv of T, the convention that uv implies 
v ≺T u , also implies τT (v) < τT (u) . Below we will make 
use of the fact that time maps are easily constructed for 
rooted trees:

Lemma 1 [4, Lemma 1] Given a tree T (planted or not), 
a time map τT for T satisfying τT (x) = τ0(x) with arbi-
trary choices of τ0(x) for all x ∈ L(T ) can be constructed 
in linear time.
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It is usually difficult and often impossible to obtain reli-
able, accurate “time stamps” τT (x) for evolutionary rel-
evant events [12, 13]. Although the time map τT turns 
out to be a convenient formal tool, we will never need to 
make use of the absolute values of τT (x) . Instead, we will 
only need relative timing information, i.e., it will be suffi-
cient to know whether an event pre-dates, post-dates, or 
is concurrent with another one. This information is often 
much easier to extract [14, 15]. For the sake of concrete-
ness, one may imagine that τ0(x) = 0 for all x ∈ L(T ) , 
although this is not a requirement.

Definition 2 A relaxed scenario S = (T , S, σ ,µ, τT , τS) 
consists of a dated gene tree (T , τT ) , a dated species tree 
(S, τS) , a leaf coloring σ : L(T ) → M with M ⊆ L(S) , and 
a reconciliation map µ : V (T ) → V (S) ∪ E(S) such that 

 (S0) µ(x) = 0S if and only if x = 0T .
 (S1) µ(x) ∈ L(S) if and only if x ∈ L(T ) and, in par-

ticular, µ(x) = σ(x) in this case.
 (S2) If µ(x) ∈ V (S) , then τS(µ(x)) = τT (x).
 (S3) If µ(x) = uv ∈ E(S) , then τS(v) < τT (x) < τS(u).

The axioms (S2) and (S3) specify time consistency. 
Note that we impose no (direct) restrictions on ances-
trality relationships, hence the relaxed nature of our 
scenarios. In particular, for vertices x, y ∈ V (T ) , it is 
possible that x is a descendant of y, but that µ(x) is not 
a descendant of µ(y) . This may occur if µ(x) and µ(y) 
are incomparable because of the presence of horizontal 
gene transfers on the path from y to x. This contrasts 
with traditional reconciliation models that only sup-
port gene duplications and forbid this type of map. 
By minimizing the amount of constraints imposed on 
the model, we aim to characterize the broadest class 
of divergence time patterns that could be explained 
in some way. Conversely, this means that divergence 
times that cannot be explained by our scenarios can be 
deemed erroneous with more confidence, as they can-
not even meet a relaxed set of requirements. In the later 
sections, however, we focus on more restrictive sce-
narios. As we shall see, relaxed scenarios allow “unob-
servable” transfers, for which the ancestral gene in the 
origin species has no direct extant descendants (in the 
sense that they were not transmitted by any transfer). 
We will study restricted scenarios in which such unob-
servable transfers are forbidden, and then later on we 
look at scenarios in which transfers are entirely for-
bidden. The scenarios considered in [16] as well as the 
H-trees [17] admit the assignment of unique event type 

(duplication, speciation, etc.) to a vertex x in the gene 
tree T depending on its reconciliation and the recon-
ciliation of its children. This is not the case in relaxed 
scenarios. Here a vertex in T may simultaneously rep-
resent multiple event types. For example a “speciation” 
vertex with µ(x) ∈ V (S) may still have multiple direct 
descendants in the same lineage, hence sharing prop-
erties of of a duplication. We first consider a few sim-
ple properties of reconciliation maps. In fact, these are 
well-known properties for more restrictive definitions 
of reconciliation.

Lemma 2 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario. If v,w ∈ V (T ) such that v �T w and 
µ(v) = µ(w) ∈ V 0(S) , then v = w.

Proof Set U :=µ(v) = µ(w) ∈ V 0(S) . Then τT (w) =

τT (v) = τS(U) . However, if v �T w and v  = w , i.e., 
v ≺T w , then τT (v) < τT (w) by Def. 1; a contradiction. �

Lemma 3 If S = (T , S, σ ,µ, τT , τS) is a relaxed scenario 
then x �T y implies µ(x)  ≻S µ(y) for all x, y ∈ V (T ).

Proof If x = y , then there is nothing to show. Oth-
erwise, x ≺T y and Def. 1 implies that τT (x) < τT (y) . If 
µ(x) ∈ V (S) set u:=µ(x) , otherwise let u be the lower 
delimiting vertex of the edge µ(x) ∈ E(S) . Similarly, set 
v:=µ(y) if µ(y) ∈ V (S) , otherwise choose v as the upper 
delimiting vertex of the edge µ(y) ∈ E(S) . By time con-
sistency, we have τS(u) ≤ τT (x) and τT (y) ≤ τS(v) . 
Together with τT (x) < τT (y) , this yields τS(u) < τS(v) . 
Now assume, for contradiction, that µ(x) ≻S µ(y) . 
One easily verifies that this implies v �S u and thus 
τS(v) ≤ τS(u) ; a contradiction.  �

Definition 3 The HGT-labeling of a relaxed scenario S 
is the map � : E(T ) → {0, 1} such that �(uv) = 1 if and 
only if µ(u) and µ(v) are incomparable in S.

We call an edge e ∈ E(T ) with �(e) = 1 an HGT edge.

Definition 4 For a relaxed scenario 
S = (T , S, σ ,µ, τT , τS) , we define the equal-divergence-
time (EDT) graph (G=(S), σ) , the later-divergence-time 
(LDT) graph (G<(S), σ) and the prior-divergence-time 
(PDT) graph (G>(S), σ) as follows: all graphs have as 
vertex set L(T) and are equipped with vertex coloring 
σ : L(T ) → L(S) . However, they differ in their edge sets 
defined as
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Moreover, we write G(S) = (G<(S),G=
(S),G>(S), σ).

A vertex-colored graph (G, σ) is an equal-diver-
gence-time (EDT) graph, if there is a relaxed scenario 
S = (T , S, σ ,µ, τT , τS) such that G = G=(S) . In this 
case, we say that S explains (G, σ) . By construction, 
the edge sets of G=(S) , G<(S) , and G>(S) are pairwise 
disjoint and their union is the edge set of the complete 
graph on L(T). This motivates the definition of the fol-
lowing tuple of vertex-colored graphs.

Definition 5 A (colored) graph 3-partition, denoted by 
G = (G< ,G= ,G> , σ) , is an ordered tuple of three edge-
disjoint graphs on the same vertex set L and with color-
ing σ : L → M such that  
(i.e. every unordered pair of L is an edge of exactly one of 
the three graphs).

We say that G is explained by a scenario S if G< = G<(S) , 
G= = G=(S) , and G> = G>(S).

An example for a graph 3-partition and a relaxed sce-
nario that explains it is shown in Fig. 2.

The restriction G|L′ of a graph 3-partition 
G = (G< ,G= ,G> , σ) to a subset L′ ⊆ L of vertices is 
given by (G< [L

′],G=[L
′],G> [L

′], σ|L′).

Lemma 4 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario. For all distinct vertices x, y ∈ L(T ) with 
σ(x) = σ(y) , it holds xy ∈ E(G>(S)).

Proof Since x  = y , u:= lca T (x, y) is not a leaf. In 
particular, therefore, we have τT (x), τT (y) < τT (u) 
by the definition of time maps. Moreover, we have 
τT (x) = τS(σ (x)) by the definition of scenarios. If 
σ(x) = σ(y) , then lca S(σ (x), σ(y)) = σ(x) is a leaf and 
thus τS( lca S(σ (x), σ(y))) = τS(σ (x)) = τT (x) < τT (u) . 
Hence, xy ∈ E(G>(S)) .  �

The edge set of G=(S) , G<(S) , and G>(S) are disjoint. 
Lemma 4 therefore implies

Corollary 1 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario. If xy ∈ E(G=(S)) or xy ∈ E(G<(S)) , then 

(1)
E(G=(S)):=

{

xy | x �= y and τT ( lca T (x, y)) = τS( lca S(σ (x), σ(y))
}

,

E(G<(S)):=
{

xy | x �= y and τT ( lca T (x, y)) < τS( lca S(σ (x), σ(y))
}

,

E(G>(S)):=
{

xy | x �= y and τT ( lca T (x, y)) > τS( lca S(σ (x), σ(y))
}

.

σ(x)  = σ(y) , i.e., G=(S) and G<(S) are always properly 
colored.

Hence, neither the class of EDT graphs nor the class of 
LDT graphs is closed under complementation because 
the complements of G=(S) and G<(S) may contain edges 
between vertices with same color.

Scenarios without HGT edges
In order to connect our discussion to the ample litera-
ture on DL-scenarios mentioned in the introduction, we 
briefly consider the case of HGT-free scenarios.

Lemma 5 If S = (T , S, σ ,µ, τT , τS) is a relaxed scenario 
without HGT-edges, then x �T y implies µ(x) �S µ(y) for 
all x, y ∈ V (T ).

Proof Suppose S does not contain HGT-edges, 
i.e., µ(x) and µ(y) are comparable in S for all edges 
yx ∈ E(T ) . Two vertices x, y ∈ V (T ) with x �T y 
are either equal, implying µ(x) = µ(y) , or they lie 
on a directed path v1:=y, v2, . . . vk :=x with k ≥ 2 . If 
yx ∈ E(T ) , then x ≺T y implies µ(x) �S µ(y) due to 
Lemma 3. The vertices along a path in T therefore satisfy 
µ(x) �S · · · �S µ(v2) �S µ(y) . By transitivity of �S , we 
conclude that x ≺T y implies µ(x) �S µ(y) .  �

Fig. 2 Left: a relaxed scenario S = (T , S, σ ,µ, τT , τS) . The maps 
µ and σ are shown implicitly by the embedding of T into S 
and the colors of the leaves of T, respectively. If a vertex x is drawn 
higher than a vertex y, this means that τ(y) < τ ′(x) , τ , τ ′ ∈ {τT , τS} . 
In the remainder of the paper, we will omit drawing the time axis 
explicitly. Right: The graph 3-partition G(S) that is explained by S . 
Throughout, the edges of the LDT graph G<(S) , EDT graph G= (S) , 
and PDT graph G>(S) will always be drawn as dashed, solid straight, 
and wavy lines, respectively
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Lemma 6 If S is a relaxed scenario without HGT-
edges, then any pair of distinct leaves x, y ∈ L(T ) 
satisfies lca S(σ (x), σ(y)) �S µ( lca T (x, y)) and 
τS( lca S(σ (x), σ(y))) ≤ τT ( lca T (x, y)) . In particular, 
we have lca S(σ (x), σ(y)) = µ( lca T (x, y)) if and only if 
τS( lca S(σ (x), σ(y))) = τT ( lca T (x, y)) , i.e., xy ∈ E(G=).

Proof Consider an arbitrary pair of distinct vertices 
x,  y and u:= lca T (x, y) ∈ V (T ) . Then x, y �T u and by 
Lemma 5 we have µ(x) �S µ(u) and µ(y) �S µ(u) . Since 
x and y are leaves, we have σ(x) = µ(x) and σ(y) = µ(y) . 
The definition of the ancestor order and the last com-
mon ancestor now imply lca S(σ (x), σ(y)) �S µ(u) . 
If lca S(σ (x), σ(y)) = µ(u) , then time consistency 
implies τS( lca S(σ (x), σ(y))) = τT (u) . Conversely, sup-
pose lca S(σ (x), σ(y)) ≺S µ(u) . If µ(u) is a vertex v of 
S, then we have τS( lca S(σ (x), σ(y))) < τS(v) = τT (u) . 
If µ(u) is an edge vw of S (with w ≺S v ), then we have 
τS( lca S(σ (x), σ(y))) ≤ τS(w) < τT (u) < τS(v) . In either 
case we therefore obtain τS( lca S(σ (x), σ(y))) < τT (u) . �

As an immediate consequence of Lemma 6, we recover 
[4, Cor. 6]:

Corollary 2 If S is a relaxed scenario without HGT-
edges, then G<(S) has no edges.

Informative triples
If a graph 3-partition G = (G< ,G= ,G> , σ) is explained 
by some relaxed scenario S = (T , S, σ ,µ, τT , τS) , several 
structural constraints on T and S can be deduced directly 
from G . In particular, we show in this section that many 
subgraphs of G on three vertices enforce rooted triples 
that are either required or forbidden in T or S.

Lemma 7 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario without HGT-edges, suppose σ(x) , σ(y) , and σ(z) 
are pairwise distinct, the triple xy|z is displayed by T, 
and µ( lca T (x, z)) = lca S(σ (x), σ(z)) . Then S displays 
σ(x)σ (y)|σ(z).

Proof By assumption lca T (x, y) ≺T lca T (x, z) = lca T (y, z) . 
Lemma  5 implies µ( lca T (x, y)) �S µ( lca T (x, z)) and 

Lemma 2 implies µ( lca T (x, y))  = µ( lca T (x, z)) and thus 
µ( lca T (x, y)) ≺T µ( lca T (x, z)) . Moreover, by Lemma  6 
we have lca S(σ (x), σ(y)) �S µ( lca T (x, y)) . We there-
fore conclude lca S(σ (x), σ(y)) �S µ( lca T (x, y)) ≺S

µ( lca T (x, z)) = lca S(σ (x), σ(z)) . Therefore, S displays 
σ(x)σ (y)|σ(z) .  �

Lemma 7 defines the “informative species triples” [18–
20] that play a key role for the characterization of feasible 
reconciliation maps in a slightly different setting.

We recall two results that link triples in T with the LDT 
graph:

Lemma 8 [4, Lemma  7] Let S = (T , S, σ ,µ, τT , τS) 
be a relaxed scenario with pairwise distinct leaves 
x, y, z ∈ L(T ) . If xy ∈ E(G<(S)) and xz, yz /∈ E(G<(S)) , 
then T displays xy|z.

Lemma 9 [4, Lemma  6] Let S = (T , S, σ ,µ, τT , τS) be 
a relaxed scenario with leaves x, y, z ∈ L(T ) and pair-
wise distinct colors X :=σ(x) , Y :=σ(y) , and Z:=σ(z) . If 
xz, yz ∈ E(G<(S)) and xy /∈ E(G<(S)) , then S displays 
XY |Z.

For example, Lemma  9 applies to b,  c,  d in Fig.  2: 
bc, bd ∈ E(G<(S)) , cd /∈ E(G<(S)) , and σ(c)σ (d)|σ(b) 
is a triple of the species tree. We next show a statement 
similar to Lemma 8 for the corresponding PDT G>(S):

Lemma 10 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario with pairwise distinct leaves x, y, z ∈ L(T ) . If 
xz, yz ∈ E(G>(S)) and xy /∈ E(G>(S)) , then T displays 
xy|z.

Proof Suppose xz, yz ∈ E(G>(S)) and xy /∈ E(G>(S)) . 
Put X :=σ(x) , Y :=σ(y) , and Z:=σ(z) and observe that 
X  = Y  by Cor.  1. Assume for contradiction that xy|z is 
not displayed by T. Hence, the tree T displays either 
xz|y or yz|x or lca T (x, y) = lca T (x, z) = lca T (y, z) . 
One easily verifies that, in all three cases, it holds 
lca T (x, y) �T lca T (x, z) and lca T (x, y) �T lca T (y, z) . 
This together with the assumption that xz, yz ∈ E(G>(S)) 
and xy /∈ E(G>(S)) and time consistency implies

τS( lca S(X ,Y )) ≥ τT ( lca T (x, y)) ≥ τT ( lca T (x, z)) > τS( lca S(X ,Z)) and

τS( lca S(X ,Y )) ≥ τT ( lca T (x, y)) ≥ τT ( lca T (y, z)) > τS( lca S(Y ,Z)).
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In particular, this implies that Y  = Z and X  = Z , 
resp., and thus X, Y, and Z are pairwise distinct. 
Since lca S(X ,Y ) and lca S(X ,Z) are both ances-
tors of X, they are comparable in S. Together with 
τS( lca S(X ,Y )) > τS( lca S(X ,Z)) and the definition of 
time maps, this implies lca S(X ,Y ) ≻S lca S(X ,Z) . Thus, 
S displays the triple XZ|Y  . By similar arguments, we 
obtain that S also displays the triple YZ|X ; a contradic-
tion. Hence, T must display xy|z .  �

Again using Fig. 2 as an example, one can check that 
T must display ab|b′ because of Lemma 10. Let us now 
consider the EDT graph:

Lemma 11 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario with pairwise distinct leaves x, y, z ∈ L(T ) 
and suppose that xz, yz ∈ E(G=(S)) . If xy /∈ E(G=(S)) , 
then T displays neither xz|y nor yz|x . In particular, if 
xy ∈ E(G<(S)) , then T displays xy|z.

Proof Suppose that xz, yz ∈ E(G=(S)) and 
xy /∈ E(G=(S)) . Recall that G=(S) , G<(S) , and G>(S) 
are pairwise edge-disjoint. Put X :=σ(x) , Y :=σ(y) , and 
Z:=σ(z) and observe that X  = Z and Y  = Z by Cor.  1. 
If xy ∈ E(G<(S)) , then Lemma 8 implies that T dis-
plays xy|z and thus, none of xz|y or yz|x . Now suppose 
xy ∈ E(G>(S)) and assume, for contradiction that T dis-
plays xz|y and thus lca T (x, z) ≺T lca T (x, y) = lca T (y, z) . 
By assumption and time consistency, this implies 
τS( lca S(X ,Z)) = τT ( lca T (x, z)) < τT ( lca T (y, z))

= τS( lca S(Y ,Z)) . The latter implies that X  = Y  
and thus X, Y, and Z are pairwise distinct. 
Since lca S(X ,Z) and lca S(Y ,Z) are both ances-
tors of Z, they are comparable in S. Together with 
τS( lca S(X ,Z)) < τS( lca S(Y ,Z)) and the definition 
of time maps, this implies lca S(X ,Z) ≺S lca S(Y ,Z) . 
Thus, S displays the triple XZ|Y  . Therefore, we have 
lca S(X ,Y ) = lca S(Y ,Z) . In summary, we obtain 
τS( lca S(X ,Y )) = τS( lca S(Y ,Z)) = τT ( lca T (y, z)) =

τT ( lca T (x, y)) ; a contradiction to xy ∈ E(G>(S)) . Hence, 
T does not display xz|y . For similar reasons, T does not 
display yz|x , which concludes the proof.  �

The case that xz, yz ∈ E(G=(S)) , xy ∈ E(G>(S)) and 
xy|z is not displayed by T is not covered by Lemma 
11. To see that this situation is possible, consider the 
trees S = ((X ,Y ),Z) and T = (x, y, z) with σ(x) = X  , 
σ(y) = Y  and σ(z) = Z . Now choose µ such that 
µ(ρT ) = ρS . One easily verifies that xz, yz ∈ E(G=(S)) 
and xy ∈ E(G>(S)) while T by construction does not 
displayed xy|z.

Lemma 12 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario with leaves x, y, z ∈ L(T ) and pairwise distinct 
colors X :=σ(x) , Y :=σ(y) , and Z:=σ(z) . Suppose that 
xz, yz ∈ E(G=(S)) . If xy /∈ E(G=(S)) , then S displays nei-
ther XZ|Y  nor YZ|X . If, in particular, xy ∈ E(G>(S)) then 
S displays XY |Z.

Proof Suppose that xz, yz ∈ E(G=(S)) and 
xy /∈ E(G=(S)) . By Lemma 11, T does not display xz|y or 
yz|x . Suppose for contradiction that S displays XZ|Y  , i.e., 
lca S(X ,Z) ≺S lca S(Y ,Z) . This together with the assump-
tion that xz, yz ∈ E(G=(S)) and time consistency implies 
τT ( lca T (x, z)) = τS( lca S(X ,Z)) < τS( lca S(Y ,Z))

= τT ( lca T (y, z)) . Since lca T (x, z) and lca T (y, z) are 
both ancestors of z, they must be comparable. This 
together with τT ( lca T (x, z)) < τT ( lca T (y, z)) yields 
lca T (x, z) ≺T lca T (y, z) and thus T displays xz|y ; a con-
tradiction. Therefore, S does not display XZ|Y  . For simi-
lar reasons, YZ|X is not displayed.

Now assume in addition that xy ∈ E(G>(S)) . Since 
T does not display xz|y and lca T (x, y) and lca T (x, z) 
are both ancestors of x and thus comparable, we have 
lca (x, y) �T lca T (x, z) . Now this together with time 
consistency, xy ∈ E(G>(S)) , and xz ∈ E(G=(S)) yields 
τS( lca S(X ,Y )) < τT ( lca T (x, y)) ≤ τT ( lca T (x, z))

= τS( lca S(X ,Z)) . Since lca S(X ,Y ) and lca S(X ,Z) are 
both ancestors of X, they are comparable in S. Together 
with τS( lca S(X ,Y )) < τS( lca S(X ,Z)) and the definition 
of time maps, this implies lca S(X ,Y ) ≺S lca S(X ,Z) . 
Thus, S displays the triple XY |Z .  �

Finally, we consider the species triples implied by the 
PDT graph. The following result in particular general-
izes the last statement in Lemma 12 above.

Lemma 13 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario with leaves x, y, z ∈ L(T ) and pairwise distinct 
colors X :=σ(x) , Y :=σ(y) , and Z:=σ(z) . If xy ∈ E(G>(S)) 
and xz, yz /∈ E(G>(S)) , then S displays XY |Z.

Proof Recall that by construction G<(S) , G=(S) , 
and G>(S) are edge-disjoint. If xz, yz ∈ E(G<(S)) or 
xz, yz ∈ E(G=(S)) , the statement follows immedi-
ately from Lemma  9 and  12, respectively. Now con-
sider the case that xz ∈ E(G<(S)) and yz ∈ E(G=(S)) . 
Hence, we have τT ( lca T (x, y)) > τS( lca S(X ,Y )) and 
τT ( lca T (y, z)) = τS( lca S(Y ,Z)) . Moreover, T displays 
xz|y by Lemma  8 and thus lca T (x, y) = lca T (y, z) . To 
summarize, we have τS( lca S(Y ,Z)) = τT ( lca T (y, z)) =

τT ( lca T (x, y)) > τS( lca S(X ,Y )) . Since lca S(X ,Y ) and 
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lca S(Y ,Z) are both ancestors of Y, they are compara-
ble in S. Together with τS( lca S(Y ,Z)) > τS( lca S(X ,Y )) 
and the definition of time maps, this implies 
lca S(X ,Y ) ≺S lca S(Y ,Z) . Thus, S displays the triple 
XY |Z . One proceeds similarly if yz ∈ E(G<(S)) and 
xz ∈ E(G=(S)) .  �

See a, b′, c in Fig. 2, which enforce σ(a)σ (b′)|σ(c) in the 
species tree by Lemma  13. With the facts that we have 
gathered, we can now define our set of required and for-
bidden triples.

Definition 6 Let G = (G< ,G= ,G> , σ) be a tuple of 
three graphs on the same vertex set L and with vertex 
coloring σ.

The set of informative triples on L, denoted by RT (G) , 
contains a triple xy|z if x, y, z ∈ L and one of the following 
conditions holds 

(a) xy ∈ E(G<) and xz, yz /∈ E(G<),
(b) xz, yz ∈ E(G>) and xy /∈ E(G>).

The set of forbidden triples on L, denoted by FT (G) , con-
tains a triple xz|y (and by symmetry also yz|x ) if x, y, z ∈ L 
and xz, yz ∈ E(G=) and xy /∈ E(G=).
The set of informative triples on σ(L) , denoted by RS(G) , 
contains a triple XY |Z if there are x, y, z ∈ L with pair-
wise distinct colors X :=σ(x) , Y :=σ(y) , and Z:=σ(z) and 
one of the following conditions holds 

 (a’) xz, yz ∈ E(G<) and xy /∈ E(G<),
 (b’) xy ∈ E(G>) and xz, yz /∈ E(G>).

The set of forbidden triples on L(S), denoted by FS(G) , 
contains a triple XZ|Y  (and by symmetry also YZ|X ) if 
there are x, y, z ∈ L with pairwise distinct colors X :=σ(x) , 
Y :=σ(y) , Z:=σ(z) , and xz, yz ∈ E(G=) and xy /∈ E(G=).

The notation RT , FT , RS , and FS in Definition  6 is 
motivated by Proposition 2 below, which shows that the 
triples on L and L(S), resp., provide information of the 
gene tree T and species tree S explaining G , provided such 
trees exists. Summarizing Lemmas 8 to 13, we obtain:

Proposition 2 Let S = (T , S, σ ,µ, τT , τS) be a 
relaxed scenario and G = (G<(S),G=(S),G>(S), σ) . 
Then T agrees with (RT (G),FT (G)) and S agrees with 
(RS(G),FS(G)).

The cograph structure
Cographs naturally appear as graph structures associ-
ated with vertex-labeled trees and more generally in 
the context of binary relations associated with recon-
ciliations of gene trees and species trees. For example, 
orthology graphs in scenarios without horizontal gene 
transfer are cographs [21]. As we shall see below, both 
G<(S) and G>(S) are cographs for all relaxed scenarios 
S . In contrast, G=(S) is a cograph only under some 
additional constraints. It is, however, always a so-called 
perfect graph.

Lemma 14 [4, Lemma 8] Let S = (T , S, σ ,µ, τT , τS) be 
a relaxed scenario. Then G<(S) is a cograph.

It may not come as a surprise, therefore, that an anal-
ogous result holds for G>(S):

Lemma 15 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. Then G>(S) is a cograph.

Proof Set A:=σ(a) , B:=σ(b) , C:=σ(c) , and 
D:=σ(d) . Suppose for contradiction that G>(S) is not 
a cograph, i.e., it contains an induced P4 a− b− c − d . 
By Prop.  2, T displays the informative triples ac|b 
and bd|c . Hence, T|abcd = ((a, c), (b, d)) and, there-
fore, lca T (a, d) = lca T (b, c) . Moreover, by Cor.  1, we 
know that A  = C , A  = D , and B  = D . Therefore, we 
have to consider the cases (i) |{A,B,C ,D}| = 4 ; (ii) 
|{A,B,C ,D}| = 2 ; (iii) |{A,B,C ,D}| = 3 and A = B , C, and 
D are pairwise distinct; (iv) |{A,B,C ,D}| = 3 and A, B, 
and C = D are pairwise distinct; and (v) |{A,B,C ,D}| = 3 
and A, B = C , and D are pairwise distinct.

In Case  (i), A, B, C, and D are pairwise distinct. By 
Prop.  2, S displays the informative triples AB|D and 
CD|A (see Definition 6.b’). Thus, S|ABCD = ((A,B), (C ,D)) 
and we have lca S(B,C) = lca S(A,D) . In Case  (ii), we 
must have A = B and C = D . Thus, we again obtain 
lca S(B,C) = lca S(A,D).

In Case  (iii), Prop.  2 implies that S displays the 
informative triple CD|A(= CD|B) . Thus, we have 
lca S(B,C) = lca S(A,D) . In Case (iv), Prop. 2 implies that 
S displays the informative triple AB|D(= AB|C) . Thus, 
we have lca S(B,C) = lca S(A,D) . In Case  (v), Prop.  2 
implies that S displays the informative triples AB|D and 
CD|A(= BD|A) . Since S cannot displays both of these tri-
ples, Case (v) can be immediately excluded.

In Cases  (i)–(iv), we have lca T (a, d) = lca T (b, c) and 
lca S(B,C) = lca S(A,D) . Together with bc ∈ E(G>(S)) , 
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it follows τT ( lca T (a, d)) = τT ( lca T (b, c)) > τS( lca S(B,C))

= τS( lca S(A,D)) ; a contradiction to ad /∈ E(G>(S)).

In summary, G>(S) does not contain an induced P4 and 
thus it is a cograph.  �

Lemmas  14 and 15 naturally suggest to ask whether 
an analogous result holds for G=(S) , i.e., whether 
the EDT graph is always a cograph. If this is the case, 
{G<(S),G=(S),G>(S)} form a “cograph 3-partition” in 
the sense of [22, 23]. As illustrated in Fig.  3, this is not 
the case in general. Therefore, we investigate in the fol-
lowing conditions under which G=(S) may or may not be 
a cograph and their implications for the underlying tree 
structure.

Lemma 16 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. If (G=(S), σ) contains an induced P4 a− b− c − d 
on two colors, then T|abcd = ((a, d), b, c).

Proof By assumption and by Cor.  1, A:=σ(a)= σ(c) , 
B:=σ(b) = σ(d) , and A  = B . Therefore, and since  
ab, bc, cd ∈ E(G=(S)) , we have τT ( lca T (a, b)) =

τT ( lca T (b, c)) = τT ( lca T (c, d)) = τS( lca S(A,B))  . 
Def.  1 together with τT ( lca T (a, b)) = τT ( lca T (b, c)) 
implies that we can have neither lca T (a, b) ≺T lca T (b, c) 
nor lca T (b, c) ≺T lca T (a, b) . Since lca T (a, b) and 
lca T (b, c) are both ancestors of b and thus com-
parable in T, we conclude lca T (a, b) = lca T (b, c) . 
Similarly, we obtain lca T (b, c) = lca T (c, d) . 
Moreover, since ad /∈ E(G=(S)) , we have 
τT ( lca T (a, d))  = τS( lca S(A,B)) = τT ( lca T (a, b)) and 
thus lca T (a, d)  = lca T (a, b) , which implies that T dis-
plays one of the triples t1 = ab|d or t ′1 = ad|b . By simi-
lar arguments, T displays one of the triples t2 = cd|a or 
t ′2 = ad|c . We next examine the possible combination of 
these triples.

If T displays t1 and t2 , then T|abcd = ((a, b), (c, d)) , in 
which case lca T (a, b)  = lca T (b, c) ; a contradiction. If 
T displays t1 and t ′2 , then T|abcd = (((a, b), d), c) . Again 

lca T (a, b)  = lca T (b, c) ; again a contradiction. If T 
displays t ′1 and t2 , then T|abcd = (((c, d), a), b) . Hence 
lca T (a, b)  = lca T (c, d) ; a contradiction. If T displays 
t ′1 and t ′2 , then T|abcd is either of the form (((a, d), c), b), 
(((a, d), b), c), ((a, d), b, c), or ((a, d), (b, c)). For the first 
two cases, we obtain lca T (a, b)  = lca T (c, d) , while 
for the latter case we obtain lca T (b, c)  = lca T (c, d) . 
Thus we reach a contradiction in all three cases, leaving 
T|abcd = ((a, d), b, c) as the only possibility.  �

Note that the tree T|abcd = ((a, d), b, c) in Lemma 16 is 
displayed by T but not binary. Hence, we obtain

Corollary 3 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. If (G=(S), σ) contains a 2-colored P4 , then T is not 
a binary tree.

Lemma 17 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. If (G=(S), σ) contains an induced P4 a− b− c − a′ 
on three distinct colors with A = σ(a) = σ(a′) , 
B = σ(b) , and C = σ(c) , then S|ABC = (A,B,C) . In 
particular, S is not a binary tree. Moreover, we have 
T|abca′ = ((a, c), (b, a′)).

Proof By assumption P3 = a− b− c is an induced path. 
Lemma 12 thus imply that S does not display AB|C and 
BC|A . Similarly, the induced P3 = b− c − a′ implies 
that S does not display BC|A and AC|B . This leaves 
S|ABC = (A,B,C) as the only possibility. By Lemma  12, 
we immediately see that ac, ba′ ∈ G<(S) since other-
wise S would display AC|B or AB|C . This, together with 
Lemma 8 and ab, bc, ca′ /∈ G<(S) , implies that T displays 
ac|b and ba′|c and, therefore, T|abca′ = ((a, c), (b, a′)) .  �

Lemma 18 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. If E(G=(S)) contains an induced P4 a− b− c − b′ 
on three distinct colors with A = σ(a) , B = σ(b) = σ(b′) 
and C = σ(c) , then S|ABC = ((A,C),B) and 
T|abcb′ = ((a, b′), b, c).

Proof Suppose that G=(S) contains an induced P4 
a− b− c − b′ on three distinct colors A = σ(a) , 
B = σ(b) = σ(b′) , and C = σ(c) = C . By Lemma  11, T 
displays neither bc|b′ nor b′c|b . Hence, we have to con-
sider two cases: (1) T|bcb′ = (b, c, b′) , or (2) T|bcb′ = bb′|c . 
By similar arguments, we have either (I) T|abc = (a, b, c) 
or (II) T|abc = ac|b . We proceed by combining these 
alternatives:

Fig. 3 (G= (S), σ) can contain a 2-colored P4 = a− b− a′ − b′ . 
However, due to Cor. 3, T cannot be a binary tree in this case
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Case (1,I) yields (i) T|abcb′ = (a, b, c, b′) or 
(ii) T|abcb′ = ((a, b′), b, c) , Case (1,II) yields 
T|abcb′ = ((a, c), b, b′) , Case (2,I) yields 
T|abcb′ = ((b, b′), a, c) , and Case (2,II) yields 
T|abcb′ = ((b, b′), (a, c)) . In all cases except 
Case (1,I,ii), we have lca T (a, b) = lca T (a, b

′) 
and ab ∈ E(G=(S)) thus implies 
τS( lca S(A,B)) = τT ( lca T (a, b)) = τT ( lca T (a, b

′)) and 
ab′ ∈ E(G=(S)) ; a contradiction. This leaves Case (1,I,ii), 
T|abcb′ = ((a, b′), b, c) , as the only possibility. Lemma  12 
together with ab, bc ∈ E(G=(S)) and ac /∈ E(G=(S)) 
implies that either S|ABC = (A,B,C) or S|ABC = AC|B . 
In the first case, we have lca S(A,C) = lca S(B,C) . 
Together with T|abcb′ = ((a, b′), b, c) (and thus 
lca T (b, c) = lca T (a, c) ) and bc ∈ E(G=(S)) , we obtain 
τS( lca S(A,C)) = τS( lca S(B,C)) = τT ( lca T (b, c)) =

τT ( lca T (a, c)) . Therefore, we must have ac ∈ E(G=) ; 
a contradiction. In summary, therefore, we have 
S|ABC = ((A,C),B) and T|abcb′ = ((a, b′), b, c) .  �

Figure 4 shows two examples of scenarios that realize 
EDT graphs containing P4 s on three colors as described 
in Lemma 17 and Lemma 18, respectively.

Instead of considering the three graphs G< , G= , and G> 
in isolation, we can alternatively think of a graph 3-parti-
tion G = {G< ,G= ,G> , σ } as a complete graph Kn whose 
edges are colored with three different colors depend-
ing on whether they are contained in E(G<) , E(G=) , or 
E(G>) . This links our results to the literature on edge-
colored graphs. Complete edge-colored permutation 
graphs are characterized [24] as the edge-partitions of 
Kn such that (i) each color class induces a permutation 
graph in the usual sense [25], and (ii) the edge coloring 
is a Gallai coloring, i.e., it contains no “rainbow triangle” 
with three distinct colors. While every cograph is also a 
permutation graph [25], rainbow triangles may appear 
in the edge-coloring defined by {G< ,G= ,G>} that is 
explained by a relaxed scenario. In fact, induced P4 s in G= 
are always associated with rainbow triangles.

Lemma 19 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. If G=(S) contains an induced P4 = a− b− c − d , 
then either ad ∈ E(G<(S)) and ac, bd ∈ E(G>(S)) or 
ad ∈ E(G>(S)) and ac, bd ∈ E(G<(S)) . In either case, 
both {a, b, d} and {a, c, d} are rainbow triangles.

Proof Suppose G=:=G=(S) contains an induced 
P4 = a− b− c − d and, therefore, ac, ad, bd /∈ E(G=) . 
Since G= , G< :=G<(S) and G> :=G>(S) are edge-disjoint, 
and G< and G> are cographs (cf. Lemmas  14 and  15), 
the cases ac, ad, bd ∈ E(G<) and ac, ad, bd ∈ E(G>) 
are not possible because otherwise b− d − a− c is an 
induced P4 . Moreover, ab|c, bc|a ∈ FT (G(S)) as well 
as cd|b, bc|d ∈ FT (G(S)) and thus T displays neither of 
these two triples by Prop. 2. We consider two cases:

If ad ∈ E(G<) then at most one of the edges ac and bd 
can be contained in G< . Suppose, for contradiction, that 
ac ∈ E(G>) and bd ∈ E(G<) . Then ad, bd ∈ E(G<) and 
ac, bc, cd /∈ E(G<) . Prop.  2 implies that T displays the 
informative triples ad|c and bd|c . Hence, T also displays 
ab|c ; a contradiction to ab|c ∈ FT (G(S)) . By similar 
arguments, ac ∈ E(G<) and bd ∈ E(G>) implies that T 
displays cd|b ; a contradiction to cd|b ∈ FT (G(S)) . This 
leaves ac, bd ∈ E(G>) as the only possible case.

If ad ∈ E(G>) then at most one of the edges ac and bd 
can be contained in G> . Suppose, for contradiction, 
that ac ∈ E(G>) and bd ∈ E(G<) . Then bd ∈ E(G<) and 
ab, ad /∈ E(G<) . Prop.  2 implies that T displays bd|a . 
Moreover, ac, ad ∈ E(G>) and cd /∈ E(G>) imply that T 
displays cd|a . Thus, T displays bc|a ; a contradiction. By 
similar arguments, ac ∈ E(G<) and bd ∈ E(G>) implies 
that T displays bc|d ; a contradiction to bc|d ∈ FT (G(S)) . 
Again, we are left with ac, bd ∈ E(G<) as the only 
possibility.

Fig. 4 Left: (G= (S1), σ) contains an induced path P4 = a− b− c − a′ on three colors with σ(a) = σ(a′) as in Lemma 17. Right: (G= (S2), σ
′) 

contains an induced path P4 = a− b− c − b′ on three colors with σ ′(b) = σ ′(b′) as in Lemma 18
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In summary, we have ad ∈ E(G<) and ac, bd ∈ E(G>) or 
ad ∈ E(G>) and ac, bd ∈ E(G<) , and thus both {a, b, d} 
and {a, c, d} form a rainbow triangle in the edge coloring 
defined by G(S) .  �

As an immediate consequence, we obtain

Corollary 4 If the edge-coloring defined by G(S) does 
not contain a rainbow triangle, then G=(S) is a cograph.

The converse of Cor. 4, however, is not true in general. 
A counterexample is given in Fig. 5.

Lemma 20 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario. Suppose that (G=(S), σ) contains an induced 
P4 = a− b− c − d on four distinct colors σ(a) = A , 
σ(b) = B , σ(c) = C , and σ(d) = D . Then, exactly one of 
the following alternatives holds: 

 (i) ad ∈ E(G<(S)) , ac, bd ∈ E(G>(S)) , 
S
|ABCD = ((A,C), (B,D)) and T

|abcd = ((a, d), b, c) or
 (ii) ad ∈ E(G>(S)) , ac, bd ∈ E(G<(S)) , 

S
|ABCD = ((A,D),B,C) and T|abcd = ((a, c), (b, d)).

Proof Set G:=G(S) , G< :=G<(S) , G=:=G=(S) , and 
G> :=G>(S) . By Lemma  19, we have exactly one of 
the following two alternatives (i’) ad ∈ E(G<) and 
ac, bd ∈ E(G>) or (ii’) ad ∈ E(G>) , ac, bd ∈ E(G<).

Case  (i’): Since ac, bd ∈ E(G>) and ab, bc, cd /∈ E(G>) , S 
displays the informative triples AC|B,BD|C ∈ RS(G) by 
Prop  2. Hence, S|ABCD = ((A,C), (B,D)) . Furthermore, 
by Prop.  2, T displays ad|b, ad|c ∈ RT (G) and none of 
ab|c, bc|a, bc|d, cd|b ∈ FT (G) . If T displays ac|b , then this 
together with T displaying ad|b implies that T also dis-
plays cd|b ; a contradiction. Thus, it holds T|abc = (a, b, c) . 
Together with the fact that T displays ad|b , this implies 
T|abcd = ((a, d), b, c) . In summary, Case (i) is satisfied.

Case  (ii’): Since ac, bd ∈ E(G<) and ab, bc, cd /∈ E(G>) , 
T displays the informative triples ac|b, bd|c ∈ RT (G) 
by Prop.  2. Hence, T|abcd = ((a, c), (b, d)) . Furthermore, 
by Prop  2, S displays AD|B,AD|C ∈ RS(G) and none 
of AB|C ,BC|A,BC|D,CD|B ∈ FS(G) . Re-using analo-
gous arguments as for T in Case  (i’), we conclude that 
S|ABCD = ((A,D),B,C) . In summary, Case (ii) is satisfied. 
 �

Cor.  1 implies that two adjacent vertices in G=(S) 
cannot have the same color. The 2− , 3− and 4-colored 
P4 s considered in Lemmas  16, 17, 18, and 20 there-
fore cover all possible colorings of an induced P4 in 
(G=(S), σ) . Moreover, in each case, the existence of a P4 
in (G=(S), σ) implies that at least one of S and T is non-
binary. We summarize this discussion and Lemmas 14 
and 15 in the following

Theorem 7 Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. Then G<(S) and G>(S) are cographs. If both S and 
T are binary trees, then G=(S) is also a cograph.

In the case of HGT-free scenarios, the condition that 
S and T are binary is no longer necessary:

Lemma 21 Let S be a relaxed scenario without HGT-
edges. Then G=(S) is a cograph.

Proof By Cor.  2, G<(S) is edge-less. Therefore, G=(S) 
is the complement of the cograph G>(S) (cf. Lemma 15) 
and thus, by Prop. 1, also a cograph.  �

The similarities of G and edge-colored permuta-
tions graphs noted above naturally lead to the ques-
tion whether G= is a permutation graph. The example in 
Fig. 7 shows that this is not the case, however: The cycle 
on six vertices, C6 , is not a permutation graph [26].

Lemma 22 If S is a relaxed scenario, then G=(S) does 
not contain an induced P6.

Proof Set G< :=G<(S) , G=:=G=(S) , and G> :=G>(S) . 
Suppose, for contradiction, that G= contains an 
induced P6 = a− b− c − d − e − f  (where the colors 
of these six vertices are not necessarily all distinct). 
Since a− b− c − d is an induced P4 in G= in this case, 
Lemma  19 implies that either (i) ad ∈ E(G<) and 
ac, bd ∈ E(G>) or (ii) ad ∈ E(G>) and ac, bd ∈ E(G<) . 
Consider Case  (i). Since b− c − d − e is an induced P4 
in G= and bd ∈ E(G>) , Lemma  19 implies be ∈ E(G<) 

Fig. 5 Example of a relaxed scenario S and corresponding graph 
3-partition G(S) with G(S) containing rainbow triangles and G= (S) 
being a cograph
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and ce ∈ E(G>) . Repeating this argument for the induced 
P4 c − d − e − f  in G= now yields cf ∈ E(G<) and 
df ∈ E(G>) . Consider the pair af. If af ∈ E(G<) , then G< 
contains the induced P4 d − a− f − c , a contradiction to 
Lemma 14. Similarly, if af ∈ E(G>) , then G< contains the 
induced P4 d − f − a− c , a contradiction to Lemma 15. 
Thus, only af ∈ E(G=) remains, which contradicts that 
a− b− c − d − e − f  is an induced P6 in G= . Case (ii) is 
not possible for analogous reasons. Hence, G=(S) cannot 
contain an induced P6 .  �

P6-free graphs have been characterized in [27, 28]. 
Since any induced Pk with k ≥ 6 also contains an induced 
P6 , Lemma 22 implies that the longest possible induced 
path in an EDT graph has 5 vertices. Figure 7 shows that 
this situation can indeed be realized. In particular, the 
P5 s in these examples are part of induced cycles on six 
vertices. Using Lemma 19 and the arguments in the proof 
of Lemma 22, we can conclude that G(S1) and G(S2) , as 
shown in Fig.  7, are the only two configurations for an 
induced C6 that can appear in an EDT graph.

A graph is odd-hole free it it does not contain an 
induced cycle of odd length greater than three [29].

Proposition 3 If S is a relaxed scenario, then G=(S) 
does not contain an induced C5 and induced cycles Cℓ on 
ℓ ≥ 7 vertices. In particular, EDT graphs are odd-hole 
free.

Proof Set G< :=G<(S) , G=:=G=(S) , and G> :=G>(S) . 
Suppose, for contradiction, that G= contains an induced 
C5 on vertices a, b, c, d, e with ab, bc, cd, de, ea ∈ E(G=) . 
Thus, a− b− c − d is an induced P4 in G= and Lemma 19 
implies that either (i) ad ∈ E(G<) and ac, bd ∈ E(G>) or 
(ii) ad ∈ E(G>) and ac, bd ∈ E(G<) . In Case (i), we have 
ad ∈ E(G<) and ac, bd ∈ E(G>) . Since b− c − d − e 
is an induced P4 in G= and bd ∈ E(G>) , Lemma  19 
implies be ∈ E(G<) and ce ∈ E(G>) . Repeating this argu-
ment for the induced P4 c − d − e − a in G= now yields 
ac ∈ E(G<) ; a contradiction. Case  (ii) is not possible 
for analogous reasons. Hence, G=(S) cannot contain an 
induced C5 . Moreover, by Lemma 22, G=(S) does not 
contain induced P6 s. Since every induced Cℓ with ℓ ≥ 7 
contains an induced P6 , such induced cycles cannot be 
part of an EDT graph. In particular, this implies that EDT 
graphs are odd-hole free.  �

Prop.  3 implies that not every P6-free graph (G, σ) is 
an EDT graph, even if we restrict ourselves to properly-
colored graphs. In particular, the cycle on 5 vertices with 
pairwise distinct colors is a properly colored P6-free 
graph that is not an EDT graph. Moreover, the example 

in Fig. 7 shows that an EDT graph may contain induced 
C6 s, i.e., they are in general not even-hole free. Moreo-
ver, EDT graphs may contain induced C4 s. To see this, 
consider the trees T = ((a1, a2), (b1.b2)) , S = (A,B) 
and assume that σ(ai) = A and σ(bi) = B , 1 ≤ i ≤ 2 . 
Now put µ(ρT ) = ρS and µ( lca T (a1, a2)) = ρSA and 
µ( lca T (b1, b2)) = ρSB . It is now an easy exercise to ver-
ify that a1, b1, a2, b2 form an induced C4 in G=.

A graph G is perfect, if the chromatic number of every 
induced subgraph equals the order of the largest clique of 
that subgraph [30]. A Berge graph is a graph that contains 
no odd-hole and no odd-antihole (the complement of an 
odd-hole) [31]. The strong perfect graph theorem [32] 
asserts that a graph is perfect iff it is a Berge graph.

Proposition 4 If S is a relaxed scenario, then G=(S) is 
a perfect graph.

Proof By Prop. 3, G=(S) is odd-hole free. By the strong 
perfect graph theorem, it suffices, therefore, to show that 
G=(S) does not contain an odd-antihole. Assume, for 
contradiction, that G=(S) contains an odd-antihole K. Its 
complement K  is, thus, an odd cycle that is entirely com-
posed of edges of G<(S) and G>(S) . Since K  is a cycle of 
odd length ≥ 5 , the edges along this cycle cannot be alter-
natingly taken from G<(S) and G>(S) . In other words, 
in K  there are at least two incident edges ab, bc that are 
either both contained in G<(S) or G>(S) . In addition, 
K  must contain an edge cd and thus, cd /∈ E(G=(S)) . 
This, however, implies that G=(S) contains an induced 
P4 c − a− d − b . By Lemma 19, {c, a, b} should induce a 
rainbow triangle, which is a contradiction since ab and bc 
are both either in the graph G<(S) or G>(S) .  �

Since perfect graphs are closed under complementa-
tion we obtain

Corollary 5 If S is a relaxed scenario, then 
G<(S) ∪ G>(S) is a perfect graph.

The converse of Prop.  4 does not hold as shown 
by the examples in Fig.  8, even under the restric-
tion to properly-colored graphs. Suppose the graph 
(G, σ) in Fig.  8(A) is explained by a relaxed sce-
nario S . Put A:=σ(a) = σ(a′) , B:=σ(b) = σ(b′) , 
C:=σ(c) = σ(c′) , and D:=σ(d) = σ(d′) . By Lemma  20, 
the induced P4 = a− b− c − d implies that 
S|ABCD = ((A,C), (B,D)) or S|ABCD = ((A,D),B,C) , 
and the induced P4 = c′ − a′ − d′ − b′ implies that 
S|ABCD = ((A,B), (C ,D)) or S|ABCD = ((B,C),A,D) ; a 
contradiction. Clearly, G contains no odd hole and no 
odd antihole and, thus, it is a perfect graph. Moreover, 
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it is not sufficient to require that (G′, σ) is a prop-
erly colored cograph. To see this, suppose that the 
cograph (G′, σ ′) in Fig.  8(B) is explained by a relaxed 
scenario S . All possible assignments for the edges ac 
and ad are shown on the right-hand side, i.e., we have 
ac ∈ E(G>(S)) , ad ∈ E(G>(S)) , or ac, ad ∈ E(G<(S)) 
yielding the informative triples (for the species tree S) 
AC|B , AD|B , and CD|A , respectively. However, all of 
these three triples are forbidden triples for S as a con-
sequence of the three smaller connected components of 
(G′, σ ′) ; a contradiction.

Explanation of G by relaxed scenarios
In [4], we derived an algorithmic approach that recog-
nizes LDT graphs and constructs a relaxed scenario S 
for (G< , σ) in the positive case. Here, we adapt the algo-
rithmic idea to the case that, instead of (G< , σ) , the graph 
3-partition G = (G< ,G= ,G> , σ) is given, see Algorithm 1, 
which is illustrated in Fig.  9. As we shall see, the addi-
tional information can be leveraged to separate the con-
struction of S and T in such a way that a suitable species 
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tree can be computed first using a well-known approach. 
This then considerably simplifies the construction of a 
corresponding gene tree T. More precisely, we construct 
the gene tree and its reconciliation with S in a top-down 
fashion via a recursive decomposition of L into subsets 
that is guided by G and S. We first introduce three auxil-
iary graphs that we will use for this purpose. 

Definition 8 Let G = (G< ,G= ,G> , σ) be a graph 3-par-
tition on vertex set L with coloring σ : L → M and S be a 
tree on M.

For L′ ⊆ L and u ∈ V 0(S) such that σ(L′) ⊆ L(S(u)) , we 
define the auxiliary graphs on L′:

By construction, H2 is a subgraph of H1 . In particular, 
therefore, every connected component of H2 is entirely 
included in some connected component of H1 . In turn, 
one easily verifies that the connected components of H3 
are complete graphs. Moreover, H3 contains all edges of 
H2 ∩ G= while there might be edges of G< [L

′] that are 
not contained in H3 . This implies that every connected 
component of H3 is entirely included in some connected 
component of H2.

We use the inclusion relation of the connected com-
ponents to construct the local topology of T in a 
recursive manner, see Fig.  10 for an illustration of the 
following description. In each step, i.e., for some L′ ⊆ L 
and uS ∈ V (S) , we first construct a “local root” ρ′ (cf. 
Algorithm 1, Line 6). If uS is a leaf of S (the base case of 
the recursion), we directly attach the elements of L′ as 
children of ρ′ (Lines  8–11). On the other hand, if uS is 
an inner vertex, we create a new child of ρ′ for each con-
nected component of H1 in Line 15. For a specific con-
nected component Ci of H1 (corresponding to child ui of 
ρ′ ), we then add a new child vj of ui for each connected 
component Cj of H2 such that Cj ⊆ Ci in Line 18. We 
proceed similarly for the connected components Ck of 
H3 , which necessarily are subsets of a specific connected 
component Cj of H2 . The vertex corresponding to Ck is 
the “local root” created in a recursive call operating on Ck 
as new subset of L and vS ∈ child S(uS) as new vertex of 
S, which is chosen such that σ(Ck) ⊆ L(S(uS)) in Line 22. 
If Cj = Ci or Ck = Cj , then the corresponding vertices vi 
and vj , respectively, have a single child. As a consequence, 

H1:= (L′,E(G< [L
′]) ∪ E(G=[L

′]))

H2:= (L′,E(G< [L
′]) ∪ {xy ∈ E(G=[L

′]) | σ(x), σ(y) ≺S v for some v ∈ child S(u)})

H3:= (L′, {xy | x and y are in the same connected component of H2 and

σ(x), σ(y) �S v for some v ∈ child S(u)})

the resulting tree T ′ is in general not phylogenetic. The 
final gene tree T is then obtained by suppressing all verti-
ces with a single child (Line 26).

By definition, two vertices x and y are in the same 
connected component Ck of the auxiliary graph H3 
only if σ(x) and σ(y) are descendants of the same 
child vS of the species tree vertex uS . In particular, we 
therefore can always find vS ∈ child S(uS) such that 
σ(Ck) ⊆ L(S(vS)) in Line 22 of Algorithm 1. This guar-
antees that all colors appearing on the vertices in L′ are 
descendants of the species tree vertex uS in each recur-
sion step:

Observation 2 In every recursion step of Algorithm 1, it 
holds σ(L′) ⊆ L(S(us)) . In particular, the auxiliary graphs 

H1 , H2 , and H3 are always well-defined.

The recursion in Algorithm 1 can be thought of as a 
tree with the root being the top-level call of BuildGe-
neTree on L and ρS and leaves being the calls in which 
uS is a leaf of S. Note that, for some recursion steps 
R on L′ and uS , all of its “descendant recursion steps” 
have input L′′ and u′S satisfying L′′ ⊆ L′ and u′S ≺S uS . 
Therefore, and because all leaves that are descendants 
of ρ′ (created in R′ ) must have been attached in some 
descendant recursion step of R, we have L(T ′(ρ′)) ⊆ L′ . 
In turn, all elements x ∈ L′ are either directly attached 
to ρ′ if uS is a leaf, or will eventually be passed down to 
a recursion step on a leaf l ≺S uS because each x ∈ L′ is 
in some connected component Ck of H3 , Ck is entirely 
included in a connected component Cj of H2 , and Cj is 
entirely included in a connected component Ci of H1 . 
In this “leaf recursion step”, x is therefore attached to 
some descendant of ρ′ , implying L′ ⊆ L(T ′(ρ′)) . There-
fore, we have L′ = L(T ′(ρ′)) . We can apply very similar 
arguments to see that L(T ′(ui)) = Ci and L(T ′(vj)) = Cj 
hold for each connected component Ci of H1 and Cj 
of H2 with corresponding vertices ui and vj created in 
Lines 15 and 18, respectively. Clearly, contraction of the 
redundant vertices to obtain the final tree T does not 
change these relationship. We summarize these consid-
erations as follows:
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Observation 3 Let T be a tree returned by Algorithm 1 
and u ∈ V 0(T ) be an inner vertex created in a recursion 
step on L′ and uS . 

1. If u is a vertex ρ′ created in Line 6, then L(T (u)) = L′

.
2. If u is a vertex ui created in Line  15, then 

L(T (u)) = Ci where Ci is the connected component 
of H1 corresponding to ui.

3. If u is a vertex vj created in Line  18, then 
L(T (u)) = Cj where Cj is the connected component 
of H2 corresponding to vj.

In particular, every x ∈ L(T (u)) satisfies x ∈ L′.
Algorithm  1 is a generalization of the algorithm pre-

sented in [4] for the construction of a relaxed scenario 
S for a given LDT graph (G, σ) . A key property of the 
algorithm is that the restriction of S to S(uS) , i.e., the 
incomplete scenarios obtained for given uS satisfies the 
time consistency constraints (S2) and (S3). The con-
struction of S in Algorithm 1 differs from the procedure 
described in [4] only by including in V (T )\(L(T ) ∪ {0T }) 
the additional vertices ui created in Line 15. These satisfy 
µ(ui) = uS . In the following line, we set τT (ui) ← τS(uS) . 
Hence, constraint (S2) remains satisfied and (S3) is void 
because µ(ui) ∈ V (S) . One easily checks, furthermore, 
that the reconciliation map µ constructed in Algorithm 1 
satisfies (S0) (Line 27) and (S1) (Line 11).

Definition 9 G = (G< ,G= ,G> , σ) is a valid input for 
Algorithm  1 if (G< ,G= ,G> , σ) is a 3-partition, G< and 
G= are properly colored, G< and G> are cographs, and 
(RS(G),FS(G)) is consistent.

Lemma 23 Given a valid input G = (G< ,G= ,G> , σ) 
with vertex set L, Algorithm 1 returns a relaxed scenario 
S = (T , S, σ ,µ, τT , τS) such that L(T ) = L.

Proof In order to keep this contribution self-contained, 
a detailed proof of Lemma 23, which largely parallels the 
material in [4], is given in Appendix .  �

We continue with a number of intermediate results that 
we will need to establish the correctness of Algorithm 1.

Lemma 24 Let G = (G< ,G= ,G> , σ) with vertex set L be 
a valid input for Algorithm 1. Consider a recursion step on 
L′ ⊆ L and uS ∈ V 0(S) of Algorithm 1. Then there are no 
x, y ∈ L′ in the same connected component of H1 such that 
xy ∈ E(G>) and lca S(σ (x), σ(y)) = uS.

Proof Assume for contradiction that, for some L′ and 
uS ∈ V 0(S) appearing in the recursion, there is a con-
nected component Ci of H1 with vertices x, y ∈ Ci and 
colors X :=σ(x) and Y :=σ(y) such that xy ∈ E(G>) and 
lca S(X ,Y ) = uS . By assumption, uS is an interior ver-
tex and thus X  = Y  . Since the input G> is a cograph, the 
induced subgraph G> [L

′] and its complement, which 
by construction equals H1 = G< [L

′] ∪ G=[L
′] , are also 

cographs (cf. Prop. 1).

Consider a shortest path P in H1 connecting x and y, 
which exists since x, y ∈ Ci . Since G> [L

′] and H1 are edge-
disjoint and xy ∈ E(G> [L

′]) , P contains at least 3 vertices. 
Since H1 is a cograph and thus does not contain induced 
P4 s, P contains at most 3 vertices. Hence, P is of the form 
x − z − y and we have xy ∈ E(G>) and xz, yz /∈ E(G>) . 
Therefore, and since G< and G= are properly colored, we 
have Z:=σ(z) /∈ {X ,Y } , and thus X, Y, Z are pairwise dis-
tinct colors. By Prop. 2, XY |Z ∈ RS(G) . Taken together, 
the latter arguments and the construction of S in Line 1 
imply that S displays the informative triple XY |Z . Since 
x, y, z ∈ L′ , we have X ,Y ,Z ∈ L(S(us)) by Obs.  2. In 
particular, therefore, Z �S uS . Thus XY |Z implies that 
lca S(X ,Y ) ≺S uS ; a contradiction.  �

Lemma 25 Let G = (G< ,G= ,G> , σ) with vertex set L be 
a valid input for Algorithm  1. Consider a recursion step 
on L′ ⊆ L and uS ∈ V 0(S) of Algorithm  1. Then, for all 
x, y ∈ L′ that are contained in the same connected compo-
nent of H2 but in distinct connected components of H3 , it 
holds xy ∈ E(G<).

Proof Suppose that, for some L′ and uS ∈ V 0(S) appear-
ing in the recursion, there is a connected component 
Cj of H2 with x, y ∈ Cj such that x and y are in distinct 
connected components of H3 . In addition, suppose for 
contradiction that xy /∈ E(G<) . We may assume w.l.o.g. 
that x and y have minimal distance in H2 , i.e., there are 
no vertices x′, y′ ∈ Cj such that x′ and y′ are in distinct 
connected components of H3 , x′y′ /∈ E(G<) , and in addi-
tion the distance of x′ and y′ in H2 is smaller than that 
of x and y. Set X :=σ(x) and Y :=σ(y) and let Cx and Cy 
be the connected components of H3 that contain x and 
y, respectively. By Obs. 2, we have σ(L′) ⊆ L(S(uS)) . This 
and the fact that x and y are in distinct connected com-
ponents of H3 but in the same connected component 
Cj of H2 implies that X �S vX and Y �S vY  for two dis-
tinct children vX , vY ∈ child S(uS) . In particular, we have 
X  = Y  and lca S(X ,Y ) = uS . Moreover, by construction, 
every connected component of H2 is contained in a con-
nected component of H1 and thus, x and y are in the same 
connected component of H1 . The latter two arguments 
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together with Lemma 24 imply xy /∈ E(G>) . In summary, 
we therefore have xy ∈ E(G=).

Consider a shortest path P connecting x and y in H2 , 
which exists since x, y ∈ Cj . By construction, xy ∈ E(G=) 
and lca S(X ,Y ) = uS imply that xy /∈ E(H2) and thus 
P contains at least 3 vertices. Let z ∈ Cj \ {x, y} be the 
neighbor of x in P. We consider the two possibilities (a) 
xz ∈ E(G=) and (b) xz ∈ E(G<) . Note that X  = σ(z)=:Z 
holds in both cases since G= and G< are properly colored.

In Case (a), we must have Z �S vX since xz is an edge in 
H2 . This implies that Z  = Y  (and thus X,  Y,  Z are pair-
wise distinct) and lca S(Y ,Z) = uS . Based on the lat-
ter arguments, S must display the triple XZ|Y  . Suppose 
that yz /∈ E(G=) . Together with xy, xz ∈ E(G=) , we have 
XZ|Y ∈ FS and thus, by construction of S in Line  1, S 
cannot display XZ|Y  ; a contradiction. Hence, yz ∈ E(G=) 
must hold. Since Z �S vX and Y �S vY  , we have 
yz /∈ E(H3) . Note that connected components in H3 are 
complete graphs. Hence, yz /∈ E(H3) implies that y and 
z are in distinct connected components of H3 . However, 
the distance of y and z in H2 is strictly smaller than that 
of x and y (because z is closer to y than x in the shortest 
path P); a contradiction to our choice of x and y. In sum-
mary, Case (a) therefore cannot occur.

In Case  (b) we have xz ∈ E(G<) . If yz ∈ E(G<) , then 
Y  = Z (because G< is properly colored) and, by defini-
tion, XY |Z ∈ RS . By construction in Line 1, the species 
tree S displays XY |Z . Together with X ,Y ,Z ∈ L(S(uS)) 
by Obs.  2, this contradicts that lca S(X ,Y ) = uS . Simi-
larly, if yz ∈ E(G=) , then S displays neither of the forbid-
den triples XY |Z and YZ|X . Hence, S displays XZ|Y  or 
S|XYZ is the star tree on the three colors. In both cases, we 
have lca S(Y ,Z) = lca S(X ,Y ) = uS . In particular, there-
fore y and z are in distinct connected components of H3 . 
As argued before, the distance of y and z is smaller than 
that of x and y. Taken together the latter arguments again 
contradict our choice of x and y, and thus yz ∈ E(G>) is 
left as the only remaining choice.

In summary, only case (b) xz ∈ E(G<) is possible, which 
in particular implies yz ∈ E(G>) . Therefore, we have 
yz /∈ E(H2) and thus the path P contains at least 4 verti-
ces. Thus, consider the neighbor w ∈ Cj \ {x, y, z} of y in 
P and set W :=σ(w) . We can apply analogous arguments 
for x, y, w as we have used for x, y, z to exclude the case 
(a’) yw ∈ E(G=) and, in case (b’) yw ∈ E(G<) , we obtain 
xw ∈ E(G>) as the only possibility.

Taking the latter arguments together, it remains to 
consider the case xy ∈ E(G=) , xz, yw ∈ E(G<) , and 

xw, yz ∈ E(G>) . Since G< and G> are cographs, we 
have zw ∈ E(G=) because otherwise x − z − w − y or 
x − w − z − y would be an induced P4 in G< and G> , 
respectively.

Now, x and w must be in the same connected compo-
nent of H3 , as otherwise xw /∈ E(G<) and the fact that x 
and w are at a shorter distance than x and y in H2 would 
contradict our choice of x and y. Likewise, y and z are in 
the same connected component of H3 since yz /∈ E(G<) 
and they are closer than x and y in H2 . It follows that w 
and z are in distinct connected components of H3 , again 
yielding a contradiction since they are closer than x and 
y in H2 and wz /∈ E(G<) . In summary, therefore, we have 
xy ∈ E(G<) .  �

The following result is a consequence of Lemma 25 and 
will be helpful later on.

Corollary 6 Let G = (G< ,G= ,G> , σ) with vertex set 
L be a valid input for Algorithm  1. Consider a recur-
sion step on L′ ⊆ L and uS ∈ V 0(S) of Algorithm  1. If 
xy ∈ E(H1) \ E(H2) , then x and y are in distinct connected 
components of H2.

Proof Suppose xy ∈ E(H1) \ E(H2) . By construction 
of the auxiliary graphs, this implies that xy ∈ E(G=) and 
there is no v ∈ child S(uS) such that σ(x), σ(y) ≺S v . The 
latter in particular yields that xy /∈ E(H3) . This, together 
with the fact that H3 is a graph whose connected com-
ponents are complete graphs, implies that x and y are 
in distinct connected components of H3 . We can now 
use Lemma 25 to conclude that x and y must also be in 
distinct connected components of H2 as otherwise we 
would obtain xy ∈ E(G<) ; a contradiction.  �

We are now in the position to demonstrate that Algo-
rithm 1 is correct.

Lemma 26 Let G be a valid input for Algorithm  1. 
0Then, Algorithm  1 returns a relaxed scenario 
S = (T , S, σ ,µ, τT , τS) that explains G.

Proof Let G = (G< ,G= ,G> , σ) be a valid input with 
vertex set L for Algorithm 1. By Lemma 23, Algorithm 1 
returns a relaxed scenario S = (T , S, σ ,µ, τT , τS) such that 
L(T ) = L . We continue with showing that S explains G.

Consider two distinct vertices x, y ∈ L = L(T ) and 
their last common ancestor lca T (x, y) . Let L′ ⊆ L and 
uS ∈ V (S) be the input of the recursive call of BuildGe-
neTree in which lca T (x, y) was created. By Obs. 2 and 3, 
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we have σ(L′) ⊆ L(S(us)) and x, y ∈ L′ , respectively, and 
therefore lca S(σ (x), σ(y)) �S uS . Moreover, time con-
sistency yields τS( lca S(σ (x), σ(y))) ≤ τS(uS) . The vertex 
lca T (x, y) has been created in exactly one of the follow-
ing three locations in the algorithm: (a) in Line 6, (b)  in 
Line 15, and (c) in Line 18.

In Case  (a), lca T (x, y) equals ρ′ in the recur-
sion step of interest. Suppose first that uS is a leaf 
of S and thus σ(x) = σ(y) = uS . Hence, we have 
xy ∈ E(G>(S)) by Cor.  1 and xy ∈ E(G>) , since G< 
and G= are properly colored. Now suppose that uS 
is not a leaf. Then lca T (x, y) = ρ′ implies that x and 
y lie in distinct connected components of the aux-
iliary graph H1 and thus xy /∈ E(H1) . By construc-
tion of this graph, the latter yields xy ∈ E(G>) . More-
over, we have set τT (ρ

′) = τS(uS)+ ǫ > τS(uS) . 
Together with lca T (x, y) = ρ′ , this implies 
τS( lca S(σ (x), σ(y))) ≤ τS(uS) < τT ( lca T (x, y)) and thus 
xy ∈ E(G>(S)).

In Case  (b), uS is an inner vertex of S and lca T (x, y) 
equals ui . We have set τT ( lca T (x, y)) = τT (ui) = τS(uS) . 
By construction, moreover, x and y must be in the 
same connected component Ci of H1 but in dis-
tinct connected components of H2 . Hence, we have 
xy /∈ E(H2) which implies xy /∈ E(G<) by the construc-
tion of H2 . Suppose first lca S(σ (x), σ(y)) = uS . Then 
xy ∈ E(G=) as otherwise it would hold xy ∈ E(G>) ; 
a contradiction to Lemma  24. Moreover, we have 
τT ( lca T (x, y)) = τS(uS) = τS( lca S(σ (x), σ(y))) 
and thus xy ∈ E(G=(S)) . Now suppose 
lca S(σ (x), σ(y)) ≺S uS and thus, by time consist-
ency, τS( lca S(σ (x), σ(y))) < τS(uS) = τT ( lca T (x, y)) . 
This yields xy ∈ E(G>(S)) . Moreover, from 
lca S(σ (x), σ(y)) ≺S uS , we conclude that σ(x), σ(y) �S w 
for some child w ∈ child S(uS) . Therefore, we must have 
xy ∈ E(G>) since otherwise xy ∈ E(G=) would imply that 
xy ∈ E(H2).

In Case  (c), uS is an inner vertex of S 
and lca T (x, y) equals vj . We have set 
τT ( lca T (x, y)) = τT (vj) = τS(uS)− ǫ < τS(uS) . By con-
struction, moreover, x and y must be in the same con-
nected component Cj of H2 (and thus also in the same 
connected component Ci of H1 ) but in distinct con-
nected components of H3 . This immediately implies (i) 
that xy ∈ E(G<) by Lemma 25 and (ii), by construction of 
H3 , that σ(x) and σ(y) lie below distinct children of uS . 
In particular, therefore, we have lca S(σ (x), σ(y)) = uS 
and thus τS( lca S(σ (x), σ(y))) = τS(uS) > τT ( lca T (x, y)) . 
This implies xy ∈ E(G<(S)).

In summary, we have shown that xy ∈ E(G<) iff 
xy ∈ E(G<(S)) , xy ∈ E(G=) iff xy ∈ E(G=(S)) , and 
xy ∈ E(G>) iff xy ∈ E(G>(S)) . Since x, y ∈ L where cho-
sen arbitrarily and L = L(T ) , this proves that the relaxed 
scenario S returned by the algorithm indeed explains the 
input G .  �

As outlined in the proof of Lemma  26, edges 
xy ∈ E(G=) are considered only in Case (b) and we have 
lca T (x, y) = ui and lca S(σ (x), σ(y)) = uS . In this case, 
we put µ(ui) = uS in Line 16 of Algorithm 1. The rec-
onciliation map µ therefore has the following property:

Observation 4 Let S be a scenario produced by Algo-
rithm  1 for a valid input G = (G< ,G= ,G> , σ) . Then 
xy ∈ E(G=) implies µ( lca T (x, y)) = lca S(σ (x), σ(y)).

A main result of this section is the following charac-
terization of graph 3-partitions that derive from relaxed 
scenarios:

Theorem  10 A graph 3-partition G = (G< ,G= ,G> , σ) 
can be explained by a relaxed scenario if and only if G< 
and G= are properly colored, G< and G> are cographs, and 
(RS(G),FS(G)) is consistent.

Proof Suppose first that G can be explained by a relaxed 
scenario. Then G< and G= are properly colored by Cor. 1, 
G< and G> are cographs by Lemmas  14 and  15, respec-
tively, and (RS(G),FS(G)) is consistent by Prop. 2. Con-
versely, suppose G< and G= are properly colored, G< and 
G> are cographs, and (RS(G),FS(G)) is consistent. In this 
case, G = (G< ,G= ,G> , σ) is a valid input for Algorithm 1 
and Lemma 26 implies that Algorithm 1 returns a relaxed 
scenario that explains G .  �

This result implies almost immediately that the 
property of being explainable by a relaxed scenario is 
hereditary:

Corollary 7 A graph 3-partition G = (G< ,G= ,G> , σ) 
with vertex set L can be explained by a relaxed scenario if 
and only if G|L′ can be explained by a relaxed scenario for 
all subsets L′ ⊆ L.

Proof The if-part is clear as G = G|L . Conversely, sup-
pose that G = (G< ,G= ,G> , σ) is explained by a relaxed 
scenario S = (T , S, σ ,µ, τT , τS) and let L′ ⊆ L . By Prop. 2, 
therefore, S agrees with (RS(G),FS(G)) . By Thm. 10, G< 
and G= are properly colored and G< and G> are cographs. 
Now consider G|L′ = (G< [L

′],G=[L
′],G> [L

′], σ|L′) . 
Clearly, the induced subgraphs G< [L

′] and G=[L
′] are also 

properly colored. By Prop.  1, G< [L
′] and G> [L

′] are also 
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cographs. By definition of the informative and forbid-
den triples in Def. 6 and the induced subgraph relation-
ships, we observe furthermore that RS(G|L′) ⊆ RS(G) 
and FS(G|L′) ⊆ FS(G) . Hence, S displays all triples in 
RS(G|L′) and none of the triples in FS(G|L′) , which yields 
that (RS(G|L′),FS(G|L′)) is consistent. We can now again 
apply Thm. 10 to conclude that G|L′ is explainable.  �

Using the characterization in Thm. 10, we can decide in 
polynomial time whether a graph 3-partition is explain-
able by a relaxed scenario:

Corollary 8 It can be decided in O(|L|4 log |L|) time 
whether a graph 3-partition G = (G< ,G= ,G> , σ) can be 
explained by a relaxed scenario.

Proof It can be checked in O(|L|2) time whether 
G< and G= are properly colored. It can be decided in 
in O(|L| + |E|) time whether a graph G = (L,E) is a 
cograph [33]. In particular, it can also be verified in 
O(|L|2) time that G< and G> are cographs. Extrac-
tion of R:=RS(G) and F :=FS(G) according to Def.  6 
requires O(|L|3) . Let M′ ⊆ M be the subset of colors 
that appear on the leaves of the triples in R ∪ F  . 
By construction, we have |M′| ∈ O(|L|) . The algo-
rithm MTT, which stands for mixed triplets problem 
restricted to trees and was described in [34], constructs 
a tree on M′ that agrees with (R,F) , if one exists, in 
O(|R| · |M′| + |F | · |M′| log |M′| + |M′|2 log |M′|) time. 
This, together with |R|, |F | ∈ O(|L|3) and |M′| ∈ O(|L|) 
implies that it can be decided in O(|L|4 log |L|) whether 
(R,F) is consistent.  �

In particular, it can be decided in O(|L|4 log |L|) 
whether G = (G< ,G= ,G> , σ) can be explained by a 
relaxed scenario without explicit construction of such 
a scenario. We will show in the following that the con-
struction of relaxed scenarios is bounded by the same 
complexity. For simplicity, we will explicitly require that 
σ : L → M is surjective, i.e., that σ(L) = M holds. One 
easily verifies, however, that the existence of “unused 
colors” in M only increases the size of the species tree S 
(in particular, the number of leaves in S that are attached 
to ρS ) but does not affect the existence of a relaxed sce-
nario that explains G.

Lemma 27 Algorithm  1 can be implemented to run in 
O(|L|4 log |L|) time (for valid inputs G = (G< ,G= ,G> , σ) 
such that σ is surjective).

Proof Let G = (G< ,G= ,G> , σ) with vertex set L be a 
valid input and surjective coloring σ : L → M that is 
given as input for Algorithm  1. By assumption, G< and 
G= are properly colored, G< and G> are cographs, and 
(RS(G),FS(G)) is consistent. Extraction of R:=RS(G) 
and F :=FS(G) according to Def.  6 requires O(|L|3) 
operations. As argued in the proof of Corollary 8, a tree 
S on M that agrees with (R,F) can be constructed in 
O(|L|4 log |L|) time using algorithm MTT [34].

A suitable time map τS can be constructed in 
O(|M|) = O(|L|) time by Lemma 1.

We can employ the LCA data structure described 
by Bender et  al. [35], which pre-processes S in 
O(|M|) = O(|L|) time to allow O(1)-query of the last com-
mon ancestor of pairs of vertices in S afterwards. In addi-
tion, we want to access the vertex w ∈ child S(u) satisfying 
v �S w for two given vertices u, v ∈ V (T ) with v ≺S u . To 
achieve this, we pre-process S as follows: We first compute 
depth (v) for each v ∈ V (T ) , i.e., the number of edges on 
the path from the root to v in a top-down traversal of S in 
O(|L|) time. The Level Ancestor (LA) Problem asks for the 
ancestor LA (v, d) of a given vertex v that has depth d, and 
has solutions with O(|L|) pre-processing and O(1) query 
time [36, 37]. Hence, we can obtain the desired vertex w as 
LA (v, depth (u)+ 1) in constant time.

Since σ(L′) ⊆ L(S(uS)) always holds by Obs.  2, every 
x ∈ L appears at most once in a loop corresponding to 
Line 9. Hence, the total effort of handling the cases where 
uS is a leaf is bounded by O(|L|) . Consider now one exe-
cution of BuildGeneTree (without the recursive calls) 
in which uS is not a leaf. Construction of the auxiliary 
graphs H1 and H2 is done in O(|L′|2) , where the condi-
tion σ(x), σ(y) ≺S v for some v ∈ child S(uS) in the con-
struction of H2 is equivalent to querying the LCA data 
structure in O(1) time whether lca S(σ (x), σ(y))  = uS . 
The connected components of H1 can be obtained in 
O(|L′| + |E(H1)|) = O(|L′|2) time using breadth-first 
search. Since H2 is a subgraph of H1 ,0 we can, for each 
connected component Ci of H1 , determine the con-
nected components Cj of H2 with Cj ⊆ Ci again using 
breadth-first search and only the vertices in Ci as start 
vertices. The overall effort for this is again bounded by 
O(|L′| + |E(H1)|) = O(|L′|2) . We can now, for each con-
nected component Cj of H2 , construct the connected 
components Ck of H3 with Ck ⊆ Cj by (i) adding the 
edge xy to H3 if lca S(σ (x), σ(y))  = uS for all x, y ∈ Cj 
and (ii) performing breadth-first search on H3 using 
only the vertices in Cj as start vertices. Again, the over-
all effort for these breadth-first searches is bounded 
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by O(|L′|2) . The number of connected component of 
the three graph H1 , H2 , and H3 is bounded by O(|L′|) . 
For each connected component Cj of H2 , we have to 
choose v∗S ∈ child S(uS) such that σ(Cj) ∩ L(S(v∗S)) �= ∅ 
in Line  19. To this end, we pick x ∈ Cj arbitrarily and 
query v∗S = LA (σ (x), depth (uS)+ 1) . For each con-
nected component Ck of H3 , we can find vS ∈ child S(uS) 
such that σ(Ck) ⊆ L(S(vS)) in Line  22 in the same way. 
In summary, for each connected component of each 
graph, the effort of creating a new vertex (in case of H1 
and H2 ), attaching the vertex to the tree ( H1 , H2 , and H3 ), 
choosing v∗S in Line 19 ( H2 ), choosing vS in Line 22 ( H3 ), 
and assigning the values for τT and µ for the newly cre-
ated vertices are all constant-time operations. The over-
all effort for one recursion step (excluding the recursive 
calls) is therefore bounded by O(|L′|2).

To bound the total effort of BuildGeneTree, consider 
the recursion tree R of the algorithm and let d be its maxi-
mum depth (i.e. the maximum distance from ρR to a leaf ). 
Notice that when a recursion receives uS ∈ V (S) as input, 
it passes a child of uS to any recursive call that it makes. 
Since terminal calls occur on leaves of S, it follows that 
d is at most the height of S, which is O(|V (S)|) = O(|L|) 
under the assumption that σ is surjective. For r ∈ V (R) , 
denote by L′r the set L′ received as input on the recursive 
call corresponding to r. If r is not a leaf of R, then notice 
that {L′q : q ∈ child R(r)} is a partition of L′r (without 
repeated subsets), since a recursive call is made precisely 
for each connected component of H3.

Let ℓ ∈ {0, 1, . . . , d} . We claim that for any two vertices 
r, q ∈ V (R) at distance ℓ from ρR , L′r ∩ L′q = ∅ . This can 
be seen by induction, with ℓ = 0 as the trivial base case. 
Consider ℓ > 0 . If r and q have the same parent, then 
L′r ∩ L′q = ∅ follows from the observation that recur-
sions partition their input L′ to their child calls. If r and 
q have distinct parents in R, we know by induction that 
L′parR(r) ∩ L′parR(q) = ∅ . Since recursions pass a subset of 
their input L′ , L′r ∩ L′q = ∅ holds as well. Thus our claim 
is true. Now, for a given depth ℓ ∈ {0, 1, . . . , d} , denote 
by r1, . . . , rk the set of vertices of R at distance ℓ from ρR . 
The total effort of these vertices is O(|L′r1 |

2 + . . .+ |L′rk |
2) 

and, since |L′r1 | + . . .+ |L′rk | ≤ |L| by our claim, the total 
time spent at depth ℓ is O(|L|2) . Because this holds for 
every depth from 0 to d ∈ O(|L|) , the total time spent in 
BuildGeneTree is O(|L|3).

It only remains to argue on the time spent construct-
ing the final output tree T. Note that in each recursion 
with corresponding vertex r ∈ V (R) , BuildGeneTree 
adds at most 2|L′r | + 1 nodes to the constructed tree T ′ 

(we always add ρ′ and, additionally, in non-terminal calls, 
we add one ui and one vj vertex for each of the O(|L′r |) 
connected components of H1 and H2 , respectively, and 
in terminal calls we add |L′r | leaves). Since the vertices of 
R at the same depth ℓ receive pairwise disjoint L′r sets, it 
follows that a total of at most O(|L|) vertices are added 
to T by the recursive calls at the same depth ℓ . Since 
d ∈ O(|L|) , the resulting tree T ′ has at most O(|L|2) ver-
tices. To obtain the final gene tree T, we can traverse T ′ 
and suppress all vertices with a single child by remov-
ing the vertex and reconnecting its child to its parent in 
(O(|V (T ′)|) = O(|L|2) total time.

Hence, the overall time complexity of Algorithm  1 is 
O(|L|4 log |L|) .  �

Explanation of G by restricted scenarios
Relaxed scenarios may contain combinations of HGT 
and deletion events that render the HGT event “unob-
servable” from extant data, because the gene family died 
out in the lineage from which that HGT originated. It is 
therefore of interest to consider more restrictive classes 
of scenarios that exclude such “unobservable” events. In 
this section, we show that if a relaxed scenario explains G , 
then there is always some scenario without these “unob-
servable” events that also explains G . To this end, we 
introduce the notion of a “witness”:

Definition 11 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario. We say that x ∈ L(T ) is a witness for v ∈ V (T ) 
if x �T v and the path from v to x in T does not contain 
an HGT-edge. The scenario S is fully witnessed if every 
v ∈ V (T ) has a witness.

It is not difficult to verify that, in order for a relaxed sce-
nario S = (T , S, σ ,µ, τT , τS) to be fully witnessed, it is 
necessary and sufficient that every vertex v ∈ V 0(T ) has a 
child w such that µ(w) �S µ(v) . In essence, this matches 
condition (2b) assumed in the work of Tofigh et al. [16] and 
is also a direct consequence of condition (O2) in [19, 38].

A vertex x ∈ V (T ) with µ(x) ∈ V (S) describes an 
evolutionary event that coincides with a speciation. 
This suggests to require additional constraints on µ 
that exclude scenarios that do not have a simple bio-
logical interpretation. In particular, it seems natural to 
prevent HGT-edges from emanating from such a ver-
tex. This amounts to the assumption that speciations 
and HGT events are not allowed to be lumped into the 
same event (cf. [19]). Another interesting constraint 
on a speciation u is to require that they are witnessed 
by a pair of descendants x and y in two of the line-
ages that are separated by the speciation, i.e., such that 
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u = lca T (x, y) and µ( lca T (x, y)) = lca S(σ (x), σ(y)) . 
This condition is reminiscent, but weaker, than the Last 
Common Ancestor reconciliation [39, 40].

Definition 12 A relaxed scenario S = (T , S, σ ,µ, τT , τS) 
is a restricted scenario if it satisfies the following three 
constraints: 

 (S4) S is fully witnessed.
 (S5) If µ(u) ∈ V 0(S) , then µ(v) ≺S µ(u) holds for all 

v ∈ child T (u).
 (S6) If µ(u) ∈ V

0(S) , then there exist at least two leaves 
x, y ∈ L(T ) such that lca T (x, y) = u , both x and y 
are witnesses for u, and µ(u) = lca S(σ (x), σ(y)).

It is worth noting that conditions (S4), (S5), and (S6) 
are not necessarily satisfied by the most commonly 
studied classes of evolutionary scenarios. For example, 
the DTL scenarios considered in [38] do not need to 
satisfy (S5) if S or T is non-binary. In the remainder of 
this section, we show that—curiously enough—any data 
G = (G< ,G= ,G> , σ) that can be explained by a relaxed 
scenario can also be explained by a restricted scenario. 
We start by showing that Algorithm 1 already enforces 
some additional constraints.

Lemma 28 Given a valid input G = (G< ,G= ,G> , σ) , 
the scenario S = (T , S, σ ,µ, τT , τS) returned by Algo-
rithm 1 satisfies (S4), i.e., it is fully witnessed.

Proof Consider the intermediate tree T ′ constructed in 
Algorithm 1 which is not necessarily phylogenetic. By a 
slight abuse of notation, we will simply write µ and τT also 
for restrictions to subsets of V(T). We start with showing 
that each inner vertex u ∈ V 0(T ′) has a child v ∈ V (T ′) 
such that µ(v) �S µ(u) and, thus, that uv is not an HGT 
edge. Let L′ ⊆ L and uS ∈ V (S) be the input of the recur-
sive call of BuildGeneTree in which u ∈ V 0(T ′) was 
created in one of Lines 6, 15, or 18.

Suppose first u = ρ′ was created in Line  6 and thus 
µ(u) = par S(uS)uS . If uS is a leaf, then we attached all of 
the elements x ∈ L′ as children of u and set µ(x) = σ(x) . 
Since σ(L′) ⊆ L(S(uS)) = {uS} holds by Obs. 2, we have 
µ(x) = σ(x) = uS . Therefore, and since L′ is non-empty, u 
has a child v such that µ(v) = uS �S par S(uS)uS = µ(u) . 
If uS is not a leaf, then we have attached at least one 
vertex ui corresponding to a connected component Ci 
of H1 as a child of u in the same recursion step. In par-
ticular, we have set µ(ui) = uS in Line  16, and thus, 
µ(ui) = uS �S par S(uS)uS = µ(u).

Suppose u = ui was created in Line  15 and thus 
µ(u) = uS . In particular, u = ui corresponds to some 
connected component Ci of H1 . Since H2 ⊆ H1 there 
is at least one connected component Cj of H2 such 
that Cj ⊆ Ci and thus we have attached at least one 
vertex vj as created in Line  18 as a child of u and set 
µ(vj) = uSv

∗
S for some v∗S ∈ child S(uS) . Hence, we have 

µ(vj) = uSv
∗
S �S uS = µ(u).

Suppose, finally, that u = vj was created in Line  18. 
Hence, vj corresponds to some connected compo-
nent Cj of H2 and we have set µ(vj) = uSv

∗
S for some 

v∗S ∈ child S(uS) such that σ(Cj) ∩ L(S(v∗S)) �= ∅ . The lat-
ter implies that there is x ∈ Cj such that σ(x) ∈ L(S(v∗S)) . 
By construction of the auxiliary graphs, there is a con-
nected component Ck such that x ∈ Ck and Ck ⊆ Cj . 
Moreover, we have chosen vS ∈ child S(uS) in Line  22 
such that σ(Ck) ⊆ L(S(vS)) . This together with 
σ(x) ∈ L(S(v∗S)) and σ(x) ∈ σ(Ck) implies that v∗S = vS . 
In particular, we have attached the vertex ρ′ as a child 
to u = vj that was created in Line  6 of the the recur-
sion step BuildGeneTree(Ck , v

∗
S) and that satis-

fies µ(ρ′) = par S(v
∗
S)v

∗
S = uSv

∗
S . Hence, we have 

µ(ρ′) = uSv
∗
S �S uSv

∗
S = µ(u).

In summary, each inner vertex u ∈ V 0(T ′) has a child 
v ∈ V (T ′) such that µ(v) �S µ(u) . Therefore and since T ′ 
is finite, we can find a descendant leaf x ∈ L(T ′) for each 
u ∈ V 0(T ′) that can be reached from u by non-HGT-edges.

Now consider a vertex v ∈ V 0(T )\{0T } ⊆ V 0(T ′) . 
By the arguments above, we find a path 
P′ = (v=:v′1 − v′2 − · · · − v′k ′ :=x) in T ′ from v to some 
of its descendant leaves x ∈ L(T ′) = L(T ) that does not 
contain any HGT-edge, i.e., it holds µ(v′i+1) � µ(v′i) for 
all 1 ≤ i < k ′ . Therefore and since T is obtained from 
T ′ by adding 0T and suppression of all vertices with a 
single child, we have x ≺T v and, moreover, the path 
P = (v=:v1 − v2 − · · · − vk :=x) connecting v and x in T 
contains only vertices that are also contained in P′ in the 
same order. We therefore conclude that µ(vi+1) � µ(vi) 
holds for all 1 ≤ i < k , i.e., P does not contain any 
HGT-edge. Hence, there is a witness for each vertex 
v ∈ V 0(T )\{0T } By definition, each leaf x ∈ L(T ) is a wit-
ness of itself. Finally, consider 0T (and its unique child 
ρT ). By construction, it holds µ(0T ) = 0S . Therefore and 
since every element z ∈ V (S) ∪ E(S) satisfies z �S 0T , we 
have that µ(ρT ) �S µ(0T ) , and thus 0TρT is not an HGT-
edge. Hence, every witness of ρT is also a witness of 0T , 
which concludes the proof.  �

Lemma 29 Given a valid input G = (G< ,G= ,G> , σ) , the 
scenario S = (T , S, σ ,µ, τT , τS) returned by Algorithm  1 
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satisfies (S5), i.e., µ(u) ∈ V 0(S) implies that µ(v) ≺S µ(u) 
for all v ∈ child T (u).

Proof Suppose that µ(u) ∈ V 0(S) = V (S)\(L(S) ∪ {0S}) 
and let v ∈ child T (u) be an arbitrary child of u. Inspec-
tion of Algorithm 1 shows that u must have been created in 
Line 15 in some recursion step on L′ ⊆ L and uS ∈ V 0(S) 
and thus µ(u) = uS . Consider the intermediate tree T ′ 
constructed in the algorithm from which T is obtained by 
adding the planted root 0T and suppression of all inner 
vertices with a single child. In particular, the path con-
necting u and v in T ′ passes through some child v′ of u in 
T ′ (where v = v′ is possible). By construction, we have set 
µ(v′) = uSv

∗
S for some v∗S ∈ child S(uS) in Line  20. Re-

using the arguments in the proof of Lemma 28, we find a 
path P = (v′=:v1 − · · · − vk :=x) in T ′ from v′ to some 
of its descendant leaves x ∈ L(T ′) = L(T ) that satisfies 
µ(vi+1) �S µ(vi) for all 1 ≤ i < k . If v lies on the path P, 
then the latter and transitivity of �S immediately implies 
µ(v) �S µ(v′) = uSv

∗
S ≺S uS = µ(u) . Suppose for contra-

diction that v is not a vertex in P. Then there must be some 
vertex vi( = v) with 1 ≤ i < k that is the last common ances-
tor of v and x in T ′ . In this case, vi must have at least two 
children in T ′ and thus it was not suppressed. Since vi fur-
thermore lies on the path connecting u and v, this contra-
dicts that v ∈ child T (u) . Hence, the case that v is not a ver-
tex in P does not occur. Therefore, we have µ(v) ≺S µ(u) , 
which together with the fact that v ∈ child T (u) was chosen 
arbitrarily, implies that S satisfies (S5).  �

The example in Fig.  11 shows that Algorithm  1 is in 
general not guaranteed to return a restricted scenario 
since it may violate (S6).

As we shall see in the following, however, we can construct 
such a scenario for any valid input G = (G< ,G= ,G> , σ) by 
choosing the vertex v∗S ∈ child S(uS) in Line 19 in a more 
sophisticated manner. More precisely, consider a connected 
component Ci of H1 , for which we have created a corre-
sponding vertex ui in Line 15). If there is only one connected 
component Cj of H2 such that Cj ⊆ Ci (thus implying 
Cj = Ci ), then we proceed as in the original algorithm. Oth-
erwise, Ci includes at least two connected components of 
H2 . In this case, there exists an edge xy ∈ E(H1)\E(H2) 
with x, y ∈ Ci . From Cor.  6 and H2 ⊆ H1 we obtain 
x ∈ Cx ⊆ Ci and y ∈ Cy ⊆ Ci for two distinct connected 
components Cx and Cy of H2 . From the construction of the 
auxiliary graphs H1 and H2 and σ(L′) ⊆ L(S(uS)) , we know 
that xy ∈ E(G=) . Moreover, we have σ(x) �S vσ(x) and 
σ(y) �S vσ(y) for distinct vertices vσ(x), vσ(y) ∈ child S(uS) 
because otherwise xy would be an edge in H2 . Upon 
encountering Cx and Cy during the iteration over connected 
components in Line 17, we simply choose vσ(x) and vσ(y) in 
Line 19, respectively. Notice that this is in line with the con-
dition in Line 19 because σ(x) ∈ σ(Cx) ∩ L(S(vσ(x))) and 
σ(y) ∈ σ(Cy) ∩ L(S(vσ(y))) . For all other connected com-
ponents, we simply choose v∗S as in the original algorithm. 
These modifications of Algorithm  1 (which are restricted 
to the else-block starting in Line  12) are summarized in 
Algorithm 2.
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By the latter arguments we have only constrained 
choices that were arbitrary in the original algorithm. 
All results for Algorithm 1 (with exception of the com-
plexity results) therefore remain valid for the modified 
version. As an immediate consequence of Lemmas 26, 
28, and 29, we therefore obtain:

Observation 5 The modifications of Algorithm  1 sum-
marized in Algorithm 2 ensure that it returns a scenario 
that explains the valid input G and satisfies (S4) and (S5).

For completeness we show that the modifications do 
not increase the time complexity.

Lemma 30 Algorithm 1 with the modifications as sum-
marized in Algorithm  2 can be implemented to run in 
O(|L|4 log |L|) time (for valid inputs G = (G< ,G= ,G> , σ) 
such that σ is surjective).

Proof Re-using the arguments in the proof of 
Lemma 27, it suffices to show that, in the modified algo-
rithm, the effort of the additional steps in one recursion 
step on L′ ⊆ L and some inner vertex uS ∈ V 0(S) (exclud-
ing the recursive calls) is bounded by O(|L′|2).

We have already shown in the proof of Lemma  27 how 
the lists L of connected components Cj of H2 such 
that Cj ⊆ Ci are obtained using breadth-first search 
with a total effort of O(|L′|2) time. We can store, for 
each vertex x ∈ L′ , a pointer to the connected compo-
nent of H2 in a hash table in O(|L′|) time. For a given 
connected component Ci of H1 , choosing an edge 
xy ∈ E(H1[Ci]) \ E(H2[Ci]) is easily done by iterat-
ing over all pairs of vertices in Ci . Since distinct con-
nected components of H1 are vertex-disjoint, the overall 
effort for this is again bounded by O(|L′|2) . For a given 
connected component Ci of H1 , identifying the respec-
tive connected components Cx and Cy and vertices 
vσ(x), vσ(y) ∈ child S(uS) can be done in constant time 
by querying the above-mentioned hash table and the LA 
data structure, respectively. Since H1 has at most O(|L′|) 
connected components, the total effort for the latter 
look-ups is bounded by O(|L′|) . Finally, checking whether 
Cj = Cx and Cj = Cy can clearly be done in constant time 
if we compare only pointers to the connected compo-
nents. The total time complexity of the second for-loop 
in Algorithm  2 is therefore the same as in the original 
algorithm.

In summary, the total effort of one recursion step 
(excluding the recursive calls) is still bounded by O(|L′|2) , 
which completes the proof.  �

We note that scenario S2 in Fig.  11 may be obtained 
from Algorithm 1 using the subroutine in Algorithm 2 if 
the edge ab′ ∈ E(H1[Ci]) \ E(H2[Ci]) is chosen (over the 
alternative choice a′b ) in the “if |L | ≥ 2 then” block.

Lemma 31 Given a valid input G = (G< ,G= ,G> , σ) , 
the scenario S = (T , S, σ ,µ, τT , τS) returned by Algo-
rithm  1 with the modifications as summarized in Algo-
rithm 2 satisfies (S6).

Proof Suppose that µ(u) ∈ V
0(S) = V (S)\(L(S) ∪ {0S}) . 

Inspection of Algorithm  1 shows that u can only have 
been created in Line  15 in some recursion step on 
L′ ⊆ L and uS ∈ V 0(S) . In particular, we have µ(u) = uS 
and u corresponds to some connected component Ci 
of H1 . Consider the intermediate tree T ′ constructed 
in the algorithm from which T is obtained by adding 
the planted root 0T and suppression of all inner verti-
ces with a single child. Since u was not suppressed, we 
must have added at least to distinct vertices as children 
of u in the same recursion step. In particular, the out-
put of the modified algorithm satisfies µ(vj) = uSvS 
and µ(vj′) = uSv

′
S for two distinct children vj , vj′ of 

u and two distinct vertices vS , v′S ∈ child S(uS) . Re-
using the arguments in the proof of Lemma  28 and the 
fact that µ(vj) = uSvS ≺S uS = µ(u) , we find a path 
P′ = (u=:v′1 − vj=:v′2 − · · · − v′k ′ :=x) in T ′ from u to 
some of its descendant leaves x ∈ L(T ′) = L(T ) that 
passes through vj and does not contain any HGT-edge, 
i.e., it holds µ(v′i+1) � µ(v′i) for all 1 ≤ i < k ′ . In particu-
lar σ(x) = µ(x) ≺S µ(vj) = uSvS . Therefore, and because 
T is obtained from T ′ by adding 0T and suppression of all 
vertices with a single child, we have x ≺T u and, moreo-
ver, the path P = (u=:v1 − v2 − · · · − vk :=x) connecting 
u and x in T contains only vertices that are also contained 
in P′ in the same order. We therefore conclude that 
µ(vi+1) � µ(vi) holds for all 1 ≤ i < k , i.e., P does not 
contain any HGT-edge. Analogously, we find a descend-
ant leaf y ≺S u such that the path from u to y in T ′ passes 
through vj′ , the path from u to y in T does not contain 
HGT-edges, and furthermore σ(y) ≺S uSv

′
S.

By construction, we have lca T ′(x, y) = u , which implies 
lca T (x, y) = u since we only added 0T and suppressed 
the vertices with a single child to obtain T from T ′ . The 
paths from u to x and to y in T do not contain HGT-
edges. Thus the path from x to y in T does not contain 
HGT-edges. Finally σ(x) ≺S uSvS and σ(y) ≺S uSv

′
S 

with vS and v′S being distinct children of uS implies 
lca S(σ (x), σ(y)) = uS = µ(u) . Taken together, the latter 
arguments imply that S satisfies (S6).  �
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Theorem  13 A graph 3-partition G = (G< ,G= ,G> , σ) 
can be explained by a relaxed scenario if and only if it 
can be explained by a restricted scenario. In particular, 
Algorithm 1 with the modifications summarized in Algo-
rithm 2 constructs a restricted scenario in this case.

Proof The if-direction trivially holds since every 
restricted scenario is also a relaxed scenario. Conversely, 
suppose G is explained by a relaxed scenario. Then Algo-
rithm  1 with the modifications as summarized in Algo-
rithm 2 returns a scenario S that explains G by Lemma 26. 
By Lemmas 28, 29, and 31, respectively, S satisfies  (S4), 
(S5), and (S6), and thus, it is a restricted scenario.  �

Corollary 9 Let G = (G< ,G= ,G> , σ) be graph 
3-partition with vertex coloring σ : L → M . If 
G = (G< ,G= ,G> , σ) can be explained by a relaxed sce-
nario, then, for every species tree S∗ on M that agrees 
with (RS(G),FS(G)) , there is a relaxed scenario 
S = (T , S∗, σ ,µ, τT , τS) that explains G . Moreover, S can 
be chosen to be a restricted scenario.

Proof Suppose G = (G< ,G= ,G> , σ) can be explained 
by a relaxed scenario. By Thm. 10, therefore, G is a valid 
input for Algorithm 1 with the modifications in summa-
rized in Algorithm 2. Since the species tree S constructed 
in Line 1 of Algorithm 1 is an arbitrary tree S∗ on M that 
agrees with (RS(G),FS(G)) , i.e., not necessarily the tree 
constructed by MTT [34], Obs. 5 immediately implies that 
there is a relaxed scenario S = (T , S∗, σ ,µ, τT , τS) that 
explains G . Moreover, if S is constructed using the modi-
fied algorithm, then it is a restricted scenario by Thm. 13. 
 �

Explanation of EDT graphs by relaxed scenarios
In the two preceding sections, we have seen that it can be 
decided efficiently whether a given vertex-colored graph 
(G, σ) is an EDT graph provided we also know how the 
complement (G, σ) is partitioned into a putative LDT 
graph (G> , σ) and putative PDT graph (G< , σ) . It is of 
immediate interest to understand whether the informa-
tion on (G> , σ) and (G< , σ) is necessary, or whether EDT 
graphs can also be recognized efficiently in isolation. We 
consider the following decision problem:

Problem 1 (EDT-Recognition)  

Input: A colored graph (G, σ).

Question: Is (G, σ) an EDT graph?

As we shall see, EDT-Recognition can be answered 
in polynomial-time, if we suppose that the scenario 

explaining (G, σ) is HGT-free while, for the general case, 
EDT-Recognition is NP-complete. We start with a 
characterization of the EDT graphs that can be explained 
by HGT-free relaxed scenarios. For this purpose, it will 
be useful to note that edge-less LDT graphs rule out the 
existence of HGT-edges in fully witnessed scenarios:

Lemma 32 If a relaxed scenario S is fully witnessed and 
E(G<(S)) = ∅ , then S is HGT-free.

Proof Suppose for contradiction that 
S = (T , S, σ ,µ, τT , τS) contains an HGT-edge uv ∈ E(T ) 
(where v ≺T u ), i.e., µ(u) and µ(v) are incompara-
ble in S. By assumption, u has a witness x ∈ L(T ) , 
and v has a witness y ∈ L(T ) . In particular, it holds 
σ(x) = µ(x) �S µ(u) and σ(y) = µ(y) �S µ(v) 
which, together with µ(u) and µ(v) being incompa-
rable, implies that µ(u) ≺S lca S(σ (x), σ(y)) . Moreo-
ver, since uv is an HGT-edge and the path from u to x 
does not contain an HGT-edge, x cannot be a descend-
ant of v. Hence, lca T (x, y) = u . We now distinguish 
cases (a) µ(u) ∈ V (S) and (b) µ(u) ∈ E(S) . In Case  (a), 
we have τT (u) = τS(µ(u)) by Condition  (S2) and 
τS(µ(u)) < τS( lca S(σ (x), σ(y))) as a consequence 
of µ(u) ≺S lca S(σ (x), σ(y)) . In Case  (b), we have 
µ(u) = ab ∈ E(S) and, by Condition (S3), τT (u) < τS(a) . 
Moreover, µ(u) ≺S lca S(σ (x), σ(y)) implies 
a �S lca S(σ (x), σ(y)) by the definition of �S . Hence, we 
have τT (u) < τS(a) ≤ τS( lca S(σ (x), σ(y))) . In summary, 
it holds τT ( lca T (x, y)) = τT (u) < τS( lca S(σ (x), σ(y))) 
and thus xy ∈ E(G<(S)) in both cases; a contradiction to 
E(G<(S)) = ∅ . Therefore, S must be HGT-free.  �

The recognition of EDT graphs can be achieved in pol-
ynomial-time in the HGT-free case.

Theorem  14 Let (G= = (L,E), σ) be a vertex-
colored graph, and let R be the set of triples such that 
σ(x)σ (y)|σ(z) ∈ R iff xz, yz ∈ E and xy /∈ E for some 
x, y, z ∈ L of pairwise distinct colors. Then (G= , σ) is an 
EDT graph that can be explained by an HGT-free relaxed 
scenario if and only if it is a properly colored cograph 
and R is consistent. In particular, EDT graphs explained 
by HGT-free relaxed scenario can be recognized in 
O(|L|3 + |L||R|) time.

Proof Suppose (G= , σ) is an EDT graph that is explained 
by the HGT-free relaxed scenario S . By Cor. 1 and Lem-
mas  21, (G= , σ) is a properly colored cograph. Suppose 
xz, yz ∈ E and xy /∈ E . Since in addition G<(S) is edge-less 
by Cor. 2, we have xz, yz /∈ E(G>(S)) and xy ∈ E(G>(S)) . 
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Hence, we obtain R ⊆ RS(G(S)) . By Thm. 10, RS(G(S)) 
and thus also its subset R are consistent.

Now suppose (G= , σ) is a properly colored cograph and R 
is consistent. Consider G = (G< :=(L,∅),G= ,G> :=G=) . 
Since (G< , σ) is edge-less, it is a properly-colored 
cograph. Since G> is the complement of the cograph G= , 
it is also a cograph. One easily verifies that R = RS(G) 
and thus there is a tree S that displays all triples in RS(G) . 
Now consider a triple XZ|Y ∈ FS(G) . By construction, 
this implies that there are x, y, z ∈ L with pairwise dis-
tinct colors X = σ(x) , Y = σ(y) , and Z = σ(z) such (a) 
xz, yz ∈ E(G=) and xy /∈ E(G=) or (b) xz, xy ∈ E(G=) 
and yz /∈ E(G=) . In Case  (a), we have xz, yz /∈ E(G>) 
and xy ∈ E(G>) and thus S displays the informative tri-
ple XY |Z ∈ RS(G) . In Case  (a), we have xz, xy /∈ E(G>) 
and yz ∈ E(G>) and thus S displays the informative tri-
ple YZ|X ∈ RS(G) . Therefore, the tree S does not display 
the forbidden triple XZ|Y  . Since XZ|Y ∈ FS(G) was 
chosen arbitrarily, we can conclude that S agrees with 
(RS(G),FS(G)) . In summary, therefore, we can apply 
Theorem 10 to conclude that G is explained by a relaxed 
scenario S . By Theorem 13, S can be chosen to be fully 
witnessed. This together with the fact that G<(S) = G< 
is edge-less and Lemma 32 yields that S is HGT-free. In 
summary, (G= , σ) is an EDT graph that can be explained 
by a relaxed HGT-free scenario.

Checking whether (G = (L,E), σ) is properly colored 
can be done in O(|E|) time, cographs can be recognized 
in O(|L| + |E|) time [33], extraction of R requires O(|L|3) 
time and testing whether R is consistent can be achieved 
in O(|L||R|) time [41]. Thus, EDT graphs can be recog-
nized in time O(|L|3 + |L| |R|) in the HGT-free case.  �

The examples in Fig. 8 have shown that the connected 
components of a given vertex-colored graph (G, σ) are 
not “independent” in the sense that (G, σ) is an EDT 
graph if and only if all of its connected components are 
EDT graphs, since the components may impose contra-
dictory constraints on the species tree. However, we will 
show next that we can assume w.l.o.g. that, if a relaxed 
scenario S explaining (G= , σ) exists, all pairs x, y ∈ L that 
are in distinct connected components of G= form an edge 
in G>(S) . More precisely, we have

Lemma 33 Suppose G = (G< ,G= ,G> , σ) 
is explained by S and consider the edge set 
F :={xy | x, y ∈ L are in distinct connected components of G=}  . 
Then G′ = (G′

<
,G= ,G

′
>
, σ) where G′

<
:=(L,E(G<)\F) and 

G′
>
:=(L,E(G>) ∪ F) is explained by a relaxed scenario S ′.

Proof Observe first that all pairs x, y ∈ L that are in dis-
tinct connected components of G= satisfy xy ∈ E(G′

>
) . By 

Theorem 10, G< and G= are properly colored, G< and G> 
are cographs, and (RS(G),FS(G)) is consistent. Since G′

<
 

is a subgraph of G< , it is still properly colored.

Suppose for contradiction that G′
<
 is not a cograph, i.e., 

it contains an induced P4 = a− b− c − d . In this case, 
ab, bc, cd ∈ E(G′

<
) implies that ab, bc, cd /∈ F  and thus, 

that a and b, b and c as well as c and d are contained in 
the same connected component of G= . Consequently, 
a, b, c, and d are contained in a single connected com-
ponent of G= , which implies that ac, bd, ad /∈ F  . 
Therefore, a− b− c − d is also an induced P4 in G< ; 
a contradiction. Now suppose for contradiction that 
G′

>
 contains an induced P4 = a− b− c − d . In this 

case, ac, bd, ad /∈ E(G′
>
) implies ac, bd, ad /∈ G> and 

ac, bd, ad /∈ F  . The latter in particular implies that a, b, 
c, and d are contained in a single connected component 
of G= and thus ab, bc, cd /∈ F  . It follows that ab, bc, and 
cd must also be edges in G> and, thus, a− b− c − d is an 
induced P4 in G> ; a contradiction. In summary, G′

<
 and G′

>
 

are cographs.

We continue with showing that (RS(G
′),FS(G

′)) 
remains consistent. Suppose XY |Z ∈ RS(G

′) , i.e., there 
are x, y, z ∈ L with pairwise distinct colors X = σ(x) , 
Y = σ(y) , and Z = σ(z) such that (a’) xz, yz ∈ E(G′

<
) 

and xy /∈ E(G′
<
) , or (b’) xy ∈ E(G′

>
) and xz, yz /∈ E(G′

>
) . 

In both cases, we can apply similar arguments as before 
to conclude that xy, xz, yz /∈ F  . Thus, xz, yz ∈ E(G<) 
and xy /∈ E(G<) , and xy ∈ E(G>) and xz, yz /∈ E(G>) , 
respectively. This in turn implies XY |Z ∈ RS(G) . Hence, 
we have RS(G

′) ⊆ RS(G) . Moreover, FS(G
′) does only 

depend on the (non-)edges of G= and since G= remained 
unchanged in G′ , we have FS(G

′) = FS(G) . The latter two 
arguments together with (RS(G),FS(G)) being consistent 
imply that (RS(G

′),FS(G
′)) is also consistent.

In summary, G′
<
 and G= are properly colored, G′

<
 and G′

>
 

are cographs, and (RS(G
′),FS(G

′)) is consistent. Theo-
rem 10 therefore implies that G′ is explained by a relaxed 
scenario S ′ .  �

Corollary 10 If (G= , σ) is an EDT graph, then it 
is explained by a relaxed scenario S that satisfies 
xy ∈ E(G>(S)) for all x, y ∈ L that are contained in dis-
tinct connected components of G=.

Let us now turn the general case of EDT-Recogni-
tion. We show that it is NP-hard by reducing from a 
problem of deciding whether there is a tree that dis-
plays a given set of fan triples and a suitable choice of 
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rooted triples. The precise problem statement requires 
some definitions. Let U be a set. Let CF be a set of fan 
triples whose leaves are in U, and let CR be a set of unor-
dered pairs of rooted triples of the form {xy|z, xz|y} with 
x, y, z ∈ U . We say that a tree S∗ on the leaf set U satisfies 
(CF ,CR) if the following holds:

For each x|y|z ∈ CF , S∗ displays x|y|z;
For each {xy|z, xz|y} ∈ CR , S∗ displays either xy|z or 
xz|y.

This suggests the following decision problem.

Problem 2 ((CF ,CR)-Satisfiability)  

Input: A tuple (U, CF , CR) where U is a set, 
CF is a set of fan triples and

CR is a set of pairs of rooted triples 
of the form {xy|z , xz|y}.

Question: Does there exist a tree S∗ on leaf set 
U that satisfies (CF , CR)?

Jansson et al. [42] showed that a slightly different ver-
sion of (CF ,CR)-Satisfiability, known as (F+−)-Con-
sistency, is NP-hard. In the (F+−)-Consistency 
problem the input are two sets F+ and F− of fan triples 
and one asks for a tree that displays all fan triples in F+ 
but none of the ones in F− . The latter is equivalent to 
asking for a tree that that displays all fan triples in F+ and 
that displays for every x|y|z ∈ F− exactly one of the tri-
ples xy|z , xz|y , or yz|x . This translated to a slightly dif-
ferent version of (CF ,CR)-Satisfiability by requiring (i) 
the elements of CR to be of the form {xy|z, xz|y, yz|x} and 
(ii) that one of the three triples must be displayed by the 
final tree. For our purposes, we must restrict CR to pairs 
of triples instead of triple sets of size 3. The NP-hardness 
proof in [42] can be adapted to establish the following 
result:

Theorem 15 (CF ,CR)-Satisfiability is NP-complete.

Proof See Appendix.  �

Theorem 15, in turn, can be used to prove

Theorem  16 EDT-Recognition is NP-complete. 
Moreover, it remains NP-complete if the input graph 
(G, σ) is a cograph.

Proof See Appendix.  �

Explanation of PDT graphs by relaxed scenarios
If only the information of G< ∈ G is available, it can be 
tested whether G< is an LDT graph and, in the affirma-
tive case, a relaxed scenario that explains G< can be con-
structed in polynomial-time [4]. In contrast, we have seen 
above that the problem of recognizing an EDT graph is 
NP-hard (Theorem  16). This begs the question whether 
recognition of PDT graphs is an easy or hard task.

Theorem 17 A graph (G, σ) is a PDT graph if and only 
if the following conditions are satisfied: 

1. G is a cograph, and
2. (G, σ) is properly colored, and
3. The set of triples R(G):={σ(x)σ (y)|σ(z) :

xy ∈ E(G) and xz, yz /∈ E(G) and σ(x), σ(y), σ(z)

are pairwise distinct} is consistent.

In particular, it can be verified if (G, σ) is a PDT graph 
and, in the affirmative, a scenario that explains (G, σ) can 
be constructed in polynomial time.
Proof 

Suppose that (G, σ) is a PDT graph. Hence, there is a 
relaxed scenario S such that G = G>(S) . By Lemma 
15, G must be a cograph. Since G = G>(S) , its comple-
ment G comprises all edges of G=(S) and G<(S) . By Cor. 
1, G=(S) and G<(S) are always properly colored and so 
(G, σ) is also properly colored. The set R(G) is precisely 
the set of triples as specified in Def. 6(b’) and, in particu-
lar, R(G) ⊆ RS(G) where G = (G<(S),G=(S),G>(S), σ) . 
By Theorem 10, (RS(G),FS(G)) is consistent, an thus in 
particular R(G) is consistent.
Conversely, assume that (G, σ) satisfies Conditions (1), (2) 
and (3). Consider G = (G< ,G= ,G> , σ) such that G> = G , 
G= = (V (G),∅) and G< = G . Since G is a cograph and 
G< = G , Prop. 1 implies that G< is a cograph. Moreover, 
by Condition (2), (G< , σ) is a properly colored cograph. 
Since there are no edges in G= , it follows that G= is also 
a properly colored cograph. Since G= is edge-less, we 
have FS(G) = ∅ . Moreover, since G is the comple-
ment of G< , Def. 6(b’) and the definition of R(G) imply 
R(G) = RS(G) . Condition (3) now implies that RS(G) 
is consistent. Together with FS(G) = ∅ this implies that 
(RS(G),FS(G)) is consistent. Hence, all conditions of 
Theorem  10 are satisfied and we conclude that there is 
a relaxed scenario that explains G = (G< ,G= ,G> , σ) . In 
particular, G = G> is a PDT graph. Re-using the argu-
ments in the proof of Lemma 27, we can construct a sce-
nario for G = (G< ,G= ,G> , σ) (and thus for G = G> in 
O(ℓ4 log ℓ) where ℓ = max(|L|, |σ(L)|) .  �
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We note that PDT graphs can be recognized faster 
than the construction of an explaining scenario with 
the help of Theorem 17. Cographs can be recognized in 
O(|V | + |E|) time [33] and O(|V |2) operations are suf-
ficient to verify that the complement of G is properly 
colored. The triple set R(G) contains at most O(|σ(V )|3) 
triples which can be constructed in O(|V |3) time. 
The Aho et  al. algorithm checks triple consistency in 
O(|R| |V |) time. Hence, PDT graphs can be recognized 
in O(|V |(|V |2 + |σ(V )|3)) time.

Orthology and quasi‑orthology
Most of the mathematical results concerning orthol-
ogy have been obtained in an HGT-free setting. There, 
a pair of genes x and y is orthologous if their last com-
mon ancestor lca T (x, y) coincides with the last common 
ancestor of the two species in which they reside [1]. 
Thus, we expect a close connection between orthology 
and the graph G=(S) . Thm. 14 in the previous section, 
furthermore, is reminiscent of the characterization 
of orthology graphs that can be reconciled with spe-
cies trees in HGT-free duplication/loss scenarios [18, 
19]. We therefore close this contribution by connect-
ing the graph G=(S) with different notions of orthology 
in scenarios with HGT that have been discussed in the 
literature.

Disagreements on the “correct” definition of orthology 
in the presence of HGT stem for the fact that, in general, 
pairs of genes originating from a speciation event may be 
separated by HGT, and thus become xenologs. They may 
even eventually reside in the same species and therefore 
appear as paralogs. Choanozoa, for example, have two 
CCA-adding enzymes, one vertically inherited through 
the eukaryotic lineage, the other horizontally acquired 
from a bacterial lineage [43]. To accommodate such dif-
ferences, Darby et al. [8] proposed a classification of sub-
types of xenology and, in line with [1], reserve the terms 
ortholog and paralog to situations in which the path 
between x and y does not contain an HGT event. In this 
section, we briefly survey notions of orthology that have 
“natural” definitions in the setting of relaxed scenarios 
and explore their mathematical properties and their rela-
tionships with EDT graphs.

Definition 18 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario. Two distinct vertices x, y ∈ L(T ) are weak 
quasi-orthologs if µ( lca T (x, y)) ∈ V 0(S).

Def.  18 is, in essence, Walter Fitch’s original, purely 
event-based definition of orthology [6]. The graph �w(S) 
with vertex set L(T) and the weak quasi-orthologous 
pairs as its edges is the weak quasi-orthology graph of S.

In later work, Walter M. Fitch [1] emphasizes the con-
dition that “the common ancestor lies in the cenancestor 
(i.e., the most recent common ancestor) of the taxa from 
which the two sequences were obtained”, which translates 
to the following notion:

Definition 19 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario. Then two distinct genes x, y ∈ L(T ) are strict 
quasi-orthologs if µ( lca T (x, y)) = lca S(σ (x), σ(y)).

The graph �s(S) with vertex set L(T) and the strict 
quasi-orthologous pairs as its edges is the strict quasi-
orthology graph of S . By Obs.  4, all edges of G= form 
strictly quasi-orthologous pairs in the scenarios pro-
duced by Algorithm 1.

Later definitions explicitly exclude xenologs [1, 7]. 
Translating the concept of orthology used by Darby et al. 
[8] to our notation yields

Definition 20 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario. Two distinct vertices x, y ∈ L(T ) are weak 
orthologs if µ( lca T (x, y)) ∈ V 0(S) and �(e) = 0 for all 
edges e along the path between x and y in T.

The graph �w(S) with vertex set L(T) and the pairs of 
weak orthologs as its edges will be called the weak orthol-
ogy graph of S . The most restrictive notion of orthology 
is obtained by enforcing both the matching of last com-
mon ancestors and the exclusion of horizontal transfer:

Definition 21 Let S = (T , S, σ ,µ, τT , τS) be a relaxed 
scenario. Two distinct vertices x, y ∈ L(T ) are strict 
orthologs if µ( lca T (x, y)) = lca S(σ (x), σ(y)) and 
�(e) = 0 for all edges e along the path between x and y 
in T.

The graph �s(S) with vertex set L(T) and the pairs of 
(strict) orthologs as its edges will be called the (strict) 
orthology graph of S . We note that strict orthologs also 
appear in the definition of property (S6): A relaxed sce-
nario satisfies (S6) if and only if µ(u) ∈ V 0(S) implies 
that there is a pair of strict orthologs x and y with 
lca T (x, y) = u . The alternative notions of orthology and 
the proposed terminology are summarized in Table 1.

From µ( lca T (x, y)) = lca S(σ (x), σ(y)) , we obtain 
µ( lca T (x, y)) ∈ V (S) . Furthermore, if x and y are dis-
tinct, then lca T (x, y) is not a leaf and (S1) in the defini-
tion of relaxed scenarios implies that µ( lca T (x, y)) is also 
not a leaf. Hence we have:

Observation 6 If x, y ∈ L are distinct and 
µ( lca T (x, y)) = lca S(σ (x), σ(y)) , then 
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Fig. 6 (G= (S1), σ) = (G= (S2), σ) contains an induced path P4 = a− b− c − d on four colors as in Lemma 20

Fig. 7 The EDT graph may contain an induced C6 , i.e, a cycle on six vertices. In this case, the EDT graph also contains induced P5s

Fig. 8 A A properly-colored perfect graph (G, σ) on 8 vertices that is not an EDT graph. Next to the graph, the possible topologies of the species 
tree that are implied by the induced P4 according to Lemma 20 are shown. B A properly-colored cograph (G′ , σ ′) that is not an EDT graph. All 
possible assignments for the edges ac and ad are shown on the right-hand side together with the informative triples that they imply for the species 
tree according to Prop. 2. The assignment of the gray edges do not affect the respective triple
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µ( lca T (x, y)) ∈ V 0(S) for every relaxed scenario 
S = (T , S, σ ,µ, τT , τS).

As an immediate consequence, every strict quasi-
ortholog is a weak quasi-ortholog and every strict ortholog 
is a weak ortholog. Furthermore strict or weak orthologs 

are strict or weak quasi-orthologs, respectively. In terms of 
the corresponding graphs, we therefore have the following 
subgraph relations:

(2)
�s(S) ⊆ �s(S), �w(S) ⊆ �w(S),

�s(S) ⊆ �w(S), �s(S) ⊆ �w(S).

Fig. 9 Illustration of Algorithm 1 with a valid input G = (G< ,G= ,G> , σ) . We have σ(a) = σ(a′)=:A and σ(b) = σ(b′)=:B . Line 1 constructs 
species tree S that agrees with (RS(G),FS(G)) . Here, RS(G) = FS(G) = ∅ and S is unique. In Line 2, a time map τS for S such that τS(x) = 0 for all 
x ∈ L(S) is initialized. We choose τS(0S) = 6 and τS(ρS) = 3 , see panel (a). Hence, ǫ = 1 (Line 3). Line 25 then calls BuildGeneTree({a, a′ , b, b′}, ρS) 
for the first time, hence uS = ρS . In Line 6 a vertex ρ′ is created. Its time map is set to τT (ρ′) = τS(ρS)+ ǫ = 3+ 1 = 4 and the reconciliation is set 
to µ(ρ′) = 0SρS in Line 7. Since uS = ρS is not a leaf, we proceed with computing H1 , H2 , and H3 for L = {a, a′ , b, b′} and ρS in Line 13, illustrated 
in the top row. Since H1 has only one connected component C, the for-loop in Line 14 runs only once. In Line 15, we thus create a single vertex u1 
as a child of ρ′ . We then consider the two connected components C1 and C2 of H2 as both satisfy Cj ⊆ C , j ∈ {1, 2} . Here, we start with considering 
the component C1 that is induced by the vertices a and b and create a vertex v1 as a child of u1 in Line 18. We choose v∗S = A in Line 19 (note that we 
also could have chosen v∗S = B ) and set τT (v1) = τS(ρS)− ǫ = 2 and µ(v1) = ρSA in Line 20. These steps are illustrated in panel (b). Line 21 then 
considers the connected components Ck of H3 that satisfy Ck ⊆ C1 = {a, b} ; both of these connected components are the single vertex graphs 
induced by a and b, respectively. Starting with C ′ = {a} , Line 22 identifies vS ∈ child S(ρS) such that σ(C ′) = {A} ⊆ L(S(vS)) , i.e., vS = A and calls 
BuildGeneTree({a}, A) ; the subtree returned by this call is attached as a child of v1 in Line 23. Hence, we are now back in Line 6 where uS = A . In Line 6, 
a further (new) vertex ρ′ is created. Line 7 computes τT (ρ′) = τS(A)+ ǫ = 0+ 1 = 1 and µ(ρ′) = ρSA . Now uS = A is a leaf of S, hence we proceed 
in Line 8 and connect each x ∈ L′ = {a} as a child of ρ′ in Line 10. In Line 11, we put τT (a) = 0 and µ(a) = σ(a) = A . These steps are illustrated 
in panel (c). Then BuildGeneTree({b}, B) is executed and we obtain the “partial” gene tree and reconciliation shown in panel (d). The algorithm 
proceeds on component C2 of H2 , which is induced by the vertices a′ and b′ and creates a vertex v2 as a child of u1 in Line 18. Again, we chose v∗S = A 
in Line 19. By similar arguments as in the previous part, we obtain the “partial” gene tree and reconciliation shown in panel (e). The tree T ′ returned 
in Line 25 is the gene tree shown in panel (e) except for the planted root 0T  , which is added in Line 26. In addition, all resulting inner degree-2 
vertices (highlighted as black circuits) are suppressed in Line 26. The resulting gene tree (without specified time map) and the resulting relaxed 
scenario is shown in panel (f ). Note, if we choose v∗S = B in Line 19 when proceeding on the connected component C2 of H2 induced by a′ and b′ , 
we would obtain the restricted scenario S2 as shown in Fig. 11
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That is, we have �s(S) ⊆ �s(S) ⊆ �w(S) and 
�s(S) ⊆ �w(S) ⊆ �w(S) , while �s(S) and �w(S) are 
incomparable w.r.t. the subgraph relation.

Lemma 34 The weak quasi-orthology graph �w(S) and 
the weak orthology graph �w(S) are cographs for every 
relaxed scenario S.

Fig. 10 Illustration of a recursion step in BuildGeneTree (Algorithm 1). A The current vertex in the species tree, uS , is a leaf. B The current 
vertex in the species tree, uS , is an inner vertex. The connected components of H1 , H2 , and H3 are represented by the orange, green, and blue boxes, 
respectively. For simplicity, only those connected components of H2 and H3 are shown that are included in Ci and Cj , respectively. Two vertices 
x and y must form an edge in (a) G> (wavy lines) if they are in distinct components of H1 , (b) G> or G= (solid straight lines) if they are in the same 
component of H1 but distinct components of H2 , and (c) G< (dashed lines) if they are in the same component of H2 but distinct components of H3 . 
Below, the construction of the reconciliation map and the time map is illustrated. The half circles indicate that L′ = L(T (ρ′)) , Ci = L(T (ui)) , etc. 
if the respective vertex is not suppressed

Fig. 11 The graph 3-partition G = (G< ,G= ,G> , σ) used in Fig. 9 as illustration of Algorithm 1 is explained by different scenarios: Depending 
on the choice in Line 19, Algorithm 1 can return S1 as well as the restricted scenario S2 . To ensure that always a restricted scenario is returned we 
provide an alternative subroutine (summarized in Algorithm 2 below) that can be used in Algorithm 1
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Proof Let S = (T , S, σ ,µ, τT , τS) be a relaxed scenario. 
Consider the labeling t : V 0(T ) → {0, 1} with t(u) = 1 
iff µ(u) ∈ V 0(S) . We have xy ∈ E(�w(S)) if and only 
if t( lca T (x, y)) = 1 . Thus (T,  t) is a cotree that explains 
�w(S) . By Prop. 1, �w(S) is a cograph.

Consider (T,  t) and remove all HGT-edges from T to 
obtain the forest (T ∗, t) . Although the tree(s) in (T ∗, t) are 
not necessarily phylogenetic, we can obtain a cograph G 
with edges xy ∈ E(G) precisely if x, y are leaves of a con-
nected component of (T ∗, t) and t( lca T∗(x, y)) = 1 . One 
easily verifies that any two leaves x and y in a connected 
component of T ∗ satisfy lca T∗(x, y) = lca T (x, y) . There-
fore, xy ∈ E(G) precisely if the path connecting x and y 
in T does not contain an HGT edge and t( lca T (x, y)) = 1 
(or, equivalently µ(u) ∈ V 0(S) ). Consequently, 
G = �w(S) and thus, �w(S) is a cograph.  �

It is worth noting that xy ∈ E(�w(S)) does not 
imply σ(x)  = σ(y) , i.e., (�w(S), σ) is not necessar-
ily properly colored. The genes a and a′ in Fig. 3 serve 
as an example. Now consider the two relaxed scenar-
ios S as shown in Fig.  6. In both cases, one observes 
that G=(S) = �s(S) . In each case, G=(S) contains an 
induced P4 . Therefore, we obtain

Observation 7 In general, �s(S) is not a cograph.

Lemma 35 The strict orthology graph �s(S) is a cograph 
for every relaxed scenario S.

Proof Let S = (T , S, σ ,µ, τT , τS) be a relaxed sce-
nario. Note that �s(S) ⊆ �w(S) . Furthermore, if 
xx′ ∈ E(�w(S)) , then x and x′ are leaves in the same 
subtree of the forest F(T) obtained by removing all HGT 
edges from T, i.e., x and x′ are witnesses of lca T (x, x

′) . By 
definition, we have �s(S)  = �w(S) if and only if there 
are two vertices x, x′ ∈ L(T ) with µ( lca T (x, x

′)) ∈ V 0(S) 
but µ( lca T (x, x

′)) �= lca S(σ (x), σ(x
′)) , and there 

is no HGT-edge on the path between x and x′ in 
T. Note that the latter condition is equivalent to x 
and x′ being witnesses of lca T (x, x

′) . In this case, 

xx′ ∈ E(�w(S)) but xx′ /∈ E(�s(S)) and Lemma 6 implies 
lca S(σ (x), σ(x

′)) ≺S µ( lca T (x, x
′)) . In the following, set 

p:= lca T (x, x
′) , w:=µ(p) , �s:=�s(S) and �w:=�w(S).

We proceed by modifying (T , τT ) and the reconcilia-
tion map µ to obtain a scenario S ′ = (T ′, S, σ ,µ′, τ ′T , τS) 
such that �s = �s(S ′) remains unchanged and the edge 
xx′ is removed from �w . This, in particular, ensures that 
�s ⊆ �w(S ′) � �w holds.

Since lca S(σ (x), σ(x
′)) ≺S w = µ(p) , and both x and x′ 

are witnesses of p, there is a unique child w∗ ∈ child S(w) 
such that lca S(σ (x), σ(x

′)) �S w∗ . For this vertex w∗ , let 
A∗ ⊆ child T (p) be the subset of all children q of p that 
satisfy (i) q has a witness and (ii) for every witness y of q 
holds σ(y) ∈ L(S(w∗)) . By construction, the unique chil-
dren qx and qx′ of p that satisfy x �T qx and x′ �T qx′ are 
contained in A∗ , i.e., A∗ �= ∅ . Moreover, for any two dis-
tinct q1, q2 ∈ A∗ and all x1 ∈ L(T (q1)) and x2 ∈ L(T (q2)) 
such that x1 is a witness of q1 and x2 is a witness q2 , we 
have lca S(σ (x1), σ(x2)) �S w∗ . Note that pq cannot be 
an HGT-edge of T for all q ∈ A∗ , since incomparability 
of µ(p) and µ(q) would imply that at least one edge uv 
along the path from q to its witness xq must satisfy that 
µ(u) and µ(v) are incomparable (otherwise, condition (ii) 
in the construction of A∗ is is not possible). Thus, if 
pq ∈ E(T ) is an HGT edge for some q ∈ child T (p) , then 
q /∈ A∗.

Now construct a modified gene tree T ′ as follows: If 
A∗ = child T (p) we set T ′ = T  and relabel p as p∗ . Oth-
erwise, we insert an additional vertex p∗ into T that has 
p as its parent and the vertices qi ∈ A∗ , 1 ≤ i ≤ |A∗| as 
its children. Note that by construction w∗ has at least 2 
children. The time map for the modified tree is set by 
τT ′(v) = τT (v) , v ∈ V (T ) , and τT ′(p∗) = τT (p)− ǫ for 
sufficiently small ǫ > 0 . Since we started with a relaxed 
scenario that explains �s , T ′ remains a phylogenetic 
tree. Moreover, we define the modified reconciliation µ′ 
by setting µ(p∗) = ww∗ ∈ E(S) and µ′(v) = µ(v) for all 
v ∈ V (T ′)\{p∗} and set S ′:=(T ′, S,µ′, σ , τT ′ , τS) . By con-
struction, lca T ′(x, x′) = p∗ and thus, µ(p∗) ∈ E(S) implies 
xx′ /∈ E(�w(S ′)) . Furthermore, if lca T (y1, y2) = p , 
y1 ∈ L(T (q1)) for some q1 ∈ A∗ and y2 ∈ L(T (q2)) 
for some q2 ∈ child T (p)\A

∗ , then lca T ′(y1, y2) = p 
because y2 is not a descendant of p∗ in S ′ . Finally, if 
lca T (y1, y2)  = p , then lca T ′(y1, y2) = lca T (y1, y2) . 
The latter two arguments together with the fact that 
the reconciliation maps for T and T ′ coincide for all 
vertices distinct from p∗ imply �s(S ′) = �s . Further-
more, x1x2 ∈ E(�w(S ′)) if and only if x1x2 ∈ E(�w) and 
lca T ′(x1, x2) �= p∗ . In particular, |E(�w(S ′)| < |E(�w)| . 
The modification of S also preserves witnesses: if x is a 

Table 1 Summary of the alternative notions of orthology in the 
presence of HGT events

Reconciliation condition HGT irrelevant HGT excluded

µ( lca T (x , y)) ∈ V0(S) �w(S) �w(S)

Weak quasi-ortholog Weak ortholog

µ( lca T (x , y)) = lca S(σ (x), σ(y)) �
s(S) �s(S)

Strict quasi-ortholog (Strict) ortholog
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witness of v  = p in S then x remains a witness of v in S ′ ; 
if x is a witness of p in S then it is a witness of p∗ in S ′ 
and, since pp∗ is not a HGT-edge, x remains a witness of 
p. Thus q ∈ A∗ has a witness x that is also a witness of p 
in both S and S ′ , and a witness of p∗ in S ′ . In particu-
lar, therefore, p∗q with q ∈ A∗ is not an HGT edge. Con-
versely, if pq ∈ E(T ) is an HGT edge in S , pq is also an 
HGT edge in S ′ because µ′(p) = µ(p) and µ′(q) = µ(q) 
and S remains unchanged. The latter argument holds for 
all HGT edges in S , resp., S ′ . Therefore, uv is an HGT-
edge in S if and only if uv it an HGT edge in S ′ . In par-
ticular, therefore, if the path from u ∈ V 0(T ) to the leaf 
x ∈ L(T ) is HGT-free in S , then it is also HGT-free in S ′.

Repeating this construction produces a finite sequence 
of scenarios S = S0,S1, . . . ,Sk with the same strict 
orthology graphs �s = �s(S1) = · · · = �s(Sk) and 
in each step strictly reduces the number of edges in 
the weak orthology graph, i.e., �w(Si) � �w(Si−1) 
for 1 ≤ i ≤ k as long as in Si−1 there is a vertex p with 
a set A∗ with |A∗| ≥ 2 . Eventually we arrive at a relaxed 
scenario Sk with a refined gene tree Tk that contains no 
vertex p with set A∗ as defined above. In Sk , therefore, 
w = µk( lca Tk

(x, y)) ∈ V 0 implies lca S(σ (x), σ(y)) = w , 
which in turn implies �w(Sk) = �s(Sk) = �s . The asser-
tion now follows since �w(Sk) is a cograph by Lemma 34. 
 �

The modification of a relaxed scenario S in the proof of 
Lemma 35 only affects the last common ancestors of pairs 
of genes x, x′ with µ( lca T (x, x; )) ≻S lca S(σ (x), σ(x

′)) 
and thus xy ∈ E(G<) . Furthermore, in the modi-
fied scenario S ′ , by construction we still 
have µ( lca T ′(x, x; )) ≻S lca S(σ (x), σ(x

′)) , 
since either lca T ′(x, x′) = lca T (x, x

′) or 
τT ( lca T ′(x, x′)) = τT ( lca T ′(x, x′))− ǫ for an arbitrarily 
small ǫ . Therefore, we have G(S) = G(S ′) in each step, 
which immediately implies

Proposition 5 A graph 3-partition G is explained by a 
relaxed scenario if and only if it is explained by a relaxed 
scenario satisfying �s(S) = �w(S).

Finally, we show that every valid input 
G = (G< ,G= ,G> , σ) has an explanation such that the 
EDT graph G= represents the strict quasi-orthologs. This 
explanation can, in particular, by obtained with Alg. 1. To 
see this, we first provide

Lemma 36 Let S be a relaxed scenario. Then 
�s(S) ⊆ G=(S).

Proof Assume that xy ∈ E(�s(S)) . Thus we have x  = y 
and µ( lca T (x, y)) = lca S(σ (x), σ(y)) ∈ V (S) , which in 
turn yields τS(µ( lca T (x, y))) = τS( lca S(σ (x), σ(y))) . 
Together with (S2), this implies that 
τS( lca S(σ (x), σ(y))) = τT ( lca T (x, y)) and, therefore, 
xy ∈ E(G=(S)) . Hence, we have �s(S) ⊆ G=(S) .  �

Lemma 37 If S is a scenario produced by Algorithm 1 
to explain the valid input G = (G< ,G= ,G> , σ) , then 
G= = �s(S).

Proof Obs. 4 implies that G= ⊆ �s(S) for every scenario 
S produced by Algorithm 1. Conversely, every scenario S 
produced by Algorithm 1 with input G = (G< ,G= ,G> , σ) 
is relaxed (cf. Lemma  26) and satisfies, in particular, 
G= = G=(S) . Hence, we can apply Lemma 36 to conclude 
that �s(S) ⊆ G=(S) = G= .  �

It is important to note, however, that there are sce-
narios for which G= ⊆ �s(S) is not true. As an exam-
ple, consider the scenario S in Fig. 1(top row, middle) in 
which xy ∈ G=(S) but µ( lca T (x, y))  = lca S(σ (x), σ(y)) 
and thus, xy /∈ �s(S).

Generic Scenarios. It will sometimes be useful to 
assume that time maps are generic in the sense that two 
inner vertices of the gene or species tree have the same 
time stamp only if they belong to the same biological 
event. For our purposes, it seems sufficient to rule out 
that concurrent nodes are mapped to different posi-
tions in the species tree, i.e., we postulate the following 
“genericity” axiom for evolutionary scenarios: 

(G) If τT (v) = τS(U) for v ∈ V 0(T ) and U ∈ V 0(S) , 
then µ(v) = U .

Axiom (G) stipulates that no two distinct speciation 
events, i.e., inner nodes of the species tree are concur-
rent and that no other evolutionary event (duplica-
tion or horizontal transfer) happens concurrent with 
a speciation. Note that two vertices of the gene tree 
“belong” to the same speciation event if they are recon-
ciled with the same vertex of S. Thus u,u′ ∈ V (T ) with 
µ(u) = µ(u′) ∈ V (S) are considered as the same specia-
tion event and thus also necessarily have the same time 
stamp τT (u) = τT (u

′).
As an immediate consequence of (G), we observe that 

τT ( lca T (x, y)) = τS(U) implies µ( lca T (x, y)) = U  . Con-
versely, since T is phylogenetic, every v ∈ V 0(T ) (except 
the planted root) is the last common ancestor of some 
pair of vertices, and µ(0T ) = 0S , we can equivalently 
express (G) as 

 (G’) If τT ( lca T (x, y)) = τS(U) for x, y ∈ L(T ) and 
U ∈ V 0(S) , then µ( lca T (x, y)) = U .
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Definition 22 A relaxed scenario satisfying (G), or 
equivalently (G’), is called generic.

We note in passing that it is not a trivial endeavor to 
modify a relaxed scenario S to a generic one S ′ such 
that G(S) = G(S ′) . Simply adjusting the time maps is, 
in general, not enough. For example, consider scenario 
S3 = (T , S, σ ,µ, τT , τS) in Fig.  13(C). Without adjust-
ing the reconciliation map µ , any generic scenario 
S ′ = (T , S, σ ,µ, τ ′T , τ

′
S) would satisfy ab /∈ E(G=(S

′)) 
although ab ∈ E(G=(S3)) . Hence, additional effort 
is needed to adjust µ , i.e., to map lca T (a, b) to 
lca S(σ (a), σ(b)) instead of mapping it to the edge ρSσ(c) . 
However, for every scenario S , there exists a (possibly 
alternative) scenario S ′ that is computed using G(S) as 
input for Algorithm 1 in conjunction with Algorithm 2. 
Therefore, S ′ satisfies G(S ′) = G(S) and the conditions 
provided in Observation  4 and 5. These strong con-
straints on S ′ might be helpful in transforming it into a 
generic scenario.

Theorem  23 For a generic scenario 
S = (T , S, σ ,µ, τT , τS) it always holds that 
G=(S) = �s(S) and thus, G=(S) ⊆ �w(S) . In particular, 
if S is HGT-free or S and T are binary, then �s(S) is a 
cograph.

Proof Let S = (T , S, σ ,µ, τT , τS) be a generic scenario. 
Assume first that xy ∈ E(G=(S)) . By definition, x  = y 
and τT ( lca T (x, y)) = τS( lca S(σ (x), σ(y))) . By (G’), 
µ( lca T (x, y)) = lca S(σ (x), σ(y)) . Hence, xy ∈ E(�s(S)) 
and, therefore, G=(S) ⊆ �s(S).

By Lemma 36, we have �s(S) ⊆ G=(S) and, 
thus, �s(S) = G=(S) . By Equ.  (2), we have 
G=(S) = �s(S) ⊆ �w(S) . Moreover, �s(S) = G=(S) 
together with Lemma  21 and Theorem  7 implies that 
�s(S) is a cograph whenever S is HGT-free or S and T 
are binary.  �

Note that a pair of weak quasi-orthologs 
x, y ∈ L(T ) may have arisen in a speciation and have 
been transferred to the species σ(x) and σ(y) in 
which they are found at later points in time. Thus 
τT ( lca T (x, y)) ≶ τS( lca S(σ (x), σ(y)) is possible, see 
Fig. 12 for two examples. Consequently, �w(S)  = G=(S) 
is possible for generic scenarios.

As an immediate consequence of Lemma  6, equal-
ity between �w(S) and G=(S) also holds for HGT-free 
scenarios. In particular, by definition, �s(S) = �s(S) . 
Hence, together with Lemma 21, we obtain

Corollary 11 Every relaxed scenario S without HGT-
edges satisfies G=(S) = �s(S) = �s(S) . In this case, 
�s(S) is a cograph.

Corollary 12 Let S be a generic sce-
nario. Then G=(S) = �w(S) if and only if 
µ( lca T (x, y)) = lca S(σ (x), σ(y)) for all xy ∈ E(�w(S)) , 
which holds if and only if �s(S) = �w(S) . In this case, 
�s(S) is a cograph.

The example in Fig.  13C show that the condition (G) 
cannot be dropped in Cor. 12.

Equ. 2 and Thm. 23 immediately imply

Corollary 13 Every generic scenario S satisfies 
�s(S) ⊆ �s(S) = G=(S) ⊆ �w(S).

Concluding remarks
We have developed a complete characterization of graph 
3-partition G on a species-colored set of vertices that 
can be explained by an relaxed scenario S (Thm. 10). We 
showed, furthermore, that whenever such an explaining 
relaxed scenario exists, one can also find explanations 
from a much more restricted class of scenarios that are 
fully witnessed and satisfy certain natural constraints for 
“speciation events” (Thm. 13). The existence of such sce-
narios can be tested in polynomial time, and in the posi-
tive case, both relaxed and restricted scenarios explaining 
the input 3-partition can be constructed, again in polyno-
mial time. If only the information of G= ∈ G is available, 
it can be tested in polynomial-time as whether G= is an 
EDT graph in the HGT-free case (cf. Thm. 14), while the 
problem becomes NP-hard for general relaxed scenarios 
(cf. Thm. 16). In contrast, PDT graphs can be recognized 
in polynomial-time (cf. Thm.  17). These approaches 
extend earlier work on LDT graphs, which serve as the 

Fig. 12 The two pairs x and y as well as x′ and y′ 
are weak quasi-orthologs in S1 = (T , S, σ ,µ, τT , τS) 
and S2 = (T ′ , S′ , σ ′ ,µ′ , τT ′ , τS′ ) , respectively, 
but it holds τT ( lca T (x , y)) < τS( lca S(σ (x), σ(y)) 
and τT ′ ( lca T ′ (x

′ , y′)) > τS′ ( lca S′ (σ
′(x′), σ ′(y′))
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basis for indirect methods for the inference of HGT 
events [4]. If only the information of G< ∈ G is available, 
it can be tested whether G< is an LDT graph and, in the 
affirmative case, a relaxed scenario that explains G< can 
be constructed in polynomial-time [4].

Relaxed scenarios also can be used to formalize Wal-
ter Fitch’s concept of xenologous gene pairs [1, 8]. 
Given a relaxed scenario S = (T , S, σ ,µ, τT , τS) , we 
define the xenology relation R by setting (x, y) ∈ R 
precisely if x, y ∈ L(T ) and the unique path connect-
ing x and y in T contains an HGT edge. The resulting 
graph ̥ (S):=(L(T ),R) is known as symmetrized Fitch 
graph [45–47]. It is always a properly colored multipar-
tite graph. Thm.  5 in [4] shows that for every properly 
colored multipartite graph there is a relaxed scenario 
S such that G<(S) = ̥ (S) . On the other hand, by [4, 
Thm.  4], the LDT graph G<(S) is always a subgraph 
of ̥ (S) for every relaxed scenario S . Thus, for every S 
and every xy ∈ G<(S) , the two genes x and y are sepa-
rated by at least on HGT-event. There are examples of 
relaxed scenarios S for which G<(S)  = ̥ (S) (cf. [4, 
Fig.  7]). Whether G<(S) � ̥ (S) or G<(S) = ̥ (S) 
heavily depends on the particular scenario S . Given 
G = (G< ,G= ,G> , σ) , which may be estimated empirically 
from sequence similarity data, an explaining scenario S is 
not uniquely determined in general. This begs the ques-
tion whether there is a relaxed scenario S that explains 
G and satisfies G< = ̥ (S) . To see that this is not the 
case, consider G:=G(S2) , where S2 is the scenario as 
in Fig.  4. In this case, G< is not a complete multipartite 
graph and thus, G< � ̥ (S) for every relaxed scenario S 
that explains G< . Consequently, the information on HGT-
events is not always provided entirely by the knowledge 
of G< alone. The graphs G= and G> thus may add addi-
tional information for the inference of HGT. It will there-
fore be an interesting topic for future work to understand 
how to employ G = (G< ,G= ,G> , σ) to detect HGT-
events and to which extend HGT-events are uniquely 
determined for a given G.

Relaxed scenarios provide a very general framework 
in which the concepts of orthology, paralogy, and xenol-
ogy can be studied in a rigorous manner. In Section 

“Orthology and Quasi-Orthology”, we compared different 
concepts of orthology that have been proposed for situa-
tions with horizontal transfer. We obtained simple results 
describing the mutual relationships of the corresponding 
variants of “orthology graphs” on L(T), and their relations 
with G= . With the exception of the strict quasi-orthology 
graph �w(S) , the alternative notions lead to colored 
cographs similar to the HGT-free case, see [21]. The latter 
connections are of practical importance since the EDT 
graph G= , or the 3-partition graphs, can be estimated 
from sequence similarities. It will be interesting, there-
fore, to explore if techniques similar to those employed 
by Schaller et al. [48] can be used to identify the edges on 
G= that do not correspond to orthology-relationships.

We found that, similar to LDT graphs, PDT graphs 
are also cographs. This is in general not the case for 
EDT graphs, although EDT graphs are perfect (Prop. 4). 
If both gene tree and species tree are binary, i.e., fully 
resolved, then the EDT graph is a cograph. However, not 
all proper vertex colorings of a cograph result in an EDT 
graph (Fig. 8). It remains an interesting open problem to 
characterize the “EDT-colorings” of cographs in analogy 
to the hc-colorings of cograph that appear in the context 
of reciprocal best match graphs [49, 50]. Moreover, it is 
at least of theoretical interest to ask how difficult it is 
to decide whether a suitable coloring σ exists such that 
(G< ,G= ,G> , σ) is explained by a relaxed scenario. Find-
ing such a coloring corresponds to assigning species to 
genes, a problem that arises in metagenomics. Indeed, 
when DNA is extracted from bulk samples taken from 
the environment, the species that contains each sequence 
is unknown since they belong to members of a diverse 
population (for instance, microbial or fungal). Popu-
lar techniques to recover a species assignment include 
sequence similarity analysis [51] and phylogenetic recon-
structions [52]. Since our approaches combine these two 
ideas, it will be interesting to see whether EDT-colorings 
can be useful in the context of metagenomics.

The reconciliation of T and S implicitly determines 
what kind of evolutionary event corresponds to a ver-
tex v ∈ V 0(T ) . Given a relaxed or restricted scenario 
S , the assignment of an event label t(v) ∈ Q from some 

Fig. 13 A A HGT-free relaxed scenario where G= (S1) � �w(S1) . The vertices a and a′ are weak quasi-orthologs but aa′ /∈ E(G= (S1)) . 
B An HGT-free, non-generic relaxed scenario. C A non-generic relaxed scenario for which G= (S3) �= �w(S3) even 
though µ( lca T (x , y)) = lca S(σ (x), σ(y)) holds for all xy ∈ E(�w(S3))
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pre-defined set Q of event types is, of course, a mat-
ter of biological interpretation of S . The definitions of 
“DTL scenarios” as in [16, 53, 54] assign event labels to 
the inner vertices of T that then must satisfy certain con-
sistency conditions with the local behavior of the rec-
onciliation map µ . Event labelings t : V 0(T ) → Q also 
play a key role in orthology detection in duplication/loss 
scenarios [18, 19, 48, 55]. In relaxed scenarios, it is not 
always possible to assign event types that match with 
straightforward biological interpretations in an unam-
biguous manner. For example, from a biological perspec-
tive, speciation events are usually defined as “passing on 
the entire ancestral genome to each offspring lineage”. In 
Fig.  3, however, lca T (a, a

′) describes a gene duplication 
that occurs together with the speciation event. As noted 
in [3, Fig.2], this issue already arises in the setting of DL-
scenarios with multifurcating trees even in HGT-free 
scenarios that satisfy the speciation constraint S6, see 
also [2]. Some further pertinent results on event-based 
reconciliation in the presence of HGT were discussed by 
Nøjgaard et al. [38]. These point out subtle differences for 
non-binary species trees in the definition of event-based 
DTL-scenarios [16] and suggest a natural notion of event-
annotated relaxed scenarios. Because of these difficulties 
we have avoided to consider event types as a formal level 
in this contribution. Instead, these issues will be the focus 
of a forthcoming contribution.

It is reassuring that a graph 3-partition G that can 
be explained by a relaxed scenario can always also be 
explained by a restricted scenario. This begs the ques-
tion, however, whether there is a simple, local editing 
algorithm that converts a “true” scenario in a restricted 
or at least a fully witnessed one. In the case of HGT-free 
scenarios, there is a simple rule to exclude “non-observ-
able” vertices in T: in this restricted setting, it suffices to 
recursively remove all deleted genes and all inner vertices 
with a single child [18]. The situation seems to be much 
less obvious for relaxed scenarios, since these models are 
somewhat more general than “event-driven” scenarios. 
For instance, relaxed scenarios allow multiple descend-
ants from nodes v ∈ V (T ) with µ(v) ∈ V (S) . As a con-
sequence, is seems difficult to interpret a vertex v that 
is reconciled with a vertex in the species tree as a “spe-
ciation event” in the strict sense. The exact meaning of 
“events”, therefore, deserves a more detailed analysis in 
the setting of relaxed scenarios.

Appendix
Proof of  Lemma  23 In this section, we show in detail 
that, given a valid input G = (G< ,G= ,G> , σ) with ver-
tex set L, Algorithm 1 indeed returns a relaxed scenario 

S = (T , S, σ ,µ, τT , τS) such that L(T ) = L . The proof 
parallels the arguments in the proof of Thm. 2 in [4].

Proof of Lemma 23 Let σ : L → M and set R = RS(G) 
and F = FS(G) . By a slight abuse of notation, we will 
simply write µ and τT also for restrictions to subsets of 
V(T). By assumption, (R,F) is consistent, and thus, a tree 
S on M that displays S exists, and can be constructed in 
Line 1 e.g. using MTT [34]. By Lemma 1, we can always 
construct a time map τS for S satisfying τS(x) = 0 for all 
x ∈ L(S) in Line 2. By definition, τS(y) > τS(x) must hold for 
every edge yx ∈ E(S) , and thus, we obtain ǫ > 0 in Line 3.
Recall that σ(L′) ⊆ L(S(uS)) holds in every recursion step 
by Obs. 2 and note that we reach the else-block starting 
in Line  13 only if uS is not a leaf. Therefore, the auxil-
iary graphs H1 , H2 , and H3 are well-defined and there is 
a vertex v∗S ∈ child S(uS) such that σ(Cj) ∩ L(S(v∗S)) �= ∅ 
for every connected component Cj of H2 in Line 19, and 
a vertex vS ∈ child S(uS) such that σ(Ck) ⊆ L(S(vS)) for 
every connected component Ck of H3 in Line 22. Moreo-
ver, par S(uS) is always defined since we have uS = ρS and 
thus par S(uS) = 0S in the top-level recursion step, and 
recursively call the function BuildGeneTree on verti-
ces vS such that vS ≺S uS.

In summary, all assignments are well-defined in every 
recursion step. It is easy to verify that the algorithm ter-
minates since, in each recursion step, we either have that 
uS is a leaf, or we recurse on vertices vS that lie strictly 
below uS . We argue that the resulting tree T ′ is a (not 
necessarily phylogenetic) tree on L by observing that, in 
each step, each x ∈ L′ is either attached to the tree as a 
leaf (if uS is a leaf ) or passed down to a recursion step on 
some connected component of H3 since each connected 
component Ck of H3 satisfies Ck ⊆ Cj for some connected 
component Cj of H2 which in turn satisfies Cj ⊆ Ci for 
some connected component Ci of H1 . Nevertheless, T ′ 
is turned into a phylogenetic tree T by suppression of 
degree-two vertices in Line 26. Finally, µ(x) and τT (x) are 
assigned for all vertices x ∈ L(T ′) = L in Line 11, and for 
all newly created inner vertices in Lines 7, 16, and 20.

Before we continue to show that S is a relaxed scenario, 
we first show that the conditions for time maps and time 
consistency are satisfied for (T ′, S, σ ,µ, τT , τS):

Claim 1 For all x, y ∈ V (T ′) with x ≺T ′ y , we have 
τT (x) < τT (y) . Moreover, for all x ∈ V (T ′) , the following 
statements are true: 

 (i) if µ(x) ∈ V (S) , then τT (x) = τS(µ(x)) , and
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 (ii) if µ(x) = (a, b) ∈ E(S) , then τS(b) < τT (x) < τS(a).

Proof of Claim Recall that we always write an edge uv of a 
tree T such that v ≺T u . For the first part of the statement, 
it suffices to show that τT (x) < τT (y) holds for every edge 
yx ∈ E(T ′) , and thus to consider all vertices x  = ρT ′ 
in T ′ and their unique parent, which will be denoted 
by y in the following. Likewise, we have to consider all 
vertices x ∈ V (T ′) including the root to show the second 
statement. The root ρT ′ of T ′ corresponds to the vertex ρ′ 
created in Line 6 in the top-level recursion step on L and 
ρS . Hence, we have µ(ρT ′) = par S(ρS)ρS = 0SρS ∈ E(S) 
and τT (ρT ′) = τS(ρS)+ ǫ (cf. Line  7). Therefore, 
we have to show Subcase  (ii). Since ǫ > 0 , 
it holds that τS(ρS) < τT (ρT ′) . Moreover, 
τS(0S)− τS(ρS) ≥ 3ǫ holds by construction, and thus 
τS(0S)− (τT (ρT ′)− ǫ) ≥ 3ǫ and τS(0S)− τT (ρT ′) ≥ 2ǫ , 
which together with ǫ > 0 implies τT (ρT ′) < τS(0S).
We now consider the remaining vertices x ∈ V (T ′)\{ρT ′ } . 
Every such vertex x is introduced into T ′ in some recur-
sion step on L′ and uS in exactly one of the following four 
ways: 

(a) x ∈ L(T ′) is a leaf attached to some inner vertex ρ′ 
in Line 10,

(b) x = ui is created in Line 15,
(c) x = vj is created in Line 18, and
(d) x = wk :=BuildGeneTree(Ck , vS) is attached to 

the tree in Line 23.

Note that if x = ρ′ is created in Line  6, then 
ρ′ is either the root of T ′ , or equals a vertex 
wk :=BuildGeneTree(Ck , vS) that is attached to the 
tree in Line 23 in the “parental” recursion step.
In Case  (a), we have that x ∈ L(T ′) is a leaf and 
attached to some inner vertex y = ρ′ . Since uS must 
be a leaf in this case, and thus τS(uS) = 0 , we have 
τT (y) = 0+ ǫ = ǫ and τT (x) = 0 (cf. Lines  7 and  11). 
Since ǫ > 0 , this implies τT (x) < τT (y) . Moreover, we 
have µ(x) = σ(x) ∈ L(S) ⊂ V (S) (cf. Line  11), and 
thus have to show Subcase  (i). Since uS is a leaf and 
σ(L′) ⊆ L(S(uS)) , we conclude σ(x) = uS . Thus we 
obtain τT (x) = 0 = τS(uS) = τS(µ(x)).

In Case (b), we have that x = ui is created in Line 15 and 
attached as a child to some vertex y = ρ′ created in the 
same recursion step. Thus, we have τT (y) = τS(uS)+ ǫ , 
τT (x) = τS(uS) and µ(x) = uS ∈ V (S) (cf. Lines 7 and 16). 
Therefore and becauseǫ > 0 , it holds τT (x) < τT (y) and 
Subcase (i) is satisfied.

In Case  (c), we have that x = vj is created in Line  18 
and attached as a child to some vertex y = ui created in 
the same recursion step. Thus, we have τT (y) = τS(uS) 
and τT (x) = τS(uS)− ǫ (cf. Lines  16 and  20). There-
fore and since ǫ > 0 , it holds τT (x) < τT (y) . Moreover, 
we have µ(x) = uSv

∗
S ∈ E(S) for some v∗S ∈ child S(uS) . 

Hence, we have to show Subcase  (ii). By a similar cal-
culation as before, ǫ > 0 , τS(uS)− τS(v

∗
S) ≥ 3ǫ and 

τT (x) = τS(uS)− ǫ imply τS(v∗S) < τT (x) < τS(uS).

In Case  (d), x = wk :=BuildGeneTree(Ck , vS) is 
attached to the tree in Line  23 and equals ρ′ as cre-
ated in Line  6 in some “child” recursion step with 
vS ∈ child S(uS) . Thus, we have τT (x) = τS(vS)+ ǫ and 
µ(x) = uSvS ∈ E(S) (cf. Line  7). Moreover, x is attached 
as a child of some vertex y = vj as created in Line  18. 
Thus, we have τT (y) = τS(uS)− ǫ . By construction 
and since uSvS ∈ E(S) , we have τS(uS)− τS(vS) ≥ 3ǫ . 
Therefore, (τT (y)+ ǫ)− (τT (x)− ǫ) ≥ 3ǫ and thus 
τT (y)− τT (x) ≥ ǫ . This together with ǫ > 0 implies 
τT (x) < τT (y) . Moreover, since µ(x) = uSvS ∈ E(S) for 
some vS ∈ child S(uS) , we have to show Subcase (ii). By a 
similar calculation as before, ǫ > 0 , τS(uS)− τS(vS) ≥ 3ǫ 
and τT (x) = τS(vS)+ ǫ imply τS(vS) < τT (x) < τS(uS) . �

The tree T is obtained from T ′ by first adding a planted 
root 0T (and connecting it to the original root) and then 
suppressing all inner vertices except 0T that have only a 
single child in Line 26. In particular, T is a planted phy-
logenetic tree by construction. The root constraint (S0) 
µ(x) = 0S if and only if x = 0T also holds by construction 
(cf. Line  27). Since we clearly have not contracted any 
outer edges (y,  x), i.e. with x ∈ L(T ′) , we conclude that 
L(T ′) = L(T ) = L . As argued before, we have τT (x) = 0 
and µ(x) = σ(x) whenever x ∈ L(T ′) = L(T ) (cf. 
Line 11). Since, in addition, all other vertices are mapped 
by µ to some edge of S, inner vertex, or 0S (cf. Lines 7, 16, 
20, and 27), the leaf constraint (S1) is satisfied.

By construction, we have V (T ) \ {0T } ⊆ V (T ′) . 
Moreover, suppression of vertices clearly preserves 
the �-relation between all vertices x, y ∈ V (T )\{0T } . 
Together with Claim  1, this implies τT (x) < τT (y) for 
all vertices x, y ∈ V (T )\{0T } with x ≺T y . For the sin-
gle child ρT of 0T in T, we have τT (ρT ) ≤ τS(ρS)+ ǫ 
where equality holds if the root of T ′ was not suppressed 
and thus is equal to ρT . Moreover, τT (0T ) = τS(0S) 
and τS(0S)− τS(ρS) ≥ 3ǫ hold by construction. 
Taken together the latter two arguments imply that 
τT (ρT ) < τT (0T ) . In particular, we obtain τT (x) < τT (y) 
for all vertices x, y ∈ V (T ) with x ≺T y . Hence, τT is a 
time map for T, which, moreover, satisfies τT (x) = 0 for 
all x ∈ L(T ).
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To show that S = (T , S, σ ,µ, τT , τS) is a relaxed sce-
nario, it remains to show the two time consistency 
constraints (S2) and (S3) in Def.  2. For 0T , we have 
τT (0T ) = τS(0S) = τS(µ(0T )) . Hence, condition in (S2) is 
satisfied for 0T . The remaining vertices of T are all verti-
ces of T ′ as well. The latter two arguments together with 
Claim 1 imply that conditions (S2) and (S3) are also satis-
fied, and thus S is a relaxed scenario.  �

Hardness of EDT graph recognition
To establish the NP-hardness of (CF ,CR)-Satisfiability 
and EDT-Recognition, we start from

Problem 3 (3-Set Splitting)  

Input: A finite set U and a collection B = {B1, . . . , Bm} of subsets of U

s.t. |Bi | = 3 for all i.

Question: Is there a partition {U1,U2} of U into two sets such that, 
for each Bj ∈ B,

we have Bj ∩ U1 �= ∅ and Bj ∩ U2 �= ∅.

In other words, none of the Bj ∈ B is entirely contained 
in either U1 or U2.

Lovász [56] showed that the “unrestricted” version of 
3-Set Splitting, in which elements in Bj ∈ B have size 
|Bi| ≤ 3 instead of |Bi| = 3 , is NP-complete. There does 
not seem to be a published proof for the NP-complete-
ness of the “restricted” variant of 3-Set Splitting. For 
completeness, we include a simple argument starting 
from

Problem 4 (monotone NAE-3-SAT)  

Input: Given a set of clauses C = {C1, . . . , Cm} over a set U 
of Boolean variables

s.t. |Ci | = 3 for all i and Ci contains no negated variables.

Question: Is there a truth assignment to U such that in each Ci
not all three literals are set to true?

As shown by Porschen et al. [57, Thm. 3], monotone 
NAE-3-SAT is NP-complete. Its is straightforward to see 
that monotone NAE-3-SAT and 3-Set Splitting are 
equivalent in the following sense: Interpret the Ci ∈ C 
as sets and put B = C . Then (C,  U) is a yes-instance of 
monotone NAE-3-SAT if and only if (B,  U) is a yes-
instance of 3-Set Splitting because we can obtain a 
solution {U1,U2} for (B, U) from a solution for (C, U) by 
setting U1:={x ∈ U | x is true} and U2:=U \ U1 . Con-
versely, a solution for (C,  U) is obtained from a solu-
tion {U1,U2} for (B, U) by assigning “true” exactly to all 
x ∈ U1 . Consequently, we have

Proposition 6 3-Set Splitting is NP-complete.

We are now in the position to prove NP-completeness 
of (CF ,CR)-Satisfiability (Thm. 15).

Proof of Theorem 15 Given a tree S∗ , it can be verified 
in polynomial-time as whether S∗ satisfies (CF ,CR) . 
Hence, (CF ,CR)-Satisfiability∈ NP . To show 
NP-hardness we use a reduction from 3-Set Splitting.
Given an instance (U,  B) of 3-Set Splitting, con-
struct an instance (U ′,CF ,CR) of (CF ,CR)-Satisfi-
ability as follows. For Bj ∈ B , we order its three 
elements arbitrarily and write Bj = {b1j , b

2
j , b

3
j } . Let 

U ′:=U ∪ {x, z′, z′′} ∪ {αj : 1 ≤ j ≤ m} and let

It is easy to verify that this reduction can be performed in 
polynomial time. We show that there exists a 3-set split-
ting of B if and only if there exists a tree S∗ that satisfies 
(CF ,CR).

Assume first that (U, B) is a yes-instance of 3-Set Split-
ting, i.e., there is a partition {U1,U2} of U such that 
|Bj ∩ U1| ∈ {1, 2} for each Bj ∈ B . We construct a tree S∗ 
that satisfies (CF ,CR) , see Fig. 14 for an illustrative exam-
ple. Start with S∗ as the tree in which the root has three 
children x,w1,w2 . Then, add each element of {z′} ∪U1 as 
a child of w1 , and add each element of {z′′} ∪U2 as a child 
of w2 . Notice that S∗ displays x|z′|z′′ as required by CF . 
Moreover, because each ui has either z′ or z′′ as a sibling 
but not both, S∗ displays either uiz′|z′′ or uiz′′|z′ for each 
ui ∈ U  , and thus satisfies the constraints in CR . We next 
add the remaining αj leaves as children of existing ver-
tices of S∗ , which cannot alter the triples and fan triples 
gathered so far.

For each Bj ∈ B , exactly two of b1j , b
2
j  and b3j  have the 

same parent w ∈ {w1,w2} in S∗ , because {U1,U2} is a 3-set 
splitting. There are three cases, and in each one, we let 
the reader verify that S∗ displays x|b1j |αj and b2j |b

3
j |αj:

if either b1j  and b2j  or b1j  and b3j  have the same parent w, 
then add αj as a child of the root of S∗;

if b2j  and b3j  have the same parent w, then add αj as a child 
of w.

CF :={x|z′|z′′} ∪

m
⋃

j=1

{ x|b1j |αj , b
2
j |b

3
j |αj },

CR:={ {uiz
′|z′′,uiz

′′|z′} : ui ∈ U }
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It is now straightforward to verify that S∗ satisfies 
(CF ,CR).

Suppose now that (U ′,CF ,CR) is a yes-instance of 
(CF ,CR)-Satisfiability, i.e., there exists a tree S∗ that 
satisfies (CF ,CR) . By the construction of CR , for ui ∈ U  , 
S∗ displays either uiz′|z′′ or uiz′′|z′ . We claim that the par-
tition {U1,U2} where

is a 3-set splitting of B. In fact, U1 ∩ U2 = ∅ , since S∗ 
cannot display both uiz′|z′′ and uiz′′|z′ at the same time. 
Moreover, by construction of CR and since S∗ satisfies 
(CF ,CR) , at least one of the triples uiz′|z′′ and uiz′′|z′ 
must be displayed by S∗ for all ui ∈ U  . Consequently, 
U1 ∪ U2 = U .

Assume, for contradiction, that {U1,U2} is not a 3-set 
splitting of B. Hence, there is a Bj = {b1j , b

2
j , b

3
j } in B 

such that either Bj ⊆ U1 or Bj ⊆ U2 . First, suppose 
that Bj ⊆ U1 . By construction of U1 , S∗ displays b1j z

′|z′′ , 
b2j z

′|z′′ , and b3j z
′|z′′ . Since S∗ displays x|z′|z′′ ∈ CF , we 

have r:= lca S∗(x, z
′) = lca S∗(x, z

′′) = lca S∗(z
′, z′′) . Let 

y′ be the unique child of r such that z′ �S∗ y
′ , and note 

that x and z′′ are not descendants of y′ . Since S∗ displays 
b1j z

′|z′′ , b2j z
′|z′′ , and b3j z

′|z′′ , it follows that b1j  , b
2
j  , and b3j  

are all descendants of y′ . Now, αj cannot be a descendant 
of y′ , as otherwise S∗ would display b1j αj|x , as opposed 
to the fan triple x|b1j |αj ∈ CF that S∗ must display. 
On the other hand, if αj is not a descendant of y′ , then 
b
j
2, b

j
3 ≺S∗ y

′ implies that S∗ displays b2j b
3
j |αj , a contradic-

tion since b2j |b
3
j |αj ∈ CF . Hence, Bj ⊆ U1 is not possible. 

By interchanging the roles of z′ and z′′ and using similar 
arguments, one shows that Bj ⊆ U2 is not possible either. 
In summary, {U1,U2} is a 3-set splitting.  �

U1:={ui : S
∗ displays uiz

′|z′′} and

U2:={ui : S
∗ displays uiz

′′|z′}

We are now in the position to prove NP-completeness 
of EDT-Recognition (Thm. 16).

Proof of Theorem  16  First note that the problem 
is in NP, since a scenario that explains a given instance 
(G, σ) can easily be verified in polynomial time. We 
show that EDT-Recognition is NP-hard by reduction 
from the (CF ,CR)-Satisfiability problem. Let 
(U ,CF ,CR) be an instance of (CF ,CR)-Satisfiability. 
We proceed by constructing a corresponding instance 
(G, σ) of EDT-Recognition as the disjoint union of 
colored graphs Ft for all t ∈ CF and Rt for all t ∈ CR.
The color set � comprises a distinct color σ(u) for each 
u ∈ U  , and a distinct color σ(t) for each t ∈ CR . Note that 
for each pair of triples t = {xy|z, xz|y} ∈ CR a single color 
σ(t) is used. Hence, � contains |U | + |CR| colors.

For each t:=x|y|z ∈ CF , we define Ft as the vertex colored 
graph with

vertex set V (Ft):={xt , yt , zt , x
′
t , y

′
t , z

′
t},

edge set E(Ft):={xtyt , ytzt , x
′
tz

′
t , z

′
ty

′
t} , and

vertex coloring σ(xt) = σ(x′t) = σ(x) , 
σ(yt) = σ(y′t) = σ(y) , and σ(zt) = σ(z′t) = σ(z).

By construction Ft consists of two connected compo-
nents, namely the two P3 s xt − yt − zt and x′t − z′t − y′t on 
three colors. In particular, Ft is properly colored. More-
over, Ft and Ft ′ are vertex disjoint for distinct t, t ′ ∈ CF 
even though t and t ′ may have leaves in common and 
thus, the vertices in V (Ft) and V (Ft ′) may share colors.
For each t:={xy|z, xz|y} ∈ CR we define Rt as the vertex 
colored graph with

vertex set V (Rt):={xt , yt , zt ,wt , y
′
t , z

′
t ,w

′
t},

Fig. 14 An example instance of SeT-SpliTTinG with solution U1 = {u1, u2},U2 = {u3, u4, u5} . The elements of B1, B2, B3 are in the order chosen 
by the reduction. The constructed tree S∗ is shown, along with the x|b1j |αj and b2j |b

3
j |αj fan triples that must be displayed. Note that each 

of the three cases in which two elements of Bj have the same parent occurs
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edge set E(Rt):={xtwt , xtyt ,wtyt ,wtzt ,w
′
ty

′
t , y

′
t z

′
t} , 

and
vertex coloring σ(xt) = σ(x) , σ(yt) = σ(y′t) = σ(y) , 
σ(zt) = σ(z′t) = σ(z) , and σ(wt) = σ(w′

t) = σ(t).

By construction, Rt consists of two connected compo-
nents, a so-called paw graph on the four vertices xt , yt , 
zt , and wt and the P3 w′

t − y′t − z′t . In particular, Rt is 
properly colored. Again, Rt and Rt ′ for distinct t, t ′ ∈ CR 
are vertex disjoint but may share certain colors. Since 
CF ∩ CR = ∅ , we have t  = t ′ for any Ft and Rt ′ , i.e., each 
t unambiguously refer to either a subgraph Ft or a sub-
graph Rt of (G, σ) . The graphs Ft and Rt are illustrated in 
Fig. 15(A) and (B), respectively.

Since Ft and Rt can be constructed in constant time for 
each t ∈ CF ∪ CR , the graph (G, σ) can be constructed 
in polynomial time. Every connected component of G is 
either a paw component” or a “ P3 component”. By con-
struction, any two vertices that are in the same connected 
component of (G, σ) have different colors. Thus (G, σ) is 
properly colored.

We proceed by showing that there exists a tree S∗ 
that satisfies (CF ,CR) if and only if there exists a relaxed 
scenario S that explains (G, σ) . As we shall see, Ft 
ensures that the species tree S∗ displays the fan triple 
σ(x)|σ(y)|σ(z) , while Rt enforces the species tree to dis-
play either σ(x)σ (y)|σ(z) or σ(x)σ (z)|σ(y).

In the following we simplify the notation and denote 
the color of a vertex u in G by ũ instead of σ(u).

Suppose first that (G, σ) is a yes-instance of EDT-
Recognition and thus, there exists a relaxed scenario 
S = (T , S, σ ,µ, τT , τS) that explains (G, σ) . We show 
that there exists a tree S∗ that satisfies (CF ,CR) . Con-
sider G = (G<(S),G=(S),G>(S), σ) , where by assump-
tion G=(S) = G . By Prop. 2, the species tree S of S agrees 
with (RS(G),FS(G)).

We claim that S|x̃ỹz̃ coincides with the fan triple x̃|ỹ|z̃ 
for every t = x|y|z ∈ CF  . To see this, consider the sub-
graph Ft in G. It contains xt − yt − zt and x′t − z′t − y′t 

as induced P3 s. By Definition  6, therefore, x̃ỹ|z̃ , x̃z̃|ỹ , 
and ỹz̃|x̃ are forbidden triples of FS(G) , and thus S|x̃ỹz̃ 
must display x̃|ỹ|z̃ as claimed. We next claim that for 
each t = {xy|z, xz|y} ∈ CR , S|x̃ỹz̃ is either x̃ỹ|z̃ or x̃z̃|ỹ . 
Consider the subgraph Rt in G. It contains w′

t − y′t − z′t 
as an induced P3 . By Definition  6, therefore, w̃ỹ|z̃ and 
ỹz̃|w̃ are forbidden triples of FS(G) . We argue next 
that ytzt ∈ E(G<(S)) . To this end, suppose for con-
tradiction that ytzt ∈ E(G>(S)) . This together with 
Definition  6 and wtyt ,wtzt ∈ E(G) = E(G=(S)) implies 
that ỹz̃|w̃ is an informative triple of RS(G) ; a con-
tradiction to ỹz̃|w̃ being a forbidden triple. Together 
with ytzt /∈ E(G) , this leaves ytzt ∈ E(G<(S)) as the 
only possibility. Now consider xtzt , which is not an 
edge in G = G=(S) . We have the two possibilities 
xtzt ∈ E(G<(S)) and xtzt ∈ E(G>(S)) . Again using 
Definition  6, xtzt , ytzt ∈ E(G<(S)) and xtyt /∈ E(G<(S)) 
yield the informative triple x̃ỹ|z̃ in the former case; 
and xtzt ∈ E(G>(S)) and xtyt , ytzt /∈ E(G>(S)) yield the 
informative triple x̃z̃|ỹ . Hence, in either case, S|x̃ỹz̃ is 
either x̃ỹ|z̃ or x̃z̃|ỹ , as claimed.

We now construct a tree S∗ that satisfies (CF ,CR) from 
S as follows. We first set S′:=S|{ũ:u∈U} . In other words, S′ 
is the minimal phylogenetic subtree of S that connects 
all leaves that are distinct from w̃t for t ∈ CR . Moreo-
ver, since wt is not part of any of the aforementioned 
triples and fan triples, the tree S′ still displays, for 
every t = x|y|z ∈ CF  , the fan triple x̃|ỹ|z̃ and, for every 
t = {xy|z, xz|y} ∈ CR , either the triple x̃ỹ|z̃ or the triple 
x̃z̃|ỹ . The tree S∗ obtained from S′ by relabeling, for 
each u ∈ U  , the leaf ũ by u therefore satisfies (CF ,CR).

Suppose that (U ,CF ,CR) is a yes-instance of (CF ,CR)

-Satisfiability and thus, there exists a tree S∗ on 
leaf set U that satisfies (CF ,CR) . We first construct a 
graph 3-partition G = (G< ,G= ,G> , σ) and then use 
Theorem 10 to argue that G can be explained by some 
relaxed scenario.

We start by setting G=:=G and proceed as follows: 

Fig. 15 The graphs Ft and Rt as constructed in the proof of Theorem 16
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 (A1) for any two distinct connected components H1 
and H2 of G and any x ∈ H1, y ∈ H2 , add xy to 
E(G>);

 (A2) for each t = x|y|z ∈ CF , add xtzt and x′ty′t to 
E(G<);

 (A3) for each t = {xy|z, xz|y} ∈ CR , add ytzt and w′
t z

′
t 

to E(G<) and, for xtzt , there are two cases: 

(a) if S∗ displays xy|z , then add xtzt to E(G<);
(b) if S∗ displays xz|y , then add xtzt to E(G>).

  Note that no other case is possible since S∗ sat-
isfies (CF ,CR).

This completes the construction of G . Since rules  (A2) 
and (A3) assign an edge in either G> or G< to every non-
adjacent pair of vertices within the same connected com-
ponent, i.e., induced P3 or paw graph of G= , and rule (A1) 
covers all edges between these connected components, G is 
a graph 3-partition.

Claim 2 For each ab ∈ E(G<) , a and b are in the same 
connected component of G. Moreover, the connected com-
ponents of G< are isolated edges or induced P3s.

Proof of Claim 2 Only Steps (A2) and (A3) add edges 
to G< , and they only add edges between vertices of the 
same P3 or paw component of G. Moreover, in each such 
component, these steps never add more than two edges to 
G< , and so the connected components of G< are isolated 
edges or induced P3 s, as claimed. ⋄
Claim 3 The graphs G< and G= are properly colored.

Proof of Claim 3 Because G= = G , the graph G= is 
properly colored by construction. As for G< , the endpoints 
of G< edges always belong to the same P3 on three colors 
or P4 on four colors in G by Claim  2, and they have a 
different color by construction. ⋄

Claim 4 The graphs G< and G> are cographs.

Proof of Claim 4 For G< , this holds because its con-
nected components have at most 3 vertices by Claim  2 
and, thus, it cannot contain an induced P4 . Now consider 
the graph G= ∪ G< . Since only Steps  (A2) and  (A3) add 
edges to G< , and they only add edges between vertices of 
the same P3 or paw component of G, the connected com-
ponents of G= ∪ G< all have 3 or 4 vertices. In particular, 
upon inspection of Fig. 15 and Steps (A2) and (A3), one 

easily verifies that none of these components contains 
an induced P4 . Therefore, G= ∪ G< must be a cograph. 
Finally, since G is a graph 3-partition, G> is the comple-
ment graph of G= ∪ G< and thus also a cograph. ⋄

By Theorem  10, it remains to show that 
(RS(G),FS(G)) is consistent. To this end, we construct a 
species tree S that agrees with (RS(G),FS(G)) . First, we 
set S:=S∗ and, for each u ∈ U  , relabel the leaf u in S to 
ũ . Second, we insert the remaining leaves {w̃t : t ∈ CR} 
to S. To this end, for each t:={xy|z, xz|y} ∈ CR , we add 
w̃t as a child of lca S(ỹ, z̃) . We note that if S contains a 
fan triple ã|b̃|c̃ (resp. rooted triple ãb̃|c̃ ) for ã, b̃, c̃ ∈ � , 
then after inserting a leaf as a child of an existing vertex 
of S, the tree S still displays ã|b̃|c̃ or ãb̃|c̃ , respectively. 
Therefore, each insertion of a leaf w̃t preserves the tri-
ples and fan triples that are already displayed by S.

We continue by showing that S agrees with 
(RS(G),FS(G)).

Claim 5 The species tree S displays every triple in RS(G).

Proof of Claim 5 Suppose that there are a, b, c ∈ V (G) 
that imply an informative triple σ(a)σ (b)|σ(c) ∈ RS(G) 
(we refrain from using x, y, z as in Definition 6 to avoid 
confusion with the xt , yt , zt vertices). Together with 
Definition  6, this implies that one of the following two 
cases holds: (1) ac, bc ∈ E(G<) and ab /∈ E(G<) or (2) 
ab ∈ E(G>) and ac, bc /∈ E(G>).
Case  (1): ac, bc ∈ E(G<) and ab /∈ E(G<) . By rule  (A1), 
vertices of distinct connected components of G are con-
nected by edges in G> . Since ac, bc ∈ E(G<) , the verti-
ces a, b and c must be contained in the same connected 
component of G. Clearly, each P3 component contains 
at most one edge in G< (since two of the three possible 
edges are edges in G = G= ). Therefore, a,  b,  c must be 
part of a paw component belonging to an Rt subgraph, 
with t = {xy|z, xz|y} ∈ CR . In particular, we must have 
a = xt , b = yt , and c = zt (noting that the roles of a and 
b are interchangeable). Since xtzt = ac ∈ E(G<) , S∗ must 
display xy|z according to rule  (A3) and, thus, S displays 
x̃ỹ|z̃ = σ(a)σ (b)|σ(c).

Case  (2): ab ∈ E(G>) and ac, bc /∈ E(G>) . By rule  (A1), 
vertices of distinct connected components of G are 
connected by edges in G> . Since ac, bc /∈ E(G>) , the 
vertices a,  b and c must be contained in the same con-
nected component of G. Since we never add G> edges 
between vertices in a P3 component, a,  b,  c must be 
part of a paw component belonging to an Rt subgraph, 
with t = {xy|z, xz|y} ∈ CR . In particular, we must have 
a = xt and b = zt (again, the roles of a and b are inter-
changeable). Since xtzt = ab ∈ E(G>) , S∗ must display 



Page 41 of 43Schaller et al. Algorithms for Molecular Biology           (2023) 18:16  

xz|y according to rule  (A3) and, thus, S displays x̃z̃|ỹ . 
By construction of S, w̃t is a child of lca S(ỹ, z̃) . Together 
with S displaying x̃z̃|ỹ , this implies that S also displays 
x̃z̃|w̃t . For c, the two possibilities c = yt and c = wt 
remain, for which we obtain σ(a)σ (b)|σ(c) = x̃z̃|ỹ 
and σ(a)σ (b)|σ(c) = x̃z̃|w̃t , respectively. Hence, 
σ(a)σ (b)|σ(c) is displayed by S in both cases.

In summary, S displays every informative triple of RS(G) . 
⋄

Claim 6 The species tree S does not display any triple in 
FS(G).

Proof of Claim 6 Suppose that there are 
vertices a, b, c ∈ V (G) that imply a forbidden triple 
σ(a)σ (b)|σ(c) ∈ FS(G) . By Definition  6, we have (1) 
ab, bc ∈ E(G=) and ac /∈ E(G=) or (2) ab, ac ∈ E(G=) and 
bc /∈ E(G=) . In the following, we consider only Case (1), 
since analogous arguments apply in Case  (2). Because 
ab, bc /∈ E(G>) , we know that a, b and c are contained in 
the same connected component of G.
Suppose that a, b, and c are in the same P3 compo-
nent of some Ft subgraph where t = x|y|z ∈ CF . Thus 
{σ(a), σ(b), σ(c)} = {x̃, ỹ, z̃} . In this case, since S∗ con-
tains x|y|z , S contains x̃|ỹ|z̃ = σ(a)|σ(b)|σ(c) and thus 
does not contain the forbidden triple implied by a, b, c.

Suppose that a, b, and c are in the same P3 component 
of some Rt component where t = {xy|z, xz|y} ∈ CR . Thus 
{σ(a), σ(b), σ(c)} = {w̃t , ỹ, z̃} . Since we have added w̃t as 
a child of lca S(ỹ, z̃) , S contains w̃t |ỹ|z̃ = σ(a)|σ(b)|σ(c) 
and thus does not contain the forbidden triple implied by 
a, b, c.

Finally, suppose that a, b, and c are in the same 
paw component of some Rt component where 
t = {xy|z, xz|y} ∈ CR . Then either (i) a = yt , b = wt , 
c = zt ; (ii) a = zt , b = wt , c = yt ; (iii) a = xt , b = wt , 
c = zt ; or (iv) a = zt , b = wt , c = xt . In Cases (i) and (ii), 
we again have {σ(a), σ(b), σ(c)} = {w̃t , ỹ, z̃} and, as 
argued before, S does not contain the forbidden triples 
implied by a, b, c. Now consider Cases (iii) and (iv), and 
thus σ(a)σ (b)|σ(c) = x̃w̃t |z̃ and σ(a)σ (b)|σ(c) = z̃w̃t |x̃ , 
respectively. Since S∗ displays either xy|z or xz|y , S dis-
plays x̃ỹ|z̃ or x̃z̃|ỹ . Since we have moreover added w̃t as 
a child of lca S(ỹ, z̃) , S displays x̃|z̃|w̃t or x̃z̃|w̃t , respec-
tively. Hence, S displays none of the two forbidden triples 
obtained in Cases (iii) and (iv).

Taken together, S does not display a triple in FS(G) . ⋄

We have constructed the graph 3-partition 
G = (G< ,G= ,G> , σ) such that G< and G= are properly 
colored by Claim  3, G< and G> are cographs by Claim  4, 
and (RS(G),FS(G)) is consistent by Claim 5 and Claim 6. 
By Theorem 10, this implies that G can be explained by a 
relaxed scenario S . Since G=(S) = G= = G , we can con-
clude that G is an EDT graph.

In summary, we have established that EDT-Recogni-
tion is NP-complete. Moreover, the graph G constructed 
in the reduction from the (CF ,CR)-Satisfiability prob-
lem is a cograph because it does not contain a P4 as an 
induced subgraph. Therefore EDT-Recognition remains 
NP-hard if the input graph is a cograph.  �
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